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Chapter 1
Introduction

Andrew Pilny and Marshall Scott Poole

For many young group researchers, learning about advanced statistical methods can 
be quite the traumatic experience. Coupled with teaching, professional develop-
ment, and being theoretical experts in their domain, fine graining the ins and outs of 
inferential statistics seemed like just another task on a full plate of work. Fortunately, 
for many of us, there was a rescuer. In 2000, Andy Field published his first book, 
Discovering Statistics Using SPPS for Windows, beginning a series of volumes ded-
icated to making statistics seem both easy and fun. Clarity was essential for Field, 
whose volumes always provided relevant examples (usually very humorous), clear 
screenshots, and example write-ups. Field’s volumes were vital for not only learn-
ing about statistics, but reducing anxiety and uncertainty the complexities of infer-
ential modeling.

However, the world has changed greatly since then, moving into what is gener-
ally referred to as the era of Big Data. Four characteristics generally characterize 
Big Data (Gandomi & Haider, 2015): (1) volume (i.e., bigger size and magnitude), 
(2) variety (i.e., more different types of data), (3) velocity (i.e., rate at which data is 
created), and (4) complexity (i.e., complex data structures that require cleaning and 
integration). But Big Data is not just about data per se, it is also about a new way 
thinking about measurement (King, 2016). For instance, instead surveying groups 
about their networks, we can now collect their interactions via their cell phones, 
email, and social media (i.e., trace data). Unfortunately, one of the consequences of 
Big Data is that many of the methods detailed by Field, which were exclusive vari-
ants of the general linear model, are either inappropriate or unsuited for much of the 
data we have on groups today. For instance, for data on online groups (e.g., 
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coordination in Wikipedia), there can be millions of data points, which can results 
in nearly every independent variable tested being statistically significant. Likewise, 
interaction data from group members assumes a type of interdependence that vio-
lates many assumptions inherent in linear inference.

To address these issues, many researchers have called upon a paradigmatic 
change in thinking, largely referred to as Computational Social Science (CSS) 
(Cioffi-Revilla, 2013; Lazer et al., 2009). Computational social science is an inter-
disciplinary endeavor specifically tailored to handle the complexity of Big Data by 
merging together social science problems with computer science methods. As 
Wallach (2016) puts it, CSS can be thought of as research being undertaken by 
groups of “social minded computer scientists and computationally minded social 
scientists” (p. 317). The impact of CSS on group research has been especially nota-
ble. For instance, the new range of tools and thinking behind CSS has provoked 
innovative ways of understanding different group dynamics (e.g., Klug & Bagrow, 
2016; Shaw & Hill, 2014) and collecting group data (e.g. Madan, Cebrian, Moturu, 
Farrahi, & Pentland, 2012; Radford et al., 2016).

Although the outlook of CSS is promising for the future of group research, there 
is a looming problem (e.g., Alvarez, 2016): for all the new work being produced 
using CSS methodology, there are few explicit avenues available to actually teach 
these methods. In other words, pedagogy is has taken a back seat to publication. The 
result is a sort of knowledge concentration or what boyd and Crawford (2012) refer 
to as a digital divide between the small minority who have access to Big Data and 
CSS resources and the majority who do not. Indeed, there are few graduate semi-
nars, workshops (often expensive if they do exist), or handbooks that make it easy 
for the average social scientist to excel at CSS.

What is needed, therefore, is an “Andy Field book” for CSS, a resource to help 
demystify these methods and make it accessible to anyone willing to follow the 
white rabbit of CSS. To accomplish this goal, a resource would need to do several 
things. First, it would need to emphasize a didactic, rather than an inquiry-laden 
focus. That is, the primary objective is teaching rather than theory generation or 
original contribution to research. Second, it would need to be transparent, which 
means that codes and data should be shared and presented in a tutorial fashion. 
Transparency is vital in an age where we see social science continuing to be criti-
cized for a lack of replication and secrecy regarding data and code. And finally, the 
resource should be encouraging. The spirit behind such an endeavor should reflect 
a growing notion that the more scholarly use of these methods, the better. As such, 
opaque and ambiguous language, equations, and procedures should be avoided in 
order to foster an environment that enables and empowers researchers to carry out a 
similar analysis.

These three values represent the spirit behind this book. The authors were given 
a relatively open format to write their chapters as long as it corresponded to a didac-
tic, transparent, and clear avenue for anyone to pick up and take off with. The diver-
sity of these chapters are quite evident: some are longer than others (e.g., Chap. 4: 
Relational Event Modeling), some introduce needed theoretical introductions (e.g., 
Chap. 6: Social Sequence Analysis), some use computer code (e.g., Chap. 2: 
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Response Surface Modeling), some use graphic interface programs (e.g., Chap. 5: 
Text Mining; Chap. 3: Bayesian networks) and some may not even use data at all 
(e.g., Chap. 8: Computational simulation).

Although no book on introducing CSS methods will be exhaustive, we aimed to 
provide the audience with what might interest group researchers the most. For 
instance, the growth of machine-learning is arguably one of the most dramatic 
changes in inferential modeling during the last twenty years (Hindman, 2015). 
Machine-learning models are often better equipped to handle Big Data because they 
are not dramatically influenced by sample size, often do not make crude normality 
assumptions, and have clear interpretations that explicitly acknowledge when the 
model predicts both accurately and inaccurately. As such, we included two chapters 
that explore different machine learning algorithms, Bayesian networks (Chap. 3) 
and decision-trees (Chap. 7).

Likewise, there has been a renewed increase in group dynamics that openly 
acknowledges time and order. In this case, group researchers can begin to seri-
ously consider dynamic rather than static notions of emergence (Kozlowski, 
Chao, Grand, Braun, & Kuljanin, 2013). As such, Chap. 4 focuses on group inter-
actions by viewing networks as relational events (i.e., episodic interactions), 
rather than relational states (i.e., enduring relationships). In this sense, relational 
event modeling can reveal dominant patterns of interactions by predicting 
ordered and even time-stamped histories of group interactions. Chapter 6 simi-
larly focuses on time and order, but highlights social sequences of activities. One 
of the highlighted example of such a technique is that it can determine if group 
members behave in a synchronized pace (i.e., entrainment), provoking an impor-
tant inquiry as to whether the emergence of group level properties are related to 
group performance.

It also important to recognize the new types of data that can be exploited by 
CSS methods. One example is the growing advent of analyzing text as data. In this 
sense, Chap. 5 explores text mining procedures and the development of semantic 
networks represented by co-occurrence relationships between different words and 
concepts. Sometimes there is not enough data or something was missing from 
data measurement. Chapter 9 deals with this through computational simulation 
with empirical data. Finally, sometimes we have enough data on groups with 
repeated observations that we can run quasi-field experiments. Chapter 2 adapts 
response surface methodology, a common method in the natural and physical sci-
ences, to group research.

Lastly, as Alvarez (2016) notes, CSS is “developing at a dizzying pace” (p. 25). 
While researchers are rapidly developing tools to provide unique and sometimes 
ground-breaking insights into social inquiry, there is a need to pause and give back. 
Many of the tools used by CSS researchers were not developed individually in a 
vacuum. We owe a debt of gratitude to those who developed and taught us these 
methods, and owe it to the next and current generation of CSS researchers to share 
knowledge on how to use these methods. It can be seen as a sort of methodological 
“pay-it-forward”. This book is one small attempt at such an endeavor.

1  Introduction
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Chapter 2
Response Surface Models to Analyze 
Nonlinear Group Phenomena

Andrew Pilny and Amanda R. Slone

2.1  �Introduction to Response Surface Methodology

Using Response Surface Methodology (RSM) is a lot like being a chef, mixing 
together different combinations of ingredients to see which ones come together 
to make the best dish. In this situation, strict linear thinking no longer applies. 
For instance, adding just the right amount of salt to a dish can bring out the 
sweetness in desserts or bump up the taste in more savory dishes. But, too much 
salt can overwhelm the flavor of a dish, just as too little salt can leave it tasting 
bland and unsatisfying. Chefs must find that perfect amount of salt that takes 
their dish from acceptable to exceptional. In addition, chefs must consider how 
the salt will interact with other ingredients in the dish. For example, salt inter-
acts with the yeast in bread to help create texture, and it helps sausage and other 
processed meats come together by gelatinizing the proteins. Likewise, RSM 
helps us find the optimal amount of an outcome variable based on two or more 
independent variables.

This chapter will provide an introduction on how to use RSM to analyze nonlin-
ear group phenomenon. First, the chapter will outline a brief history and background 
of the approach. Then, the chapter will walk the reader through a tutorial demon-
strating how to execute the second-order model using the PROC RSREG function 
in SAS.  Data previously collected from virtual groups in the game EverQuestII 
(see Williams, Contractor, Poole, Srivastava, & Cai, 2011) will be provided as an 
example.
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2.2  �Brief Background of RSM

Box and Wilson’s (1951) treatment on polynomial models provided the foundation 
for RSM, which evolved and developed significantly (e.g., different variations of 
designs) during the 1970s (Khuri, 2006). Like many statistical methods, RSM 
developed in the natural sciences, but has yet to be applied extensively within the 
social sciences given the amount of repeated observations needed for RSM. Indeed, 
given the complexity involved in running controlled social science experiments and 
the typically low rate of manipulations, though, it is no wonder that RSM has not 
taken hold. However, with the advent of Big Data providing virtual Petri dishes of 
human behavior, RSM has garnered new interest in the social sciences for its ability 
to answer questions about complex group interactions (Williams et al. 2011. For 
example, due to its emphasis on optimization (i.e., finding the right combination of 
independent variables that maximizes a dependent variable), RSM has primarily 
impacted the world of business and performance management.

2.3  �Basic Processes Underlying RSM

RSM is a blend between least squares regression modeling and optimization methods. 
More formally, RSM can be defined as the “collection of statistical and mathemati-
cal techniques useful for developing, improving, and optimizing processes” (Myers, 
Montgomery, & Anderson-Cook, 2009, p. 1). Moreover, instead of trying to only 
explain variance, RSM also seeks to clarify optimization. In other word, it is not 
necessarily about how a set of independent variables explains a dependent variable, 
but rather what combination of independent variables will yield the highest (or low-
est) response in a dependent variable. In order to do this, RSM requires at least three 
variations in each variable, measured on a ratio or interval level.

To conduct an RSM test, there are typically five consecutive steps to go through 
(SAS Institute, 2013): (1) the regression modeling, (2) lack of fit, (3) coding of 
variables, (4) canonical analysis, and (5) ridge analysis. Each of these steps is 
described in more detail below.

2.3.1  �Step 1: Second-Order Regression Modeling

The most common and most useful RSM design is the second-order model because 
it is flexible (i.e., not limited to linear trends), easy (i.e., simple to estimate using 
least-squares), and practical (i.e., has been proven to solve real world problems; 
Myers et al., 2009). The general linear model formula is identical to that which is 
used when conducting a regression (Eq. 2.1):

A. Pilny and A.R. Slone
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y f x x e= ( ) +1 2,

	
(2.1)

In this general linear equation, y equals a response variable, x1 and x2 represent 
predictor variables, and e equals the error term.

But, RSM uses the second-order model in order to fully determine the response 
shape (i.e., the observed nonlinear trend). The equation for the second-order model 
is as follows (Eq. 2.2):

	 y b x b x x� �
= + +¢ ¢

0 B 	 (2.2)

In this second-order matrix equation, “b0, b, and B
�

 are the estimates of the inter-
cept, linear, and second-order coefficients” (Myers et al., 2009, p. 223) respectively. 
One thing to note is that, unlike most other second-order regression models used 
when conducting group research, the results provided in this model are preliminary. 
That is, the results are used to determine linear, quadratic, and interactional relation-
ships between the independent variables, not to identify the response shape.

2.3.2  �Step 2: Lack of Fit

Lack of fit is how well predicted repeated observations match the observed data. In 
other words, lack of fit of the second-order model indicates that the predicted values 
of the data do not look like the observed values (see Montgomery, 2005, p. 421–
422). For example, though salt (independent variable) may be shown to influence 
taste (dependent variable) in a second-order model (i.e., statistically significant), 
when we compare the predicted responses to actual taste ratings (e.g., feedback 
from customers), there are major discrepancies. This indicates a poorly fitting 
model.

When we have more than one observation on an independent variable, there are 
several things to look out for when calculating lack of fit. First, it is important to 
differentiate pure error from lack of fit error. Pure error is more common in regres-
sion modeling is determined by looking at the sum of squares (Eq. 2.3) variability 
between each repeated observation of the independent variables (yij) and the average 
value of the response variable ( y i):

	

SS y yPE
i

m

j

n

ij i

i

= =
åå -( )

1 1

2

	

(2.3)

Lack of fit error is different because it uses a weighted version of yij and looks at 
the actual observed value of the dependent variable, not the average. The Equation 
(2.4) can be calculated by taking the sum of the difference of the average value of 
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the response variable ( y i) the fitted value of the response variable ( y� i), and weight-
ing it by the number of observations at value of the independent variable (ni):

	
SS n y yLOF

i

m

i i i
=
å -æ

è
ç

ö
ø
÷

1

2

�

	
(2.4)

From there, an F-test (Eq. 2.5) can be derived using mean squares (MS) from 
both equations to determine whether or not a quadratic model is even necessary to 
replace a reduced first-order model. For instance, if the lack of fit test is not signifi-
cant for a first-order model, then there could be a reasonable argument that a second-
order model is not event needed:

	
F

MS

MS
LOF

PE
0 =

	
(2.5)

Likewise, if the test is statistically significant for a second-order model, then by 
Occam’s Razor (i.e., law of parsimony), we have evidence that a quadratic model 
might not be appropriate.

2.3.3  �Step 3: Coding of Variables

Despite requiring variables to be measured at the interval or ratio level, RSM does 
not simply examine multiple sets of linear relationships. Instead, RSM conducts an 
experiment of sorts, and organizes variables into conditions to see which results in 
the optimal output. As such, to make it easier to conduct the canonical analysis 
(Step 4) and ridge analysis (Step 5), recoding values is a convenient way to examine 
the response shape at multiple values of the independent variables. As Lenth (2009) 
put it, “Using a coding method that makes all coded variables in the experiment vary 
over the same range is a way of giving each predictor an equal share in potentially 
determining the steepest-ascent path” (p. 3). In addition to simplifying the calcula-
tion, recoding the variables also produces results with respect to the original values 
of the independent variables. A common way to recode variables, as in the SAS 
package, is to do the following (Eq. 2.6):

	
Coded value

Original value M

S
=

-

	
(2.6)

whereas “M is the average of the highest and lowest values for the variable in the 
design and S is half their difference” (SAS Institutive, 2013, p. 7323). For instance, 
if there were five observations of on salt, ranging from two ounces to ten ounces, 
then the data for salt are stored in coded form using the following (Eq. 2.7):

	
xsalt =

- -( )Salt value 10 2

4 �
(2.7)
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2.3.4  �Step 4: Canonical Analysis of the Response System

The next step is to conduct a canonical analysis of each of the conditions. The pur-
pose of the canonical analysis is to determine the overall shape of the data. For a 
first-order model, this is typically done through a method of steepest ascent or 
descent, wherein a linear shape determines which region of values creates an opti-
mal response. However, for a second-order model, the shape can look more three-
dimensional given the addition of interaction and polynomial terms. Here, we go 
back to our original Eq. (2.2) of a second-order response in matrix form (see Myers 
et al., 2009, p. 223):

	 y b x b x x� �
= + + ¢¢

0 B 	

To optimize the response ( y� )  and locate the stationary point (xs) (i.e., the point of 
highest response in the dependent variable) we can set the derivative of y�  equal to 0:

	

¶
¶

= + =
y

x
b B x

�
�

2 0
	

(2.8)

and then solve for the stationary point:

	
xs = -
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2
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B b
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In these equations, b equals a vector of first-order beta coefficients:
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And B
�

 includes quadratic (diagonals) and interaction (off-diagonals) beta 
coefficients:
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(2.10)
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For instance, consider if we trying to maximize taste ( y� )  with salt (x1) pepper 
(x2). After running a clean second-order model (i.e., no lack of fit), we find that:

	
b =

é
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- -
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é
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ê

ù

û
ú
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To compute this equation using matrix algebra, the following R code can be 
used:

	

B matrix c , , ,nrow ,ncol ,byrow TRUE= ( ) = = =(  1 22 25 25 2 66 2 2. , . . .- - - ))
= ( ) = = =( )
=

b matrix c , ,nrow ,ncol ,byrow TRUE

x sol

3 65 4 69 2 1

5

. .

. *- vve B b

x

( )( )( )%*%

	

As such, the predicted stationary point for taste based on salt and pepper (x1, x2) 
is 1.34 and 0.75. If the hypothetical fitted second-order model is

	 y x x x x x x� = + + - - -69 65 12 22 3 45 9 33 6 32 4 651 2 1
2

2
2

1 2. . . . . . 	

then the predicted highest response of taste ys
�æ

è
ç

ö
ø
÷  would be 63.63 by plugging in the 

optimal values for salt and pepper. It can then be re-expressed in the canonical sec-
ond order form (this will be useful for later, see Montgomery, 2005, p. 446):

	 y y w ws
� �= + +l l1 1

2
2 2

2

	

	 = + +63 63 1 34 0 751
2

2
2. . .w w 	

where w1 and w2 are canonical variables (i.e., latent variables in relationship with 
the original independent variables).

From this point, it is necessary to determine the shape of the stationary point. The 
eigenvalues (λ) of the canonical analysis give indication to the nature of the shape 
(see Montogmery, 2005, p. 446):
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	 | |B- =lI 0 	 (2.11)

If the eigenvalues for each independent variable are negative, then a maximum 
stationary point has been reached. A maximum stationary point looks like a hill, 
meaning that there is a point that indicates a high response. For most research, this 
is good news because it means that some combinations of variables entered in the 
model to produce a maximum response in the dependent variable. On the other 
hand, if they are all positive, then this indicates a minimum stationary point, mean-
ing that the data will look like a valley. For most research, this is bad news because 
it means that some combinations of variables entered in the model to produce a 
minimum response in the dependent variable, unless a decrease in the dependent 
variable was what was desired of course.

Finally, if the eigenvalues are mixed, this indicates a saddle point, meaning that 
maximum or minimum solutions are not found, but rather multiple regions of high 
and low variables exist. In other words, the data will look like a series of hills and 
valleys, or perhaps even a plateau. For instance, a high value of x1 and low value of 
x2 may produce the highest value of y, while at the same time, a low value of x1 and 
low value of x2 may also produce the same value in y. Moreover, if they are all very 
close, or are at zero, then there is a flat area, meaning that there was little to no rela-
tionship between the independent variables and the response variable. Beyond look-
ing at the eigenvalues, a two-dimensional contour plot is also a visual that can easily 
determine the shape of the response surface.

From our current example,
|B − λI| = 0

	

- - -
- - -

é

ë
ê

ù

û
ú =

1 22 0 25

0 25 2 66
0

. .

. .

l
l 	

By taking the determinant of the matrix:

	
- -( ) - -( ) - - -( ) =1 22 2 66 0 25 0 25 0. . . * .l l

	

	 l l2 3 88 3 183 0+ + =. . 	

The solution, using basic completing the square calculus, is λ1  = −1.177 and 
λ2 = −2.70. As such, because both eigenvalues were negative, it indicates a maximum 
stationary point. This means that the canonical values for salt and pepper would yield 
the highest value of taste based on the data the researcher has collected.

2.3.5  �Step 5: Conduct Ridge Analysis if Needed

Often when a saddle point is found, or if the researcher wants additional informa-
tion regarding a maximum or minimum point, a ridge analysis can be performed. 
The purpose of a ridge analysis is to “anchor the stationary point inside the 
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experimental region” and to give “some candidate locations for suggested improved 
operating conditions” (Myers et al., 2009, p. 236). In other words, the ridge analysis 
provides an estimated response value of y for each of the different values in the 
independent variables.

For instance, consider if the eigenvalue for pepper was essentially zero, but salt, 
as we found out, was significantly less than zero (see, Montgomery, 2005, p. 447). 
From this point, we would want to see what values of salt would yield a high amount 
of taste by analyzing the predicted response in taste from different values in salt. If 
the example formula was

	 y x x x x x x� = - + - - +69 65 14 87 7 94 0 33 8 89 13 651 2 1
2

2
2

1 2. . . . . . 	

and the resulting response in canonical form was

	 y y w ws
� �= - -13 56 0 021 1

2
2
2. . 	

then we know we can pay more attention to salt because a single unit in the w2 
canonical variable would results in a 13.56 unit change rather than a small 0.02 unit 
change moved in the w2 direction. In Table 2.1, a ridge analysis used this informa-
tion to produce a line of predicted values that might indicate a trend:

From here, one can see how the decreasing levels of salt are related to a higher esti-
mated response in taste, which could prove useful for future design of experiments.

2.4  �RSM in Context

To demonstrate the usefulness of RSM in group research, this exemplar study 
employs data gathered from a download of data on 100,000 characters over 5 months 
in the Massive Multiplayer Online Game (MMOG) Everquest II (EQII).

Table 2.1  Example ridge analysis table

Order Estimated response in taste Un-coded value for salt Un-coded value for pepper

1 65.24 2 1
2 59.17 3 0.9
3 49.53 4 0.8
4 36.32 5 0.7
5 19.55 6 0.6
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2.4.1  �About the Game

Commercially launched in November 2004, this game was estimated to have about 
200,000 active subscribers in North America alone as of early 2008, the year in 
which the data was drawn from.1 These players participate in thousands of teams 
over the 5 months, making it possible to draw much larger samples and making it 
possible to identify large samples of teams. Moreover, they incorporate precise met-
rics for the for team performance outcomes. As such, a random sample of 154 
unique groups (i.e., no shared members) was analyzed for this tutorial.

As in most MMOGs, EQII players create a character and advance that character 
through challenges in a social milieu, typically banding together with other players 
for help and companionship. For each character, a class is chosen to fit some varia-
tion of the three basic archetypes found in nearly every fantasy MMO: damage-
dealer, damage-taker and damage-healer. Each archetypal role has different 
capabilities, weaknesses and strengths, and the choice of class then determines how 
players develop their characters and how they will interact in the game environment 
and with other players. Players can communicate with others in the game through 
text messaging and voice chat.

Following a loose storyline, players use their characters to complete various 
tasks (quests) in order to earn virtual items such as currency and equipment. One 
important performance metric is number of “experience points” gained during a 
quest. Players must accumulate experience points to advance their character level. 
The character level is a fundamental indicator of players’ success in the game. It not 
only represents a quantitative measure of players’ skill and competence, but also 
determines whether players have access to certain quests and other game content, 
locations, and equipment. Until they attain the maximum level of 70, the accumula-
tion of experience points is the only way for players to increase their character level. 
The amount of experience points associated with a given quest is associated with the 
difficulty of the quests and the value of the items won. Therefore, experience points 
can be used as a simple yet powerful indicator of players’ performance at the com-
mon tasks in the game.

At the opposite end of the spectrum, a player can die during a quest. When a 
player dies in the game, they are not gone forever, but do pay a cost. For instance, 
for several minutes, the character is very vulnerable and cannot use many of their 
capabilities until they have had time to refresh many of their spells, buffs, and item 
effects. Moreover, their armor takes a significant amount of damage and if com-
pletely destroyed, the character will have to find a shop to get new armor or get it 
repaired. Finally, unless they are revived from a teammate, they will likely revive at 
a location far away from where the quest was being performed. As such, it is in the 
team’s interest to avoid death because it can hinder their progress in the quest.

1 There is no definitive evidence for the exact size of the population on Everquest II. The number 
200,00 is estimated from multiple professional and fan sites such as http://www.mmogchart.com 
and http://gamespot.com
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This study focused on group (i.e., heroic) quests and teams of three to six mem-
bers. Generally, groups undertaking heroic quests include characters with different 
capabilities and skills. As discussed earlier, experience level is an important indica-
tor of players’ capabilities and competence, and groups often have members with 
different experience levels. The diversity in experience levels in a group can influ-
ence team processes substantially (Valenti & Rockett, 2008). Groups also typically 
are composed of members with different archetypal roles (i.e., damage-dealers, 
damage-takers, and damage-healers).

The groups in EQII that undertake heroic quests resemble the action teams 
described by Sundstrom, De Meuse, and Futrell (1990) in that they have short-term 
projects with clear goals and standards for evaluation, and members take on specific 
highly-interdependent roles. Their projects are the quests in the game, which require 
players to complete certain activities, such as finding objects or information, or kill-
ing a monster. Success or failure is clearly indicated by whether the quest is com-
pleted or not and whether or not members are killed during the quest. Analogous 
real world teams include military units, emergency medical response teams, and 
surgical teams.

2.5  �Dependent Variable

2.5.1  �Team Performance

Team performance was measured using two metrics. The first was the amount of 
experience points each player earned during the quest. These were obtained through 
the back-end database. Throughout the quest, characters earn points for successfully 
completing required tasks (i.e., defeating a monster, finding hidden objects). 
Likewise, death was the second and separate indicator of team performance. The 
total amount of deaths was calculated and the lower the number of group deaths, the 
better the performance.

2.6  �Independent Variables

2.6.1  �Complexity

Task complexity scores for each group were obtained through individually cod-
ing each quest. Detailed descriptions of each quest were obtained through ZAM 
EverQuest II, the largest EQII online information database. ZAM also features 
EQII wikis, strategy guides, forums, and chat rooms. Graduate and undergradu-
ate researchers independently coded each quest based on the general definition of 
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task complexity given by Wood (1986). According to Wood (1986), complexity 
entails three aspects: (1) component complexity (i.e., the number of acts and 
information cues in the quests), (2) coordinative complexity (i.e., the type and 
number of relationships among acts and cues), and (3) dynamic complexity (i.e., 
the changes in acts and cues, and the relationships among them). These features 
were used to code the complexity of each quest (Mean  =  21.11, SD  =  17.35, 
Min = 4, Max = 81).

2.6.2  �Difficulty

Difficulty scores for each quest were obtained through Sony Online Entertainment. 
Each quest is given a static difficulty score ranging from 1 (least difficult) to 70 
(most difficult). To create a variable that most closely resembled how difficult it was 
for the group attempting it, we subtracted the difficulty of the level of the quest from 
the highest player’s character level. Thus, a negative number indicates that the group 
has at least one player that has a character level much higher that the quest they are 
attempting, meaning that it will likely be quite easy. On the other hand, a positive 
number indicates that everybody in the group has a character level below the quest 
difficulty level, meaning that it will likely be quite difficult to complete 
(Mean = –2.52, SD = 6.76, Min = –31, Max = 13).

2.7  �Control Variables

2.7.1  �Group Size

The more group members, the more likely there are opportunities for groups to both 
earn experience points and die. As such, to account for group size, we used group 
size as a covariate. Groups ranged from three (67.3  %), to four (22.2  %), five 
(5.2 %), and six (5.2 %) members. Since most groups has three members, the group 
size of three was used a reference point.

2.8  �Data Analysis

The current example carries out RSM in SAS, through the proc. rsreg procedure. 
SAS is used here because it has perhaps the simplest code, though other programs 
can easily implement RSM like R and JMP.

2  Response Surface Models to Analyze Nonlinear Group Phenomena



16

2.8.1  �Controlling for Group Size

Another benefit of using SAS is that the procedure, including contour plots and 
ridge analysis, are all done through specifying a few lines of code:

	

data

g groupsize

g groupsize

g groups

rsm;

set rsm;

;

;

6 6

5 5

4

= =( )
= =( )
= iize

g groupsize

=( )
= =( )

4

3 3

;

;
	

In the above line of code, the first thing that we must do is create the covariate 
variable. Since we want qualitative variable for each group size, we create four dif-
ferent variables and call them g6, g5, g4, and g3.

2.8.2  �Experience Points: A Minimum Stationary Point

The next line of code runs the RSM procedure:

	

ods ;

;

graphics

proc rsreg data plots ridge surface

model

= = ( )rsm

  experience g g g g difficulty complexity covar lack_ /pts = =6 4 5 3 4 ffit

ridge

odsgraphicsoff;

;

max min;

;run

( ) 	

The first line (ods graphics on;), simply tells SAS to turn on the ODS Statistical 
Graphics (Rodriguez, 2011). These graphics are necessary to produce the contour 
plots that show the predicted response based on different values of the independent 
variables. The second line of code does two things. First, it specified the data, which 
we have named “rsm” (proc rsreg data = rsm). Second, it tells the program which 
types of plots we want form the output. In this case, we want a ridge and surface plot 
(plots =  (ridge surface)). The third line of code specifies the model variables. In 
model one, we are analyzing experience points as a function of quest difficulty and 
complexity while treating group size as a covariate. When reading this line of code, 
the dependent variable should come directly after the model term followed by an 
equal sign (model experience_pts=). The independent variables should come next 
(g6 g4 g5 g3 Difficulty Complexity), making sure to have the covariates come first. 
The covariate command lets the program know that the first four variables are to be 
treated as covariates and not included in the canonical and ridge analysis (covar = 4).
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The final line of the model command is the lack of fit test, telling the command 
to include it in the output (lackfit;). Finally, we want to include the ridge analysis to 
find values of the independent variables that predict a maximum or minimum 
response in experience points (ridge max min;). After these commands are properly 
arranged, we must tell the program to run it (run;). Turning the ODS Graphics off 
is useful because it might make future commands run a bit slower, even if they are 
not using the ODS Graphics.

2.9  �Results

The following figures contain screenshots from the actual SAS output to ease in initial 
interpretation. Figure 2.1 contains the results from the least squares regression, includ-
ing the interaction and polynomial terms. Before the results, however, are some 
descriptive information, including how the two independent variables were re-coded 
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Fig. 2.1  Coding coefficients and ANOVA (experience points)
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for the canonical and ridge analysis, and descriptives for the dependent variable, 
which in this case is experience points (M = 3232.61). The omnibus analysis of vari-
ance table compares the different models (e.g., linear, quadratic, cross-product, covari-
ate) to an intercept-only model in order to determine how much of an effect they add. 
For instance, because the quadratic terms by themselves (F = 2.67, p = 0.07), more or 
less, provide a better fit than an intercept-only model, it means they will likely be 
influential predicting an optimal or minimal response surface.

Figure 2.2 displays information on the lack of fit test and individual estimates for 
each independent variable. Overall, the lack of fit test was just above a 0.10 threshold 
for significance (p = 0.11). While this is generally acceptable as a rule of thumb, it 
points to some concern about how well the model predicted the actual response of 
experience points. Nevertheless, there were both linear and nonlinear effects in the 
model. For instance, there was a negative linear relationship with complexity 
(t = −2.11, p = 0.03), meaning that groups earned more experience points with less 
complex tasks. On the other hand, while there was not a linear relationship with 
difficulty (t = −0.84, p = 0.40), there was a quadratic effect (t = 2.28, p = 0.02), 
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Fig. 2.2  Model coefficients and lack of fit (experience points)
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Fig. 2.3  Canonical 
analysis (experience 
points)

meaning that there is a certain difficulty peak where groups tend to earn more expe-
rience points. To further investigate that point, a canonical analysis is useful here.

Figure 2.3 shows the results of the canonical analysis. Because the eigenvalues 
for difficulty (λ1 = 1757.25) and complexity (λ2 = 483.50) were both positive, this 
means the unique solution is a minimum. In other words, a unique combination of 
difficulty and class can yield a solution in which groups earned the least amount of 
experience points. As such, these two variables cannot tell us much about high per-
forming groups, but do tell us a lot about low performing groups. Moreover, because 
difficulty was over three times the value of complexity, it means that experience 
points changes more rapidly along changes in difficulty compared to complexity. 
Finally, the table below gives the solution for the predicted minimum stationary 
point of 2271.66 experience points at a value of −8.59 for difficulty and 61.96 for 
complexity. Because the mean values for each variable is −2.52 and 21.11, this 
means that groups perform the worst when they choose quests that are about 40 units 
higher in complexity than average and when the groups highest member is about 
8 units less than the quest value, which is higher than average.

Figure 2.4 shows the ridge analysis for a minimum solution. The quadratic effect 
for difficulty is clearly evidence here as the values fluctuate from moving higher from 
−9 to −7.87, then decreasing from −7.87 to −13.07. This is important because the 
relationship as demonstrated by the regression model is not linear, suggesting that the 
difficulty of the quest compared to the highest-level character in the group has a tip-
ping point (~−8.59). On the other hand, though there is an overall negative linear 
trend with complexity according to the regression model, the ridge solution paints a 
more complicated picture. For instance, almost equal predicted responses are 
obtained with a complexity value of 42.50 and 80.33. These results are in line with 
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the critical value threshold demonstrating that a complexity value near 60 is where 
groups are predicted to perform the least, much higher than average (Mcompelxity = 21.11).

Although no maximum solution was found, a ridge analysis for maximum ascent 
tends to demonstrate simple linear effects for both difficulty and complexity (see 
Fig. 2.5). More specifically, groups are predicted to perform better when the charac-
ter level of the highest character approaches the same level of the quest and the 
complexity of the quest increases. This makes sense because it means that the quest 
should not be as challenging for the group if they have at least one character in the 
group that is close to the quest difficulty level. The quest is still complex enough for 
group members to do activities that will give them a chance to earn points. However, 
no solid conclusions should be drawn from this. Instead, it may serve as an impetus 
to collect more data for future analysis.

Finally, Fig. 2.6 is a visualization of the response surface analysis as a contour 
plot, with covariates fixed at their average values. This means that this plot is most 
relevant for groups of three, which were the majority of groups playing this game. 
The minimum solution can be easily visualized by looking at the large ring representing 
values below 3000. Values closer to the center of that ring are the lowest predicted 
values of experience points. If you cross the intersection between the two critical 
values of −8.59 for difficulty and 61.96 for complexity, one can pinpoint to the center 
of the ring. The circles represent the predicted values for each observation.

Fig. 2.4  Ridge analysis of minimum response (experience points)
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2.9.1  �Model for Deaths: A Saddle Point

For the model with deaths as the response surface, we use the same code except 
switch the dependent variable form experience points to deaths:

	

ods on;

rsm ;

graphics

proc rsreg data plots ridge surface

mod

= = ( )
eel deaths g g g g difficulty complexity covar lackfit

ri

= =6 4 5 3 4/ ;

ddge

odsgraphics

max min;

run;

off; 	

The initial outputs in Fig. 2.7 details similar information about the coded vari-
ables and analysis of variance.

As you can see in Fig. 2.7, there is a significant difference between an intercept 
only model and the linear, quadratic and cross-product models, suggesting that the 

Fig. 2.5  Ridge analysis maximum response (experience points)
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variables have considerable influence on deaths. However, as demonstrated by 
Fig. 2.8, the full model has a significant lack of fit, meaning that the average val-
ues of death deviate more than we would expect by chance from the predicted 
responses of deaths.

Indeed, although there are significant effects regarding the difficulty term 
(t = 3.45, p < .01) and overall interaction term (i.e., difficulty*complexity, t = 2.38, 
p = .02), the lack of fit finding puts a hitch into the entire analysis because it means 
that we cannot generalize much of the subsequent canonical and ridge analysis. 
From here, this usually means the researcher might look into some additional rea-
sons for the lack of fit. For instance, there may not be enough variability in deaths 
and it might be useful to transform it to make it look more normally distributed (e.g., 
log linear transformation). Alternatively, the researchers might attempt to add more 
data or additional explanatory variables. Nevertheless, for demonstration, we will 
carry on with the canonical and ridge analysis.

As expected, there was no unique solution because of the saddle point response 
shape as demonstrated by the mixed signs of the eigenvalues (see Fig. 2.9). 
Nevertheless, the eigenvalue for difficulty (λ1 = 12.51) is quite larger for complexity 
(λ2  =  −1.03), suggesting that there was more variability regarding changes in 
difficulty. Because there was a significant quadratic interaction, it is useful to look 
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at a maximum ridge analysis to see what exact levels of difficulty were more associ-
ated with more deaths.

The ridge analysis complicates things even further because although the 
regression model suggested a nonlinear effect on difficulty, the ridge analysis 
does suggest a linear relationship (see Fig. 2.10). In other words, the more groups 
attempt quests that have difficulty levels higher than their highest level character, 
they are more likely to die in that attempt. Again, however, this might be due to 
a lack of fit.

Finally, the contour plot in Fig. 2.11 visually demonstrates the relationship 
between difficulty and complexity as it relates to the number of deaths incurred on 
a question. The wide open space in the middle indicates the least amount of deaths, 
but does not reveal a solution because those groups varied too widely on complexity 
and difficulty. Moreover, the bottom left and top right corners specify very high 
predicted values of deaths, meaning that no maximum solution could be found 
either because the existence of these high values occurs at seemingly opposite ends 
of the spectrum. That is, a high number of deaths can occur at a combination of 
either high complexity and low difficulty, or high difficulty and low complexity.

The SAS System
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2.10  �Conclusion

With the advent of mass amounts of data (e.g., trace data), it is possible to extract a 
bulk amount of information on how groups face different environments, process 
information, and perform. RSM inherently requires multiple observations on simi-
lar values of variables and is in a unique position to exploit such data. The main 
contribution of RSM is optimization. That is, through enough data collection, RSM 
can specify the conditions that are most likely to lead towards a certain outcome.

For instance, in the current example, traditional methods like regression and 
ANOVA would have been able to detect nonlinear relationships between difficulty 
and complexity, but they would not have been able to detect the specific values that 
can yield a certain outcome. The canonical analysis that RSM provides is more 
practical because it adds specific values and a contour plot that demonstrates how an 
outcome fluctuates based on different values of the independent variables. In this 
sense, the contour plot is a lot like a road map, guiding the researcher towards opti-
mal paths that can yield insightful suggestions for practical implications.

Fig. 2.8  Model coefficients and lack of fit (deaths)
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Fig. 2.9  Canonical 
analysis (deaths)

Fig. 2.10  Ridge analysis for maximum response (deaths)
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For instance, in EQII, groups are faced with decisions on which quests to attempt. 
Although traditional methods can detect relationships, they do provide an easy 
go-to guide that can be useful for actual decision-making. RSM, on the other hand, 
provides a very useful heuristic to help groups make decisions. For example, before 
a group attempts a quest, they can locate the values of the current quest and group 
(e.g., its difficulty) and pinpoint via the contour plot where their performance is 
predicted to land. If it lands on a very low performance spectrum, then this could be 
used as an important piece of information on whether or not that group should 
attempt to take on the quest.

Theoretically, RSM has the ability to test and examine a number of theoretical 
perspective. Notably, however, RSM has a unique opportunity to examine the basic 
tenets of chaos theory (see Tutzauer, 1996, for an application to organizations and 
groups), which highlights notions of unpredictability and unstableness. For instance, 
canonical and ridge analysis might not be very clean at times. That is, results that 
yield saddle points do not necessarily mean null findings. Instead, they have the 
ability to show how even small fluctions in the independent variables could cause 
dramatic changes in an outcome variable. Indeed, chaos theory would predict that 
in many contexts, a simple unique solution is not possible.
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Chapter 3
Causal Inference Using Bayesian Networks

Iftekhar Ahmed, Jeffrey Proulx, and Andrew Pilny

3.1  �Introduction

The availability of new computational technologies, data collection opportunities, 
and data size is profoundly changing the nature social scientific analysis. Although 
traditional social scientific analysis (Content analysis, ANOVA, Regression, etc.) is 
still very much at the core of scholarly choice, newly found avenues are expanding 
analytical possibilities for social scientists. Prediction and network analyses are two 
of the areas impacted by newly found opportunities. Social scientists are now able 
to generate predictive results beyond traditional regression methods, thus are able to 
increase the power of social analysis. Hard sciences (i.e., Biology or Physics) have 
already developed a rich practice of collecting and analyzing massive amounts of 
data (Lazer et al., 2009). The possibility of dramatic changes in “analyzing, under-
standing, and addressing many major societal problems” became a reality due to an 
increase in the availability of informative social science data (King, 2011, p. 719). 
This data driven social scientific approach, popularly known as “computational 
social science”, is a slowly growing field within social sciences largely spearheaded 
by interdisciplinary scientific teams (Lazer et al., 2009).
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A number of new techniques utilized by present day computational social scien-
tists are borrowed from computer science or information technology. Machine 
learning classification algorithm (MLCA) is one of such technique. MLCA is an 
umbrella term that consists of a variety of classification algorithms. The actual 
choice of a MLCA technique depends upon the theoretical and predictive interests 
of the researcher and the nature of data. Instead of looking for patterns in the data-
set, MLCAs use cross-validation techniques to verify patterns in the data. MLCAs 
divide the data sample into several random samples, search for patterns in the earlier 
samples (except the last one), create probabilities or rules based on these patterns 
and then test those rules on the last sample. Bayesian network classifiers are one 
group of these MLCAs. Bayesian network MLCAs use posterior probabilities (PP) 
to generate classifications using Bayes’ formula.

MLCAs became more user friendly for social scientists with the availability of 
Analytical Graphical User Interfaces (GUI). Weka is one of these available GUI for 
researchers. Developed at the University of Waikato, New Zealand, “Weka is a col-
lection of machine learning algorithms for data mining tasks. The algorithms can 
either be applied directly to a dataset or called from your own Java code. Weka 
contains tools for data pre-processing, classification, regression, clustering, associa-
tion rules, and visualization.” (http://www.cs.waikato.ac.nz/ml/weka/). This chapter 
introduces Bayesian Network Analysis using WEKA.

“A Bayesian network consists of a graphical structure and a probabilistic descrip-
tion of the relationships among variables in a system. The graphical structure explic-
itly represents cause-and-effect assumptions that allow a complex causal chain 
linking actions to outcomes to be factored into an articulated series of conditional 
relationships” (Borsuk, Stow, & Reckhow., 2004, p. 219). Because of these links 
between actions and outcomes, social scientists can generate predictive results and 
develop network structure among variables beyond traditional social scientific 
approaches to increase the power of analysis. Conditional independence is at the 
core of Bayesian networks (Pe’er, 2005). Theoretically speaking, variable X is con-
ditionally independent of variable Z given variable Y if the probability distribution 
of X conditioned on both Y and Z is the same as the probability distribution of X 
conditioned only on Y: P(X|Y,Z) = P(X|Y). We represent this statement as (X ┴ Z|Y). 
Bayesian networks encode these conditional independencies with a graph structure 
(Pe’er, 2005, p. 1). A Bayesian network MLAs use posterior probabilities (PP) to 
generate classifications using Bayes’ formula (Eq. 3.1):

	

P y x
P x y P y

P x y P y x not y not y
|

|

| P | P
( ) = ( ) × ( )

( ) × ( ) + ( ) × ( )
.

	
(3.1)

whereas P(y | x) is a posterior probability of y (dependent variable) given x (indepen-
dent variable), calculated by multiplying the likelihood of an attribute (x) given y (P(x 
| y)) and the class prior probability of y (P(y)) over that value time the probability of a 
false positive (P(x| not y) and the probability of a case not being y (P(not y)).
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For instance, imagine you wanted to know if group performance (i.e., HIGH) is 
contingent on whether or not the group implemented a participative decision making 
(PDM) structure (i.e., TRUE). The Bayesian formula (Eq. 3.2) would try to deter-
mine P(HIGH | TRUE):

P HIGH TRUE
P TRUE HIGH P HIGH

P TRUE HIGH P HIGH TRU
|

|

| P
( ) ( ) ( )

( ) ( )
=

×

× + EE HIGH HIGH| Pnot not( ) ( )× 	
(3.2)

For the current example, we will look at situations where a number of people are 
working together in a complex environment. A number of these situations like 
Military training or Firefighting are potentially dangerous and costly. The develop-
ment of new technology such as games provides us an opportunity to train people in 
a safer environment. Because of technological development, we can make these 
training simulations very close to real world actions. We use the term multiteam 
system (MTS) to describe nested teams engaged in military or firefighting opera-
tions. MTSs are “teams of teams” where each team is nested within a larger collab-
orative group (Marks, DeChurch, Mathieu, Panzer, & Alonso, 2005). The purpose 
of the experiment was to investigate MTS collaboration dynamics in response to 
changes in the accuracy of the information environment surrounding teams.

Now consider a Military training simulation using games. Our experiment was 
conducted using a computer game called Virtual Battlespace 2 (VBS2) (see Pilny, 
Yahja, Poole, & Dobosh, 2014). VBS2 is a customizable combat simulation envi-
ronment and is used globally for military training and simulation as it allows 
researchers to create custom scenarios where the researcher can add or remove 
stimuli in the simulation environment. Each experiment session lasted approxi-
mately three hours during which all participants engaged in two missions. All ses-
sions where implemented in seven, sequential phases. For each mission, participants 
either played a scenario that contained entirely accurate information or a scenario 
that contained partially inaccurate information. In the experimental scenario, each 
MTS contained four participants divided into two teams of two people. Teams were 
tasked with navigating a map that contained landmarks and hazards along a route to 
the MTS’s rendezvous point. As each team’s location was unknown to the other 
team, therefore frequent communication was needed to coordinate activities.

This experiment uses participant’s survey responses to see if we can predict 
which information condition the MTS assigned to groups. Each survey in this 
experiment was large and contained many scales and single response items, conse-
quently providing a robust dataset. These are the types of data sets that we earlier 
mentioned as new possibilities for social sciences. As investigators, our interest is to 
identify factors that can predict information manipulation. However, the amount of 
data that we get and the research interest that we have together persuades us to 
explore new possibilities of social scientific research under the broader term “com-
putational social science”. Here, our particular interest is to see how Bayesian 
Network Analysis helps us in our investigation.

3  Causal Inference Using Bayesian Networks
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3.2  �Scenario

This tutorial uses data from an experiment investigating MTSs. The purpose of the 
experiment was to investigate MTS collaboration dynamics in response to changes 
in the accuracy of the information environment surrounding teams. This chapter 
uses a subset of the original data. The following sections will walk the reader 
through the procedures used during data collection, variable selection, and the steps 
taken to prepare data for analysis.

Participants (n = 129) included undergraduate students from a large Midwestern 
university who were recruited through flyers and course announcements. A total of 
38 MTS experimental sessions were conducted. Each MTS was comprised of four 
participants, divided into two teams of two. Of these 38 sessions, 33 yielded usable 
data as five sessions needed to be discarded due to recording errors.

Teams were tasked with navigating a map that contained landmarks and hazards 
along a route to the MTS’s rendezvous point. As teams’ location was unknown to 
each other in the MTS, field teams needed to use radio communication to coordinate 
a synchronous arrival at the rendezvous point. Once arriving at the rendezvous 
point, teams were given the task of eliminating a group of enemy insurgents. As a 
collective, the MTS was given three tasks: (1) to record landmarks the team navi-
gated to for reconnaissance, (2) to successfully disarm and neutralize hazards such 
as explosive devices and insurgent ambushes, and (3) to coordinate a synchronous 
arrival at the rendezvous point.

While traveling to their rendezvous point, teams were exposed to pre-recorded 
radio messages that were intended to represent orders from the MTS’s commanding 
officer. These radio messages took the form of audio played through each partici-
pant’s headset that played when teams reached certain locations in the simulation. 
These messages gave teams information regarding the path that lie directly ahead of 
them and were also used to assign teams tasks such as confirming that an object 
exists along the path (e.g., a suspicious looking backpack) or exiting their vehicle to 
disarm an explosive device. Teams were exposed to ten messages during each mis-
sion. In the accurate condition all ten messages contained correct information that 
teams could verify within the simulation (e.g., if they are told there is a suspicious 
abandoned vehicle ahead, the suspicious vehicle actually existed). In the inaccurate 
condition two of the ten messages were inaccurate (e.g., if a team is told there is a 
suspected explosive device ahead, there was no explosive device).

All self-report items were measured at the individual level and observed mea-
sures were coded for each team in each session. As observed data were aggregated 
to the team level, there are two observations per session, one for each team. Screen 
recordings (videos) were used to construct a behaviorally anchored coding system 
and each MTS was coded for the five outcomes used in this analysis. Two indepen-
dent raters coded each video and coding was largely objective. Kappa was used to 
measure interrater reliabilities and exceeded .90  in all cases thus suggesting an 
acceptable level of agreement.

In this tutorial, we will be using the participant’s survey responses to predict 
manipulation of information condition in the MTS missions. Each survey in this 
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experiment was large and contained many scales and single response items. 
Additionally, there are several observed outcome variables recorded for each mis-
sion. In this case, we chose 118 variables that are a mixture of scales, single survey 
items, and outcome variables to demonstrate how Bayesian networks can be used to 
accommodate robust datasets.

3.2.1  �Variables

118 variables from the dataset were initially explored in this tutorial (1 dependent and 
117 independent). We will be using information accuracy as our dependent variable 
(it is called MA_Accurate). Information accuracy was manipulated as a counter-bal-
anced fixed effect in the experiment as each team was randomly assigned to either the 
accurate or inaccurate condition for their first mission. For the accurate information 
condition, all information given to teams was accurate, for the inaccurate condition, 
information given to teams contained two erroneous pieces of information. The 
remaining variables are treated as independent variables in this tutorial.

3.2.2  �Data Preparation

Prior to analysis, data need to be cleaned and formatted. In this case, our data 
preparation involved two steps. First, all data were merged into a single file con-
taining all of the variables we will use in our analysis. This means that survey 
responses, observed outcomes, and a dummy coded variable indicating which 
information condition the participant was in were combined into a single file. All 
variables are numeric.

After merging data, we removed any cases that containing missing values. In this 
case, a recording error occurred resulting in five sessions with partially mission 
data. These sessions were removed list wise. In order to analyze the dataset in Weka 
environment, we created a comma delimited file (.csv). MLCs work best with 
Binary Dependent Variable that we are going to predict. However, we can also use 
Nominal Variable with more than two categories.

3.3  �Description of Weka Environment

This section describes the Weka GUI and how to explore different options to run an 
analysis. Figure 3.1 shows the opening window. The Explorer button allows us to 
locate and choose the data file that we are going to use. Once you click the explorer tab, 
it will open a window that provides an Open File option (Fig. 3.2). That option helps us 
to explore our data location and choose the file we will use for this experiment.

3  Causal Inference Using Bayesian Networks
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Fig. 3.1  WEKA main 
GUI

Fig. 3.2  WEKA explorer window

I. Ahmed et al.
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Once the file in loaded in Weka, you can click any variable and see the basic 
statistics including maximum and minimum value, mean, standard deviation, and 
also visual representation of the data (Fig. 3.3).

Figure 3.4 shows the variable that we are going to predict. It shows that the vari-
able is nominal with two categories. As you can see, category I has 63 cases and 
category A 65 cases. It is recommended to have either exact or very close number of 
cases in categories for better prediction results because classification problems can 
occur from imbalanced data. A data set is imbalanced if the classes are not repre-
sented equally within the data set. It is common to have data sets with small imbal-
ances. However, large imbalances would definitely cause a problem. The best way 
to tackle the problem is by collecting new data. If that is not possible, then the 
option is to generate synthetic samples to balance the classes. This synthetic sample 
generation usually randomly sample attributes from minority class instances. If 
there are discrepancies, Weka allows to ‘under-sample’ or ‘over-sample’ a category. 
Over-sampling in Weka resamples datasets by applying the Synthetic Minority 
Oversampling TEchnique (SMOTE).

The Classify tab allows us to run classification algorithms. Figure 3.5 shows us a 
list of classifiers available based on the nature of our data. The first option here 
provides different Bayes classifiers. For this experiment, we are using BayesNet 
classifier.

Fig. 3.3  Variables and basic statistics

3  Causal Inference Using Bayesian Networks
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Fig. 3.5  List of available classifiers
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3.4  �Running Bayesian Network Analysis in Weka

3.4.1  �Analysis with All Variables

There are 118 variables in our data set. MA_Accurate is the variable that provides 
us binary condition that we are interested to know. The rest of the variables will be 
used to predict MA_Accurate. There are three steps of running this experiment. 
First, in order to see the prediction power of our data set, we are going to run an 
analysis with all the variables. Having so many predictor variables is not a good 
practice as it makes explanation complicated. We are using it for two reasons. First 
to demonstrate advanced analysis possibilities so that we can use the technique if 
experimental situation demands such a robust analysis. Second, we like to compare 
results between all variables and few important variables that we are going to select 
later. Figure 3.6 shows us the basic window. As you can see, the classifier choice is 
BayesNet and the variable button shows MA_Accurate. It also shows that the vari-
able is Nominal. To run the classification algorithm, we simply need to hit the start 
button. There is one additional step to remember. Figure 3.6 shows that, to deter-
mine the predictors of information accuracy, we are using a tenfold cross-validation 
method. It means that the algorithm will divide the sample into ten random samples. 
Then, it will use the first nine to create probabilities and search for patterns and 

Fig. 3.6  Basic run window
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develop rules based on those patterns. Finally it will test those derived rules on the 
tenth sample. The number of cross validation choice depends upon the researcher 
and research interest (e.g., smaller samples may need smaller folds). A user can also 
supply a completely different data set to test the MLCA. Once we hit the start but-
ton, the classifier output window provides the result (Fig. 3.7).

3.4.2  �Understanding Weka Output

There are three important sections of the output that together provides us a clear 
picture of our analysis. First is the Stratified cross-validation Summary. This section 
provides detail into the number of correctly and incorrectly classified instances and 
total number of instances. For us these were 90 (70.31 %), 38 (29.68 %) and 128.

The most important output for us is the second part of result - Detailed Accuracy 
By Class. Five important statistics for us are the Precision, Recall, F-Measure, ROC 
Area, and Class (Table 3.1).

First, the Weka output table provides the rate of true positives (TP Rate) or the 
ratio of instances of a given class that was correctly classified and the rate of false 
positives (FP Rate) or the ratio of instances of a given class that was falsely classi-
fied. Then it provides Precision, Recall, F-Measure, ROC Area, and Class. Precision 
is the ratio calculated by dividing proportion of true instances of a class by the total 
number of instances classified as that class. Recall is the ratio calculated by dividing 

Fig. 3.7  Output window with run results
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the proportion of instances classified as a given class by the actual total of that class. 
The F-Measure (Eq. 3.3) is calculated by combining precision and recall in the 
following manner:

	
F

Precision Recall

Precision Recall
= ×

×
+

2 .
	

(3.3)

The overall F-Measure (mentioned in the output as Weighted Avg.) is the model 
accuracy. The accuracy of our test is shown by the ROC Area. A ROC Area value of 
1 denotes a perfect test whereas a value of .5 is equal to random guessing. So, a 
worthwhile value is the one above .5 and better if that is closer to 1. In this test, our 
value is 0.701, which is good enough to accept results. Class denotes the values of 
our binary classes. Here ‘I′ represents Inaccurate and ‘A’ represents Accurate 
classes of our MA_Accurate variable. Based on our results, we can say that the test 
can identify whether the information scenario given by the researchers were accu-
rate or inaccurate about seventy six percent of the time. Finally, the Confusion 
Matrix provides the statistics of how many times a particular class was classified 
rightly or wrongly. Our results indicate that in 50 cases of class I were classified as 
I (right classification) and in 13 cases as A (Table 3.2).

3.4.3  �Assessing Information Gain

Although we have a good model that has a 70 % prediction power, a question of the 
power of individual variables in prediction remains. Although we have 118 variables 
in the test, it is good to find out how much each of these variables is contributing to 
the prediction analysis. Assessing Information Gain is one way that allows us exactly 
to do that. The reason behind this test is to identify and exclude variables that are not 
contributing much to prediction, eliminating them, thus make the model more 
parsimonious.

In order to run Information Gain, we need to go to Select attributes tab and 
choose InfoGainAttributeEval (Fig. 3.8). The select method will automatically 

Table 3.1  Weka output for full model

Precision Recall F-Measure ROC area Class

0.667 0.794 0.725 0.770 I
0.755 0.615 0.678 0.770 A

Weighted Avg. 0.711 0.703 0.701 0.770

Table 3.2  Confusion matrix 
for full model

a b ← classified as

50 13 a = I
25 40 b = A
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change to ranker and will provide a window to accept that choice. Once we click 
OK it will be set. By clicking the start button, we will get the Information Gain 
results in the output area (Fig. 3.9).

In the Ranked attributes section, our results identified three variables with some 
information gain number (Fig. 3.10). The numbers are the amount of information 
gained from that particular variable (on the left side). Starting from variable ‘118 
TAPOthCm2_T2’ the numbers are all 0. It means that those variables are not con-
tributing to any prediction analysis. Three variables our information gain test 
identified were team efficacy, team thoroughness, and speed. All variables were 
observed and measured at the interval level.

Team efficacy measures the degree to which teams accomplished their task of 
neutralizing hazards in the field. High scores of team efficacy were obtained by 
MTS’s that identified and neutralized threats such as explosive devices and insur-
gent ambushes efficiently and quickly. Low scores of team efficacy indicate an MTS 
that did not neutralize threats, needed multiple attempts to eliminate threats, or took 
damage while completing a task. MTSs were placed into three categories based on 
their scores: (1) High, (2) Average, and (3) Low.

Team thoroughness measures the extent to which teams completed their task of 
recording the location of landmarks and hazards during their mission. High scores 

Fig. 3.8  Selection of InfoGainAttributeEval in Select attributes tab

I. Ahmed et al.



41

of team thoroughness indicate an MTS that correctly identified the name and loca-
tion of mission landmarks and hazards. Low scores of team thoroughness indicate 
an MTS that did not accurately record the name or location of landmarks and haz-
ards that they were tasked to locate. They were similarly placed into.

Speed was measured as the time in seconds that it took each team to complete the 
mission. Completion of the mission was denoted by the moment at which each team 
first arrived at the rendezvous point and was similarly placed into three categories 
based on one standard deviation: (1) Long, (2) Average, and (3) Short.

An analysis with only three identified variables with information gain statistics 
would yield almost similar result. As such, it is time for us to re-run the test with 
selected variables.

Fig. 3.9  Information Gain results output
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3.4.4  �Re-run with Selected Variables

In order to re-run the test, we need to go back to the Processes tab and select the 
variables that we need. Here we need M1_Efficacy, M1_Speed, and M1_
Thoroughness. We also need our main variable MA_Accurate (Fig. 3.11). Once we 
select these four variables by clicking the checkbox beside them, we need to click 
the Invert button right above the list of variables area. This will reverse the selection 
and will select all variables other than the four we need. Now we can click the 
remove button right under the list area and remove all unnecessary variables from 
our analysis (Fig. 3.12). Once this selection process is done, we can replicate the 
analysis exactly as before.

Table 3.3 shows us our re-run results. As you can see, there is a slight decrease in 
the overall F-Measure from 0.701 to 0.656. However, the important part to know is 
that we have significantly decreased much of the noise in the data (i.e., variables that 
do not predict well), making the data much more interpretable and more substan-
tially (rather than statistically) significant. A look at the probability distribution 
table can tell us more about the specific odds used to make prediction based on 
Bayes’ theorem.

Fig. 3.10  Ranked attributes section of Information Gain result
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Fig. 3.11  Selection of variables with information gain

Fig. 3.12  Selected variables for final analysis
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3.4.5  �Probability Distribution

Weka allows viewing the graphical structure of the network. By right clicking the 
result in the explorer and a drop-down menu appears with a “Visualize graph” 
option (Fig. 3.13). The graph represents the graphical network with relationship 
among nodes (Fig. 3.14). This window allows inspecting both the network struc-
ture and probability tables. This graph is very useful to identify relationship 
between nodes. Each node in the graph represents a variable or condition and their 
relationships represent the network. It is similar to any other network structure. 

Table 3.3  Weka output for reduced model

Precision Recall F-Measure ROC Area Class

0.727 0.508 0.598 0.701 I
0.631 0.815 0.711 0.701 A

Weighted Avg. 0.678 0.664 0.656 0.701

Fig. 3.13  Final prediction model
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Moreover, the network in the graph are directional indicating a directional relation-
ship. If you place your cursor on any node, it will get high lighted. Clicking that 
node provides the probability table (Fig. 3.15). “The left side shows the parent 
attributes and lists the values of the parents, the right side shows the probability of 
the node clicked conditioned on the values of the parents listed on the left” 
(Bouckaert, 2004, p.29).

Using these probabilities, it is possible to calculate odds using Bayes’ theorem. 
For instance, consider whether or not there was a relationship between the informa-
tion manipulation and thoroughness (78 = AVG, 22 = HIGH, 28 = LOW). The cor-
responding probability of having a high thoroughness score and being in the true 
information accuracy group was 0.32. If we plug this into Bayes’ theorem, we can 
determine the posterior probability of an MTS in the true information condition 
having a high score based on the probabilities given in Fig. 3.14 (see also Witten, 
Frank, & Hall, 2011, p. 260). To calculate theses, observe that Fig. 3.14 gives the 
odds of being in the True condition as 0.51 and 0.32 when thoroughness is high. The 
same odd when information accuracy is False is 0.49 and 0.13. To obtain condi-
tional probabilities, we can use adapt Eqs. 3.1 into 3.4:

Information accuracy
False True
0.49 0.51

Efficacy

False
True

AVG HIGH LOW
0.07 0.23

0.040.260.70
0.71

Thoroughness

False
True

AVG HIGH LOW
0.49 0.32 0.19

0.160.130.71

Speed

False
True

AVG HIGH LOW
0.18 0.52 0.29

0.070.650.28

Fig. 3.14  Probability distribution table of one-parent model
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The values from Fig. 3.14 help us solve this equation:

	

0 32 0 51

0 32 0 51 0 13 0 49
0 7193

. .

. . . .
.

×
×( ) × ×( )

=
	

As such, the conditional probability that an MTS had a high thoroughness score 
and was in the true information condition was 71.93 %, suggesting a significant 
relationship between having true information and better performance.

3.4.6  �Re-run with Two Parent Nodes

Many social scientists and group researchers are interested in moderation or in other 
words, interaction effects. One way to get at this type of analysis is through increasing 
the parent nodes from one to two. This allows the predictor variables to interact with 
one another to create join probabilities. Indeed, one of the reasons it is called Naïve 
Bayes is because the predictor variables operate independent from one another.

To increase the amount of parent nodes from one to two, simply click on the 
BayesNet classifier next to the “Choose” button in Weka to open the generic object 
editor (Fig. 3.15). Then click on the “searchAlgorithm” box next to the “Choose” 
button and increase the “madNrOfParents” from one to two (Fig. 3.15). Finally, re-
run the analysis (Table 3.4).

The table here is promising because the F-Measure has substantially increased from 
0.656 to 0.702. Similarly, clicking on visualize graph will give us a probability distribu-
tion table (see Fig. 3.16). For instance, consider if we looked at efficacy and speed and 
wanted to determine is those groups who had high efficacy and average speeds:

	

0 51 0 07 0 838

0 51 0 07 0 838 0 49 0 26 0 091
0 721

. . .

. . . . . .
.

× ×
× ×( ) + × ×( )

=
	

Here, we see that MTSs that had high efficacy and completed the mission in 
average times (i.e., not too long or short) had a 72.1 % chance of being in the true 
condition, demonstrating a significant relationship in how the manipulation may 
have influenced group performance.
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3.5  �Conclusion

This article demonstrated the opportunities offered by a data driven social scientific 
approach, popularly known as “computational social science”. Here we explored a 
situation where a number of people were working together in a complex environ-
ment. These people constituted true groups as they were interdependent with com-
mon goal and fate. Receiving accurate information was vital in their success. 
However, information accuracy was manipulated to see the effect on group pro-
cesses. It was a simulation of a real world group oriented problem, and due to recent 
technological developments, the simulation was very close to real world actions.

Fig. 3.15  Setting up a two-parent model

Table 3.4  Weka output for reduced model with two parent nodes

Precision Recall F-Measure ROC area Class

0.727 0.635 0.678 0.737 I
0.685 0.769 0.725 0.737 A

Weighted Avg. 0.706 0.703 0.702 0.737
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Group communication scholars has been exploring and analyzing such situations 
for a long time. What made this situation unique is the number of variables that our 
system collected. We had 118 variables in the data set. What we observe here is the 
opportunity of collecting massive data. Previously, social scientists would limit the 
number of variables because of the complication that would arise in analysis and 
explanation. Data collection in those cases would be limited based on existing theo-
ries. Although theoretically sound, this line of research would be conservative in 
exploring many variables, limiting the possibility of discovering novel effects. 
Computational social science helps us to address this barrier.

Another possibility that comes forward is the opposite of theory driven analysis. 
Instead of an a-priory approach, now we can let the data show us relationships and 

Information accuracy
False
0.49 0.51

True

Efficacy
AVG

True
False

0.71 0.07 0.23
0.70 0.26 0.04

HIGH LOW

Speed

Info.
False AVG

AVG

False
False
True
True
True

Efficacy LONG AVG SHORT

HIGH

HIGH

LOW

LOW

0.118 0.656 0.226
0.091
0.548
0.095
0.027
0.143

0.091
0.290
0.600
0.838
0.143

0.818
0.161
0.305
0.135
0.714

Thoroughness

Info.
False AVG 0.462 0.312 0.226

0.455
0.032
0.095
0.351
0.143

0.091
0.419
0.137
0.027
0.714

0.455
0.548
0.768
0.622
0.143

AVG

False
False
True
True
True

Efficacy AVG

HIGH

HIGH

HIGH

LOW

LOW

LOW

Fig. 3.16  Probability distribution table of two-parent model
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relational patterns and make sense of the relationship later based on existing theories. 
During the process, this article demonstrates that the MLCA analysis could actually 
discriminate variables based on their importance in understanding the situation.

This article also demonstrates new ways of interpreting and presenting social 
scientific results. Here we not only see that the conditional probability that an MTS 
had a high thoroughness score and was in the true information condition suggesting 
a relationship between having true information and better performance, we knew 
that the probability was 71.93 %. Such accuracy derived from complex situations 
could be considered as a major improvement in social scientific analysis.

This demonstration represents one of many novel possibilities offered by compu-
tational social science methods to social scientific scholars. Together with tradi-
tional approaches, new methods would definitely enhance our explorations and 
analysis of social situations. The significance of considering the approaches is even 
higher when we consider the nature of data sets with numerous associations and 
layers that we get from new and emerging media.
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Chapter 4
A Relational Event Approach to Modeling 
Behavioral Dynamics

Carter T. Butts and Christopher Steven Marcum

4.1  �Representing Interaction: From Social Networks 
to Relational Events

The social network paradigm is founded on the basic representation of social structure 
in terms of a set of social entities (e.g., people, organizations, or cultural domain 
elements) that are, at any given moment in time, connected by a set of relationships 
(e.g., friendship, collaboration, or association) (Wasserman & Faust, 1994). The 
success of this paradigm owes much to its flexibility: with substantively appropriate 
definitions of entities (vertices or nodes in network parlance) and relationships (ties 
or edges), networks can serve as faithful representations of phenomena ranging 
from communication and sexual relationships to neuronal connections and the 
structure of proteins (Butts, 2009). Nor must networks be static: the time evolution 
of social relationships has been of interest since the field’s earliest days (see, e.g. 
Heider, 1946; Rapoport, 1949; Sampson, 1969), and considerable progress has been 
made on models for network dynamics (e.g. Snijders, 2001; Koskinen & Snijders, 
2007; Almquist & Butts, 2014; Krivitsky & Handcock, 2014). Such models treat 
relationships (and, in some cases, the set of social entities itself) as evolving in dis-
crete or continuous time, driven by mechanisms whose presence and strength can be 
estimated from intertemporal network data.
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A key assumption that underlies the network representation in both its static and 
dynamic guises is that relationships are temporally extensive—that is, it is both 
meaningful and useful to regard individual ties as being present for some duration 
that is at least comparable to (and possibly much longer than) the time scale of the 
social process being studied. Where tie durations are much longer than the process 
of interest, we may treat the network as effectively “fixed;” thus is it meaningful for 
Granovetter (1973) or Burt (1992) to speak of personal ties as providing access to 
information or employment opportunities, for Freidkin (1998) to model opinion 
dynamics in experimental groups, or for Centola and Macy (2007) to examine the 
features that allow complex contagions to diffuse in a community, without explicitly 
treating network dynamics. When social processes (including tie formation and dis-
solution themselves) occur on a timescale comparable to tie durations, it becomes 
vital to account for network dynamics. For instance, the diffusion of HIV through 
sexual contact networks is heavily influenced by partnership dynamics (particularly 
the formation concur rent rather than serial relationships) (Morris, Goodreau, & 
Moody, 2007), and health behaviors such as smoking and drinking among adoles-
cents are driven by an endogenous interaction between social selection and social 
influence (see, e.g. Lakon, Hipp, Wang, Butts, & Jose, 2015; Wang, Hipp, Butts, 
Jose, & Lakon, 2016). While there are many practical and theoretical differences 
between the behavior of networks in the dynamic regime versus the “static” limit, 
both regimes share the common feature of simultaneity: relationships overlap in 
time, allowing for apparent reciprocal interaction between them.

Such simultaneous co-presence of edges forms the basis of all network structure (as 
expressed in concepts ranging from reciprocity and transitivity to centrality and struc-
tural equivalence), and is the foundation of social network theory. Such simultaneity, 
however, is a hidden consequence of the assumption of temporal extensiveness; in the 
limit, as tie durations become much shorter than the timescale of relationship forma-
tion, we approach a regime in which “ties” become fleeting interactions with little or no 
effective temporal overlap. In this regime the usual notion of network structure breaks 
down, while alternative concepts of sequence and timing become paramount.

This regime of social interaction is the domain of relational events (Butts, 2008). 
Relational events, analogous to edges in a conventional social network setting, are 
discrete instances of interaction among a set of social entities. Unlike temporally 
extensive ties, relational events are approximated as instantaneous; they are hence 
well-ordered in time, and do not form the complex cross-sectional structures char-
acteristic of social networks. This lack of cross-sectional structure belies their rich-
ness and flexibility as a representation for interaction dynamics, which is equal to 
that of networks within the longer-duration regime. (In fact, the two regimes can be 
brought together by treating relationships as spells with instantaneous start and end 
events. Our main focus here is on the instantaneous action case, however). The rela-
tional event paradigm is particularly useful for studying the social action that lies 
beneath (and evolves within) ongoing social relationships. In this settings, relational 
events are used to represent particular instances of social behavior (e.g., communica-
tion, resource transfer, or hostility) exchanged between individuals. To understand 
how such behaviors unfold over time requires a theoretical framework and analytic 
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foundation that incorporates the distinctive properties of such micro-behaviors. 
Within the relational event paradigm, actions (whether individual or collective) are 
treated as arising as discrete events in continuous time, whose hazards are poten-
tially complex functions of the properties of the actors, the social context, and the 
history of prior interaction itself (Butts, 2008). In this way, the relational event para-
digm can be viewed as a fusion of ideas from social networks and allied theoretical 
traditions such as agent-based modeling with the inferential foundation of survival 
and event history analysis (Mayer & Tuma, 1990; Blossfeld & Rohwer, 1995). The 
result is a powerful framework for studying complex social mechanisms that can 
account for the heterogeneity and context dependence of real-world behavior with-
out sacrificing inferential tractability.

4.1.1  �Prefatory Notes

At its most elementary level, as Marcum and Butts (2015) point out, the rela-
tional event framework helps researchers answer the question of “what drives 
what happens next” in a complex sequence of interdependent events. In this 
chapter, we briefly review the relational event framework and basic model fami-
lies, discuss issues related to data selection and preparation, and demonstrate 
relational event model analysis using the freely available software package relev­
ent for R (Butts, 2010). Here, we provide some additional context before turning 
to the data and tutorial.

Following Butts (2008), a relational event is defined as an action emitted by one 
entity and directed toward another in its environment (where the entities in question 
may be sets of more primitive entities (e.g., groups of individuals), and self-
interactions may be allowed). From this definition, a relational event is thus com-
prised of a sender of action, a receiver of that action, and a type of action, with the 
action occurring at a given point in time. In the context of a social system, we con-
sider relational events as “atomic units” of social interaction. A series of such events, 
ordered in time, comprise an event history that records the sequence of social actions 
taken by a set of senders and directed to a set of receivers over some window of 
observation. The set of senders and the set of receivers may consist of human actors, 
animals, objects or a combination of different types of actors. The set of action 
types, likewise, may consist of a variety behaviors including communication, move-
ments, or exchanges.

The relational event framework is in an increasingly popular approach to the 
analysis of relational dynamics and has been adopted by social network researchers 
in a wide variety of fields. Typically, research questions addressed in this body of 
work focus on understanding the behavioral dynamics of a particular type of action 
(such as communication alone).

Recently, relational event models have been used to study phenomena as diverse 
as reciprocity in food-sharing among birds (Tranmer, Marcum, Morton, Croft, & de 
Kort, 2015); social disruption in herds of cows (Patison, Quintane, Swain, Robins, 

4  A Relational Event Approach to Modeling Behavioral Dynamics



54

& Pattison, 2015); cooperation in organizational networks (Leenders, Contractor, & 
DeChurch, 2015); conversational norms in online political discussions (Liang, 
2014); and multiple event histories from classroom conversations (DuBois, Butts, 
McFarland, & Smyth, 2013b).

Prior to the relational event framework, behavioral dynamics occurring within 
the context of a social network were generally modeled using frameworks devel-
oped for dynamic network data; since, as noted above, dynamic networks are 
founded on the notion of simultaneous, temporally extensive edges, use of dynamic 
network models for relational event data requires aggregation of events within a 
time window. Such aggregation leads to loss of information, and the results of 
subsequent analyses may depend critically on choices such as the width of the 
aggregation window. Model families such as the stochastic actor-oriented models 
(Snijders, 1996) or the temporal exponential random graph models (Robins & 
Pattison, 2001; Almquist & Butts, 2014; Krivitsky & Handcock, 2014) are appropri-
ate for studying systems of simultaneous relationships that evolve with time, but 
may yield misleading results when fit to aggregates of relational events. While such 
use can be motivated in particular cases, we do not as a general matter recommend 
coercing event processes into dynamic network form for modeling purposes. Rather, 
where possible, we recommend that relational event processes be treated on their 
own terms, as sequences of instantaneous events with relational structure. In the 
following sections, we provide an introduction to this mode of analysis.

4.2  �Overview of the Relational Event Framework

We begin our overview of the relational event framework by considering what a 
relational event process entails. Although we provide some basic notation, we omit 
most technical details; interested readers are directed to Butts (2008), DuBois et al. 
(2013b), and Marcum and Butts (2015) for foundations and further developments. 
We start with a set of potential senders, S, a set of potential receivers, R, and a set of 
action types, C. A “sender” or “receiver” in this context may refer to a single indi-
vidual or a set thereof; in some cases, it may be useful to designate a single bulk 
sender or receiver to represent the broader environment (if, e.g., some actions may 
be untargeted, or may cross the boundary between the system of interest and the 
setting in which that system is embedded). An example of the use of aggregate send-
ers and receivers is shown in Sect. 4.3.1. A single action or relational event, a, is 
then defined to be a tuple containing the sender of that action s = s(a) ∈ S, the 
receiver of the action r = r(a) ∈ R, the type of action c = c(a) ∈ C, and the time that 
the action occurred τ = τ (a); formally, a = (s, r, c, t), the analog of an edge in a 
dynamic network setting. In practice, we may associate one or more covariates with 
each potential action (Xa), relating to properties of the sender or receiver, the sender/
receiver dyad, the time period in question, et cetera. A series of relational events 
observed from time 0 (defined to be the onset of observation) and a certain time t 
comprise an event history, denoted At ={Ai: τ(ai)< = t}. Typically, we will observe a 
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realization of At and seek to infer the mechanisms that generated (which will be 
expressed via a set of parameters, θ, as described below). At any given point in the 
event history, the set of possible events (or support) is defined by the set A(At) ⊆ S × 
R × C, where × indicates the Cartesian product. We note that the support may be 
endogenous, allowing us to consider cases in which particular actions within the 
event history either make new actions possible or render previously available actions 
impossible, or exogenous whereby certain possibilities in the support have been 
restricted (or otherwise new opportunities availed) due to circumstances outside of 
the system under study. (For instance, an individual who has left a building cannot 
speak to those still within it, and the appearance of a new entrant provides a new 
target for interaction).

Let A define the set of events that are possible at any moment. The propensity of 
such an event to occur is defined via its hazard, i.e. the limit of the conditional rate 
of event occurrence in a time window about a given point, as the width of that win-
dow approaches 0. Intuitively, the hazard of relational event a at time t is non-
negative and equal to 0 if and only if a /∈ A(At) (i.e., a is currently impossible); 
larger hazards correspond to higher propensities. It is important to note that each 
event that is possible at a given moment has a non-zero hazard, and not merely those 
events that happen to occur; by observing both the events that transpired and the 
events that could have transpired (but did not), we seek to infer the propensities for 
all possible events. Such inference requires that we parameterize our event hazards, 
and it is natural to conceive of each as arising from a combination of mechanistic 
factors that either enhance or inhibit the realization of the event in question. 
Typically, we implement this by asserting that the hazard of each event is a multipli-
cative function of a series of statistics, each of which encodes the effect of a given 
mechanism on event propensity. Formally, this is expressed (Eq. 4.1) as:

	
l q

q
aAt

u s a r a c a X A AT
a t t= Î{exp( ( ( ) ( ) ( ) )) ,( )

0 otherwise
, , , if a 

	
(4.1)

where λaAtθ is the hazard of potential event a at time t given history At, θ is a vector 
of real-valued parameters, and u is a vector of functions (i.e., statistics) that may 
depend upon the sender, receiver, or type of an event, covariates, and/or the prior 
event history. It should be noted that the log-linear form for the hazard function used 
above is not strictly necessary, and other forms are possible. However, we do not 
consider such alternatives here.

The role played by the u functions in a relational event model is analogous to that 
of the sufficient statistics in an exponential random graph model (see, e.g. Wasserman 
& Robins, 2005), or to the effects in a conventional hazard model (Blossfeld & 
Rohwer, 1995): each represents a mechanism that may increase or decrease the 
propensity of a given action to be taken, as governed by θ. Each unit change in ui 
multiplies the hazard of an associated event by exp(θi), thereby making it (ceteris 
paribus) more prevalent and quick to occur or less prevalent and slower to occur. 
Typically, candidates for u are proposed on a priori theoretical grounds, with θ  
being inferred from available data. Comparison of goodness-of-fit for models with 
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alternative choices of u allows for alternative theories of social mechanisms to  
be tested, without assuming that the dynamics are governed by any single 
mechanism.

Figure 4.1 illustrates the logic of relational event framework by depicting a very 
general relational event process together with its theoretical components. In this 
figure, time runs downward from the top of the illustration to the bottom (as indi-
cated by the rightmost vertical axis). We begin with the state of the world prior to 
any observation of a relational event. This state can be characterized by the set of 
potential actions (or possible events) and their underlying propensities to occur (or 
their respective event hazards). For example, we may observe a group of individuals 
in a room, each of whom may direct a speech act at the others, with the hazards 
representing the distribution of action propensities. Then, something happens: we 
observe a realized relational event—one of the actors (the sender) addresses another 
actor (the receiver). The occurrence of this particular action, in turn, may have 
changed the state of the world, possibly including what actions are possible and 
each individual’s propensity to act. For instance, speaking first may have embold-
ened the first sender and incremented her propensity to speak even more. Thus, we 
update the set of possible events and their hazards to reflect new information given 
the current state of the event history. Next, something else happens: we observe 
another relational event. Again, this event may change the set of possible events and 
their hazards, and we update our view of the world based on the past history. This 
process continues by turns until the last event (not shown). Just as we make observations 

Fig. 4.1  Schematic representation of the inferential logic of the relational event framework. 
Models, proposed on theoretical grounds, determine the set of possible events and the mechanisms 
governing event hazards; observations of realized events are employed to infer unknown parame-
ters governing the strengths and directions of effects, and to select among competing models
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on the sequence of events, we use theory and substantive knowledge about the world 
to make suppositions or impose limits on the set of possible events and to derive the 
u statistics that govern the event hazards.

As the above indicates, the types of effects we estimate using the relational event 
framework can capture a wide range of mechanisms involving both endogenous 
behavioral dynamics and exogenous effects (either covariate-based or the impact of 
exogenous events). Typical examples include actor-level fixed effects (rates for 
sending and receiving events for each actor), subsequence effects, and time invari-
ant and time varying covariate effects. There are many possibilities for modeling 
endogenous dynamics using the relational event framework because there are many 
types of event history sub-sequences from which one may build sufficient statistics. 
Some such sub-sequences are of general theoretical interest. For example, we may 
consider the social processes related to the persistence of action, order of action, 
exchanges within triads of actors, conversational dynamics, or even dynamic pref-
erential attachment. Each of these processes can be parameterized in terms of a 
series of prior events in the life history, allowing it to be implemented in the rela-
tional event framework. The selection of such effects to proposed in a candidate 
model should be driven by the research question and evaluated by assessing 
goodness-of-fit (options currently supported by software are listed in the tutorial, 
below). For example, much research has shown that persons who have interacted 
frequently in the past are likely to continue to interact in the future. In a relational 
event context, we might thus hypothesize that sending events to certain individuals 
increases the chances that they will remain the targets of events in the future. This 
behavior may be characterized as a type of social persistence or inertia and can be 
implemented with an effect that treats the fraction of previous contacts as a predic-
tor of future contact. We might also hypothesize that the order in which one received 
ties from others in the past plays a role in one’s likelihood of replying. Specifically, 
because the last thing that happened is very likely to be the most salient, we may 
model this process with a statistic that employs the inverse of the order of an actor’s 
receipt of events from others as a predictor of that actor’s sending of events back to 
them in the future. If the inclusion of this effect in the model substantially improves 
fit (net of degrees of freedom consumed), we conclude that the mechanism in ques-
tion is predictive of the observed social process; if, however, we do not find such an 
improvement, we may thereby conclude that the observed pattern of interaction 
does not support the presence of the proposed mechanism. We return to more exam-
ples of relational event effects in the tutorial, below.

Regardless of which behaviors (or covariates) are of interest, it is important to 
understand the basic assumptions of the model used to estimate their effects on the 
relational event process; further details can be found in Butts (2008). Here, we 
briefly review three of the most relevant assumptions that most modelers should 
understand before using the relational event framework. First, we assume that all 
events are recorded, and that the onset of the observation period is exogenously 
determined (e.g., chosen by the researcher or set by a random external event). 
Second, we assume that no events can occur at exactly the same time but, rather, are 
temporally ordered. This assumption is perhaps the key distinction that separates 
the relational event regime from the dynamic network regime (as discussed above).
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Finally, we typically assume that event hazards and the support are piecewise 
constant, with changes occurring either when an endogenous event is realized or at 
exogenous “clock” events. This final assumption has numerous useful implications, 
among them being ease of computation and interpretation, the ability to infer param-
eters when exact times are unknown, and the fact that the waiting times between 
events are conditionally exponentially distributed. (Piecewise constancy is also a 
standard assumption in the well-known Cox proportional hazards models (Mills, 
2011), where it yields similar advantages). While this last assumption can be 
relaxed, current software implementations of the relational event framework (e.g. 
the relevent package for R, Butts, 2010) employ it.

Of these assumptions, the most critical is the notion that events are well-ordered 
in time. While non-simultaneity is in practice vital only for events whose occur-
rence can affect each others’ hazards, and while there are various workarounds for 
data sets with small amounts of simultaneity (e.g., due to imprecise coding event 
times), large numbers of simultaneous events suggest a system which is not in the 
relational event regime. Such cases may be better represented as dynamic networks, 
in the manner discussed above.

While the relational event paradigm is defined in terms of instantaneous events 
that unfold in continuous time, inference for relational event models does not neces-
sarily require that event times be known. It is useful in this regard to distinguish two 
general cases: event histories in which only the order of events is known (“ordinal 
time”); and event histories in which the exact time between events is known (“exact” 
or “interval time”). Butts (2008) derives the model likelihood for both scenarios 
under the assumptions listed above. Importantly, under the assumption of piecewise 
constant hazards, the parameter vector θ can in principle be identified up to a pacing 
constant; since relative rather than absolute hazards are typically of primary scien-
tific interest, this implies that information on event ordering is frequently adequate 
to employ the framework. Such data is common e.g. in archival or observational 
settings, in which it may be feasible to construct a transcript of actions taken but 
difficult or impossible to time them accurately. Both the ordinal and exact cases can 
be analyzed using the relevent package which, supports a variety of model effects. 
Additionally, while we are here focused on the basic case dyadic relational event 
models in a single event history, the framework is general enough to accommodate 
multiple event histories and even ego-centered event histories (DuBois et al., 2013b; 
Marcum & Butts, 2015) should one possess those types of data.

4.3  �Sample Cases

To illustrate the use of the relational event model (REM) family, we employ 
sample case data from two previously published sources. First, to illustrate the 
relational event model for ordinal time data, we use data from Butts, Petrescu-
Prahova, and Cross (2007). These data consist of radio communications among 
37 named communicants in a police unit that responded to the World Trade 
Center disaster on the morning of September 11th, 2001. Second, to illustrate 
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REMs for exactly timed data, we use a time-modified1 subset of data from Dan 
McFarland, who recorded conversations occurring between 20 participants in 
classroom discussions (Bender-deMoll & McFarland, 2006). Both datasets are 
available online for didactic purposes here.

For the relevent software package used in the tutorial below, data are stored in 
“rectangular” format as an m × 3 matrix we call an “edgelist” (where m is the num-
ber of events). The first column of the edgelist indexes either the time or the order 
of the events, depending on the type of data. The second and third columns index the 
senders and receivers of the events, respectively, numbered from 1 to n (where n is 
the number of interacting parties). Importantly, the edgelist must be ordered by the 
first column (i.e., by time or event order). For exact timing data, the last row of the 
edgelist should index a null event for the time that observation period ended (by 
default, any event occurring in this row will be ignored by the software).

Optional sender and receiver covariate data may be stored separate from the 
edgelist as vectors or arrays, provided that they are ordered consistently with the 
actor set (1 through the number of actors). For time invariant covariates, this will  
be an n × p matrix, where n indexes the actors and p indexes the covariates. For time 
varying actor covariates, data should be stored in a 3-dimensional m × p × n array, 
where m indexes time and p and n index covariates and actors as above.

Optional event covariate data may be stored similarly. For time invariant covari-
ates, the data should be stored in a 3-dimensional p × n × n array, where p and n 
index each fixed covariate and actor, respectively. Likewise, time varying event 
covariates should be stored in a 4-dimensional m × p × n × n array, where m indexes 
time and the other dimensions are as above.

4.3.1  �Butts et al.’s WTC Data

The 9/11 terrorist attacks at the World Trade Center (WTC) in New York City in 
2001 set off a massive response effort, with police being among the most prominent 
responders. As in much routine police work, radio communication was essential in 
coordinating activities during the crisis. Butts et al. (2007) coded radio communica-
tion events between officers responding to 9/11 from transcripts of communications 
recorded during the event. We will illustrate ordinal time REMs using the 481 com-
munication events from 37 named communicants in that data set. It is important to 
note that the WTC radio data was coded from transcripts that lacked detailed timing 
information; we do not therefore know precisely when these calls were made. We do, 
however, know the order in which calls were made, and can use this to fit temporally 
ordinal relational event models. Additionally, we will employ a single actor-level 
covariate from this dataset: an indicator for whether or not a communicant filled an 
institutional coordinator role, such as a dispatcher (Petrescu-Prahova & Butts, 2008).

1 Some events were given in order, but not distinguished by time; these have been spaced by 
0.1 min for purposes of illustration.
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4.3.2  �McFarland’s Classroom Data

Dan McFarland’s classroom dataset includes exactly timed interactions between 
students and instructors within a high school classroom (McFarland, 2001; Bender-
deMoll & McFarland, 2006). Sender and receiver communication events (n=691) 
were recorded between 20 actors (18 students and 2 teachers) along with the time of 
the events in increments of minutes. The data employed here were modified slightly 
to increase the amount of time occurring between very closely recorded events, 
ensuring no simultaneity of events as assumed by the relational event framework. 
Two actor-level covariates are also at hand in the dataset used here: whether the 
actor was a teacher and whether the actor was female.

4.4  �Tutorial

Software for fitting relational event models is provided by the relevent package for 
R (Butts, 2010). There are numerous tutorials available online that provide instruc-
tion on how to obtain and learn to use the free R software. We direct neophyte users 
to the R project website (CRAN) to browse those resources: https://cran.r-project.
org/. In this tutorial we assume that R is installed and users have some experience 
with statistical programming in that environment.

The relevent package and its dependencies can be downloaded from CRAN 
using R, installed, and loaded into the user’s environment in the usual manner:

	

> ( )
> ( )
install packages relevent

library relevent

. " "

	

	

> ( )
> ( )
[ ]

load remdata Rdata

sociomatrix eventlist C

" .

" . . "

"

"

ls

as1 llass

ClassIntercept ClassIsFemale

ClassIsTeacher

"

" "" "

"

3

5

[ ]
[ ] "" "

" "

"

" .

" . int " .

"

sleep glbs

sleep coord

WTCPoliceCalls

7

9

[ ]
[ ]

wtc

""

"

"

"

WTCPoliceIsICR

WTCPoliceNet11[ ]
	

Dyadic relational event models are intended to capture the behavior of systems 
in which individual social units (persons, organizations, animals, etc.) direct dis-
crete actions towards other individuals in their environment. Within the relevent 
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package, the rem.dyad() function is the primary workhorse for modeling dyadic data. 
From the supplied documentation in R, the rem.dyad() function definition lists a 
number of arguments and parameters:

	

rem. ( , , , ,acl ,dyad edgelist n effects NULL ordinal TRUE NULL

cum

= = =
iideg NULL cumodeg NULL NULL covar NULL NULL

NU

= = = = =
=

, , rrl , , ,

tri

ps

LLL optim method BFGS optim control list

coef seed NUL

, . " , . ,

.

"= = ( )
= LL hessian FALSE sample size verbose TRUE

method c

, , . Inf, ,

fit .

= = =

= "" " " , .obs ,

. ,

" " "BPM MLE, , BSIR conditioned

prior mean prior

( ) =

=

0

0 .. , . , . ,

. , .

scale prior draws

expand

= = =
= =

100 4 500

10

nu sir

sir sir nu 44, )gof = TRUE 	

In this tutorial, we focus on the first four arguments—edgelist, n, effects, ordinal; 
the ninth argument covar; and the fifteenth argument hessian. The remaining 
arguments govern model fitting procedures and output and their default values will 
suffice here. The first argument, edgelist, is how the user passes their data to rem.
dyad; aptly, this takes an edgelist as described above. The second argument, n, 
should be a single integer representing the number of actors in the network. The 
third argument, effects, is how the user specifies which statistics (effects) will be 
used to model the data. This argument should be a character vector where each ele-
ment is one or more of the following pre-defined effect names:

•	 ‘NIDSnd’: Normalized indegree of v affects v’s future sending rate
•	 ‘NIDRec’: Normalized indegree of v affects v’s future receiving rate
•	 ‘NODSnd’: Normalized outdegree of v affects v’s future sending rate
•	 ‘NODRec’: Normalized outdegree of v affects v’s future receiving rate
•	 ‘NTDegSnd’: Normalized total degree of v affects v’s future sending rate
•	 ‘NTDegRec’: Normalized total degree of v affects v’s future receiving rate
•	 ‘FrPSndSnd’: Fraction of v’s past actions directed to v’ affects v’s future rate of 

sending to v’

•	 ‘FrRecSnd’: Fraction of v’s past receipt of actions from v’ affects v’s future rate 
of sending to v’

•	 ‘RRecSnd’: Recency of receipt of actions from v’ affects v’s future rate of send-
ing to v’

•	 ‘RSndSnd’: Recency of sending to v’ affects v’s future rate of sending to v’
•	 ‘CovSnd’: Covariate effect for outgoing actions (requires a ‘covar’ entry of the 

same name)

•	 ‘CovRec’: Covariate effect for incoming actions (requires a ‘covar’ entry of the 
same name)
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•	 ‘CovInt’: Covariate effect for both outgoing and incoming actions (requires a 
‘covar’ entry of the same name)

•	 ‘CovEvent’: Covariate effect for each (v,v’) action (requires a ‘covar’ entry of 
the same name)

•	 ‘OTPSnd’: Number of outbound two-paths from v to v’ affects v’s future rate of 
sending to v’

•	 ‘ITPSnd’: Number of incoming two-paths from v’ to v affects v’s future rate of 
sending to v’

•	 ‘OSPSnd’: Number of outbound shared partners for v and v’ affects v’s future 
rate of sending to v’

•	 ‘ISPSnd’: Number of inbound shared partners for v and v’ affects v’s future rate 
of sending to v’

•	 ‘FESnd’: Fixed effects for outgoing actions
•	 ‘FERec’: Fixed effects for incoming actions
•	 ‘FEInt’: Fixed effects for both outgoing and incoming actions
•	 ‘PSAB-BA’: P-Shift effect (turn receiving)—AB!BA (dyadic)
•	 ‘PSAB-B0’: P-Shift effect (turn receiving)—AB!B0 (non-dyadic)
•	 ‘PSAB-BY’: P-Shift effect (turn receiving)—AB!BY (dyadic)
•	 ‘PSA0-X0’: P-Shift effect (turn claiming)—A0!X0 (non-dyadic)
•	 ‘PSA0-XA’: P-Shift effect (turn claiming)—A0!XA (non-dyadic)
•	 ‘PSA0-XY’: P-Shift effect (turn claiming)—A0!XY (non-dyadic)
•	 ‘PSAB-X0’: P-Shift effect (turn usurping)—AB!X0 (non-dyadic)
•	 ‘PSAB-XA’: P-Shift effect (turn usurping)—AB!XA (dyadic)
•	 ‘PSAB-XB’: P-Shift effect (turn usurping)—AB!XB (dyadic)
•	 ‘PSAB-XY’: P-Shift effect (turn usurping)—AB!XY (dyadic)
•	 ‘PSA0-AY’: P-Shift effect (turn continuing)—A0!AY (non-dyadic)
•	 ‘PSAB-A0’: P-Shift effect (turn continuing)—AB!A0 (non-dyadic)
•	 ‘PSAB-AY’: P-Shift effect (turn continuing)—AB!AY (dyadic)

The fourth argument, ordinal, is a logical indicator that determines whether to 
use the ordinal or exact timing likelihood. The default setting specifies ordinal tim-
ing (TRUE). The ninth argument, covar, is how the user passes covariate data to 
rem.dyad(). Objects passed to this argument should take the form of an R list, where 
each element of the list is a covariate as described above. When covariates are indi-
cated, then there should be an associated covariate effect listed in the effects argu-
ment and each element of the covar list should be given the same name as its 
corresponding effect type specified in effects (e.g., ‘CovSnd’, ‘CovRec’, etc). 
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Finally, the fifteenth argument hessian is a logical indicator specifying whether or 
not to compute the Hessian of the log-likelihood or posterior surface, which is used 
in calculating inferential statistics. The default value of this argument is FALSE.

Having introduced the relational event package and the model fitting function, 
we now transition to examples of fitting relational event models using the two data-
sets described above. Since the case of ordinal timing is somewhat simpler than that 
of exact timing, we consider the World Trade Center data first in the tutorial.

4.4.1  �Ordinal Time Event Histories

Before we move to the analysis of the WTC relational event dataset, it is useful to 
visually inspect both the raw data and the time-aggregated network. The eventlist is 
stored in an object called WTCPoliceCalls. Examining the first six rows of this data 
reveals that the data is a matrix with the timing information, source (i.e., the sender, 
numbered from 1 to 37), and recipient (i.e., the receiver, again numbered from 1 to 
37) for each event (i.e., radio call):

> ( )head WTCPoliceCalls

number source recipient

111632

223216

3311632

4 41632

551132

661132

Thus, we can already begin to see the unfolding of a relational event process just 
by inspecting these data visually. First, we see that responding officer 16 called 
officer 32  in the first event, officer 32 then called 16 back in the second (which 
might be characterized as a local reciprocity effect or AB → BA participation shift 
(Gibson, 2003)). This was followed by 32 being the target of the next four calls, 
perhaps due to either some unobserved coordinator role that 32 fills in the commu-
nication structure or due to the presence of a recency mechanism. Further visual 
inspection is certainly warranted here. We can use the included sna function as.
sociomatrix.sna() to convert the eventlist into a valued sociomatrix, which we can 
then plot using gplot():

	
> < ( )WTCPoliceNet sociomatrix eventlist WTCPoliceCalls, as. . 37
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> =gplot WTCPoliceNet edge WTCPoliceNet arrowhead( , . ^ . , .lwd ce75 xx

as sna col

=

( )[ ]( ) + =log . . . , .edgelist WTCPoliceNet , vertex

i

3 25

ffelse WTCPoliceIsICR,, black ,, gray vertex

ve

" " " " , . . ,( ) =cex 1 25

rrtex sides ifelse WTCPoliceIsICR,, ,, coord coord. , .= ( ) =4 100 wtc ))
	

Figure 4.2 is the resulting plot of the time-aggregated WTC Police communica-
tion network.

Your own may look slightly different due to both random node placement that 
gplot() uses to initiate the plot and because this figure has been tuned for printing. 
The three black square nodes represent actors who fill institutional coordinator roles 
and gray circle nodes represent all other communicants. A directed edge is drawn 
between two actors, i and j, if actor i ever called actor j on the radio. The edges and 
arrowheads are scaled in proportion to the number of calls over time. There are 37 
actors in this network and the 481 communication events have been aggregated to 
85 frequency weighted edges. This is clearly a hub-dominated network with two 
actors sitting on the majority of paths between all other actors. While the actor with 
the plurality of communication ties is an institutional coordinator (the square node 
at the center of the figure), heterogeneity in sending and receiving communication 

Fig. 4.2  Time-Aggregated WTC Police Radio Communication Network
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ties is evident, with several high-degree non-coordinators and two low-degree insti-
tutional coordinators, in the network. This source of heterogeneity is a good starting 
place from which to build our model.

4.4.2  �A First Model: Exploring ICR Effects

We begin by fitting a very simple covariate model, in which the propensity of indi-
viduals to send and receive calls depends on whether they occupy institutionalized 
coordinator roles (ICR). We fit the model by passing the appropriate arguments to 
rem.dyad and summarize the model fit using the summary() function on the fitted 
relational event model object.

> < = = ( )wtcfit dyad WTCPoliceCalls n effects c CovInt1 37 rem. ( , , " " ,,

,

)

covar list CovInt WTCPoliceIsICR

hessian TRUE

Computing

= =( )
=

  preliminary statistics

Fitting model

Obtaining goodness of   fit statistics

summary wtcfit

Relational Event Model Ordi

> ( )1

nnal Likelihood

Estimate Z value ||z||

CovInt

( )
>( )Std Err. Pr

. .1 2 11044640 06981730 142 2 2 16

0 0 00

. . .

. : ’***’ .

***< e

Signif codes

 
  

11 0 01 0 05 0 1 1

6921 048 481

’**’ . ’* ’ . . . ’’

: .

’ ’

Null deviance degreon ees of freedom

Residual deviance degrees of fr: .6193 998 480on eeedom

square degrees of freedom

asymptotic p

Chi on : . ,727 0499 1

  value

AICC

0

6195 998 6196 007 6200 174AIC BIC: . : . : .

The output gives us the covariate effect, as well as some uncertainty and 
goodness-of- fit information. The format is much like the output for a regression 
model summary, but coefficients should be interpreted per the relational event frame-
work. In particular, the ICR role coefficient is the logged multiplier for the hazard of 
an event involving an ICR versus a non-ICR event (eλ1). This effect is cumulative: an 
event in which one actor in an ICR calls another actor in an ICR gets twice the log 
increment (e2λ1). We can see this impact in real terms as follows, respectively:
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>

>

# / . /

e

Relative hazard a non a non non

event

for ICR ICR vs ICR ICR   

xxp

.

.

#

wtcfit $coef

CovInt

Relative hazard an

1

1

8 202707

( )

> for ICR // . /

exp *

ICR vs ICR ICRa non non event

twice the effect

wtcfi

  

( )
> 2 tt $coef

CovInt

1

1

67 28441

( )
.

. 	

In this model, ICR status was treated as a homogenous effect on sending and receiving.
Next, we evaluate whether it is worth treating these effects separately with respect 

to ICR status. To do so, we enter the ICR covariate as a sender and receiver covariate, 
respectively, and then evaluate which model is preferred by BIC (lower is better):

	

> < =
=

wtcfit dyad WTCPoliceCalls n effects

c CovSnd ,

2 37 rem. ( , ,

" " "CCovRec

covar list CovSnd WTCPoliceIsICR,CovRec WTCPolic

" ,( )
= = = eeIsICR

hessian TRUE

Computing preliminary statistics

Fit

( )
=

,

)

tting model

summary wtcfit

summary wtcfit

Relational Eve

> ( )
( )

2

2

nnt Model Ordinal Likelihood

Estimate Z value ||z||

( )
>Std Err. Pr (( )

<CovSnd e

CovRec

. . . . .

. .

***1 1 9791750 09574520 671 2 2 16

1 2 2257

 
2200 09286223 968 2 2 16

0 0 001

. . .

. : ’***’ . ’**

***< e

Signif codes

 
  

’’ . ’* ’ . . . ’’

: .

’ ’0 01 0 05 0 1 1

6921 048 481Null deviance degrees oon ff freedom

Residual deviance degrees of freedo: .6190 175 479on mm

square degrees of freedom

asymptotic p val

Chi on 
 

: . ,730 8731 2

uue

AICC

wtcfit wtcfit

0

6194 175 6194 2 6202 527

1

AIC BIC

BIC

: . : . : .

$>  22

1 2 352663

$

.

BIC

[ ] 	
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While there appear to be significant ICR sender and receiver effects, their 
differences do not appear to be large enough to warrant the more complex model (as 
indicated by the slightly smaller Bayesian Information Criterion (BIC) of the first 
model). Smaller deviance-based information criteria, such as the BIC, indicate bet-
ter model fit.

4.4.3  �Bringing in Endogenous Social Dynamics

One of the attractions of the relational event framework is its ability to capture 
endogenous social dynamics. Next, we examine several mechanisms that could con-
ceivably impact communication among participants in the WTC police network. In 
each case, we first fit a candidate model, then compare that model to our best fitting 
model thus far identified.

Where effects result in an improvement (as judged by the BIC), we include them 
in subsequent models, just as we decided for the comparison of the ICR covariate 
models.

To begin, we note that this is radio communication data. Radio communication is 
governed by strong conversational norms (in particular, radio standard operating pro-
cedures), which among other things mandate systematic turn-taking reciprocity. We 
can test for this via the use of what Gibson (2003) calls “participation shifts”. In par-
ticular, the AB-BA shift, which captures the tendency for B to call A, given that A has 
just called B, is likely at play in radio communication. Statistics for these effects are 
described above. Building from our first preferred model, we now add this dynamic 
reciprocity term by including “PSAB-BA” in the effects argument to rem.dyad():
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> < =

=

wtcfit dyad WTCPoliceCalls n

effects c CovInt ,

3 37 rem. ( , ,

" " "PPSAB

covar list CovInt WTCPoliceIsICR hessian TRUE

 BA" ,

,

( )
= =( ) = ))

Computing preliminary statistics

Fitting model

Obtaining gooodness of statistics

summary wtcfit

Relational Event

  fit

> ( )3

  Model Ordinal Likelihood

Estimate Z value ||z||

( )
>( )Std Err. Pr

CCovInt e

PSAB

. . . . .

. .

***1 1 60405 0 11500 13 949 2 2 16

7 32695 0 10

<  
 BA 5552 69 436 2 2 16

0 0 001 0 01

. .

. : ’***’ . ’**’ . ’*

***< e

Signif codes

 
  

’’ . . . ’’

: .

’ ’0 05 0 1 1

6921 048 481Null deviance degrees of freedon oom

Residual deviance degrees of freedom

sq

: .2619 115 479on

Chi uuare degrees of freedom

asymptotic p value

: . ,

:

4301 933 2

0

on

AIC

 
22623 115 2623 14 2631 467

1 3

1

. : . : .

$ $

AICC

wtcfit wtcfit

BIC

BIC BIC>  

[[ ]3568 707.
	

It appears that there is a very strong reciprocity effect and that the new model is 
preferred over the simple covariate model. In fact, the “PSAB-BA” coefficient 
indicates reciprocation events have more than 1500 times the hazard of other types 
of events (e7.32695 = 1520.736) that might terminate the AB—BX sub-sequence.

Of course, other conversational norms may also be at play in radio communica-
tion. For instance, we may expect that the current participants in a communication 
are likely to initiate the next call and that one’s most recent communications may 
be the most likely to be returned. These processes can be captured with the 
participation shifts for dyadic turn receiving/continuing and recency effects, 
respectively:
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>
> <

#

. (

Model includes p shift effects

wtcfit dyad WTCPolic

4

4

 
 rem eeCalls n effects

c CovInt , PSAB , PSAB , PSAB

, ,

" " " " " " "

= =37

   BA BY AYY" ,

, )

( )
= =( ) =covar list CovInt WTCPoliceIsICR hessian TRUE

Computting preliminary statistics

Fitting model

Obtaining goodnesss of statistics

summary wtcfit

Relational Event Model

  fit

> ( )4

OOrdinal Likelihood

Estimate Z value ||z||

CovInt

( )
>( )Std Err. Pr

.. . . . . ***

. .

1 1 54283 0 11818 13 0549 2 2 16

7 49955 0 11418 65

< e

PSAB

 

 BA .. . ***

. . . . ***

6831 2 2 16

1 25941 0 25131 5 0115 5 402 07

< e

PSAB e

PS

 

  BY

AAB

Signif codes

 
  

AY 0 87215 0 30612 2 8491 0 004384

0

. . . . **

. : ’***’00 001 0 01 0 05 0 1 1

6921 048 481

. ’**’ . ’* ’ . ’.’ . ’’

: .Null deviance don eegrees of freedom

Residual deviance degrees o: .2595 135 477on ff freedom

square degrees of freedom

asympto

Chi on : . ,4325 913 4

ttic p value

AICC

wtcfit

 0

2603 135 2603 219 2619 839

3

AIC BIC: . : . : .

$> BBIC BIC wtcfit4

1 12 62806

$

.[ ] 	
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>
> <

#

. (

Model adds recency effects model

wtcfit dyad WTC

5 4

5

to

rem PPoliceCalls n

effects c CovInt PSAB PSAB

, ,

(" "," "," ,

"

"

=
=

37

  BA BY

PPSAB RRecSnd RSndSnd covar

list CovInt WTCPoliceI

 AY "," "," "), =
= ssICR hessian TRUE

Computing preliminary statistics

Fitti

( ) =, )

nng model

Obtaining goodness of statistics

summary wtcfit

  fit

> 55( )
( )Relational Event Model Ordinal Likelihood

Estimate Std.EErr Z value ||z||

RRecSnd e

Pr

. . . . ***

>( )
<2 38495 0 27447 8 6892 2 2 16 

RRSndSnd e

CovInt

1 34623 0 22307 6 0350 1 590 09

1 1 07058 0 1

. . . .

. . .

*** 
44244 7 5160 5 640 14

4 88714 0 15293 31 9569 2 2 1

. .

. . . .

***e

PSAB e

 
  BA < 66

1 67939 0 26116 6 4304 1 273 10

1 39017

***

***. . . .

.

PSAB e

PSAB

  
 
BY

AY 00 310574 47627 597 06

0 0 001 0

. . .

. : ’***’ . ’**’

***e

Signif codes

 
  

.. ’* ’ . . . ’’

: .

’ ’01 0 05 0 1 1

6921 048 481Null deviance degrees of on ffreedom

Residual deviance degrees of freedom: .2308 413 475on

Chhi on 
 

square degrees of freedom

asymptotic p value

: . ,4612 635 6

00

2320 413 2320 591 2345 469

4

AIC BIC

BIC

: . : . : .

$

AICC

wtcfit wtcfit>  55

1 274 3701

$

.

BIC

[ ] 	

The results indicate that turn-receiving, turn-continuing, and recency effects are 
all at play in the relational event process. Both models improve over the previous 
iterations by BIC, and the effect size reciprocity as been greatly reduced by control-
ling for other effects that reciprocity may have been masking in model 5 (i.e., the 
“PSAB-BA” coefficient was reduced from > 7 to > 4). Finally, recall that our inspec-
tion the time-aggregated network in Fig. 4.2 revealed a strongly hub-dominated 
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network, with a few actors doing most of the communication. Could this be 
explained in part via a preferential attachment mechanism (per Price (1976) and 
others), in which those having the most air time become the most attractive targets 
for others to call? We can investigate this by including normalized total degree as a 
predictor of tendency to receive calls:

Fig. 4.3  Histogram of Deviance Residuals from Ordinal Model of WTC Data
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Though still significant in the presence of preferential attachment effects, recency 
and ICR effect coefficients are reduced while participation shift effects are rela-
tively unchanged. This final model is also preferred by BIC and it’s clear that the 
deviance reduction from the null model is quite substantial at 67 %. While we could 
continue to investigate additional effects (see the list of options above), model 6  
is a good candidate to evaluate model adequacy, which is addressed in the next 
section.
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4.4.4  �Assessing Model Adequacy

Model adequacy is an important consideration: even given that our final model from 
the exercises above (model 6) is the best of the set, is it good enough for our pur-
poses? There are many ways to assess model adequacy; here, we focus on the ability 
of the relational event model to predict the next event in the sequence, given those 
that have come before. This approach nicely falls within the relational event frame-
work. A natural question to ask in this framework is how “surprised” is the model 
by the data. Put another way, when does the model encounter relational event obser-
vations that are relatively poorly predicted? To investigate this, we can examine the 
deviance residuals, which are included in the fitted model object. We begin by cal-
culating the deviance residual under the null which, from the ordinal likelihood 
derivation in Butts (2008), is simply twice the log product of the number of sender-
receiver pairs, and comparing that with the deviance residuals under the fitted 
model:

	

>
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>( )
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The histogram of the model deviance residuals produced from the above code 
snippet is shown in Fig. 4.3. The dotted line indicates the null deviance residual: the 
idea here is that we want the model deviance residuals to fall to the right of that 
cut-off. Indeed, about 89 % of the model deviance residuals are smaller than the null 
residual, with 68 % of them being less than three (or really, really small). These 
initial checks are good conditional evidence that our model is performing really 
well.
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To investigate further, we can evaluate the extent to which our model could take 
a random guess about which event comes next and get it right, relative to all possi-

bilities. Here again, the deviance residuals come in handy as the quantity e
D

2 , where 
Di is the model deviance residual for event i, is a “random guessing equivalent”. 
That is, it is the effective number of events such that a random guess about what 
happens next would be right as often as expected under the model.

	

>
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At least 50 % of the time our final model needs about 1 in 1.7 guesses to correctly 
predict the next event. This is in contrast to our first model with just the intercept 
term for ICR covariate, which needs about 390 such guesses. For an overall com-
parison, consider that the null model would get only 1 out of every 1332 (36 * 37) 
events correct just guessing at random.

Model adequacy as measured by surprise can also be visually inspected. First, 
one can inspect which events are surprising by adding an indicator for model sur-
prise to the original eventlist:

	

> = >head cbind WTCPoliceCalls,surprise wtcfit $residuals nullre6 ssid

number source recipient surprise

FALSE

F

( )( )

1 1 16 32

2 2 32 16 AALSE

FALSE

FALSE

TRUE

3 3 16 32

4 4 16 32

5 5 11 32 	

The code snippet prints just the first five events, but these are enough to get a 
glimpse into why the model might be surprised. We can see that the first four events, 
involving exchanges between actors 16 and 32, are not surprising and appear to 
involve reciprocity and turn continuing participation shifts. The fifth event, how-
ever, is surprising, probably because it involves the sudden interruption of a new 
caller (actor 11). Thus, it appears that the model is surprised, perhaps unsurpris-
ingly, when events transpire that are not specified by the model statistics such  
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as third-party effects. These surprising events can also be projected onto the 
time-aggregated network using as.sociomatrix.sna, as before:

	

> <surprising sociomatrix eventlist
WTCPoliceCalls wtcfit
 as. .

6$$residuals nullresid, ,

gplot surprising edge su

>[ ]( )

> =

37

( , .lwd rrprising
arrowhead edgelist surprising

^ . ,
. log . .

75
cex as sna= ( ) ,,

vertex ifelse WTCPoliceIsICR,, black ,, gra

3

25

[ ]( )
+ =. , . " " "col yy

vertex vertex sides

ifelse WTCPoliceIsICR,,,

" ,
. . , .

( )
= =cex 1 25

,,100( )) 	

The resulting plot of the time-aggregated surprising event network is illustrated 
in Fig. 4.4, which can be directly compared with Fig. 4.2. While there are many 
fewer events that are surprising than not, it’s clear from the figure that the surprising 
events resolve on where the greatest opportunity for communication exists: namely 
on calls directed toward the main hub at the center and also calls sent from the sec-
ondary hub to others. This suggests the existence of some unobserved heterogeneity 
related to those actors not explained by conversational norms, preferential attach-
ment to them, or whether or not they fill institutional coordinator roles.

Fig. 4.4  Time-Aggregated ‘Surprising’ Events Network Under the Final Relational Event. Model 
of WTC Radio Communications
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Finally, the function rem.dyad() supplies two additional components in returned 
model objects that are useful for evaluating adequacy. These are the rank of the 
observed events in the predicted rate structure and a pair of indicators for whether 
or not the model exactly predicts the sender and receiver, respectively, involved in 
each event. While far more stringent as measures of surprise than the deviance 
residuals, these statistics can be quite informative for well-fitting models.

For instance, we can inspect the empirical cumulative distribution function of the 
observed ranks to assess classification accuracy of the model at various thresholds:

	

> =( )( )plot ecdf wtcfit $observed rank xlab Prediction( . / * , "6 37 36   Threshold

Fraction of Possible Events ylab Fraction o( ) =", " ff Observed Events Covered main

Classification Accuracy

",

" ")=

> aabline v c ,, ,, ,= =( )( )0 05 0 1 0 25 2. . . lty
	

The resulting plot of the ECDF is shown in Fig. 4.5, which shows that predic-
tions under the model very quickly cover the observed events. For the strictest mea-
sures, we can ask three questions of the exact predictions: (1) what is the fraction of 

Fig. 4.5  Classification Accuracy of the Observed Ranks Under Model 6 with Prediction. 
Thresholds Indicated at 0.05, 0.1, and 0.25
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events for which either sender or receiver are exactly predicted; (2) what is the 
fraction of events for which both sender and receiver are exactly predicted; and, (3) 
what are the respective fractions of events where we get the sender and receiver 
right under the model. These questions are easily addressed using the fitted model 
output:

	

> ( )( )
[ ]
>

mean apply wtcfit $predicted match, ,

me

6 1

1 0 7941788

.

.

any

aan apply wtcfit $predicted match, ,

colM
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.

.

all( )( )
[ ]
> eeans wtcfit $predicted match

source recipient

6

0 7234927 0 75

.

. .

( )

446778 	

Thus, our final model predicts something right about 79 % of the time (getting 
the sender right for 72 % and the receiver right about 75 % of the events, respec-
tively) and it predicts the event that actually transpired exactly right 68 % of the 
time. Despite its simplicity, this model appears to fit extremely well. Further 
improvement is possible, but for many purposes we might view it as an adequate 
representation of the event dynamics in this WTC police radio communication 
network.

4.5  �Exact Time Histories

We now turn to a consideration of REMs for event histories with exact timing 
information. As in the case of ordinal time data, it is useful to begin by examining 
the raw temporal data and the time-aggregated network. The edgelist is stored in 
an object called Class. Printing the first six rows and the last two rows of this 
object reveals minor differences between the exact time and the ordinal time data 
structures (discussed above). As before, we have three columns: the event time, 
the event source (numbered from 1 to 20), and the event target (again, numbered 
1 to 20). In this case, event time is given in increments of minutes from onset of 
observation. Note that the last row of the event list contains the time at which 
observation was terminated; it (and only it) is allowed to contain NAs, since it has 
no meaning except to set the period during which events could have occurred. 
Where exact timing is used, the final entry in the edgelist is always interpreted in 
this way, and any source/target information on this row is ignored. This row indi-
cates that the total period of observation lasted just over 50 minutes (the length of 
one class session).
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We can again use the sna toolkit to convert and plot the time-aggregated network 
for inspection. Here, we color the female nodes black and the male nodes gray and 
represent teachers as square-shaped nodes and students as triangle-shaped nodes. 
Edges between nodes are likewise scaled proportional to the number of communica-
tion events transpiring between actors.

	

ClassNet sociomatrix eventlist Class,

gplot ClassNet

< ( ) as. .

(

20

,, . " " " " ,vertex ifelse ClassIsFemale,, black ,, gray vertexcol = ( ) ..

, . , . ^ .
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= +

= =

3

2 7cex lwd 55) 	

Figure 4.6 displays the resulting time-aggregated network. A dynamic visualiza-
tion of this data is also available online in (Bender-deMoll & McFarland, 2006) and 
is well worth examining. While it is clear from this figure that teachers do a great 

Fig. 4.6  Time-Aggregated 
Classroom Communications
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deal of talking, there also appear to be several high-degree students. Female students 
in this classroom also appear to be slightly more peripheral. Both of these observations 
warrant inclusion of the respective covariates in our analysis, to which we now turn.

4.5.1  �Modeling with Covariates

One of the advantages that the exact time relational event model likelihood has over 
the ordinal time likelihood is its ability to estimate pacing constants (i.e., the global 
rates at which events transpire). Here we investigate this with a simple intercept 
model, containing only a vector of 1 s as an actor-level sending effect. This vector 
is saved as ClassIntercept, which we can pass to the respective covariate arguments 
in rem.dyad(). Note that we must also tell rem.dyad that we do not want to discard 
timing information by setting the argument ordinal=FALSE:
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The model does not fit any better than the null because it is equivalent to the null 
model (as indicated by the absence of difference between the null and residual devi-
ance). As one would expect from first principles, this is really just an exponential 
waiting time model, calibrated to the observed communication rate. Thus, to calcu-
late the predicted number of events per minute we may multiply the number of pos-
sible event types (here, 20 _ 19 = 380) by the coefficient for the intercept:
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This simple model predicts the overall pace of events to occur at nearly 14 events 
per minute and this matches quite well with the average number of events per min-
ute from the observed data:
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.
	

Because we noted structural heterogeneity based on gender and status in Fig. 4.6, 
we fit a more interesting covariate model that specifies these effects for senders and 
receivers and evaluate whether there is any improvement over the intercept-only 
model by BIC.
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With multiple covariates, the model terms (CovSnd.1, CovSnd.2 etc) are listed in 
the object in the same order as they were specified within the covar argument. Here, 
we see a good improvement over the null model but also note that gender does not 
appear to be predictive of sending communication. A better model may be one with-
out that specific term included, which we fit below and again compare to the previ-
ous model by BIC.
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Indeed, there is a marginal improvement in BIC and we retain the model lacking 
the gender effect for sending communication events.
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4.5.2  �Modeling Endogenous Social Dynamics

While we find that the above covariate models perform better than the null, the final 
model is still unimpressive in terms of deviance reduction, with only about a 5 % 
total reduction from the null by our best fitting model. To investigate further, we 
propose a set of models that capture endogenous social dynamic effects that  
are reasonably presumed to be at play in classroom conversations. These include 
recency effects and effects that capture aspects of conversational norms, such as 
turn-taking, sequential address, and turn-usurping.

As before, we can enter these terms into the model using their appropriate effect 
names.

We also preserve the covariates from best covariate model (model 3 from the 
previous section) and check our improvement by BIC.
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We can see that adding recency effects to the covariate model results in a  
much improved fit by BIC. Moreover, there is again an improvement in BIC when 
conversational norms are added into the model. The summary of the results from 
model 5 also show that the remaining gender covariate effect falls out in the pres-
ence of the endogenous social dynamic effects. This hints at the possibility that 
what seemed at first glance to be a difference in the tendency to receive communica-
tion by gender was in fact a result of social dynamics (perhaps stemming from the 
fact that both instructors are male, with their inherent tendency to communicate 
more often amplified by local conversational norms). We can confirm that second 
the gender term is extraneous by evaluating whether a reduced model is preferred  
by BIC.
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And, as before, the reduced model is indeed preferred. We now have a relatively 
well-fitting relational event model specified by a combination of covariate and 
endogenous dynamic effects. At this point, we can turn to interpretation of fitted 
model parameters and model adequacy from our current vantage point.

4.5.3  �Interpretation of a Fitted Model

It is often useful to consider the inter-event times predicted to be observed under 
various scenarios by a fitted relational event model. Recall that under the piecewise 
constant hazard assumption, event waiting times are conditionally exponentially 
distributed. This allows us to easily work out the consequences of various model 
effects for social dynamics, at least within the context of a particular scenario.

The most basic results to interpret from a fitted model are, of course, the coeffi-
cients themselves. In interpreting coefficient effects, recall that they act as logged 
hazard multipliers. Taking their log-inverse (i.e., exponentiating them), produces 
their hazard multiplier. For instance, the turn-taking participation-shift (p-shift) 
effect from model 6 has a coefficient value of 4.623682, which corresponds to an 
interpretation that response events have about 100 times the hazard of non-response 
events (e4.623682 = 101.8684). While this appears to be a substantial effect, the fact 
that an event has an unusually high hazard does not mean that it will necessarily 
occur. For instance, while a response of B to a communication from A has hazard 
that is about 100 times as great as the hazard of a non-B → A event all things con-
stant, there are many more events of the latter type. In fact, there are 379 other 
events “competing” with the B → A event, and thus the chance that it will occur next 
is smaller than it may appear by simply taking the hazard multiplier at face value. 
This example shows that both relative rates and combinatorics (i.e., the number of 
possible ways that an event type may occur) govern the result and should temper 
respective interpretations.
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What else can be done with the model coefficients from an interpretation 
perspective? One basic use of the model coefficients is to examine the expected 
inter-event times under specific scenarios and conditions. For instance, one may be 
interested in evaluating the predicted mean inter-event time when nothing else is 
happening. This is simply governed by the global pacing constant (i.e., the average 
rate that events transpire, or intercept) and the number of possible events. Or, one 
may want to know how long it takes for one actor to respond to another actor given 
an immediate event (or other such scenarios). Depending on the model, many of 
these “waiting time” effects can be evaluated from coefficients. To accomplish this 

using the exact time likelihood, some algebra comes in handy: 
1

m e’× ×∑
 where m 

is the number of possible events under the scenario and λ is the vector of model 
parameters involving the scenario of interest. Here again, both the number of ways 
that an event type can occur (m’) and the propensity of such events to occur (λ) both 
matter! In the following snippet, we evaluate such waiting times under different 
scenarios from model 6:
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Remember that our temporal units in the classroom dataset are increments of 
minutes: multiplying these values by 60 returns how many seconds (or fractions 
thereof) these predicted waiting times entail. Thus, if no other event were to inter-
vene, a teacher would initiate communication with a student after a mean waiting 
time of approximately 70 seconds. Given an initial teacher→student communica-
tion and no other intervention, the same teacher will produce another speech act 
after an average of roughly 8 seconds—a rapid-fire lecture mode. Interestingly, we 
can also see that teachers are very quick to respond to student communications (a 
delay of just over 2 s, on average), while students take somewhat longer to respond 
to teachers (about 16 s). Such observations comport well with our general intuition 
regarding classroom functioning, and illustrate the types of quantitative information 
that can be gleaned from a REM fit.

4.5.4  �Assessing Model Adequacy

We can assess model adequacy for exact time relational event models in much the 
same manner as we do for ordinal time models. The major difference is that we can-
not here use a fixed null residual or guessing equivalent. However, we can still 
examine “surprise” based on the deviance residuals of fitted models. Despite not 
having a fixed null residual to evaluate against, we can still inspect the distribution 
of the deviance residuals. Ideally, we would like them to be small and clustered near 
zero. Figure 4.7 plots the histogram of the deviance residuals from model 6. The 
distribution is clearly more “lumpy” than that observed in Fig. 4.3 for the corre-
sponding the WTC model, suggesting that the classroom dyamics are less well-
predicted on average than were the radio communications.
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Evaluating how well the model predicts each event sheds additional light on 
these results.

On average, the model only predicts the event perfectly about 33 % of the time 
(still a remarkable performance, given the large number of possible events). We do 
a bit better with getting at least one part of the event right, correctly classifying the 
sender or receiver about 50 % of the time (and we do much better at classifying 
senders than receivers over all, on average). Moreover, inspection of the classifica-
tion accuracy in Fig. 4.8 for this model shows substantial lag between the prediction 
threshold and fraction of the observed events covered by the model. By 25 % of the 
possible events transpiring, the model has only predicted 89  % of the observed 
events (compared with 98 % in the corresponding WTC case).

Fig. 4.7  Histogram of Deviance Residuals from Exact Time Model of McFarland’s Classroom. 
Data
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Fig. 4.8  Classification Accuracy of the Observed Ranks Under Model 6 with Prediction. 
Thresholds Indicated at 0.05, 0.1, and 0.25
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So, comparatively, it looks that our exact time relational event model of the 
classroom data isn’t performing as well as our ordinal time relational event model of 
the WTC data. We may be missing some important aspect of the relational event 
process in our model of the classroom conversation. We can again examine the model 
“surprise” superimposed on the time-aggregated network for clues about what may 
be going on. Here, because we lack a null residual, we’ll define surprising events as 
those for which the observed event is not in the top 5 % of those predicted.
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The visualization in Fig. 4.9 gives us more of a clue about what we’re missing. 
Specifically, the presence of five distinct clusters represent the occurrence of vari-
ous side discussions that are not well-captured by the current model. This could be 
due to the fact that things like P-shift effects fail to capture simultaneous side-
conversations (each of which may have its own set of turn-taking patterns), or to a 
lack of covariates that capture the enhanced propensity of subgroup members to 

Fig. 4.9  Time-Aggregated 
‘Surprising’ Events 
Network Under the Final 
Relational Event. Model  
of McFarland’s Classroom 
Data
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address each other (such as students being in the same school club together). Further 
elaboration could be helpful here. On the other hand, we seem to be doing reason-
ably well at capturing the main line of discussion within the classroom, particularly 
vis-a-vis the instructors. Whether or not this is adequate depends on the purpose to 
which the model is to be put; as always, adequacy must be considered in light of 
specific scientific goals.

4.6  �Conclusion

A wide range of interaction processes—from radio communications to dominance 
contests— can be fruitfully studied within the relational event paradigm. While aris-
ing as the short duration limit of the dynamic network regime, the relational event 
regime has its own distinct properties and requires distinct treatment. In particular, 
relational event dynamics are fundamentally about sequential relational structure, 
rather than the simultaneous relational structure that is the dominant concern within 
social network analysis. In this and many other respects, theory and analysis of 
relational event dynamics owes as much to fields such as conversation analysis, 
event history analysis, and agent-based modeling as to conventional network analy-
sis. Relational event models are still fundamentally structural, however, and we 
stress that the approaches are complementary. Indeed, where exact (or exactly 
ordered) data is available on relationship start and stop times, it is possible to model 
dynamic networks via a REM process whose events involve the creation and termi-
nation of edges. Taking such a process to be fully latent—with only the state of the 
currently active edges observed at a small number of distinct points in time—leads 
one to a model family that is essentially similar to the framework of Snijders (2001). 
Likewise, temporally extensive relationships are often important covariates for rela-
tional event processes, allowing one to directly assess the impact of ongoing ties on 
social microdynamics.

Although we have focused here on some of the most basic types of REMs, more 
complex cases are also possible. As noted, REMs for “egocentric” event data 
(Marcum & Butts, 2015) can be powerful tools for modeling the responses of indi-
viduals to their local social environments, and are well-suited to the analysis of 
complex event series (with many event types) punctuated by exogenous events. 
Hierarchical extensions to REMs (DuBois et al., 2013b) allow for pooling of infor-
mation across multiple event sequences while still allowing the dynamics of each 
sequence to differ from the others; this is particularly useful when studying many 
small groups, and/or when attempting to estimate covariate effects for attributes 
whose prevalence varies greatly from group to group. Endowing REMs with latent 
structure also holds a host of opportunities, including the ability to infer latent inter-
action roles directly from behavioral data (DuBois, Butts, & Smyth, 2013a). Given 
the breadth and flexibility of the approach, the prospects are good for many more 
developments in this area. We close with the important reminder that no representa-
tion is fit for all purposes, nor is it intended to be. Many relational analysis problems 
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involve the modeling of ongoing relationships, and are better viewed through the 
lenses of static or dynamic network analysis. Where one’s focus is on micro-
interaction or other processes involving discrete behaviors whose implications cas-
cade forward through time, however, the relational event paradigm offers a powerful 
and statistically grounded alternative.
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Chapter 5
Text Mining Tutorial

Natalie J. Lambert

5.1  �Introduction

The world we live in is generating text at an unprecedented rate. Consider how 
much new text is created by emails, newspapers, blogs, and social media websites 
every day, and it quickly becomes clear that analysis of group behaviors can become 
challenging due to the large amount and variety of textual data generated from 
group members’ interactions. Text mining is one strategy for analyzing textual data 
archives that are too large to read and code by hand, and for identifying patterns 
within textual data that cannot be easily found using other methods. Text mining as 
a method can be used to conduct basic exploration of textual data, or can be used in 
combination with other methods like machine learning to predict group members’ 
future behaviors. This tutorial introduces text mining by outlining two basic meth-
ods for data exploration: generation of a concept list and generation of a semantic 
network. Learning the steps it takes to prepare, import, and analyze textual data for 
these simple procedures is enough to get started analyzing your own datasets. This 
tutorial is only a glimpse of the text mining method, however, and new text mining 
programs and algorithms are continually being developed. Readers interested in 
learning more about text mining should take formal courses or explore the many 
text mining packages available in programming languages like R and Python.

Most fundamentally, text mining is a methodology used to extract information, 
classify data, and identify patterns within textual datasets. It is even more accurate 
to say that text mining is a collection of methodologies because just as there can be 
many patterns within any one collection of text, there are many ways to identify 
these patterns using text mining. Historically, text mining was used to search 
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computer documents in order to identify which documents contained a word or 
words of interest, and to extract specific information from documents (Fan, Wallace, 
Rich, & Zhang, 2006). Early electronic card catalogs in libraries utilized text min-
ing to tag and index catalogue holdings (Miner, 2012), and text mining has been 
used to automatically generate research article abstracts from the content of articles 
since the 1950s (Luhn, 1958). Text mining is used today by businesses and research-
ers for a multitude of purposes such as analyzing news stories in order to understand 
the public’s perception of health topics like AIDS (Caputo, Giacchetta, & Langher, 
2016), to extract trends in consumer opinions from product reviews posted online 
(Dasgupta & Sengupta, 2016), and to manage information overload in research 
fields like biomedical research (Cohen & Hersh, 2005).

There are many situations where other methodologies cannot provide the type of 
information about a textual dataset that text mining can offer. A researcher with 
60 hours of audio recordings of focus group interviews is faced with around 1,800 
pages of transcriptions. Hand coding of such data for a factor of interest usually 
requires multiple readings of the text by several researchers, and such large textual 
datasets are often a daunting barrier to analysis even when they offer significant 
benefits like coverage of a greater variety of research subject demographics and 
backgrounds. Text mining can search through these large datasets for evidence of a 
factor of interest in seconds as opposed to the many hours it would take to manually 
search all of the transcriptions.

Another benefit of text mining is its ability to perform data-driven discovery. 
Data-driven discovery is the process of looking for patterns within datasets without 
pre-conceived hypotheses regarding what the researcher expects to find. Using the 
traditional scientific method, the researcher with the large archive of focus group 
transcriptions would have analyzed the data in order to answer a specific hypothesis 
such as, “Organizational groups that utilize a cooperative approach to conflict will 
attain higher productivity ratings than organizational groups that utilize a competi-
tive approach to conflict.” The researcher would likely answer this hypothesis by 
focusing on instances of conflict within the transcriptions, using a method like 
structural equation modeling to evaluate whether there is a relationship between 
group conflict style and the groups’ productivity. Data-driven discovery conducted 
using text mining allows the researcher to broaden his or her focus to anything 
within the transcriptions that is significant to the conversation generated during the 
focus groups. Topic modeling or cluster analysis of a semantic network generated 
from the transcriptions could reveal a number of frequently-occurring topics like 
wage gaps or understaffing that a hypothesis-driven approach not focused on these 
topics would be unlikely to identify. Text mining can also be used in combination 
with other methods to double-check whether any frequently-occurring themes or 
words are present within the data that were not recognized by other forms of analy-
sis. Text mining should not, however, be considered in any way superior to tradi-
tional research methods—it simply offers a new approach to examining textual data 
and is especially useful for managing data overload.
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5.2  �Overview of Text Mining

There are many analyses that can be performed using text mining, but the way in 
which the method operates is similar for most text mining procedures. During a text 
mining procedure, an algorithm built into the software contains a set of instructions 
for how to examine the text data and what to make note of. For example, during the 
first phase of analysis, called preprocessing (described in more detail below), the 
algorithm for the procedure called “stop word removal” tells the software to look 
word by word through the text data for all the words on a “stop word list,” a list of 
words the researcher wants to exclude from analysis. The software “reads” through 
the entire dataset one word at a time, comparing each word in the dataset to the words 
on the stop word list, removing all words from the dataset that match a word found 
on the list. Another common procedure in text mining is the generation of a concept 
list, which is an inventory of all of the words in a dataset along with a count of how 
frequently each word appears in a dataset. The algorithm that creates the concept list 
also passes through the text word by word, adding new words it encounters to the 
concept list and adding a count to a word’s tally number each time it reencounters the 
same word in the text. There are many more sophisticated ways that text mining 
algorithms draw information from a text archive than those just described, but the 
basic principle is that an algorithm contains a set of instructions for how the software 
should read and keep track of information found within the text. A full text mining 
analysis almost always involves running multiple procedures in a particular order in 
order to extract the information a researcher is interested in from the text.

As the reader likely can imagine, text mining as a method has some very specific 
assumptions built into it. The biggest assumption is certainly that individual words 
can have meaning even when they are far removed from their original context.  
A concept list, for example, counts the total number of times each word in a dataset 
appears within the text without taking the specific context where each word was 
used into account. The word “hate” means something very different when someone 
says “I hate my job” and “I’d hate to lose my job,” but a standard concept list cannot 
tell you that. Data scientists are building algorithms and text mining approaches that 
can take the context of all words into account (see Lexalytics, 2015), but for schol-
ars new to text mining it is important to remember that words spelled the same but 
with different meanings can be counted as the same concept. Another common 
assumption of text mining is that frequently-occurring words within a text archive 
are more significant than infrequently occurring words. This may indeed be the 
case, as it is in the tutorial example, or a word could simply occur frequently because 
it is a commonly used word for a certain language or context. There are also cases 
where word frequency is completely unimportant for understanding a particular 
dataset. It is therefore the analyst’s responsibility to think through algorithms’ built-
in assumptions when performing text mining.

A third assumption of many text mining algorithms is that words that occur near 
each other in a text archive are related in some way. This chapter will demonstrate 
how to generate a semantic network, which is a group of words existing within a 
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text archive that have been found to share some sort of relationship in common. 
According to many text mining algorithms, what these words usually have in 
common is proximity. Text mining tools commonly assign two words to the same 
meaning group when they both occur within a certain distance of each other within 
the text. It seems safe to assume that words that occur within the same sentence or 
paragraph are related, but if we look at the “I hate my job” and “I’d hate to lose my 
job” example again, it possible to see how words that occur near one another in 
textual data can be related but also have context-specific meanings that can be over-
looked by algorithms only interested in words’ relative positioning.

These examples are not meant to foster mistrust in text mining, but rather for the 
reader to gain an understanding of what the method can and cannot do. Text mining 
can provide a researcher with valuable information about his or her data such as 
which people, organizations, and places feature prominently within it, analyzed 
through a procedure called entity detection. Text mining can give a data analyst a 
sense of the emotion being expressed during conversations through a procedure 
called sentiment analysis. The text mining method can also map out dominant con-
versations taking place within communication datasets, showing where there is over-
lap between conversation topics. Or, text mining can be used to identify important 
phrases or patterns within business reports in order to expose reoccurring problems 
(Choudhary, Oluikpe, Harding, & Carrillo, 2009) and to detect public health rumors 
online (Collier et  al., 2008). Google Book’s Ngram viewer (http://books.google.
com/ngrams) is an example of how simply tracking word frequencies over time can 
result in a sense of the rise and fall of the public interest in different topics. Figure 
5.1 visualizes a comparison of the frequency of the appearance of the words “war” 
and “peace” over time in Google’s large book archive. Note the rise in the term 
“war” following the first and second world wars. The graph also indicates that 
although books contained the word “war” more frequently than “peace,” the appear-
ance of “war” and “peace” followed very similar patterns.

Fig. 5.1  Google Books Ngram viewer graph of the words “war” and “peace”
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The result of text mining analysis is a summary of a pattern identified by the proce-
dure that was run. The form this patterns takes can vary quite a bit, from a simple con-
cept list to a very complex semantic network map or a new document file containing 
extracted data that fits the parameters the algorithm was designed to find, such as a 
subconversation. The results of text mining reveal something about what words or sec-
tions of a text archive are meaningful either because they occur frequently, are closely 
related to other words within the text, or because they fit some other parameter set by the 
researcher. Text mining analysis is not complete, however, until the analyst has reexam-
ined the results back within the context of the data in order to interpret the meaning of 
the pattern. While the patterns text mining can reveal often seem self-explanatory, a 
deeper understanding of the data is only gained by assessing why certain words were 
found to be related and not others, and what this means for the group being studied.

5.3  �Text Mining Tutorial

There are many methods that can be used to conduct exploratory text mining. This 
tutorial covers basic preprocessing steps as well as the generation of a concept list 
and semantic network. These text mining techniques will be demonstrated using 
AutoMap (Carley, 2001), a text mining tool developed by the CASOS Group at 
Carnegie Mellon University. (See Carley, Columbus, Bigrigg, Diesner, and Kunkel 
(2010) for a tutorial.) There are dozens of text mining tools, each with their indi-
vidual benefits and suitable for different analyses and types of datasets. Tools like 
AutoMap that have graphical user interfaces are excellent for beginners interested 
in exploratory text mining. Once an analyst is comfortable with basic text mining, 
however, he or she will likely need to learn some programming skills in order to 
perform advanced procedures customized to his or her particular dataset.

The overall process for conducting text mining is: (1) data collection, (2) data 
preparation, (3) pre-processing, (4) analysis, and (5) interpretation. This tutorial 
will take you through each step of the method by describing an analysis conducted 
for a research project which examined small groups of emergency medical 
physicians as they drew on their professional expertise during medical consultations 
in order to develop patient treatment plans (Lammers, Lambert, Abendschein, 
Reynolds-Tylus, & Varava, 2016).

5.3.1  �Data Collection

The sample text corpus used in this tutorial was collected during a study of medical 
consultations taking place in the emergency department of a hospital. The emer-
gency department was staffed by about two dozen full-time physicians, including 
doctors, physicians’ assistants, nurse practitioners, and medical residents. The team 
of researchers was permitted to observe physicians’ conversations with one another 
in their shared office space away from patients. The researchers transcribed by 
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hand, as verbatim as was possible, the conversations between physicians related to 
patients’ care in the emergency department. They also noted which physician initi-
ated each conversation and which physicians participated in each conversation. The 
data collection totaled 90 h of observations, which resulted in 159 pages of field 
notes and a text corpus of medical consultations containing 19,868 words. The fol-
lowing is a hypothetical example of a typical medical consultation observed by the 
research team, created in order to preserve participants’ privacy:

Doctor:	 What’s going on with room 23?
Resident:	 He’s a 42-year-old man, diabetic. Complaining of pain in abdomen and 

side. No fever, white count is normal.
Doctor:	 Possible kidney stone. Any pain medicine prescribed? You can give 

him morphine.
Resident:	 Sounds good.

The research team was interested in studying medical consultations because 
existing research had shown that communication problems between physicians can 
result in treatment errors, especially during patient handoffs (Maughan, Lei, & 
Cydulka, 2011). Medical professionals had also called for a better understanding of 
medical consultations beyond exploratory studies offering models and taxonomies 
of medical consultations (Kessler et al., 2011). Little was known about what a medi-
cal consultation looks like or what topics or problems physicians encounter during 
consultation, and so that is what the research team set out to learn by collecting and 
analyzing empirical observations of medical consultations. Their goal was to distin-
guish between different types or topics of medical consultations in order to better 
understand how medical professionals enact expertise. Text mining was a useful 
method for this research project because the data collected by the team was unstruc-
tured textual data, meaning the data was in its naturally occurring form and not 
classified or organized into a database. The researchers knew very little about the 
data since no one had ever looked at the topics surrounding medical consultations 
before. An exploratory method that could look for patterns within the textual data 
was therefore the best fit, and that is what text mining is designed to do.

5.3.2  �Data Preparation

After collecting a textual dataset, the next step of the text mining method is to pre-
pare the data for analysis. Data preparation involves removing all data items from a 
text archive (often called a text corpus) except for the text of interest, and converting 
the data into a format that the software can import and read. In the case of the 
example research team, once they decided that they wanted to analyze medical con-
sultations between all the physician role types, they removed the role labels from 
the text corpus (i.e., Doctor, PA, etc.) so that only the transcribed medical consulta-
tions remained. The next step was to copy all the text transcriptions and paste them 
into Notepad. When using AutoMap and many other text mining tools, the file 
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extension of the data file must be “.txt”, because the data must be contained within 
in a plain text file in order for the software to be able to read it. Other text editors 
can be used instead of Notepad as long as they do not preserve file formatting and 
can generate plain text files. The research team data analyst saved the plain text file 
containing the medical consultation data within a new folder, and did not place 
anything else in the folder. If a dataset is comprised of multiple text files, the analyst 
should place all of the text files he or she wants to analyze simultaneously within 
this folder. AutoMap will import all files within the folder as one dataset. The 
research team data analyst next created another empty folder where the data analy-
sis output would be stored. The dataset and analysis output folders can be seen in 
Fig. 5.2.

After properly formatting and storing the medical consultation data, the data 
analyst imported the data file into AutoMap. To do this, the analyst began at the 
AutoMap home screen (Fig. 5.3) and imported the data file by clicking on File—
Import Text Files. The next step was to click once to highlight the file folder con-
taining the data, and then click Select (Fig. 5.4). The data analyst used the preselected 
settings for text encoding and text direction and pressed Enter.

Fig. 5.2  Data and output 
folder creation

Fig. 5.3  The AutoMap 
home screen
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The text contained within the data file was imported into AutoMap and displayed 
in the text display pane. Due to privacy agreements with the example study’s 
research subjects, this tutorial cannot show the transcription of the medical consul-
tation dataset. As an alternative, the full script of Shakespeare’s Romeo and Juliet 
(Fig. 5.5) has been imported into AutoMap using the previously described steps. 
This tutorial will use Romeo and Juliet as dummy data to demonstrate the next step, 
data preprocessing, and then return to the medical consultation transcriptions to 
show the results of a real data analysis.

As can been seen in Fig. 5.5, the all-caps indicators of the act, scene, and charac-
ters are included in the imported data file. This was done in order to learn more 
about the main features of the play, and because the analyst decided in advance that 
characters were important features of the play and therefore should be included in 
data analysis. If the analyst was instead interested in analyzing the dialogue of the 
play and wanted to compare and contrast different characters’ dialogue, her or she 
would have collected each character’s lines into separate plain text files and removed 
all-caps text and any other non-dialogue text from the files. Each file would be ana-
lyzed separately and comparisons made of the individual analysis results for each 
character. Data preparation is a very important part of the text mining method 
because during this step the analyst must make choices about what selections of a 
larger text corpus to include in the analysis. Every text corpus contains different 
characteristics that must be taken into consideration when making decisions about 
how to best prepare data to answer a specific research question.

5.3.3  �Preprocessing

Once the dataset has been formatted and imported into AutoMap, the next step is 
preprocessing of the data. Preprocessing is a term used to describe the cleaning up 
and standardizing of textual data prior to analysis. Two common types of prepro-
cessing are stop word removal and stemming. Stop words are any words that would 

Fig. 5.4  Importing a text 
corpus into AutoMap
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interfere in the software’s ability to identify meaningful patterns within the data. 
These are usually high frequency words that do not have a lot of significance for 
most datasets such as articles, conjunctions, pronouns, number words, contractions, 
simple verbs, and prepositions. Many text analyzers have built-in stop word lists 
(also called “delete” lists), but a researcher can also create his or her own by making 
a list of words that are known to be frequent within a dataset but do not add value to 
the analysis.

To perform stop word removal on the Romeo and Juliet dataset within AutoMap, 
the data analyst clicked on Preprocess—Text Refinement—Apply Delete List, and 
clicked Confirm. She used the standard AutoMap delete list (which contains the 
most frequently-occurring words within the English language: a, an, and, as, at, but, 
for, he, her, hers, him, his, etc.), although she could have edited the delete list within 
AutoMap to create a custom list. The next step was to select Rhetorical as the type 
of delete processing because this setting inserts a placeholder, xxx, into the data so 
that the analyst can see which words were removed due to this procedure. Rhetorical 
delete processing also preserves the distance between words so that two words are 
not considered closer together after the words on the delete list that exist between 
them are removed. The analyst clicked OK, and the results of delete list application 
can be seen in Fig. 5.6. Note that you can see the list of procedures that have been 
performed on the data so far in the Message Window.

Fig. 5.5  Romeo and Juliet imported into AutoMap
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Further preprocessing can be done by using the Preprocess—Text Preparation 
functions such as Remove Numbers as Words or Remove All Noise Words. The 
analyst chose to apply Remove All Noise Words to the Romeo and Juliet dataset 
because this procedure removes pronouns, verbs, possessives, number words and 
other words types that researchers often find beneficial to remove from their textual 
data before analysis. The amount and type of preprocessing that should be per-
formed depends on the dataset and what the researcher wishes to learn from it. For 
example, in some datasets pronouns could be important indicators of personal iden-
tification, and inclusion of all verbs might be important for analysis of storytelling 
or for identifying time phases. It is up to the researcher to evaluate the benefits and 
impact of specific preprocessing techniques on a particular dataset. Figure 5.7 
shows the dataset after all noise words were removed.

The second preprocessing technique, stemming, involves identifying the root of 
a word and then standardizing all the various endings that come after a root in order 
to avoid separate counts of a word that has different forms but the same meaning. 
For example, the words “live,” “lived,” and “lives” would all be considered unique 
words by a text analyzer unless the analyst performed preprocessing like stemming 
that can reconcile these differences within the dataset. After performing stemming, 
the root of these words, “live”, would take the place of all other forms of the word 
within the dataset. The analyst applied stemming to the Romeo and Juliet dataset in 

Fig. 5.6  Delete list applied to Romeo and Juliet dataset
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order to demonstrate this procedure. In AutoMap stemming is conducted by clicking 
on Preprocess—Text Refinement—Apply Stemming. The analyst used the default 
K-stemmer, clicked OK, chose the default option to include capitalized words in 
stemming, and clicked OK again. The results (Fig. 5.8) show that verbs have been 
converted to their root form, so that “lay” became “lie.” Plural nouns like “ears” 
were converted to singular nouns, and all words not in their root form were brought 
to their root form. It is now much less likely that words with the same meaning will 
be analyzed separately because of grammar or conjugation factors.

5.3.4  �Data Analysis

Text Corpus Statistics. Now that the Romeo and Juliet dataset has been prepro-
cessed, the simplest type of exploratory analysis that can be done is generation of a 
concept list. As mentioned earlier, a concept list is a inventory list of the words that 
appear within a text corpus along with a count of each word’s frequency and other 
attribute information. The analyst generated a concept list for the Romeo and Juliet 
dataset by clicking on Generate—Concept List—Concept List (Per Text). 
AutoMap’s request to “Select Directory for Concept Lists” asks the analyst to select 

Fig. 5.7  Romeo and Juliet dataset after all noise words removed
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an output folder where he or she wants the results of the analysis to be stored. The 
analyst should only click once on the output folder to highlight it, then click Select. 
The next window allows the analyst to specify some concept list generation param-
eters. For this example the analyst used the default parameters and then clicked 
Confirm. AutoMap gives the option to open the concept list in its built-in viewer 
window, but the user can also navigate to the output folder on his or her computer 
where a new folder, Concept List1, has been created to store the concept list. The 
concept list is created as a Microsoft Excel file, which makes it convenient to sort 
the list according to the frequency that a word appears in the dataset, or according 
to any other attribute assigned by the researcher. The analyst opened the file in Excel 
and then sorted the list by frequency, as seen in Table 5.1. The concept list shows 
each word within the corpus, a count of how frequently it occurred within the cor-
pus, and a relative frequency score compared to the concept that occurred most 
often in the corpus.

Even though the concept list is a very simple text mining method, it does reveal 
some meaningful information about the data, especially for people who have never 
read Romeo and Juliet or seen the play performed. The concept list can be inter-
preted as evidence that a large amount of the text is devoted to a love story in which 
two characters, Romeo and Juliet, factor highly. The list indicates that night may be 
an important time or setting of the play, and that a nurse, friar, and people named 
Mercutio, Benvolio, and Laurence are important characters. The word “death” 

Fig. 5.8  The Romeo and Juliet dataset after stemming was applied
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appears in the text relatively frequently, and so the analyst might assume that one or 
several characters die—this might therefore be a romantic tragedy. The concept list 
provides only a very basic understanding of the play that is divorced from its prose 
and plot, but perhaps through this example the reader can now visualize how text 
mining can aid researchers in extracting meaningful information from text corpuses 
much larger than a play that would otherwise take weeks to read through and 
summarize.

The concept list also points out where preprocessing improvements are neces-
sary. The list shows that ROMEO and Romeo were counted separately by AutoMap. 
This result can be considered useful in that it distinguishes between the play format-
ting made in all caps and the verbal references to Romeo that appeared during the 
play, but it could also be considered an error if the analyst’s goal was to count all 
mentions of Romeo together. “Thy” and “thee” show up at the top of the list because 
the delete list was created with modern language in mind. These pronouns should be 
added to the delete list and preprocessing rerun. The word “ll” needs to be investi-
gated since it may be a result of stemming or could be part of an archaic word in the 
text that could not be properly preprocessed. As the reader can see, text mining 
analyses must often be repeated multiple times in order to refine preprocessing to 
suit the nuances of each dataset. Conversely, in some cases the analyst may want to 
do very little preprocessing in order to preserve all variation within the data for 
analysis. This was the case for the medical consultation dataset. Due to its smaller 

Table 5.1  Concept list generated from the Romeo and Juliet dataset

A B C

1 Concept Frequency relative_frequency
2 ROMEO 180 1
3 love 155 0.8611111
4 thy 150 0.8333333
5 thee 138 0.76666665
6 JULIET 134 0.74444443
7 Romeo 130 0.7222222
8 CAPULET 119 0.6611111
9 Nurse 114 0.6333333
10 II 91 0.50555557
11 BENVOLIO 74 0.41111112
12 night 73 0.40555555
13 Enter 72 0.4
14 FRIAR 70 0.3888889
15 MERCUTIO 69 0.38333333
16 man 69 0.38333333
17 LAURENCE 65 0.3611111
18 good 65 0.3611111
19 death 64 0.35555556
20 LADY 62 0.34444445
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size, stemming made it impossible to detect the nuances of conversations surround-
ing similar medical consultation topics. As a result the analyst only performed stop 
word removal and removal of numbers as words when preprocessing the medical 
consultation dataset.

Semantic Network Analysis. This tutorial now returns to the medical consultation 
dataset in order to demonstrate how to generate a semantic network from a text 
corpus. Generation of a concept list using the medical consultation dataset revealed 
that “pain” was a frequently occurring word within the text corpus as was “good-
bye.” The research team wanted to know more about the context of these and other 
frequently occurring words, and so the team’s data analyst constructed a co-
occurrence semantic network from the data.

Co-occurrence semantic networks are based upon two key notions: (1) the idea 
that words that exist close to each other within a textual dataset are likely related in 
some way, and (2) that the meaning of a text corpus can be analyzed by constructing 
a network that represents all of the relationships between words in a dataset simul-
taneously. Take for example the sentence, “The patient complains of pain in his 
abdomen.” Stop word removal would leave us with: “patient complains pain 
abdomen.” Because these words occur near each other (within the same sentence), 
AutoMap makes note of their proximal relationship. The specific way in which the 
software does this is as follows. AutoMap creates a “window,” the size of which is 
specified by the analyst (for example, two sentences or a paragraph in size) and then 
moves the window through the data, looking at the text that fits within the window 
and keeping track of the words that appear within the same window. (Figure 5.9 is 
an illustration of how a two-sentence window would move through the Romeo and 
Juliet dataset.) By repeating this procedure throughout the data, AutoMap collects a 
count of how many times a pair of words like “patient” and “pain” co-occur with 
one another within the same window. The resulting list of word pairs can be visual-
ized as a network that connects all the pairs to one another so that if “pain” and 
“patient” co-occur frequently, and “chest” and “pain” co-occur frequently, one 
branch of the network will look like this: patient—pain—chest. In a network 
visualization, the lines that connect the words, called edges, can be used to represent 

Fig. 5.9  Illustration created to demonstrate how AutoMap creates “windows” to extract word 
pairs during semantic network generation
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how many times the same pair of words co-occurs within the dataset by thickening 
the width of the line to represent a greater frequency of co-occurrence.

The first step in constructing a co-occurrence semantic network is to click on 
Generate—Semantic Network—Semantic (Co-reference List). The analyst again 
clicked once on the output folder to select it, then clicked Next. The network param-
eters window allows the analyst to make several decisions about how to generate the 
network. Directionality refers to whether the edge between two words represents a 
unidirectional (one-way flow or relationship) or bidirectional relationship (two-way 
flow or mutual relationship). For the medical consultation network, the analyst 
chose to setup the network as having bidirectional relationships because the research 
team wanted to discover the relationships between words within the medical consul-
tation conversations without putting a word order constraint on the network. For 
their project, “doctor-patient” and “patient-doctor” could be counted as the same 
word pair because word order would not change which concepts were related topi-
cally to one another. Word order had the potential to cause variation in the meaning 
of these topics, but that was something the analyst was aware she would need to 
evaluate. Analysis of the network with no word order constraints was her team’s 
best option for a first round of data analysis. Therefore, if two words co-occurred 
within the same window, the software noted their mutual, proximal relationship. If 
the team had been interested in identifying frequently-occurring phrases, they 
would have needed to preserve the order of words within each sentence and would 
have chosen instead to generate a unidirectional network. The analyst selected the 
window size as a two sentence window because of the small size of the text corpus, 
left the other parameters at their default values, and clicked Confirm. This analysis 
generates a folder, SemanticList1, within the output folder. The output itself is an 
Excel file containing two columns that represent pairs of words extracted using the 
described windowing method, along with a column that is a record of how fre-
quently each pair of words occurred within the text corpus (Fig. 5.10).

Fig. 5.10  The semantic 
word pair list resulting 
from semantic network 
generation from the 
medical consultation 
dataset
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The next step was to visualize the semantic network using a network visualization 
tool. The analyst used NodeXL (Smith et  al., 2010), which can be downloaded 
from: https://nodexl.codeplex.com/. An easy way to import the data into NodeXL is 
to delete the column headers, “source_id,” “target_id,” and “frequency” from the 
semantic list, and then copy and paste all the remaining cells in column A of the 
semantic list into Vertex 1 under the “Edge” tab in NodeXL. The remaining cells in 
column B should be pasted under Vertex 2 (see Fig. 5.11). It is important to make 
sure that the word pairs match up with one another in the NodeXL spreadsheet the 
same way they do in the semantic word pair list.

NodeXL’s Width column is used to display the frequency of each word pair, and 
it does this visually by adjusting the relative width of the edges linking words in the 
network map. The analyst copied and pasted the frequency column of the semantic 
list into the Width column in NodeXL. Next, under the “NodeXL” tab at the top of 
the page, she selected AutoFill Columns and selected Vertex Label from the 
“Vertex” drop down menu and clicked AutoFill. This feature displays the words as 
labels on the graph. Next, the analyst pressed “Show Graph” in the Document 
Actions Pane to view the semantic network (Fig. 5.12). An initial network visualiza-
tion is often uninterpretable because of the many overlapping words and connec-
tions. The analyst chose to analyze the underlying structure of the medical 
consultations network by looking for evidence of subconversations. The procedure 

Fig. 5.11  Transfer of the semantic list words pairs and word pair frequency into NodeXL
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used to do this was cluster analysis, which is run by going to the “NodeXL” tab, 
clicking on Groups—Group by Cluster, and in this case the analyst chose to group 
the words using the Clauset-Newman-Moore (2004) cluster algorithm. Under the 
Document Actions Pane she used the layout drop-down menu to select Layout 
Options, and chose Lay out each of the graph’s groups in its own box. Clicking on 
“Refresh Graph” visualizes the semantic network clusters (Fig. 5.13).

Each of the groups displayed in the visualization of the cluster analysis have 
been grouped together by the algorithm because the words within each group co-
occur with one another more frequently than they do with other words. Each of the 
groups extracted from the medical consultation dataset represented a conversation 
topic that arose during the physicians’ medical consultations. The analyst examined 
the individual groups by clicking on the “Groups” tab on the bottom of the NodeXL 
worksheet, and then clicked on “G1” in the Groups column to highlight the largest 
group. She exported this group by clicking on Export—Selection to New NodeXL 
Workbook. This procedure opened up a new NodeXL workbook containing only 
this group’s data. Switching the layout algorithm to Harel-Koren Fast Multiscale 
(Koren, 2002) and hitting Refresh made the network structure easier to view.  
The analyst also clicked on individual words (represented as circular nodes) to 
adjust the graph image manually so that there were no overlapping or obstructed 
words. Figure 5.14 shows the subnetwork generated through this process. Figure 5.15 
is the second largest subgroup, which was extracted using the same method per-
formed on Subgroup 1.

Fig. 5.12  The semantic network generated from the medical consultation dataset
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5.3.5  �Interpretation

When first undertaking interpretation of the results of a semantic network analysis, 
it is important to remember that during this method, “word associations in texts 
were analyzed, and those word associations represent[] the meaning inherent to the 
data” (Doerfel, 1998, p. 23). The resulting graph, such as those in Figs. 5.12 and 
5.13, as well as any other metrics or information gained through the analysis, 
explain something about the relationships between words in the text. However, the 
meaning of these relationships can only be gained through interpretation of  
the results. For example, finding that the words “sounds” and “good” co-occur fre-
quently within the medical consultations dataset is a meaningless piece of informa-
tion unless interpretation is done to connect this result back to the data context, the 
nature of the text archive, and any theoretical frameworks used to collect or interpret 
the data.

The analyst’s interpretation strategy is usually a function of what analyses were 
performed on the text corpus. This tutorial’s example utilized a cluster analysis, and 
so interpretation of the results will largely focus on interpreting the semantic graphs 

Fig. 5.14  Subgroup 1: Emergency department physician’s medical consultations revolving around 
pain diagnosis and management
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in terms of what medical consultation conversation topics they indicate. Because so 
little is known about topics of medical consultations, each conversation cluster 
should also be evaluated in terms of how these topics manifest within the larger 
context of the original dataset. As was mentioned earlier, AutoMap linked words 
when two words existed within the same window frame. While it is likely that words 
that existed near each other in the text are related in a meaningful way, there is no 
guarantee that this is the case. Therefore, the prominent, and seemingly meaningful 
words pairs identified by the network graphs should be searched for within the text 
corpus to make sure that there are in actuality meaningful relationships between the 
word pairs.

Some researchers choose to focus on the calculation of graph metrics in order to 
understand a text corpus, and such metrics should be interpreted in terms of what 
they explain about the relationships between words or concepts within a dataset. 
Graph metrics can be calculated at the individual word level (node level metrics) to 
understand how many connections exist between particular pairs of words. Metrics 
can also be calculated to understand qualities of the overall graph (graph level met-
rics). Once again, the simple reporting of a metric like the number of connections 
between particular words pairs is not enough—the analyst should endeavor to inter-

Fig. 5.15  Subgroup 2: Emergency department physician’s medical consultations revolving around 
feedback and affirmation of treatment plans
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pret what meaning is indicated by strong or weak connections between word pairs. 
The researcher may ask: Are there many connections between specific words pairs 
because they are a common phrase, are they instead two highly-connected concepts, 
or is there some other reason the words frequently co-occurred? For example, 
Atteveldt (2008) examined news stories to determine whether words associated 
with the word “Muslim” changed in news coverage after 9/11. The author found that 
the word “Muslim” was paired with terrorism-related words in news stories signifi-
cantly more frequently after 9/11, but that other terror events did not cause an 
increase in these words’ associations. Atteveldt drew on framing theory when inter-
preting these word associations, finding that “the associative frame between 
Muslims and terrorism was created not by local events, but rather by 9/11 as a 
global event” (2008, p. 88).

Just as there are many ways to conduct text mining, there are many approaches 
to interpreting the results of a text mining study. Overall, the analyst’s goal during 
interpretation should be to: (1) identify patterns generated from the results, (2) con-
firm that these patterns are true representations of the original text corpus, and (3) 
interpret these patterns to explain what they represent or mean within the context of 
the dataset; how they answer a hypothesis or research question; how they can be 
explained using a theoretical framework; or how the patterns form the grounds for 
new theory development.

Interpretation of the Medical Consultation Semantic Network Analysis. To 
briefly review, the results of the text mining and subsequent semantic network anal-
ysis revealed the most common communication topics that small groups of physi-
cians in an emergency department discussed as they enacted their expertise to 
coordinate patient care during medical consultations. These communication pat-
terns were extracted by conducting cluster analysis of word associations within the 
semantic network. Each cluster contained a group of words that frequently co-
occurred with each other and therefore had stronger relationships with one another 
than they had with other words within the text corpus. The final step of this text 
mining example is to interpret these patterns.

The largest subgroup (Fig. 5.14), showed the research team that a primary topic 
of medical consultations for their dataset was the diagnosing and managing of pain. 
This network graph visually represents all medical consultations in the dataset 
related to pain. The network graph can be read by starting at the center of the image 
and tracing the connections outward. In this manner, it is possible to see how con-
sultations regarding chest pain led to the ordering of x-rays and the need for subse-
quent reports. There are many conversation paths radiating out from the pain node 
that have to do with describing the exact location of a patient’s pain. How pain 
started and the words patients use to describe the sensation of pain are all parts of 
this medical consultation topic. From this network, the research team learned about 
the many ways in which emergency department physicians investigate and treat 
pain. In terms of the study’s goal of understanding physicians’ expertise, Subgroup 
1  in Fig. 5.14 was interpreted as evidence that the diagnosis and treatment of 
patients’ pain is a primary area of emergency physicians’ professional expertise. 
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This finding was very interesting to the research team because even though they  
had read through the transcriptions many times, none of the team members had 
recognized pain as a concept of interest within the dataset. This study illustrates the 
fact that even though word co-occurrence and frequency are rather simple ways of 
tallying the presence of words and the relationships between them, this method can 
help researchers to gain an entirely new perspective of a textual dataset.

The second most dominant pattern found through the semantic network analysis 
was Subgroup 2 (Fig. 5.15). This subgroup graph displays all conversations that 
have the phrases “sounds good” or “sounds great” in common, and like Subgroup 1, 
the graph shows the variations in conversations surrounding these terms. The many 
other affirmative phrases within this network like “sounds great,” “sounds alright,” 
and “yeah” led the research team to interpret this medical conversation topic as 
evidence of the use of feedback loops by physicians during medical consultation 
conversations to confirm or affirm treatment plans. The team went back to the text 
corpus and examined the contexts in which such phrases took place, and this follow-
up examination of the text corpus confirmed that these words were very much used 
by physicians to communicate mutual understanding during medical consultations. 
This subgroup was interpreted as evidence that feedback is a very important part of 
enacting expertise during medical consultations. Looking again at the original text 
archive, the researchers also found that all physician roles, from medical resident to 
senior physician, utilized these feedback loops, indicating that feedback is an inte-
gral component of medical consultation regardless of a physician’s level of medical 
expertise. Although text mining findings primarily originate from analysis of the 
textual data itself, it is always advisable to collect several layers of information 
about the context of a textual dataset because this contextual information can help 
an analyst achieve a more meaningful interpretation of the text mining results.

5.4  �Contributions

In this tutorial, text mining aided a research team working to understand physicians’ 
expertise in several meaningful ways. First, the researchers initially hit a roadblock 
when analyzing their dataset using traditional qualitative thematic coding. The phy-
sicians’ language contained a lot of jargon, and as outsiders to the medical world, 
the researchers had a very difficult time finding topical differences that could help 
them categorize the consultations. This study is also an example of how text mining 
is useful for small as well as large datasets when barriers exist to traditional analysis 
methods. The fact that the research team did not notice that pain was a common 
medical consultation theme when reading the text corpus is further proof of the 
value of even the simplest text mining procedures.

This study was also the first step towards building theories to explain how physi-
cians enact expertise and how they communicate to manage patient care. Text min-
ing was valuable in helping the researchers take this first step because it allowed 
them to conduct data-driven discovery in order to identify meaningful conversation 
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topics without having to first develop hypotheses. So little was known about the 
content of medical consultations that it would have been difficult to form specific 
hypotheses. Knowing that they were conducting data-driven discovery, the research 
team carefully defined the scope of their data (medical consultations) and used text 
mining to explore their data for significant patterns of medical consultation conver-
sations. The research team also conducted follow-up interviews with the physicians 
they observed during data collection in order to get the physicians’ interpretation of 
the results. The combined quantitative and qualitative results of this study are help-
ing the researchers to build empirically-driven communication and organizational 
theory. Text mining is also useful for testing theories by looking for patterns within 
a text corpus to see whether they support existing theory. Additionally, theory can 
be used as a framework for gathering textual data or for interpreting the results of 
text mining. Text mining is a very flexible method well suited to making theoretical 
advancements, but as was discussed earlier, the many choices the researcher makes 
during data collection, preprocessing, and analysis determine whether or not a text 
mining analysis ends up being a good fit for a particular research goal like the devel-
opment of theory.

There are many more text mining procedures and techniques than the few intro-
duced during this tutorial. After discovering that pain and feedback terms were very 
relevant words in the medical consultation dataset, the research team could conduct 
further text mining by using these terms as key words, conducting key word analysis 
in order to extract all words surrounding the words the previous analyses found to 
be important within the dataset. This approach would tell the research team more 
about the specific context surrounding these meaningful terms. The research team 
might be able to learn more about physicians’ expertise by having emergency 
department physicians rate the individual medical consultations according to the 
level of expertise they represent and then analyze high and low expertise consulta-
tions separately in order to evaluate what really excellent consultations have in com-
mon and what features are associated with poorly done medical consultations. In a 
different study it might make sense to take time into consideration, dividing up a 
text corpus into time segments and analyzing each segment independently in order 
to understand how a phenomena of interest evolves or develops over time.

There are an infinite number of ways in which to conduct text mining, and this is 
both a strength of the method and a barrier to its adoption. There is no guarantee that 
any meaningful results will come from many hours of data formatting, preprocess-
ing, and analysis because the patterns each text mining procedure looks for can be 
present or absent from a dataset—the analyst cannot know if there is any merit in 
running a procedure until the work has been invested in running it. The way in 
which a dataset has been collected also greatly influences the success of text mining. 
Text mining is often described as an excellent method for analyzing very large text 
corpuses, but if the text contained within a very large dataset does not have very 
much in common, text mining is unlikely to identify any patterns, or if it does, the 
patterns may be more a function of word prevalence within a certain language or 
context and not due to the existence of important patterns within the data. For exam-
ple, text mining may find patterns within a text corpus comprised of 10,000 news-
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paper articles, but if the researcher did not choose newspaper articles that all focus 
on a specific issue or social phenomena, or if there are off-topic articles mixed in 
with the corpus, the results of text mining of this data are unlikely to be interpretable 
in a meaningful way. Even though text mining is a powerful computational tool, it 
must be combined with good data collection and preprocessing decisions made by 
a human being who understands exactly what each algorithm and procedure is 
doing to the data.

Text mining is a very useful tool for both academic research and practical appli-
cations in business, education, and individual contexts. It can be used to help ana-
lysts learn more about the exponentially-increasing text archives that are generated 
while we work, from online commenting and debates, through communication with 
friends and family, and during every online interaction and email we send. The ben-
efits offered by text mining will increase as this method is utilized by people from 
many disciplines and fields, especially if those who use text mining continue to 
share the procedures and techniques they find to be useful. Although text mining has 
existed since the invention of the computer, it is still in its early stages of develop-
ment and application by people who are not advanced programmers or software 
engineers. The potential of text mining will increase for everyone as it is adopted for 
novel applications by new users like readers of this chapter.
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Chapter 6
Sequential Synchronization Analysis

Toshio Murase, Marshall Scott Poole, Raquel Asencio, and Joseph McDonald

6.1  �Introduction

Sequences have long been a central interest in group research.1 Sequences capture 
how group processes unfold over time, and characterization of sequences as a whole 
and their properties offers valuable insights into group decision-making, conflict 
management, group cohesion, teamwork, and many other group phenomena.

Sequences have been studied on a variety of levels in group research. Some of 
the best known sequences are the stages of the group life cycle. While Tuckman’s 
(1965) iconic “Forming, Norming, Storming, and Performing” stage sequence is the 
best known of these, several dozen models of the group life course have been 
described (Hare, 1976, 2010; LaCoursiere, 1980). Sequential models of specific 
group activities such as problem solving (Bales & Strodtbeck, 1951), decision mak-
ing (Fisher, 1970; Poole & Roth, 1989), conflict (Pondy, 1967), and teamwork 
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(Ishak & Ballard, 2012; Marks, Mathieu, & Zaccaro, 2001) have also been advanced. 
Conceptually, these activity sequences can be thought of as embedded within longer 
group life cycles. Still other scholars have focused on short cycles of group activity 
that might be repeated multiple times within episodes of group work, such as 
Tschan’s (1995) orientation-action-evaluation cycles, which are posited to be tied to 
quality of group work.

In studying sequences, researchers can focus on the entire sequence, as did 
Tuckman (1965), Bales and Strodtbeck (1951), and Poole and Roth (1989). Relevant 
research questions include: Do all groups follow the proposed sequence?; What fac-
tors determine whether a given sequence occurs?; Is following the sequence related 
to outcomes such as effectiveness and group cohesion? A second option it so focus 
on subsequences that make up the entire sequence, as Tschan (1995) and Murase 
et al. (2015) did. In this case relevant questions include: What types of subsequences 
occur and what is their frequency?; How do they chain together to generate longer 
sequences and what types of longer sequences occur?; How are they related to out-
comes such as group effectiveness or group cohesion? Finally, researchers may 
identify characteristics of sequences or subsequences, such their frequency, com-
plexity (Poole & Roth, 1989), or conformity to an ideal sequence (Poole & Roth, 
1989) or subsequence (Tschan, 1995). Relevant research questions are: How do 
various sequences compare in terms of the properties?; What factors govern vari-
ability in the characteristics?; How do the characteristics relate to outcomes such as 
group effectiveness or group cohesiveness?

The approaches described in the previous paragraph focus on the sequence as a 
property of the group as a whole. Another approach is to decompose the sequential 
data from the group level to the individual level. In this case the sequence of behav-
iors of each member is analyzed. Just as with group level sequences, individual 
sequences can be characterized in terms of their overall structure, subsequences, 
and characteristics, and the same questions posed for the group as a whole can be 
posed for the sequences of individual members. But decomposition also enables 
researchers to explore the processes that lead to the emergence of a group or its 
properties from the interactions among members.

One of the oldest questions in group research is “What makes a group more than 
just a collection of individuals?” There has been a long debate over whether a group 
has an entitivity beyond the behaviors of its individual members (Davis, 1969; 
Hewes, 1996; Kozlowski, Chao, Grand, Braun, & Kuljanin, 2013; Kozlowski & 
Klein, 2000). Kozlowski and Klein (2000) argue that higher level group properties 
emerge through two processes, composition of individual attitudes, knowledge, and/
or behaviors into aggregates and compilation, which depends on nonlinear combi-
nation of individual attitudes, knowledge and/or behaviors. McGrath and Kelly 
(1986) and Ancona and Chong (1996) consider temporal elements of coordination 
among individual member sequences. Entrainment is defined as cases in which the 
pace, rhythm, and cycles of individual behaviors come into alignment with one 
another. In this case, the group’s activity takes on a character of a holistic unit 
greater than the individual members. McGrath and Kelly argued that entrainment 
depends on an external factor such as the group’s task or a leader or events in the 
environment that the group must respond to. However, it also seems possible that 
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entrainment might also be driven by members’ desire to coordinate and engage one 
another in internal group interaction. The study of synchronization and entrainment 
of member behavior enables us to investigate the degree to which the group tran-
scends individual member activities.

This chapter will provide an overview of several methods for sequence analysis 
that address these questions, including whole sequence methods, short cycle meth-
ods, and sequential synchronization analysis. Methods for whole sequence and 
short cycle analysis have been discussed at length elsewhere, so they will be 
described in general terms; sequential synchronization analysis has not been previ-
ously introduced, so the remainder of the chapter will be devoted to an explanation 
of how it works and can be conducted.

6.2  �Sequence Analysis

6.2.1  �Sequence Data

Group sequence data can come from a number of sources. It can be directly recorded 
by observers (e.g., Bales, 1950), or it can be coded from audio or video recordings 
(e.g., Fisher, 1970; Poole, 1981). Researchers like Axelrod (1976, 2015) used 
archives of diplomatic notes and negotiations to reconstruct sequences of argument. 
Data can also be gathered using computerized group or team simulations of, for 
example, military tasks, emergency patients, or negotiations (e.g., Schiflett, Elliott, 
Salas, & Coovert, 2004), which capture automatically the choices and actions of 
each member down to hundredth of a second units. Another data resource for group 
research is data captured from the internet (e.g., email, social media, text messages) 
and mobile devices (e.g., geolocation, sociometric badges).

Figure 6.1 presents a general illustration of the type of sequence data that results 
from the operations described in the previous two paragraphs. The top row shows 
the basic data units. These units are then coded into meaningful categories (in this 
case A, B, C, and D), which are the elements of the sequence. As the previous dis-
cussion shows, in some cases the coding system defines the units as part of the cod-
ing process (e.g., Interaction Process Analysis), while in other cases (e.g., a military 
simulation) the units are “hard-coded” into the data recording apparatus, while in 
still others (e.g., server data from a massive multiplayer online game) the units must 
be retrieved from a more complex data store. Each unit may also be associated with 
a timestamp, shown in the bottom row of the figure; this timestamp orders the ele-
ments and may also be used to determine durations. The timestamp in this figure is 
based on a “Newtonian” conception of time, in which time can be divided into equal 
units and proceeds linearly into the future. The top row of the figure portrays a dif-
ferent conception of time, “event time,” in which the occurrence of events marks the 
units, regardless of how long they were or the intervals between them. In addition to 
time stamps, this data also indicates the source of or major actor in each unit. Note 
that a member may engage in several consecutive acts.
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Some properties of sequence data are shown in the second row of Fig. 6.1, 
transitions from one element to the next. Substrings (or subsequences) are meaningful 
short-term patterns of acts; they may be defined structurally by repeated sequences 
of elements or theoretically by specification of meaningful sequences of elements 
(e.g., plan-act-evaluate). Identification of meaningful units or subsequences some-
times proceeds through a series of hierarchical steps. As the third row of the figure 
indicates, each series of similar units can be re-coded into a single occurrence or 
phase of this unit. A phase is a coherent period of group activity of the same type. 
In this case, the phasic sequence is ABABCDCDC. This can be reduced to a still 
higher-order pattern, as shown in row four, in which repeating AB substrings are 
reinterpreted as E phases and CD substrings as F phases. Poole and Roth (1989) 
used this approach to simplify phase sequences in group decision-making using a 
procedure formally described in Holmes and Poole (1991).

6.2.2  �Analyzing Sequences

Many group process studies analyze sequences by “collapsing” them into profiles of 
the total number of each type of act in the sequence. These profiles are useful 
because they show general differences between sequences. A sequence with a lot of 
conflict events is clearly different from one with very few.

Information is lost, however, by synoptic measures of processes such as profiles. 
Where in a decision process a conflict occurs tells us a lot about the process. A con-
flict early on may serve to raise issues for the group to discuss and resolve; a conflict 
at the end may create an impasse that stymies the group. Considering the sequence 
of activities tells us the “story” of the group process in a way that simple totals 
cannot.

Units (U*)/Members (M*):

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17
M1 M1 M1 M2 M1 M3 M1 M3 M2 M2 M2 M1 M3 M3 M1 M2 M3

Elements Transition Substring

A A A B B A A B C C C C D C D C C

Timestamp:

01 05 11 13 16 22 31 45 51 62 67 73 79 83 88 93 98

Coded into:

Fig. 6.1  Sequences and sequence data
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Rudimentary sequence analysis has often been applied to coded data in the social 
sciences. Human pattern recognition is powerful and adaptive, making it possible to 
extract rich information about human interaction and behavior from video sessions 
(e.g., DeChurch & Marks, 2006; Kozlowski, Chao, Chang, & Fernandez, 2015; 
Stachowski, Kaplan, & Waller, 2009). Bales and Strodtbeck (1951), for instance, 
divided their discussions into thirds and constructed graphs of amounts of orienta-
tion, evaluation, and control behavior over time to compare sequences of group 
problem solving sessions. However, if researchers have sequences made up of many 
units or a large set of sequences, manually identifying critical patterns is a difficult 
and daunting task. Methods developed in the biological sciences to identify DNA 
sequences from millions and billions of data points (Koonin & Galperin, 2003) and 
in computer science, where strings of thousands of digits or lines of code must be 
compared (Sankoff & Kruskal, 1983) can be brought to bear in this case. To over-
come this challenge, these disciplines developed approaches to data mining and 
large scale analytics designed to find unique patterns of information and to evaluate 
similarities in structure and function between sequences (Needleman & Wunsch, 1970).

Sequence analysis is particularly aligned with process models that posit that 
groups develop through a series of distinct stages (Tuckman, 1965) and engage in 
patterns of phases to make decisions and accomplish their tasks (Bales & Strodtbeck, 
1951; Gersick, 1988; Poole & Holmes, 1995; Poole & Roth, 1989; Sambamurthy & 
Poole, 1992). For example, Marks et  al. (2001, see also Ishak & Ballard, 2012) 
proposed temporally-based team process in which team members engage in two 
types of phases alternatively to achieve objectives: transition phases—where mem-
bers engage in planning and strategizing—and action phases—where they engage 
in activities directly contributing to team performance.

Sequence analysis is also appropriate for models of act-to-act sequences. The 
assumption commonly shared among these models is that events and behaviors trig-
ger each other to create unique contexts in which one leads to another, which then 
facilitates the occurrence of more events and behaviors later on (Lehmann-
Willenbrock, Meyers, Kauffeld, Neininger, & Henschel, 2011). Tschan’s (1995) 
plan-act-evaluate behavioral cycle model of effective team activity is a good exam-
ple of this approach.

6.2.2.1  �Whole Sequence Analysis

Poole and his colleagues investigated the phasic sequences groups followed to make 
decisions (Poole & Holmes, 1995; Poole & Roth, 1989; Sambamurthy & Poole, 
1992). Instead of measuring members’ perceptions of their decision-making pro-
cess, Poole and Roth (1989) content-coded 47 decision processes by taking the 
following steps: (a) identifying major activity (e.g., problem-focused, execution-
focused, and solution-focused activities) within each 30-second time segment of a 
process to create a sequence of the activities; (b) grouping into phases the activities 
of the same category if they occurred consecutively and also grouping into phases 
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activities from the different categories if they happened in a row. They used the 
technique of flexible phase mapping (Holmes & Poole, 1991) to identify various 
sequences and methods including optimal matching to compare and classify 
sequences into types. The sequences of activity phases produced by this method 
provided the fine-detailed picture of when the specific activity phases occurred and 
in what order. For example, some groups always went through a fixed process of 
different phases while others moved through different stages and cycled back to the 
previous stages. The richness of the sequence data helped Poole and Roth uncover 
that groups did not follow unitary group process but that their processes were much 
more complex and diverse.

One useful technique in whole sequence analysis is optimal matching (OM), 
which is designed to compare similarities of pairs of sequences (Abbott & Tsay, 
2000; Aisenbrey & Fasang, 2010; Hollister, 2009; Wu, 2000). OM evaluates how 
similar pairs of sequences are. It assesses the degree of difference (distance) between 
pairs of sequences using substitution-insertion-deletion transformation operations 
(INDEL). Suppose one wants to compare two sequences: ABC and ADE. OM cal-
culates the distance between them by using the INDEL operations. First, OM 
replaces B at the second position of ABC with D; inserts E between D and C of 
sequence ADC, which turns the sequence into ADEC; and then deletes C at the last 
position of the sequence. The number of the operations required to convert the first 
sequence into the second one is 3, which is the distance score between these two 
sequences. Weights are generally attached to various INDELs based on similarity of 
elements. For example of A and B both pertain to problem statements and to a solu-
tion statement, substituting A for B would make less difference than substituting C 
for A, So the B-A substitution would be given lower weight (cost) than the C-A 
substitution. Based on this logic optimal matching algorithms assign weighted dif-
ferences to each pair of sequences in a set. The number of ways to calculate distance 
scores between a pair of long sequences increases drastically. Therefore, OM seeks 
the most optimal ways to calculate distance scores among sequences (Abbott & 
Tsay, 2000).

The resulting set of distance scores can then be analyzed using multidimensional 
scaling or clustering techniques to derive sets of sequences with similar structures. 
For example, Sambamurthy and Poole (1992) derived three different sets of seq
uences from a sample of 45 conflict management discussions: one in which conflict 
was suppressed, one in which there were open disagreements that were not resolved, 
and a third in which there was open discussion and cooperative management of the 
conflict. The third set had more positive relationships to outcomes than the other 
two. It is also possible to take a reference sequence—for example, an ideal type 
sequence—and use optimal matching to determine how similar one or more 
sequences are to the reference sequence.

There has been much debate over the proper use and benefits and costs of using 
OM. Readers can refer to Aisenbrey and Fasang (2010) and Herndon and Lewis 
(2015) for further discussion of these issues.
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6.2.2.2  �Subsequence Analysis

While Poole and colleagues studied entire sequences, Lehmann-Willenbrock et al. 
(2011) examined whether mood emerges through short-cycles of behavioral patterns 
in which complaining behavior leads to supporting behavior which leads to com-
plaining behavior. They coded discussions in which 57 company teams discussed 
solutions to problems in their work activities. Each statement provided by an 
employee in the conversation was assigned to one of 44 behavioral categories, result-
ing in a sequence of behaviors for the team. Lehmann-Willenbrock et al. examined 
how often one behavioral type was followed by another by calculating probability 
ratings among all possible pairs of behaviors in the 44 × 44 table. Using the probabil-
ity ratings, they found that team members often engaged in specific cycles of com-
plaining behaviors (e.g., complaining, complaining, and complaining; complaining, 
supporting, and complaining), and that the cycles of complaining behaviors resulted 
in unaroused and unpleasant group mood while the cycles of positive behaviors pro-
duced pleasant group mood. Methods such as relational event modeling can be used 
to test hypotheses about short cycle sequences as well (see Chap. 4, this volume).

Murase et al. (2015) took a different approach to obtain sequences of actions from 
six-person teams participating in a military simulation game. The server recorded in 
milliseconds various acts which team members performed, producing sequence data 
consisting of thousands of thousands of acts over time. Murase et al. developed 37 
behavioral categories important for the game, each of which contained short 
sequences of acts that occurred in specific orders. They then wrote scripts to count the 
number of times subsequences of acts in the log that matched any of the 37 behav-
ioral categories occurred (they employed 30 s windows for sampling purposes). Their 
sequence data showed which member in the team engaged in what type of behavior 
in which time segment. This data was subsequently used in an analysis of social 
entrainment among team members that will be described in the next section.

Poole, Lambert, Murase, Asencio, and McDonald (2017) and Cornwell (2015) 
summarize these and other sequence analysis techniques, along with theoretical and 
data related issues. The bibliographies of these two works list a number of refer-
ences to more detailed descriptions of specific sequence methods. The remainder of 
this chapter focuses on the method of sequential synchronization analysis, which 
facilitates identification of emergent processes such as teamwork through the coor-
dination of the behavioral streams of individual members.

6.3  �Sequential Synchronization Analysis

6.3.1  �Individual Sequences into Group Processes

To conduct sequential synchronization analysis the researcher first decomposes the 
group sequence into a sequence for each member and then analyzes relationships 
among individual data sequences to determine team level dynamics.
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Two theoretical forms have been advanced to explain how group dynamics 
emerge at the team level: compositional and compilational models (Chan, 1998; 
Kozlowski & Klein, 2000; Roberts, Hulin, & Rousseau, 1978). Compositional mod-
els argue that a phenomenon at the individual level resembles the same form of the 
phenomenon at the team level while compilational models argue that the forms of a 
phenomenon at the individual and team level are different.

Compositional models are based on the logic that each member’s behavior can 
serve as an estimate of the group or team’s behavior, because the phenomenon of 
interest manifests in the same way at the individual and group levels. Averaging the 
individual estimates thus yields a more reliable measure of the group or team’s 
behavior. For example, in the case of group decision-making, information sharing is 
such that any information given by a single member can be used by the entire group. 
So it makes sense to take each members’ information sharing (or, in the case of self-
report measures, perceptions of group information sharing level) and combine or 
average them to get an overall measure for the group.

In contrast, compilational models operate under a logic of individual variability 
that assumes that it is the pattern or variation among members that gives the group 
process its character (Murase, Doty, Wax, DeChurch, & Contractor, 2012). So, if 
one member of a team is quarrelsome and difficult, this can disrupt the team’s activ-
ity no matter what other members do. Or members may specialize, as in a transac-
tive memory system, where one member specializes in remembering past mistakes 
and serves as devil’s advocate, while another specializes in coming up with novel 
ideas to address the problems raised by the first. Only if the group has individual 
members who enact these and other key roles, will it make an effective decision. So 
it is the pattern of members rather than any sort of sum total that characterizes the 
emergent group, and to capture this emergence, the various types of patterns or at 
least variance among members must be characterized. Measures for compilation 
include the standard deviation, minimum and maximum score of the team members, 
or gini coefficients on various measures such as personality traits, self-efficacy, or 
member roles (Barrick, Stewart, Neubert, & Mount, 1998; Campion, Medsker, & 
Higgs, 1993; Stewart, Fulmer, & Barrick, 2005). All of these measures are based on 
individual characteristics of members or synoptic, summary measures of group 
interaction, rather than the group process itself. One influential theory that offers a 
process-oriented, nonsynoptic account of group emergence from individual 
activities is the theory of social entrainment (Ancona & Chong, 1992; McGrath & 
Kelly, 1986).

6.3.2  �Entrainment

A great deal of evidence suggests that human behavior—including group and team 
behavior—is patterned by rhythms and temporal cycles. McGrath and Kelly (1986) 
summarize evidence that human interaction is characterized by “complex temporal 
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patternings of multiple sets of responses by multiple social actors. These patterns 
have been expressed by such terms as ‘mutuality,’ ‘reciprocity,’ ‘complementarity,’ 
‘dominance,’ ‘similarity,’ ‘simultaneity,’ and ‘alternation’” (p. 7). Cappella (1991) 
makes a case that at the dyadic level these rhythms and patterns in interaction are 
biologically determined. Poole and Roth (1989) noted that about 40 % of decision-
making groups engaged in repetitive cycles of problem-solution interaction. Tschan 
(1995) showed that short repetitive cycles of problem-solving were characteristic of 
effective teams.

McGrath (1990) argues that activities in social systems operate in rhythmic and 
cyclic forms. Multiple activities, initially operating in different rhythms, eventually 
get locked into the same rhythmic pattern by influencing one another’s pace or 
adjusting their activity rhythms to the rhythms of dominant members or external 
events. For example, project deadlines, unexpected requests from a client, and a 
competing company’s market entry function as dominant rhythms to which mem-
bers on teams must adjust their work paces (Ancona & Chong, 1992). Once the 
activities have settled into a fixed rhythmic pattern, it becomes persistent even when 
the dominant activity ceases, unless another disrupting event or new dominance 
pacer emerges to which the activities must start entraining (Harrison, Mohammed, 
McGrath, Florey, & Vanderstoep, 2003). These studies have demonstrated that 
synchronization of activities among members is a mechanism underlying the emer-
gence of group-level phenomena.

Most previous research has relied on experimental manipulations and/or mea-
surement of members’ perceptions to capture synchronization. However, it is also 
possible to identify synchronization from behavioral sequences.

For example, to accomplish a specific objective in a military team exercise, 
members may increase the level of a relevant behavior (e.g., attacking an enemy 
unit). Once the objective has been accomplished, the level of the behavior begins to 
decrease and then eventually cease for a while. This cycle repeats as triggering 
events (new enemy combatants) occur. In this case, members engage in oscillating 
activity patterns with one cycle representing a basic behavioral unit, defined as a 
peak-to-peak period (Cazelles & Stone, 2003). The overlap degree of peak-to-peak 
periods between pairs of activity cycles essentially determines synchronization 
degree and type.

If the peaks of multiple members’ oscillating patterns occur at the same time 
points, or the pace in which the peaks occur is the same (regardless of whether or 
not the peaks occur at the same time points), those members are said to be entrained 
to one another (Ancona & Chong, 1992). Ancona and Chong define the former as 
synchronic entrainment and the latter as tempo entrainment. If the peaks of pairs or 
sets of the oscillating patterns at completely at the alternating points, they are 
defined as harmonic entrainment. Figure 6.2a, b demonstrate two types of entrain-
ment where pace is defined as a period from one peak (maximum) at t time to 
another peak at t+1 time of a cycle (Cazelles & Stone, 2003). Various statistical 
measures of the properties of pairs or sets of patterns—discussed below—can be 
used to determine whether various types of entrainments hold in a group.
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6.4  �A Step-by-Step Guide to Sequential Synchronization 
Analysis

This section is organized to provide step-by-step directions for identifying sequences 
and then calculating phase-lock scores from a hypothetical time-series data, which 
are used to capture the degree of synchronization of team behavior. The approach to 
identifying sequences was used in Murase et al.’s study (2015) which counted fre-
quencies of sequences using the R package TraMineR (Ritschard, Bürgin, & Studer, 
2013) and calculated phase-lock scores using the R package synchrony (Gouhier & 
Guichard, 2014).

Fig. 6.2  Types of entrainment: (a) synchronic entrainment, (b) temporal entrainment
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We provide a hypothetical study in which four members participate in a military 
simulation game in which two four-member teams must navigate a course through 
enemy positions. In order to do perform effectively, their units collect and exchange 
information important to their mission and also coordinate attacks on enemy units. 
There are eight events in this scenario: (A) collecting information, (B) member’s 
unit health decrease, (C) attack, (D) enemy health decrease, (E) communication, (F) 
enemy death, (G) exchanging information, (H) moving with other member, (I) mov-
ing alone, and (J) moving close to the enemy. These elements are documented at 
one-second intervals in the order in which they occurred during the hypothetical 
mission. The data set is available for download for those who are interested in ana-
lyzing it at http://hdl.handle.net/2142/91573. The R code for conducting the analy-
sis is referenced below in the example.

The dataset is made up of two teams of four members each. Each row represents 
a series of events performed by a single member. In this data, the events B, D, and 
F1 appear across all the members when any of these events occurs to at least one 
member because they are events that happen to or have impacts on all members of 
both teams. For example, Member 1 on Team 1 starts engaging the enemy at the 
19th position, and the enemy’s health decreases at the 21st position. Although this 
event belongs to Member 1, it is documented across all the members, because the 
enemy’s health decrement is beneficial for any member who encounters this enemy. 
This irregular, “messy” data structure is typical of sequence data sets, particularly 
those derived from digital traces. This underscores the value of attending to tempo-
ral patterns in data rather than individual acts: focusing on event D alone for 
Members 2, 3, and 4 might lead us to conclude incorrectly that these members 
engaged the enemy; but focusing on the sequence CD (attack → enemy health 
decrease) for Member 1 uncovers the meaning of the event, showing that the result 
for all was a product of the Member 1’s action.

The methods discussed in this section can be applied to simple units like those 
just defined or to more complex units such as subsequences. In our discussion we 
will use subsequences as our basic unit of analysis, on the premise discussed in  
the previous paragraph, that using subsequences or cycles as basic units gives us a 
more nuanced and accurate description of member behavior.

6.4.1  �Step 1: Theoretically Define the Units of Interest

The first and most important step is to develop a set of theoretically sound units of 
analysis. When using single acts, the coding system often specifies them. In the case 
of subsequences construct definition occurs through considering meaningful combi-
nations of acts. Not all subsequences are necessarily meaningful and even when all 
are, only a few might be of interest given the theory being tested. These serve as 
basic units of analysis. One challenge lies in the process of putting events in specific 
orders to create sequence bases because theories in social sciences typically do not 
specify sets of events and in what exact order those events should unfold. It is the 
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researcher’s responsibility to carefully evaluate what events and behaviors need to 
be included and in what order they should be placed so that the short sequences can 
capture the concepts of interest.

For example, in team research, explicit and implicit coordination have been 
found to influence team performance (Rico, Sánchez-Manzanares, Gil, & Gibson, 
2008). Explicit coordination is defined as the process in which members communi-
cate to define responsibilities, make plans and deadlines, and exchange information 
in order to orchestrate their efforts and activities to achieve common objectives. On 
the other hand, implicit coordination emphasizes members’ ability to predict each 
other’s activities in the process of orchestrating their efforts (Rico et al., 2008). As 
can be seen, these definitions do not precisely specify what exact behavioral events 
should be included and in what order. The researcher must choose the behaviors that 
fit these definitions.

The subsequences of implicit and explicit coordination can include combinations 
of several different types of behavioral events. For example, using the categories 
defined above, one subsequence for explicit coordination starts from communica-
tion with member A to moving with member A to being close to enemy. On the 
other hand, a subsequence of implicit coordination starts from moving along to 
moving with member A to being close to enemy because the definition of implicit 
coordination emphasizes one’s ability to predict other members’ behavior (Rico 
et al., 2008). This definition suggests that communication should not be the essen-
tial part of short sequences which capture implicit coordination.

Additionally, the researcher must determine how long the subsequences should 
be. An appropriate length should be long enough so that below that length a sequence 
of events should not be complete, but above it a sequence can be broken down into 
smaller subsequences. For example, it is difficult to determine what type of con-
struct can be captured by a subsequence of two behaviors which starts from moving 
alone to communication, because depending on what behavioral events come before 
or after this sequence, the meaning of the sequence changes. If the events, moving 
with other team and being close to enemy, come after this sequence, the new subse-
quence with the four events could mean explicit coordination. One member tells 
another member nearby that he is moving toward the enemy unit, and asks the mem-
ber to come to his location. Then these two meet and move together toward the 
enemy unit. If these two behaviors do not come after the original sequence, it can be 
too short to determine whether it captures explicit coordination or something else.

On the other hand, if a subsequence is too long, it could consist of two or more 
subsequences, each of which alone could provide sufficient information to capture 
a theoretical construct. For example, if a sequence is assumed to consist of six 
actions of moving alone, communicating, moving with another member, being 
close to enemy, attacking, and enemy health decrease, this sequence can be broken 
into the first subsequence of four behavioral elements—moving alone, communi-
cating, moving another member, and being close to enemy—and a second subse-
quence of attacking and enemy health decrease. The first subsequence is explicit 
coordination, and the second subsequence defines a new construct: engaging enemy. 
Therefore, the researcher must consider not only the “what events” question (what 
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events need to be included) but also the “how many events” question (how many 
events are necessary to make one complete sequence).

Furthermore, the researcher can create multiple subsequences all of which can 
belong to the same construct. There is no reason to expect that there should be only 
one subsequence per construct. For example, psychological scales are comprised of 
multiple items because having multiple questions is considered necessary to capture 
different aspects of the same construct (Nunnally & Bernstein, 1994). This perspec-
tive can be applied to the sequence-based method. If one subsequence may not be 
enough to capture the entire construct space, multiple subsequences are necessary 
to obtain adequate coverage of the construct.

This first step is essential for ensuring legitimacy for this type of method. It is 
common in computer science to simply mine sequences and use the obtained  
set. However, if we want to relate our sequence analysis to theory, this “dustbowl 
empiricist” approach would not be sufficient. For the eight act categories we had 
above, there would be 56 possible pairs for each individual team member and many 
more if we consider three and four act sequences. This is simply too many to sort 
through. Generating the subsequences of interest based upon both theory and 
empirical findings from the literature provides a solid framework through which the 
researcher can appropriately interpret the meanings of subsequences uncovered  
by data mining. Without theoretical guidance, the researcher will be easily over-
whelmed by the enormous number of short sequences identified through data min-
ing alone.

Out of hundreds of possible sequences, Murase et al. (2015) defined seven differ-
ent subsequence types comprised of 37 actual subsequences to represent four key 
teamwork constructs: implicit coordination, explicit coordination, taskwork, and 
information gathering. Two subsequence types indicated implicit coordination, two 
explicit coordination, two taskwork, and one indicated information gathering. In 
this case they used teamwork theory to guide a multilevel classification scheme that 
started with 37 meaningful sequences, which were then grouped into seven basic 
types, which were then mapped onto the four key teamwork constructs.

6.4.2  �Step 2: Extract Subsequences from Data

The next step is to extract subsequences of events from the longer sequence of each 
participant. The R package TraMineR (Gabadinho, Ritschard, Mueller, & Studer, 
2011) can be used to conduct a number of different types of sequence analyses. 
TraMineR contains numerous R functions with which researchers can create and 
manipulate data for sequence analysis, mine data to find unique sequences, and 
visualize results. Researchers who are more familiar with Stata can conduct similar 
types of sequence analysis using Stata packages such as SAID (Halpin, 2014) and 
others (e.g., Brzinsky-Fay, Kohler, & Luniak, 2006). The rest of the analytical dem-
onstration will be conducted using TraMineR.
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In this case we want to extract subsequences from the data. While we know 
theoretically which subsequences we are looking for, it is useful to mine the full set 
of subsequences for additional information. In some cases, additional unanticipated 
subsequences that correspond to our theoretical constructs may be identified. In 
other cases one or more subsequences might suggest additional constructs compat-
ible with our theoretical orientation.

To extract subsequences, we use the subsequence function (which is called 
seqefsub in the Synchrony package) to mine event sequences in the form of shifts 
from one type of behavior to another type. One consideration is subsequence length. 
The length of a sequence could be anywhere from 2 units (i.e., A → B) to the entire 
length of data collected in one’s study. A second consideration is how to deal with 
repeats of the same unit multiple times in a row. When data are documented in every 
second as they are in a game, the same event can be recorded for a member many 
times in row; for instance, if the player is moving continuously, then movement will 
be recorded each second so long as the continuous movement occurs. As a result, 
the data can contain a long string of the same events with a different element at the 
end (i.e., AAAAAAAB), and the repeats are an artifact of the recording. The subse-
quence function identifies no shift (A) and one shift from A to B (A→B) at the end, 
and ignores the intervening multiple occurrences of the element.

When we employ a subsequence identification technique like seqefsub that only 
identifies shifts from one type of act to another (and ignores successive repeats of 
the same unit), we recommend that the researcher consider whether to break data 
into multiple shorter segments to limit the time period over which subsequences can 
extend. If the original sequence runs over hours, months, or days, techniques like 
seqefsub might identify subsequences which extend over longer stretches of time 
than humans can realistically act over or attend to. If one’s sequence data spans 
60 min, for example, mining the entire sequence makes no sense because the subse-
quence function will pull out many sequences which are not meaningful. For exam-
ple, the function could identify a shift between two behaviors—communication 
with member A during the first 30 s of the session and moving with member A 25 m 
into the game. Such a shift does not make sense given the nature of teamwork inter-
action patterns, in which members typically respond relatively immediately to one 
another. To avoid this issue, the researcher should consider breaking the time into 
multiple time segments within which shifts between units are considered meaning-
ful. The appropriate length of time segments will vary according to the phenome-
non. A reasonable latency period for teamwork is relatively short, while in the case 
of organizational innovation adoption sequences could extend over days, weeks, or 
months and still be meaningful.

The second decision point is to determine how many shifts are allowed to be part 
of short sequences. The subsequence function could completely exhaust the entire 
list of short sequences, and it could take significant computing resources to com-
plete the identification process if the empirical sequence is very long. For more 
efficient subsequence identification, the researcher should determine the appropri-
ate number of shits which are maximally allowed in short sequences. If too many 
shifts are allowed, they would not be interpretable or can be broken down into 
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shorter sequences. In our case, we limit the length of sequences to be no more than 
3 shifts (i.e., A→B, B→C, C→D), which is in line with the decisions on this matter 
made by other researchers (Lehmann-Willenbrock et al., 2011; Murase et al., 2015; 
Poole & Roth, 1989).

The last decision point is to consider how far apart the behaviors within the same 
shift or the shifts within the same sequence are allowed to be. Suppose that there is 
a sequence of As and Bs at 10 positions (AAABAABBAA) and that the researcher 
is interested in identifying the short sequence (A→B)−(B→A). First, the researcher 
considers whether the events of the same shift should occur at the positions right 
next to each other or at the positions somewhat apart from each other. For example, 
it is important to consider whether A1 and B4 (the subscripts indicate the event posi-
tions in the sequence) are allowed to define a shift or whether only adjacent acts like 
A3 and B4, and A6 and B7 should be identified as shifts. The same concern must be 
exercised when the researcher considers which shifts should be included in the same 
subsequence. Depending on how far apart the behaviors within the same shift and 
shifts within the same short sequence are allowed to be located, the subsequence 
function produces different frequencies even for the same short sequence.

To operationalize various choices related to relationships among units in subse-
quences, there are several different counting operations one can use: one occurrence 
per object (COBJ), one occurrence per span-window (CWIN), distinct occurrences 
with possibility of event-timestamp overlap (CDIST_O), and distinct occurrences 
with no event-timestamp overlap allowed (CDIST) (Joshi, Karypis, & Kumar, 1999).

COBJ counts a specified sequence only once throughout the entire data even if 
the sequence appears more than once. This is an appropriate rule to use when once 
a subsequence occurs its full effect is felt. CWIN uses a moving window within 
which it evaluates the occurrence of the short sequence. First, the researcher must 
determine how many units a moving window covers every time it moves. For exam-
ple, if the moving window is set to cover three units, every time it moves, it assesses 
whether the sequence occurs in those three units. After the moving window goes 
through the entire data set, the CWIN function provides the total number of occur-
rences of the short sequence. This rule is appropriate if every occurrence of the 
subsequence counts. Finally, CDIST_O identifies all possible short sequences 
within the window whose length is specified by the researcher. The CDIST_O func-
tion differs from CDIST in that CDIST counts only one occurrence of the short 
sequence in a window, whereas CDIST_O counts all occurrences within the win-
dow, even those that overlap. More detailed descriptions and comparisons of the 
counting operations can be found in Joshi et al. (1999).

6.4.3  �Step 3: Revisit Theoretically Defined Subsequences 
in Light of Sequence Mining Results

The subsequence functions CWIN and CDIST_O will identify all possible 
combinations of subsequences and count their frequencies. In step 1 the researcher 
makes the decisions that define the types of subsequences that will be identified.  
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No theory allows the researcher to make perfect determinations about all meaningful 
subsequences that indicate theoretical constructs. Additional promising subsequen
ces may have been identified in the sequence mining process. The next task, then, is 
to use these results to refine the subsequence indicators that are supposed to capture 
the target constructs. Only those subsequences which indicate the target constructs 
or suggest new constructs that fit within the theoretical framework should be 
retained and all the rest should be discarded. Although this process seems straight-
forward, it is not.

Table 6.1 presents a scenario with the set of events which any short sequences 
identified must contain. For example, two other short sequences contain the set of 
AB events and provide their frequency information. Note that two letters connected 
by the arrow consist of a shift while the hyphens connect two shifts to create a lon-
ger chain. Suppose you have identified A and B as critical events, and the subse-
quence function has identified two other subsequences (A→B)  −  (B→A) and 
(A→B) − (A→B). The issue faced in this scenario is that the two latter chains con-
tain the A→B shift as part of their sequence so you wonder how this information can 
be combined. Because of the same A→B shift in the both short sequences, their 
frequency counts are not independent of each other but are redundant. As you can 
see, the base sequence (A→B) occurred seven times. This means that any short 
sequences containing the base sequence can occur more than seven times. Thus, 
unless, the specific short sequence (A→B) − (B→A) is the target short sequence 
whose occurrence is 6, the researcher should record 7 for this scenario while dis-
carding the other frequency numbers.

As the length of the original sequence data increases, the number of subse-
quences one can make exponentially increases and becomes impossible to count 
manually. Utilizing the data mining approach provides the researcher with the new 
ability to capture information that the researcher cannot think of without the data 
mining technique.

6.4.4  �Step 4: Aggregate Frequency Counts of Subsequences 
for Data Segments

In step 2 we argued that any long sequence could be broken into shorter segments 
that reflect realistic latencies in thought and action and also ease computational 
demands. Once an appropriate set of subsequence indicators have been identified, 
the next step is to count them in each segment to yield a sequence of counts for each 

Table 6.1  Counts of subsequences

Set of events Base sequence Short sequence 1 Short sequence 2

A, B Sequence (A→B) (A→B) − (B→A) (A→B) − (A)
Frequency 7 6 7

Note: The arrow sign indicates a shift from one behavior to another; a hyphen connects two shifts.
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individual member. Carrying through our example of the categories discussed in 
Step 1 this would yield values of the number of subsequences devoted to explicit 
coordination, implicit coordination, taskwork, and information gathering for each 
segment. The result is four time series, one for each activity, for each member.

6.4.5  �Step 5: Compute Synchronization Scores

Entrainment can be assessed by calculating the degree and type of synchronization 
across the individual member time series. The output of values of the algorithm 
provides a means for calculating the degree to which members remain phase-locked 
or socially entrained throughout the game. Suppose two members have coordination 
cycles with the same pace. If they coordinate with each other at the same time 
throughout the game, the cycle value differences are zero. However, even if their 
paces are the same, members can engage in coordination at different time points. 
For example, one member coordinates in every 5 min at the 5th, 10th, and 15th 
minute, but the other member engages in coordination at the 3rd, 8th, and 13th min-
ute. In this case, the cycle value differences yield a series of non-zero constants. 
Finally, if members engage in coordination at random time points and change the 
pace of these cycles, the cycle differences yield a series of random numbers. It is 
important to note that this third scenario represents members who are not entrained 
to one another.

Because the phase-lock algorithm produces random numbers for non-entrained 
members, the phase-lock calculation can determine the degree to which members 
are entrained by the distribution of the previously calculated cycle differences, with 
uniformly-distributed values representing low phase-lock (i.e., low entrainment) 
(Cazelles & Stone, 2003). For every pair of members, cycle difference scores for 
every time point are calculated to create a distribution. If two members’ coordination 
cycles are in perfect sync, the cycle difference scores are zeros while two members 
that constantly and randomly change their pace would create a uniform distribution 
of the difference scores. Therefore, if the distribution of cycle differences has a clear 
peak, two members are said to be “phase-locked”, and if the distribution spreads out 
and approaches uniformity, phase-lock decreases. We use kurtosis values to repre-
sent the degree of “peakedness” of cycle-difference distributions.

Besides the phase-lock technique which is the main synchrony analysis in this 
chapter, other synchrony analysis techniques which are also available in the syn-
chrony package deserve attention. Community-wide synchrony (Loreau & de 
Mazancourt, 2008) evaluates the degree to which members’ time-series data fluctu-
ate in unison. Kendall’s coefficient concordance is a non-parametric statistic which 
evaluates agreement among members’ time-series data (Gouhier, Guichard, & 
Gonzalez, 2010). Although these statistics can be used to evaluate entrainment, the 
phase-lock technique is the most appropriate because it capture similarity between 
peak-to-peak paces of multiple cycles, which we used to define entrainment. When 
using other techniques, we recommend that researchers carefully consider the defi-
nition of entrainment and then select the most appropriate technique.
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6.5  �Example

In this section we analyze the sample dataset mentioned earlier. Table 6.2 summa-
rizes ten basic activity elements team members engaged in the game and describes 
of which of three coordination sequences the actions should be part. These three 
sequences are also specified in the Searchcode file at http://hdl.handle.net/ 
2142/91572. This file currently allows readers to specify up to six elements that 
sequences should and should not contain. Elements that the sequences must contain 
need to be specified in the “action” columns, and TRUEs must be specified in the 
“yesno” column. If there are some elements that should not be part of sequences, 
they must be specified in the action columns, and FALSEs must be specified at the 
appropriate positions in the yesno columns. For example, the first row in the 
Searchcode file contains A and G and two TRUEs, meaning that mined sequences 
must contain A and G. If sequences should not contain, for example, G, the TRUE 
at the second position should be changed to FALSE. If A should not be contained, 
the first TRUE should be changed to FALSE.

Two R code scripts for sequence and synchrony analysis are available for down-
load at http://hdl.handle.net/2142/91573. The scripts help readers understand how 
we prepared data for sequential synchrony analysis and conducted the analyses. It is 
difficult to provide the full description in this chapter for what we did line-by-line 
given limited space, but we attempt to highlight the main lines important for the 
analysis and provide explanations. The further explanations for all the script lines 
are provided directly in the scripts.

We broke the data into 10 20-second time segments as we recommend in the Step 
2 section, and identified all sequences within each segment to create time-series 
data per member. The code to create the time segments is shown in Table 6.3.

Table 6.2  Coding categories used in the example

Element Action

Coordination 
sequence: 
engaging enemy

Coordination 
sequence: 
exchanging 
information

Coordination 
sequence: 
planning

A Pick up information ✓
B Health decrease
C Attack ✓
D Enemy health decrease
E Communication ✓
F1 Enemy death ✓
G Exchange information ✓
H Moving with other team ✓
I Moving alone
J Move close to enemy ✓

Note: Check mark indicates of which sequence the element/action is part
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Next we identified sequences within each segment. First, the CDIST counting 
operation was used to identify sequences that contained up to three shifts. Once 
identified, sequences were evaluated for whether they captured team coordination, 
and their frequency counts were documented if they contained one of the sets of 
behaviors in the following order: H, J, and C; F1 and E; A and G. These three sets 
of behaviors indicate different ways in which members engage in team coordina-
tion. Sequences containing H, J, and C indicate that members move together to 
engage enemy. Sequences containing F and E indicate that members plan for the 
next move after they complete a task (which is removing the enemy threat). Finally, 
sequences containing A and G indicate that members exchange information as they 
locate it. Although we could generate more combinations of behaviors, we use only 
these three sequences in this demonstration. If sequences contained any other 
behaviors which were not specified in this section, their frequency counts were not 
documented. Table 6.4 shows the commands given to TraMineR for this operation.

The next step was to examine whether sequences members engaged in within the 
same time segments were considered as redundant or unique. For example, Member 
2 on MTS 1 engaged in three sequences containing H, J, and C in the seventh time 
segment: (H) − (H→J) − (J→C); (H) − (J→C); and (H→J) − (J→C). If the frequen-
cies of all the three sequences were included, the total count for this segment would 
be 3. However, if the chain of actions in this segment is evaluated, it is obvious that 
these three are actually duplicates. The chain is HHHHHHHHJJCCCBDCDBDC. This 
member engaged in this type of coordination activity only once in this time segment 
as indicated in that the member engaged in one series of move activities and one 
series of attack activities. Therefore, we took only one sequence out of these three 
and documented its frequency count. Furthermore, we took this approach through 
the entire data. This is a complex operation that is explained in the code available 
for download.

Additionally, when members engaged in different types of coordination within 
the same time segments, we took the sum of their frequencies. For example, Member 
2 on MTS 1 engaged in two different types of sequences in the eighth segment: 
(H→J) − (J→C) and (F1→E), and each sequence occurred only once. The reason 

Table 6.3  Dividing data into segments

2 seg<−20

12 for(time_i in c(1:((ncol(teamdat)-3)/seg))){
13 print(paste(“MTS”,mts_i,” Mem”,member_i,” Seg”,time_i,sep=““))
14 lst<−time_i*seg
15 fst<−lst+1−seg
16 subdat<−teammemdat[1,fst:lst]
17 variability<−length(unique(apply(subdat,2,as.character)))

Line 2: Object seg indicates the 20-second time window used to divide the data into ten different 
time segments
Line12: The for-in function specified the number of time the lines that follow should repeat
Lines 14–15: The beginning and ending of each time segment are calculated
Line16: Object subdat is the data segment extracted from a member’s entire data set (teammemdat)
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for this approach being adequate is that on average the members engaged in 
coordination sequences only once in each segment. Thus, summing frequencies of 
different types of sequences did not distort team coordination information. However, 
this approach could produce distorted information if frequencies for one type of 
sequences were exceedingly larger than those for the other types of sequences, but 
all the types of sequences were considered equally important. For example, in some 
data teams typically engage in implicit coordination about 100 times with standard 
deviation (SD) of 20 while engaging in explicit coordination 10 times with SD of 2. 
Additionally, we assume the researchers consider these two types of coordination 
equally important. However, if the frequency counts of these two types are summed 
across, the aggregate score that is supposed to represent the coordination construct 
is over-represented by implicit coordination, which is not aligned with how this 
construct is conceptualized. In that case, researchers could convert frequencies into 
z-scores first and take sum of them. Fortunately, in the current data, this was not a 
concern.

Table 6.5 summarizes the frequency counts of sequences that met the aforemen-
tioned criteria. Member 1 and 4 on Team 1 did not engage in activities as much as 
the other members while all the members on Team 2 were active throughout all the 
time segments.

In the last step, calculation was conducted on the extent to which members’ 
activities over time were phase-locked. Using R package Synchrony (Gouhier & 
Guichard, 2014), phase-lock scores were calculated for every pair of members 
within each team, and then kurtosis scores were derived to evaluate the degree of 
peakness (Table 6.6).

Table 6.4  Code for CDIST

18 if(variability>1){

19 datsize<−ncol(subdat)
20 eve.seq<−seqdef(subdat)
21 eve.seqe<−seqecreate(eve.seq)
22 fsubseq<−seqefsub(eve.seqe,minSupport=1,maxK=3,
23 constraint = seqeconstraint (maxGap = datsize,
24 windowSize = datsize,countMethod=‘CDIST’))
25 evecount<−matrix(seqeapplysub(fsubseq,method=“count”),
26 ncol = 1, nrow = ncol(seqeapplysub(fsubseq,method=“count”)))

Line18: The if function checks whether the segment contains different action elements
Line20: The seqdef function converts a character string into a vector of events
Line21: The seqecreate function prepares data for sequence analysis from the event sequence 
object created in Line 20
Line22: The seqefsub function mines the data to produce sequences with maxK=3 meaning the 
function creates sequences of up to three shifts. CDIST is selected as counting operation for this 
analysis
Line25: The seqeapplysub function produces data containing frequency counts for the sequences 
found in Line 22. This line prepares the frequency count data in the matrix format
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Table 6.5  Frequency counts of coordination sequences over Time

Team Member
Time 
1

Time 
2

Time 
3

Time 
4

Time 
5

Time 
6

Time 
7

Time 
8

Time 
9

Time 
10

1 1 0 1 0 0 0 1 0 1 0 1
1 2 1 1 1 1 0 0 1 2 1 1
1 3 0 1 0 2 1 0 1 2 0 0
1 4 0 0 1 0 0 0 0 0 0 1
2 1 1 1 0 1 0 2 1 2 1 1
2 2 2 1 1 1 1 2 2 1 2 0
2 3 0 1 0 1 0 2 2 1 0 1
2 4 0 1 1 1 0 2 1 1 1 0

Table 6.6  Synchrony commands

23 for(mem_ii in unique(mtsdat[,“member_i”])

24 [−1*which(unique(mtsdat[,“member_i”])==members)])
25 {
26 run<−run+1
27 t1<−as.numeric(mtsdat[mtsdat[,“member_i”]==mem_i,−1:−2])
28 t2<−as.numeric(mtsdat[mtsdat[,“member_i”]==mem_ii,−1:−2])
29 div_i<−length(unique(t1))
30 div_ii<−length(unique(t2))
31 if((div_i>=3)|(div_ii>=3)){
32 sync.maxs<−phase.sync(t1,t2,mins=TRUE)
33 k<−0
34 s<−NA
35 ave<−NA
36 sds<−NA
37 k<−kurtosis(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)
38 s<−skewness(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)
39 ave<−mean(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)
40 sds<−sd(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)

Lines 27–28: This line selects a pair of members (mem_i and mem_ii) from the team data (mtsdat)
Lines 29–30: This line calculates the numbers of actions the members performed, and then calcu-
lates synchrony scores for the pairs whose numbers of actions are equal to or more than 3
Line32: The phase.sync function calculates the synchrony scores between two members’ time-
series data and automatically creates a distribution of cycle differences of the synchrony scores
Line37: The kurtosis function calculates the degree of peakedness from the distribution of the 
cycle differences
Line38: The skewness function calculates how skewed the distribution is

6  Sequential Synchronization Analysis



140

Table 6.7 summarizes kurtosis scores across all the pairs of members among the 
two teams, with higher scores indicating the more peaked the cycle difference dis-
tribution becomes (Cazelles & Stone, 2003). Values closer or larger than 3 indicate 
that the distribution has a higher peak than the normal distribution, which indicates 
that two members are entrained to each other. From this table, the 1–2 pair on Team 
1, and the pairs of 1–3 and 2–3 on Team 2 have values closer to 3, indicating that 
their distributions have a higher peak than the normal distribution (DeCarlo, 1997). 
Interestingly, the kurtosis value between Member 1 and 2 was higher than that 
between Member 2 and 3. Although Member 2 and 3 were more active than the 
other members, Member 1 and 2 had more synchronization on their activities than 
did the other pair. Another notable point is that the phase-lock calculation produced 
NAs for the pairs involving Member 4. Member 4 was inactive as evidenced in that 
this member engaged in coordination only twice. Calculating phase-lock values 
requires enough fluctuation in data so it may not be useful if one’s data contain 
many members being inactive throughout.

6.6  �Discussion

In this chapter, we have provided a step-by-step guide to perform sequence 
synchrony analysis to investigate the degree to which team members are socially 
entrained. Specifically, there are two objectives of the chapter. The first objective is 
not simply to explain how to use specific R functions from the R packages “syn-
chrony” and “TraMineR”, but how to evaluate the theoretical relevance of behav-
ioral elements that should be part of subsequences. The hybrid method of data 
mining and theory-based thinking provides a solid foundation on which subse-
quences mined from data acquire substantive meaning and relevance to one’s study. 
The second objective is to provide a further guidance on how to obtain unique team 
property “social entrainment” from subsequence data rather than simply calculating 

Table 6.7  Kurtosis scores 
used to evaluate 
synchronization

Team Pair Kurtosis

1 1 and 2 2.73
1 1 and 3 1.84
1 1 and 4 NA
1 2 and 3 1.70
1 2 and 4 1.63
1 3 and 4 NA
2 1 and 2 1.50
2 1 and 3 2.23
2 1 and 4 NA
2 2 and 3 2.72
2 2 and 4 1.50
2 3 and 4 1.50
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average scores across members. By combining these two methods, sequential syn-
chrony analysis enables researchers to capture compilational forms of emergence.

Group properties emerge in compilational and compositional forms as individu-
als become cohesive functioning teams (Chan, 1998; Kozlowski & Klein, 2000). 
Although researchers have argued importance for compilational forms, they have 
mainly relied on compositional forms or taking average scores to capture team 
properties. This practice suggests that the current state of science on group and team 
process is limited because the most preferred analytical approaches are designed to 
capture only compositional forms. We argue that a reason for the lack of utilizing 
compilational forms is that there is no theoretical as well as analytical guide to cap-
ture them. To spur the use of compilational forms, we have attempted to develop a 
solution to both of the problems.

Past studies have effectively demonstrated sequence analysis as a powerful tech-
nique in preserving contextual meanings of team processes. Sequence analysis  
can capture compilational forms of emergence especially when researchers directly 
conduct sequence analysis on data at the team level to obtain patterns of interactions 
in the team (Lehmann-Willenbrock et al., 2011; Poole & Roth, 1989; Tschan, 1995). 
However, this technique alone is not sufficient to capture compilational forms when 
it is conducted on individual-level time-series data because it simply converts the 
meaning of data from the raw information to subsequences. As a result, the con-
verted data still require aggregation to be elevated to the team level. This is the situ-
ation we have illustrated in the example, where researchers must have a specific 
theoretical and analytical guide to obtain compilational forms.

Social entrainment (McGrath & Kelly, 1986) is a theoretical framework that 
serves a guide when researchers wonder what team property emerges at the team 
level in a compilational form. Social entrainment takes on a compilational form 
when it emerges because each member’s behavioral rhythm does not accurately 
depict how synchronized members’ behaviors are. One useful way to observe this 
phenomenon is to conduct synchronization analysis on members’ time-series data.

Like all sequential process analysis, sequence synchronization analysis is a 
“work in progress.” Currently, there are no definitive, canonical techniques for 
process analysis as there for analysis of experimental designs. While these are 
emerging, at this point sequence analysis requires improvisation and ingenuity. We 
encourage readers to build on what we have described as they pursue their own 
projects.
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Chapter 7
Group Analysis Using Machine Learning 
Techniques

Ankit Sharma and Jaideep Srivastava

7.1  �Machine Learning Techniques and Tools

Our aim in the following text is to provide a hands-on experience for group researchers 
to use machine learning and data-mining methods. Our main focus is to analyze and 
understand variables that may affect the group’s performance. Keeping that in mind 
we shall illustrate the use of two machine learning and data-mining methods in a 
variety of combinations for group performance analysis. We employ an existing 
implementation of these methods in data-mining GUI based software named Weka 
(Hall et al., 2009). We shall also illustrate the process of moving from individual 
level variables to group level metrics in the Data Description Section. In the next 
subsections we describe the methods (Decision Trees and Feature Selection meth-
ods) and introduce the Weka tool.

7.1.1  �Decision Trees

In machine learning, decision trees were first introduced by Quinlan (1986) in form 
of the ID3 algorithm. Later, Quinlan (1993) proposed the C4.5 algorithm to improve 
upon the limitation of ID3 algorithm. The major improvements upon ID3 are (1) 
C4.5 can handle both discrete as well as continuous data, (2) it can also handle miss-
ing data, and (3) C4.5 also does tree pruning. In the following chapter we shall be 
using the C4.5 algorithm for building the decision trees because of these reasons.
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Decision trees are supervised learning methods that make use of already classified 
training data to build predictive models. The aim of a decision tree classifier is to 
divide the training samples into partitions that are homogeneous with respect to the 
dependent variable (which in our analysis would be the group’s performance). The 
algorithm outputs a model in the form of a tree where the bottom or end nodes 
(leaves) are the final predictions (or the classification class) and all the other nodes 
(non-leaves) represent some independent variables. During the construction of a 
tree, that independent variable is chosen as the node which splits its set of samples 
in the most homogeneous fashion i.e. each split is homogeneous with respect to the 
dependent variable. For this, the C4.5 algorithm employs a normalized information 
gain (Quinlan, 1993) as the criterion for variable selection and the variable with the 
highest normalized information gain (i.e., best predictor) is chosen as the node.

As an example we have 14 samples where each sample has a day’s humidity and 
outlook and depending upon these variables if a group plays a cricket game or not, 
given in the Table 7.1. Using the C4.5 implementation in Weka software we achieve 
the decision tree shown in the Fig. 7.1b. If we look at the tree, the root is chosen as 
“humidity” by the algorithm and not the “outlook” variable. To understand this, if we 
try to split the days if the team will play or not, on the basis of the values of “outlook” 
and “humidity” variables individually, we get splits as shown in Fig. 7.1a. As we can 
see that if “humidity” variable is “normal” then we get a split of seven instance days 
on which the group always plays. In this sense, this split generated by “humidity” 
variable is pure i.e. all the instances are “yes” only. This purity is what we have been 
referring to as homogeneous split. Given that “humidity” is able to generate a more 
homogeneous split we say it is a more informative variable and thus, choose it over 
the “outlook” variable. Right now for illustration purposes we diagrammatically 
illustrated the splits and just by eye balling we can understand which split is homo-

Table 7.1  Training samples of 14 days with two features and dependent variable as team played 
or not that day

# Outlook Humidity Play

1 Sunny High No
2 Sunny High No
3 Rainy High Yes
4 Rainy High Yes
5 Rainy Normal Yes
6 Rainy Normal Yes
7 Sunny Normal Yes
8 Sunny High No
9 Sunny Normal Yes
10 Rainy Normal Yes
11 Sunny Normal Yes
12 Sunny High Yes
13 Rainy Normal Yes
14 Rainy High No
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Fig. 7.1  (a) Splits generated by individual features. (b) Decision Tree classifying the samples 
from Table 7.1
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geneous or more informative or not. However, this is impractical in practice and C4.5 
employs an information theoretic measure of normalized information gain (Quinlan, 
1993) as the criterion for variable selection. For further details of this measure we 
encourage readers to visit the Quinlan’s text (Quinlan, 1993).

The biggest advantage of decision trees is that a single tree has the ability to 
describe the whole feature space. This ease of interpretability makes them quite 
popular among practitioners and therefore, we propose them for social scientists as 
a tool to understand the feature space pertaining to groups. We make use of an open 
source implementation of this algorithm available in the Weka software we use.

7.1.2  �Feature Selection

Given the training samples, the aim of feature selection is to select a compact subset 
of independent variables that can predict the dependent variable without much loss 
of information. In other words, the purpose is the trim the dataset into a manageable 
one by focusing on independent variables that have high predictive power. Feature 
selection mines the most informative features and gets rid of the redundant or 
strongly correlated features. This process helps achieve a compact smaller set of 
features (i.e., parsimony) and therefore, improves model interpretability as well as 
training time and generalization by less over fitting (modal selection) (Guyon, 
Saffari, Dror, & Cawley, 2010). For a general overview of feature selection  
in machine learning we refer to (Guyon & Elisseeff, 2003) and the survey 
(Chandrashekar & Sahin, 2014).

Feature selection methods are mainly categorized into three types: (1) Filter, (2) 
Wrapper and (3) Embedded (Guyon et al., 2010). A subset of features can be judged 
as informative or not irrespective of how well they are able to predict the target or 
dependent variable. Algorithms that perform feature selection in this manner are 
called Filtering methods but as the selection is independent of the prediction accu-
racy, they usually may not perform optimally. Wrapper methods evaluate the model 
accuracy using a learning method for different subset of features and return the best 
performing feature subset. But the evaluation and search are done separately, mak-
ing wrapper methods often computationally expensive. Embedded methods, on the 
contrary try to merge the subset search and evaluation phase, by incorporating the 
search within the machine learning model itself. Therefore, the information obtained 
while training the model are used to eliminate or retain features, all this done while 
model training itself.

In this paper we describe the application of a popular embedded method called 
SVM-RFE (Support Vector Machine based on recursive feature elimination) (Guyon 
Weston, Barnhill, & Vapnik, 2002). This algorithm reclusively learns SVM based 
model and eliminates independent variables or features with low weights. For fur-
ther details of the algorithm we refer the reader to the original paper in (Guyon 
et  al., 2002). We make use of the open-source implementation of SVM-RFE in 
Weka, which is called “SVMAttributeEval”.
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7.1.3  �Introducing WEKA: GUI Based Machine Learning Tool

We conduct analysis using the tool called Waikato Environment for Knowledge 
Analysis (Weka), written in Java and developed at University of Waikato, New 
Zealand. This is a free software available for Windows, Linux as well as Macintosh 
environments at (Hall et al., 2009). The tool’s website has link to numerous tutorials 
and they also have video based courses at YouTube. The best part of tool is the easy 
Graphical User Interface (GUI) which makes it very popular among data-mining 
and machine learning practitioners.

7.2  �Dataset and Metrics

7.2.1  Dataset Collection and Description

The dataset was collected using a game based test-bed: SABRE - Situation Authorable 
Behavior Research Environment, developed by BBN Technologies, using the 
Bioware’s Neverwinter Nights game and its provided toolset (Leung, Diller, & 
Ferguson, 2004). In this research we employ a NATO dataset collected using the game-
based test-bed (SABRE) (Fig. 7.2). During the experiment 56 teams, of four members 

Fig. 7.2  A screenshot from the SABRE game based test-bed
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each, were required to search for hidden weapons caches in an urban environment 
(town) while earning or loosing Goodwill points. Different amount of Goodwill points 
were earned depending on whether the weapons cache was found indoor or outdoor. 
Team also can lose points if for example they open a weapon-less container, etc. 
Players have a significant choice over the amount, timing, and type of interactions like 
chatting to specific individuals or broadcast, communication using structured formats 
using the journal-management or map-marking tools provided to the members. There 
were several phases in the game starting with Survey, followed by Training and 
Planning phases and finally, the Executing phase. It is the Execution phase, 1 h in 
length, where the four member teams search for the weapons and earn good will points.

7.2.2  �Individual Level Metrics

In our analysis we develop two types of Individual Level Metrics from the SABRE 
dataset. The first are the Role type metrics. These are based upon the kind of role the 
individual is playing within the team. There are a total of seven Role Metrics for 
each individual member of a team:

	1.	 Number of Tips from NPC (Non-Player Character--automated in the game)
	2.	 Number of Conversations initiated with NPC
	3.	 Number of Chats Sent
	4.	 Number of Chats Received
	5.	 Number of Buildings Entered
	6.	 Number of Tips Sent
	7.	 Number of Tips Received

These metrics try to quantify the Role an individual is playing within the team 
while keeping track of the various actions he or she performs or his/her in-game 
dynamics.

The second type of metrics are the Skill type metrics which reflect upon the skill 
of a team member. These were ascertained via a pre-game survey filled by each of 
the members for all the teams. In all we have 18 different kinds of Skill-type indi-
vidual metrics (Table 7.2).

7.2.3  �Constructing Group Level Metrics (Control Variables) 
from Individual Metrics

We now develop group or team level metrics using the two types of Individual 
Metrics discussed in the previous subsection. We construct the group level metrics 
by aggregating the individual level metrics for all the four individuals in each group. 
We aggregate in two ways to get two kinds of group level metrics. For the first kind, 
we take sum of values of an individual metric for all team members and we refer to 
these as the “TOTAL” group metrics. The second group metric is attained by taking 
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into consideration the heterogeneity among the group members with respect to a 
given individual metric. We quantify this heterogeneity by employing the concept of 
Information Entropy (Teachman, 1980). We define the Information Entropy for a 
group of four members for a given individual metric “x” as:

	
H x p p

n
n n( ) = - ( )

=
å

1

4

2log
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(7.2)

is the fractional contribution of the member n for individual metric x and xn is the 
value of the individual metric x for the member n of the group. As there are only four 
members in each group we have H in the range [0, 2]. The higher the entropy, the 
lower the heterogeneity. Table 7.3, illustrates the values for the values attained by 
“TOTAL” and “ENTROPY” metrics for some example values of the “Tips Sent” 
individual metric i.e. x = “Tips Sent”.

Tables 7.4 and 7.5, show the Group Level Metrics corresponding to the Role and 
Skill Type Individual Metrics, respectively, along with their mean values across all 
the 56 Groups in the SABRE dataset.

Table 7.2  List of skill type individual metrics with their type and range

Member Skill Type Value

English native Yes or no {1,2}
English ability 4 level choices {1,2,3,4}
Stress in English environment 4 level choices {1,2,3,4}
Reserve for English view 5 level choices {1,2,3,4,5}
Computer expertise 3 level choices {1,2,3}
Own computer Yes or no {1,2}
Email usage 5 level choices {1,2,3,4,5}
Browser usage 5 level choices {1,2,3,4,5}
Teleconference usage 5 level choices {1,2,3,4,5}
Chat usage 5 level choices {1,2,3,4,5}
Net-meeting usage 5 level choices {1,2,3,4,5}
Own game console 4 category choices {1,2,3,4}
Comp games time spent Number of hours Real
Multiplayer comp game Yes or no {1,2}
Neverwinter Nights Yes or no {1,2}
Comp game names Yes or no {1,2}
Game mods Yes or no {1,2}
Game list Yes or no {1,2}
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Furthermore, we also have information per team regarding the type of configura-
tion they adopted while playing the game. There are five group configurations as 
follows:

	1.	 {1-1-1-1}: All working separate.
	2.	 {1-1-2}: Two working together and the other two separately.
	3.	 {1-3}: One working separately and three together.
	4.	 {2-2}: Working in groups of two.
	5.	 {4}: All working together.

Corresponding to the above five group configurations we have define five TOTAL 
Group Level Metrics:

	1.	 Group_Conf_1-1-1-1_Total: Percentage of time spent in configuration {1-1-1-
1} configuration

	2.	 Group_Conf_1-1-2_Total: Percentage of time spent in configuration in {1-1-2} 
configuration

	3.	 Group_Conf_1-3_Total: Percentage of time spent in configuration in {1-3} 
configuration

	4.	 Group_Conf_2-2_Total: Percentage of time spent in configuration in {2-2} 
configuration

	5.	 Group_Conf_4_Total: Percentage of time spent in configuration in {4} 
configuration

Table 7.3  Four example teams with different kinds of variety with respect to tips sending behavior. 
Tips Sent Entropy and Total metrics are also shown

Attribute: tips sent

Member 1 Member 2 Member 3 Member 4
Entropy 
metric Total metric

1 (p1 = 1/8) 0 (p2 = 0/8) 1 (p3 = 1/8) 6 (p3 = 6/8) 1.06 8
6 6 5 6 1.99 23
0 0 0 1 0 1
6 6 6 6 2 24

Table 7.4  List of all the group level role type metrics along with their mean values across groups

Total role metric Mean value Entropy role metric Mean value

Tips_from_NPC_Total 17.625 Tips_from_NPC_Entropy 1.770445
NPC_Interacted_Total 85.98214 NPC_Interacted_Entropy 1.711167
Chats_Received_Total 657.1607 Chats_Received_Entropy 1.982355
Chats_Sent_Total 657.1607 Chats_Sent_Entropy 1.87555
Buildings_Entered_Total 61.33929 Buildings_Entered_Entropy 1.847229
Tips_Received_Total 23.96429 Tips_Received_Entropy 1.492368
Tips_Sent_Total 23.96429 Tips_Sent_Entropy 1.537586
Total_Mean_Total 218.1709 Total_Mean_Entropy 1.7452
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We also define one ENTROPY metric for group configuration which captures the 
diversity in group configuration over time. We refer to it as, “Group_Conf_Entropy”.

7.2.4  �Group Performance (Dependent Variables)

As the teams search for weapons they earn or lose goodwill points. We define 
Performance of a team as the Net Change in number of goodwill points earned by 
each team. The histogram of team performance is shown in Fig. 7.3. The middle of 
the three red vertical lines is the mean performance (840.71) and the other two 
denote the top and bottom 25 % performance cutoff for teams. We use these cutoffs 
to define three categories (0, 1 and 2) of team as follows:

Category 0—Low Performing teams (bottom 25 %): Net Goodwill points ≤500.
Category 1—Medium Performing teams: 500 < Net Goodwill points < 1150.
Category 2—High Performing teams (top 25 %): Net Goodwill points ≥ 1150.

Fig. 7.3  Histogram of the group performance of 56 groups in SABRE dataset
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7.3  �Experimentation Methodology

Our experiments involve the application of machine learning methodologies 
described in Sect. 7.1 to perform group analysis of teams in the SABRE dataset. We 
divide the experiments into two types of major levels (see Fig. 7.4). First, is the 
Micro-Level analysis where we perform the group analysis using a single type of 
group metrics (variables). As we have three types (Role, Skill & Group Configuration) 
of group-level metrics, the Micro-Level contains three experiments where we only 
consider attributes from within each of these three types. Second, we have Macro-
Level analysis where we consider all the three type of metrics simultaneously. 
Within the Macro-level we consider all the three metrics together.

As the reader can observe each of the just described experiments different in the 
type of group attributes employed for analysis. Each of these experiments is con-
ducted in four phases (see Fig. 7.5). Each phase helps us understand, from a variety 
of perspectives, including insights from their attributes (features), their relation-
ships, and their effects on the group performance. We start with simple correlation 

Experiments

Micro-Level

Role Metrics Skill Metrics Group 
Configuration

Macro-Level

All 3 Metrics
Together

Fig. 7.4  Segregation of the different types of analysis conducted

•How group of 
individual metrics 
affect each other and 
the performance?

Decision Trees on 
Selected Group of 
Metrics

•Select the most 
important group of 
metrics that affect 
performance?

Feature Selection

•How group of individual 
metrics affect each other 
and the performance?

Decision Trees

•How individual metrics 
affect the performance?
How pairs of individual 
metrics affect each other 
and the performance? 

•

Correlation Analysis

Fig. 7.5  Diagram showing the various analysis phases along with their purposes
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analysis to find pair-wise dependence between all variables, both within and between 
each dependent and independent variable. This is followed by a decision tree, which 
explicitly highlights the patterns of relationships between different variables that 
may affect group performance. We perform feature selection next in order to focus 
on the dominating or most explanatory variables and discuss why the selected fea-
tures can possibly be relevant. Finally, we again perform decision tree analysis 
using on the selected features from the previous phase and hope to find more strong 
and interesting patterns. We overall, therefore, have four sets of experiments and in 
each experiment we analyze groups from a series of four phases as we just described. 
Also within each of the four sets we consider both the TOTAL and ENTROPY vari-
ants of the group metrics.

7.4  �Experiment 1: Group Analysis Using Role Based Metrics

7.4.1  �Phase 1: Correlation Analysis

Table 7.6 shows the correlations with group performance among the different inde-
pendent variables. The total amount of Tips Sent (total metric correlation of 0.43) 
and entropy of Tips Sent (entropy correlation of 0.30) were both significantly cor-
related. There was also a negative correlation with entropy regarding the number of 
buildings entered (negative entropy correlation of −0.22). Overall, it also seems that 
the TOTAL metrics are more related in general to the performance rather than the 
ENTROPY metrics.

The correlations between total group level metrics suggest some interesting and 
explainable dependencies (Table 7.7). For example, the more a team interacts with 
the NPCs the more likely the team gets more tips from them (correlation of 0.646). 
Also, as one of the team member gets tips from NPCs he or she is likely to forward 
them to other members, therefore, increasing the total tips flux within the group 
(observe the correlation 0.30).

Table 7.6  Correlation between independent variables and performance (dependent variable)

Total role metric Correlation score Entropy role metric Correlation score

Tips from NPC 0.383145 Tips from NPC −0.009487
NPC interacted 0.310966 NPC interacted 0.104403
Chats received 0.269815 Chats received −0.102956
Chats sent 0.269815 Chats sent −0.221359
Buildings entered 0.279464 Buildings entered −0.221359
Tips received 0.430349 Tips received 0.081854
Tips sent 0.430349 Tips sent 0.300998
Total mean 0.339129 Total mean 0.0066
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Let’s focus now on the Entropy metrics and their pair-wise correlations, as 
depicted in Table 7.8. High Entropy for a given variable indicates that team members 
behave similarly with respect to that variable and Low Entropy indicates that there is 
a large variation among the team members for the given variable. Now we see a 
pretty high correlation between the entropies of interactions initiated with NPCs and 
the tips received by NPCs (correlation 0.595). This may make sense because if every-
one initiates a conversation with NPCs (high entropy of initiation) everyone is likely 
to get a tip (high entropy of tips from NPC). Similarly, if only a few interact with 
NPCs (low entropy for initiation) only those few would receive tips from NPCs (low 
entropy). Although, this argument is straight forward, the point we wish to highlight 
is that this reasoning is not possible without a team diversity metric like entropy.

Further more interesting would be to utilize the correlation between the entropy 
metrics and the total metrics as shown in Table 7.9. For example, we observe a nega-
tive correlation between Chats received as well as the Chats sent entropy and the 
total amount of buildings entered by the team. A possible explanation would be that 
team is busy in chatting and therefore, fail to enter several buildings. Also chat-
receiving entropy is negatively correlated with the total amount of tips received 
from NPC (correlation –0.226). This suggests that possibly a few team members are 
busy getting tips from NPC (making high total NPC tips for team) and these mem-
bers are not receiving much chats, as compared to other members (low entropy), 
because they are busy interacting with NPCs.

7.4.2  �Phase 2: Decision Tree Analysis

Weka was employed for Decision Tree Analysis using the J48 Decision Tree imple-
mentation provided in the software. To give a more hands-on experience, Fig. 7.6 
shows the “Preprocess tab” when we load the data (only the Role type group met-
rics) in the Weka software.

In order to perform decision tree analysis we move to the “Classify” tab (see Fig. 
7.7) and choose using the “Choose” button the J48 (which can be found under weka 
>classifier −> trees) classifier. Run the classifier using the “Start” button on the left 
after choosing the “Use training set” option under the “Test options”.

At this point, we would again highlight here that our major focus in these experi-
ments is not to build strong predictive models where the only concern is to improve 
the prediction accuracy over the unseen examples as a test set. Contrary to this, our 
main focus is to perform feature space analysis which involves objectives like 
reducing the number of independent variables to a manageable set. Furthermore, we 
would like to understand how the various features interact and which are the most 
important features that can help us understand the given data samples sufficiently 
well, rather than the generalization power of model to unknown test samples.

In other words, we are satisfied if our model fits the training data sufficiently well 
and focus on interpretation of feature space. For this reason, we choose the “Use 
training set” option under the “Test options” on the left. This tells Weka to evaluate 
the accuracy of the learnt model on the training data itself.
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After running the analysis, the output screen on right shows the results, as shown 
in Fig. 7.7. As we can observe the decision tree fits the 56 group samples fairly well. 
In order to visualize the tree, right click on the Result list at the bottom left and 
choose “Visualize Tree” option. Figure 7.8 shows the resultant tree for the total as 
well as entropy type group metrics together. Recall we had mentioned that we divide 
the teams in three categories: low (0), medium (1) and high (2), based upon their 
performance. Our aim in the Decision Tree analysis is to find those path ways or 
relationships between different variables starting from the top of tree that take us to 
high performing (labeled 2) leaves i.e. bottom-most nodes (dependent variable) in 
the tree. This helps us better understand the relationship in a visual fashion. Note the 
format of the leaves in the decision tree is of type x(y/z) where x is the class label 
(0: low, medium:1 or 2:high), y is the number of samples or instances correctly clas-
sified and z is the number of samples incorrectly classified. We would like to have 
the fraction (y/z) as high as possible for a reliable decision on the leaf node.

We observe in Fig. 7.8, that sub-tree to the right of the nodes: TIPS_RECV_
TOTAL and TIPS_SENT_ENTROPY, contains mostly medium and high perform-
ing leaves. Therefore, higher tips circulated within the team and higher tips sent 
entropy are all related to team performance according to the model (i.e. everyone 
sending tips results in good team performance).

Fig. 7.6  Preprocess tab in Weka
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Also, we observe that the high performing teams (leaves with label ‘2’) are either 
in the right sub-trees of TIPS_SENT_ENTROPY node or of the NPC_INTER_
TOTAL node. But we can notice that even after this, if a group falls in the left sub-
tree of NPC_INTER_TOTAL (≤91) node, it is still predicted to have medium 
performance by having sufficiently high (>18) total tips from NPCs (i.e. right of 
TIP_NPC_TOTAL is a medium (‘1’) leaf). This reflects the importance of tips from 
NPCs. However, we also find three high performing groups (leaf labeled ‘2 (3.0)’) 
to the left of TIP_NPC_ENTROPY. This means that if the tips receiving entropy of 
the group is less than 1.7 it is predicted to be high performing. For a four member 
team this typically should mean that only one or two members should be receiving 
those tips from NPCs. Readers are encouraged to see Table 7.3 to get a sense of the 
range of entropy and the type of values assumed by team members for a metric.

Note that we chose the minimum number of classified instances as two using the 
“−M” option for our classifier as “J48 –C 0.25 –M 2” (see top of Fig. 7.7). This 
means that our decision tree will assign a new variable node even if the instances it 
is able to split are as low two. Therefore, if the leaf format in the visualized tree is 
x(y/z) then y ≥ m if we select option “−M m”. In our case we observe this limit in 
the leaf “0(2.0/1.0)” where y = 2 as we chose m = 2. Notice that as we increase ‘m’, 
the misclassification instances i.e. z will also increase. We however, leverage the 
small size of our data to completely interpret our data by generating a tree node even 
if it is able to classify as low as two instances only.

Fig. 7.7  Full role metric model fit statistics
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Adding to discussion on generalizability of the models we are using, we would 
also bring into notice that our dataset size is quite small and sparse with the sample 
size being the same as the number of dimension (56 sample size and 56 metrics with 
total and entropy types combined). Therefore, the generalizability and prediction on 
out of sample test cases for our models is not high. But they very well explain the 
training samples and how features affect the given data. We have chosen this smaller 
dataset in order to illustrate how beautifully we can zoom into the feature space. Our 
focus is therefore, how well can the group features explain the data samples. So in 
some sense we are fitting the machine learning model to the training set and care 
less about the prediction capability. If we have a larger dataset we can have more 
generalizability and less prediction error on testing this set as well.

7.4.3  �Phase 3: Feature Selection

In the previous two sections, our analysis consisted of all the 16 available metrics of 
the role type. However, not all the metrics might be that relevant for a performance 
analysis of the teams. In machine learning, a subset of the most important variables 
and rank among them is done using feature selection methods (Guyon et al., 2010). 
Although there are a variety of feature selection methods, we will focus on of the 
powerful SVM classification based embedded method (Guyon et  al., 2002) dis-
cussed earlier. In the Weka software this SVM based method is implemented under 
the name “SVMAttributeEval” in the Attribute Evaluators which is under “Select 
Attributes” tab (see Fig. 7.9). There are several options within SVMAttributeEval 
that we can play with, but for this illustration we restrict to the default options. Note, 
“attribute evaluator” scores the worth a subset of features and “search method” 
determines what kind of search is performed. We encourage readers to try different 
kinds feature selection methods.

After pressing the “start” button, the method returns a ranked list of all the attri-
butes as per their relevance (as can be observed in the Attribute Selection output on 
the right). SVM-RFE algorithm implemented within “SVMAttributeEval” elimi-
nates as well as rank the features iteratively. In each iteration the features are elimi-
nated if required and are ranked as per their performance classification accuracy 
over the training set when used within the SVM classifier. We observe in the selected 
features, similar to the decision tree analysis in the previous section, that the tips 
exchanging behavior of members, captured in TIPS_SENT_ENTROPY and TIPS_
SENT_TOTAL metrics, plays an important role in deciding team success. 
Furthermore, unlike any of the previous analysis, feature selection also indicates 
that chatting behavior of members also affects the performance.

Recall we are only concerned with the accuracy of the model on the training set 
and therefore, we choose the “Use training set” option under “Test options” on the 
left. If we have a larger sample size, then we can go for cross-validation as well. In 
fact, for our data, both for decision trees as well as feature selection, there was 
almost no difference between the models built using training set (with low error) 
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and via cross-validation (with less accuracy). This further confirms that our 
generalizability is restricted by lack of enough data samples. We therefore, focus on 
training set performance only.

7.4.4  �Phase 4: Decision Tree Analysis over Selected Features

Notice that decision trees, as we saw in Phase 2, can tell us exactly whether it was 
the low or high value of a variable and in what context of other variable’s values, 
affects group performance. This is in contrast to the black box approach of feature 
selection in Phase 3, which gives a list of highly important variables, but there is no 
way to ascertain what kind of values of these selected features affect the perfor-
mance in what way.

In this phase we try to combine the best of both worlds. We use the top five 
highly ranked features, which in our case are the group level role metrics. In this 
way we leverage the ranking information from feature selection to lower the size of 
feature set from 16 to the five most important ones. We then build decision trees 
using only the top five role metrics just selected.

Fig. 7.9  Ranked attributes for role model using SVM
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Before we go ahead with analysis of decision tree, we would like to comment on 
how to choose number of top ranked features. This choice is more of an art, espe-
cially if our focus is on feature space interpretation. Now as we increase the K top 
attributes, the training error on the decision tree built on it decreases. On the other 
hand, the number of attributes increases, making the tree possibly cumbersome to 
analyze. However, the latter is not always the case. Therefore, it becomes more of a 
subjective choice of K, which gives an interestingly interpretable decision tree and 
might have a sufficiently low training error as well.

For our choice of top five, the resultant tree is shown in Fig. 7.10b above and the 
model fit on training data is shown in Fig. 7.10a. As we can see that we now have a 
tree of just four metrics out of the 5 previously selected in Phase 3. This tree is suf-

Chats_Received_Total
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<= 36

<= 1.9896 > 1.9896

<= 17 > 17

<= 1.3996 > 1.3996
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> 1.9183<= 1.9183
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Fig. 7.10  (a) Reduced role metric model fit statistics. (b) Reduced role metric model decision tree
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ficiently detailed and precisely tells us which kind of groups fall in intersection of 
which values of just these four group metrics. The big marked circle on the right 
contains a sub-tree whose leaves are either medium or high performing, implying 
that if a team falls in this sub-tree it is highly probable that it would perform well (at 
least medium if not high). In order to fall in this sub-tree, the team members should 
be chatting a lot and should have a similar tip sending behavior among the members 
(see the nodes in the two small circles).

Also if we observe the root node (CHAT_RECV_TOTAL), the left of root occurs 
if a group is chatting quite a bit less (<454). This value is significantly lower than 
the mean total chat across groups (see Table 7.4). If group members chat less and do 
not also send tips much, i.e. fall on left of TIPS_SENT_TOTAL node (left of root 
node), this group is more likely to perform low. As we can see the label of the leaf 
to the left of TIPS_SENT_TOTAL as “0(15.0/5.0)”. There are 15 low performing 
groups out of the total 19 low performing groups that were predicted to fall in this 
leaf. Now, on the other hand, notice if we concentrate on the right of TIPS_SENT_
TOTAL. This happens if a low chatting group has significantly high (>36) tips cir-
culated in group. Note the mean TIPS_SENT_TOTAL, from Table 7.4, is 
approximately equal to 24. So what this tells is that even a very low chatting group, 
if its members are circulating large volume of tips (> 36 much greater than mean of 
24), it is predicted to perform well. As the label leaf on the right of TIPS_SENT_
TOTAL says there are only two such cases seen so far i.e. “2 (2.0)”. Therefore, 
although such events are possible, they are very unlikely. So it is best for the team 
members to chat more (i.e., over 454).

Also if we observe the two TIPS_SENT_TOTAL nodes (one on top left and one 
bottom of the tree), we realize that higher total sent tips results into high perfor-
mance even if the team is chatting less and has less tip sending entropy (i.e. only a 
few members send a large number of tips). As such, this indicates that high tip send-
ing behavior may be favorable in the absence of chat receiving.

Summarizing this example, we found through four different types of analysis 
that for good performance, everyone in team should be communicating via both 
chatting as well as exchanging tips, but only a few members should be receiving a 
lots of tips from NPC and entering buildings.

7.5  �Experiment 2: Group Analysis Using Skill Based Metrics

7.5.1  �Phase 1: Correlation Analysis

We shall proceed for the group analysis using Skill metrics in a fashion similar to 
Role metrics performed in the last experiment. The Skill metric largely refers to 
the diversity of skills that make up each team and can be important regarding the 
assembly of teams. However, this time we assume that, with the detailed description 
in previous example, the reader is acquainted with the interpretation of entropy met-
rics as a variety quantifier. Firstly, we will see the correlation with the performance 
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variable on different independent variables (both total and entropy metrics  
for all the skill type variables) as shown in Table 7.10. All the interesting cor-
relations are highlighted using bold font. Overall, total English and Computer 
expertise as well as Native English speaking ability in the team are good predic-
tors (positive corr. = 0.396 between total English native speaking ability of team  
with performance) of group performance. However, only “few” Native English 
speakers are better (negative corr.  = −0.186 between Native English speaking 
Entropy and Performance). Teams having the most members with knowledge 
of Computer (positive corr.  =  0.408 between Computer Expertise and perfor-
mance) and spending time on Computer games (positive corr.  =  0.334 between 
Comp. Games Time spent and performance) had a positive relationship with team 
performance.

The correlations between Entropy and Total skill metrics are shown in Table 
7.11. The diagonal of this table is pretty important and interesting. All the interest-
ing correlations are highlighted with bold font in Table 7.11. If a particular diagonal 
element is highly positive, it implies that the variable representing this row/column 
is high for all the individuals (high entropy) if total sum of all the team members for 
this variable is high (high total). On contrary if this diagonal element is highly nega-
tive, then it suggests that when the total group metric for this variable is high (high 
total metric), then only few (possible 1 or 2 in our four team member case) members 
are responsible or have high value for this variable (low entropy). Let us explain this 
with an example. Observe that Browser_Usage_Total is highly correlated with 
Browser_Usage_Entropy (positive corr. = 0.885 highlighted on the diagonal). This 
means that if the total browser usage in a team is high then the entropy with respect 
to browser usage in the team is also high. High entropy means that all the members 
of the team exhibit similar behavior. Given that team has high total browser usage, 
this indicates that all the team members are equally contributing to this high browser 
usage of the team. Note that it could have been possible that only a single member 
is responsible for all or most of the browser usage. If this would have been the case, 
this cell corresponding to Browser_Usage_Total and Browser_Usage_Entropy 
would have been dark green (i.e. highly negatively correlated). In fact such is the 
case for the pair of Neverwinter_Nights_Entropy and Neverwinter_Nights_Total, 
which is highly negatively correlated with a value of −0.949. This indicates that if 
the total team’s score for playing Neverwinter Night is high, then it is highly likely, 
in our four team member case, that it was possibly just single member responsible 
for this score (very low entropy).

This diagonal element property that we just stressed is very important as it high-
lights the importance of the two group level metrics Total and Entropy. This fine 
grained description that we are able to achieve just at the level of correlation analy-
sis, shows the value of these group level metrics.
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7.5.2  �Phase 2: Decision Tree Analysis

The decision tree using the Skill based metrics is shown in the Fig. 7.11a and the 
corresponding model accuracy on the training instances is shown in Fig. 7.11b. We 
know from Table 7.4 that the average Teleconference_Usage_Total across all the 
groups is around 8. The leaf right of the root node (Teleconference_Usage_Total) 
is attained if the group has very high (>13) Teleconference usage relative to the 
mean of 8. Unfortunately, this leaf is labeled “0 (3.0)”, meaning three low perform-
ing groups have been observed with such high Teleconference usage. Here, Daily 

<= 15

<= 1.9242

<= 8

<= 1.9749

<= 11

> 15

> 1.9242

> 8

> 1.9749

0 (3.0)

Teleconference_Usage_Total

Chat_Usage_Total

Browser_Usage_Total

Teleconference_Usage_Total

Reserve_for_English_View_Entropy

Computer_Expertise_Entropy

English_Native_Total2 (12.0/2.0)

a

b

1 (6.0)

1 (2.0) 2 (3.0) 1 (12.0)

0 (6.0/2.0) 1 (5.0/1.0)

0 (2.0)

0 (5.0/1.0)

Reserve_for_English_View_Entropy

<= 1.0414 > 1.0414

> 1.971<= 1.971

> 4<= 4

> 11

Multiplayer_Comp_Game_Entropy

> 13<= 13

Fig. 7.11  (a) Full skill metric model decision tree. (b) Full skill metric model fit
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or Weekly Teleconference usage was predicted as something agnostic to group 
performance.

Moreover, low entropy in multi-player game playing and low entropy in native 
English speakers had a positive relationship with high group performance. That is, 
groups with low entropy values on these two variables were overwhelmingly 
predicted to be in the high performance class. By following the parent nodes of 
these two variables (i.e. Multiplayer_Comp_Gam_Entropy ≥ Reserve_for_English_
View_Entropy) to the leaves, it shows that 23 (e.g., add up all the predicted cases in 
the left, 12 + 6 + 2 + 3) groups fall in these leaves. Out of these 23 groups, 15 (12+3, 
~65 %) were predicted as high performing groups (only two were incorrect). As 
such, out of the 14 high performing groups, these rules correctly classified 13 of 
them (~93 %), leaving only one false negative (i.e., a high performing group incor-
rectly predicted as not high performing).

7.5.3  �Phase 3: Feature Selection

Similar to previous example, using Weka we performed the SVM based feature 
selection using the SVMAttributeEval functionality provided in Weka. The Attribute 
selection output contains the ranked list of various skill type group metrics is shown 
in Fig. 7.12.

7.5.4  �Phase 4: Decision Tree Analysis over Selected Features

Finally, we perform a decision tree analysis using the selected features. This time 
we chose the top ten features out of the total 36 skill metrics which are shown in 
decreasing ranks in Table 7.12. We also tried other values for the number of top 
attributes to use, but they did not generate useful trees. In fact, the resulting J48 
decision tree shown in the Fig. 7.13a employs only five features out of the ten 
selected features. However, as we can observe in Fig. 7.13a the left sub-tree of root 
has similar relationships to those in the tree built in Phase 2 (Fig. 7.10a). The left 
sub-tree highlighted with a red circle is the most interesting as it contains only high 
or medium performing groups. The corresponding model fit is given in the 
Classification output in Fig. 7.13b.

To summarize this example, the best predictor of high performing teams is a 
combination of low values regarding entropy in skill related to multiplayer com-
puter games, total teleconference usage, and entropy in Reserve in English View 
presentation (12 predicted to be high performing, only two were incorrect). Like
wise, high performing teams tended to have high entropy in Computer expertise and 
Game Mods (4 predicted to be high performing, one incorrect).

7  Group Analysis Using Machine Learning Techniques
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7.6  �Experiment 3: Group Analysis Using Group 
Configuration Metrics

In this section we focus on the effect of the group configuration metrics on the group’s 
performance. Table 7.12 shows the correlation score of the different group configura-
tion metrics with group performance (the dependent variable). The correlation of 
Group_Conf_1-1-1-1_Total with performance reflects that working separately is cor-
related with good performance, suggesting a division of labor may be beneficial 
rather than working collectively at the same time. To see this more visually we plot 
the linear regression curve in Fig. 7.14a where the line has a positive slope.

If we focus on the Group_Conf_Entropy, we observe a negative correlation with 
performance. Note that the Group_Conf_Entropy variable reflects homogeneity 
with respect to the different possible group configurations over time. It is high when 
a group spends equal time in each of the five configurations and lowest when the 
team is just playing in a single configuration during the entire playing time. The 
negative correlation therefore, suggests that in general, spending time in fewer 

Fig. 7.12  Ranked attributes for skill model using SVM

A. Sharma and J. Srivastava
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Fig. 7.13  (a) Reduced skill metric model decision tree. (b) Reduced skill metric model fit

Multiplayer_Comp_Game_entropy 

Teleconferance_Usage_Total

Reserve _for_English_View_Entropy

Game_Mods_Entropy

Computer_Expertise_Entropy

Teleconferance_Usage_Total Reserve _for_English_View_Entropy

Computer_Expertise_Entropy

Computer_Expertise_Entropy

English_Ability_Total

>13<=13

<= 1.971 >1.971

<= 1.0414

a

> 1.0414

0 (3.0)

2 (12.0/2.0)

1 (4.0)

1 (3.0) 2 (4.0/1.0)

>1.9219

>1.9749 <= 1.9502

<= 1.9749

<= 12 > 12

> 1.9749

> 1.922<= 1.922

> 1.9502

<= 8 > 8

<= 1.9749

<= 1.9219

0 (3.0/1.0)

0 (6.0) 0 (2.0)

1 (6.0/1.0)

1 (9.0)

1 (4.0)

Table 7.12  Correlation scores of the different group configuration metrics with group 
performance

Total metrics Performance

Group_Conf_1-1-1-1_Total 0.314
Group_Conf_1-1-2_Total −0.136
Group_Conf_1-3_Total −0.369
Group_Conf_2-2_Total −0.185
Group_Conf_4_Total −0.177
Entropy metrics

Group_Conf_Entropy_Entropy −0.349

7  Group Analysis Using Machine Learning Techniques
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different configurations has a positive relationship with performance (rather than 
being equally distributed in all the configurations). This can be visually seen in the 
linear regression plot in Fig. 7.14b. Hence, analyzing both Entropy and Total metrics 
is important because both had significant relationships with group performance.

7.7  �Experiment 4: Using All Types of Metrics Combined 
for Group Analysis

In this section we shall consider a mixed model that combines the set of all the three 
metric types: 16 role types, 36 skill types and 6 group configuration types together. 
Given we had already analyzed the correlation of these three types separately in the 
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Fig. 7.14  (a) Plot of group performance and working separately. (b) Plot of group performance 
and Group Configuration Entropy

A. Sharma and J. Srivastava



177

previous three experiments, we would not mention it further. We would also skip the 
pair-wise correlation analysis, although there are several interesting dependencies 
across different type metrics, but the across-type pairs are simply too many to ana-
lyze and describe. In fact, as the combined set of all the three types has a large 
number of metrics, we would directly perform decision tree analysis on SVM 
selected features (i.e. Phase 4). The attribute ranking of this combined set of metrics 
using the SVMAttributeEval in Weka is shown in the Fig. 7.15.

In this case we again go with top ten metrics, in decreasing order of rank. 
Moreover, the J48 decision tree classifier output tree is shown in Fig. 7.16b and the 
classification accuracy output from Weka is shown in Fig. 7.16a. The important 
point here is that now we are at the stage where we are considering all the 56 differ-
ent metrics together. Therefore, we would now be able to compare and select met-
rics that are important across all the types. This should help us understand which are 
the most globally important metrics.

Although we had selected the top ten group metrics from the SVM ranking list, 
the decision tree only used eight out of these ten. We observe that among Role 
Metrics, Total Tips Sent, and Tips Entropy seem to play a very important role. That 
is, low performing groups tend to send few tips, while high performing groups tend 
to have higher levels of Total Tips and Tips Entropy. Within the Skill Metrics, 

Fig. 7.15  Ranked attributes for mixed model using SVM

7  Group Analysis Using Machine Learning Techniques
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Fig. 7.16  (a) Mixed model fit. (b) Mixed model decision tree

heterogeneity of being Reserve in English View presentation and high English 
Ability tend to predict high performing groups. Teleconference Usage Entropy, 
Total Email, and Chat Usage turn out to be key factors as well.

As has been observed in previous analyses, total amount of time spent in {1,1,1,1} 
type Group Configuration is one the very crucial factors for team success. In fact, if 
we observe the pair-wise correlation matrix (see Table 7.13), we observe that when 
members work separately they chat less and spend more time in interaction with 
NPCs and gather tips from NPCs. This knowledge gathered from NPCs, we can 
hypothesize, may be highly influential for group success.

A. Sharma and J. Srivastava
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Overall, the mixed model, beyond just being the best in terms of model fit, 
demonstrates how complex the interactions are amongst the different sets of vari-
ables. Following the different paths along the decision tree can yield important 
insights into how these variables moderate one another. As to which model is best 
depends on the goals of the researcher. All the models ran had overall accuracy 
levels nearing 90 %. As such, a parsimonious model, though slightly less accurate, 
may be useful for those attempting to seek out which are the “big” factors discrimi-
nating between high and low performing teams. On the other hand, a more complex, 
less parsimonious predictive model may be useful if the goal is to “predict at all 
costs”, which may be useful developing predictive applications (e.g., a team assem-
bly application).

7.8  �Conclusion

In this work we illustrated how to analyze small group behavior using individual 
level data. In this direction we show two possible ways of aggregating individual 
level information to generate group level metrics. Further, we show how traditional 
correlation analysis can substantially be supplemented with the help of the proposed 
metrics. In this sense, the techniques are not competing, but complementary. Finally, 
we employ these metrics within existing machine learning and data-mining 
techniques and illustrate, with the help of Weka data-mining software, how group 
performance can be analyzed using data-mining.
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Chapter 8
Simulation and Virtual Experimentation: 
Grounding with Empirical Data

Deanna Kennedy and Sara McComb

8.1  �Introduction

A decade ago, Davis, Harrison, and their colleagues encouraged researchers in the 
organizational sciences to embrace simulation as a means of augmenting theory 
building in the field (Davis, Eisenhardt, & Bingham, 2007; Harrison, Lin, Carroll, 
& Carley, 2007). This call for simulation research in the organizational context was 
not the first (e.g., McGrath, 1981), nor the last (e.g., Wang, Zhou, & Zhang, 2016). 
It did appear, however, at a time when the computational tools available and 
researcher sophistication vis-à-vis computational approaches were aligned to stimu-
late the movement.

Simulation, in conjunction with virtual experimentation, is a useful tool for the 
organizational researcher because it facilitates comparative analyses of complex, 
multilevel team processes (e.g., Kozlowski, Chao, Grand, & Braun, 2016) that occur 
across a range of different contexts (Carley & Prietula, 1994; Davis et  al., 2007; 
Prietula, Carley, & Gasser, 1998) and over time (Kozlowski, Chao, Grand, Braun, & 
Kuljanin, 2013). Results may be leveraged to inform theory building (Kozlowski 
et al., 2013) and guide the efficient design of future field or laboratory research, par-
ticularly when large resource expenditures may be required (Kennedy & McComb, 
2014; Kennedy, McComb, & Vozdolska, 2011). Team researchers have embraced 
this simulation movement by examining, for instance, collective learning (Anderson 
& Lewis, 2013), interaction modes (Bhuiyan, Gerwin, & Thomson, 2004), cognition 
(Grand, Braun, Kuljanin, Kozlowski, & Chao, 2016), communication patterns 
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(Kennedy & McComb, 2014), project complexity (Kennedy et  al., 2011), 
communication frequency (Patrashkova & McComb, 2004), transactive memory 
(Ren, Carley, & Argote, 2006), and team member replacement (Solow, Vairaktarakis, 
Piderit, & Tsai, 2002).

McGrath (1981) suggests that all research designs pose dilemmas for the 
researcher in that tradeoffs must be made between generalizability to populations of 
interest, precision in the measurement and control of variables, and realism related 
to the context in which the behaviors would be observed. In characterizing a variety 
of research strategies (e.g., laboratory experiments, field studies, judgment tasks), 
McGrath depicts computer simulation as a viable theoretical (vs. empirical) 
approach to conduct unobtrusive research (i.e., no observation of behavior is 
required) of a particular behavior system. As such, simulation provides a solution 
that attempts to address generalizability and realism, at the expense of precision. 
When selecting this approach, the researcher consciously decides to accept this 
compromise, since no design can maximize all three aspects simultaneously.

Once the decision to use computer simulation has been made, researchers must 
decide what type of simulation procedures they want to develop and validate. For 
instance, some of the aforementioned examples from the team domain developed 
simulation procedures via mathematical interpretations of theoretical relationships 
(e.g., Anderson & Lewis, 2013; Grand et al., 2016; Patrashkova & McComb, 2004; 
Solow et al., 2002), whereas others grounded their procedures with empirical data 
(e.g., Bhuiyan et  al., 2004; Kennedy & McComb, 2014; Kennedy et  al., 2011). 
Neither approach is right or wrong. As with all research, determining the best path 
forward must be based on criteria such as the research questions of interest, access 
to data, availability of adequate theory to model, etc. Regardless of the approach 
selected, ensuring that the simulation procedures, when executed, provide results 
that depict a reasonable representation of reality is of primary importance.

Herein, our purpose is to demonstrate (1) how simulation procedures can be 
developed and validated with existing empirical data and (2) how these procedures 
can be executed to conduct virtual experiments. To accomplish this purpose, we 
demonstrate how empirically collected data can inform simulation procedures to 
answer what-if research questions; the answers to which can, in turn, guide future 
empirical data collection. We discuss two examples to demonstrate the range of 
what-if questions that may be addressed via this approach. First, we provide guid-
ance for developing simulation procedures that incorporate continuous data. At the 
end of the chapter, we describe how this approach was implemented in Kennedy 
et  al. (2011). In that research, we used available team-level, continuous, cross-
sectional data that had been collected via questionnaires to examine how project 
complexity impacts the curvilinear relationship between team communication and 
performance identified in Patrashkova-Vozdolska, McComb, Green, and Compton 
(2003). Virtual experiments were conducted by executing the simulation proce
dures under varying levels of project complexity to garner insights about the 
communication-performance relationship.

Second, we demonstrate how to develop simulation procedures with discrete 
data. We then provide the example of this approach, from Kennedy and McComb 
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(2014), where we used transcribed and coded communication strings (i.e., discrete, 
longitudinal data) from a laboratory study to understand the relationship between 
team performance and when teams shift their conversations among different pro-
cesses. Virtual experiments were conducted to ascertain what happens if certain 
process shifts occur earlier or later in the team’s life cycle. Results of both studies 
inform theory about team communication and can be tested through laboratory and/
or field experimentation.

8.2  �Basic Overview of Simulation and Virtual 
Experimentation

In the following tutorial, we will demonstrate two methods: simulation and virtual 
experimentation. Some researchers suggest that simulation is virtual experimenta-
tion (Davis et al., 2007). We forward the notion that they are two distinctly different 
methods that may be used together. Simulation requires computer code and random 
numbers. The computer code imitates processes in the real world and the random 
numbers represent the variability inherent in those processes. A simulation occurs 
when the computer code is executed or run.

Virtual experiments are not unlike laboratory experiments. Researchers use 
closed systems (computer code in virtual experiments or laboratory apparatus in 
laboratory experiments) and manipulate parameters within those systems to study 
how the parameters influence outcomes. In virtual experimentation, the experiment 
is conducted using simulation. Specifically, the computer code is executed multiple 
times to conduct one simulation run for each manipulation designed into the experi-
ment. One benefit of virtual experimentation is that each manipulation can be run 
hundreds or thousands of times in a matter of minutes. Sample sizes this large in a 
laboratory would probably be cost prohibitive and require significantly more time. 
We are by no means suggesting that virtual experimentation should replace labora-
tory experimentation. Both types of experiments have a role to play in organization 
science. Laboratory experiments may provide data that can inform the computer 
code used for virtual experiments. The results from virtual experiments may help 
researchers select more meaningful manipulations for laboratory experiments.

8.2.1  �Tutorial

A number of resources provide guidelines for conducting simulation in general 
(e.g., Law & Kelton, 2000) and simulating organizational phenomena in particular 
(Burton & Obel, 2011; Hulin & Ilgen, 2000; Larson, 2012). We expand on these 
guidelines to provide step-by-step instructions for conducting simulation and virtual 
experimentation research. Herein, we summarize the purpose each step serves, the 
actions required for each step, and the outputs a researcher can anticipate upon 
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completion of the step. To depict how research progresses through these steps, we 
built a flowchart (see Fig. 8.1). As you can see in Fig. 8.1, ensuring that you have a 
valid model in the third step is an integral part of the process. If the simulation pro-
cedures are not valid, you have two options. On the one hand, if the results indicate 
that some minor tweaks might help you achieve validity, you may return to the 
second step and hone your simulation procedures. On the other hand, you may 
decide that validity is not attainable and go back to the first step to reformulate the 
research questions. The most important point here is that without a valid model, you 
should not move on to the fourth step and run virtual experiments.

In the following sections, we will expand upon this information by detailing the 
decisions and actions required for researchers to achieve their research objectives. 
Two basic examples, one with continuous data and the other with discrete data, will 
be used to demonstrate our points. These examples focus on the relationships among 
communication modalities, cohesion, and team effectiveness. Actionable computer 
code from Matlab R2015b is provided for these basic examples.

Step 1. Formulate what-if research questions and secure empirical data

Purpose: 	 Establish coherence among your research questions, variables, and 
available data

Actions:	 Determine research questions regarding process of interest, identify 
corresponding variables, and secure empirical data

Outputs:	 Study goals, process parameters, and empirical data
This step might be called the chicken and egg step, because we don’t always 

know if we will start with research ideas or the data required to test them when 

Step 1.
Formulate what-if research

questions and secure
empirical data

Step 3.
Validate simulation

procedures

Step 4.
Conduct virtual

experiments

Valid?

Step 2.
Develop simulation

procedures
Modify?Yes

Yes

No

No

Fig. 8.1  Flowchart of key simulation steps
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conducting simulation research. You may decide that you would like to expand on 
some results you obtained from a questionnaire field study, but your sample size is 
too small to ensure adequate power to test more complex models. Alternatively, you 
may have an interesting idea but inadequate resources to fully test it in a laboratory 
or field setting. In either case, you can formulate what-if research questions that can 
be addressed by simulation and virtual experimentation.

We use the scenario where data came first to develop our basic example using 
continuous data. Suppose we have data from an employee survey designed to solicit 
perceptions about the emergent state of team cohesion and team effectiveness from 
teams that use multiple communication modalities (e.g., face-to-face, computer-
mediated). Our results support media synchronicity theory (Dennis, Fuller, & 
Valacich, 2008), which suggests a positive relationship between cohesion and effec-
tiveness that is moderated by modality. The exact nature of that relationship within 
each modality cannot be tested though, because of our sample size. We are not sure 
that spending additional resources to collect more data will be a good investment. In 
this case, simulation can help us make the most of our empirical data and provide a 
more nuanced perspective of the cohesion-effectiveness relationship. The results 
from virtual experiments can help us decide if further laboratory or field research  
is warranted. Our what-if research question is: what-if teams use communication 
modalities with more or less synchronicity; does the cohesion-effectiveness rela-
tionship change? The variables of interest are cohesion, effectiveness, and modality. 
Empirical data from the employee survey is available and can be partitioned by 
communication modality.

We develop our discrete data basic example to demonstrate a scenario where an 
idea came first. While conducting a laboratory experiment requiring face-to-face 
teams to complete a planning task, we observed differences in the cohesion among 
team members. We also know that researchers have suggested that cohesion emerges 
and becomes pertinent as the teams complete their task (Kozlowski & Chao, 2012). 
Cohesion was not a variable of interest in the primary study, but we have access to 
a video of every team’s laboratory session. If we develop a dataset that indicates 
when cohesion surfaces for each team, we can use virtual experimentation to exam-
ine the plethora of possible timing scenarios and compare the effectiveness achieved 
for each scenario. Such results may provide initial insights for theory building and 
provide information about the scenarios with the most potential for impactful results 
that can be tested in the laboratory or the field. In this example, our what-if research 
question is: what-if cohesion surfaces earlier or later; does the timing impact the 
cohesion-effectiveness relationship? The variables of interest are the point in time 
when cohesion emerges during the team’s life cycle and team performance. By cod-
ing the videos, we can build the empirical dataset needed.

Step 2. Develop simulation procedures

Purpose: 	 Articulate relationships among variables and the processes connecting 
them, ensure adequate power for generalizability, and convert simula-
tion steps into actionable computer code

Actions:	 Identify simulation steps, establish stopping criteria, and code 
simulation procedures
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Outputs:	 Logical depiction of the real-world process of interest, sample size 
requirements, and actionable computer code

Simulation procedures are commonly developed using the Monte Carlo simulation 
method. This method comes from a class of computational algorithms that uses repeated 
random sampling to generate results (Metropolis & Ulam, 1949). The method is imple-
mented by drawing random samples from defined distributions and analyzing the behav-
ior of the generated samples. Monte Carlo simulation has been applied in many different 
ways across organizational and management science, including imputing missing values 
(e.g., Newman, 2003; Roth, Switzer, & Switzer, 1999), estimating multistage outcomes 
(e.g., Charnes & Shenoy, 2004), and observing parameter variations (e.g., Avramidis & 
L’Ecuyer, 2006; Chance, Hillebrand, & Hillard, 2008; Valenzuela & Mazumbar, 2003). 
Building on this foundation, we will demonstrate how to apply random sampling to data 
distributions to (1) replicate the variables in the empirical dataset and (2) generate simu-
lated datasets under changed or new conditions.

Before describing the specifics about how to develop simulation procedures, we 
need to discuss briefly when to stop a simulation run. Many approaches can be con-
sidered (e.g., convergence of the population (Georgieva & Jordanov, 2009)), but the 
common approach is to use sample size. Law and Kelton (2000), the seminal source 
for simulation, recommend a sample size of 10,000 to ensure robust sampling from 
the data distribution. Now, back to developing simulation procedures.

Step 2A. Identify simulation steps. The procedures you create should reflect your 
decisions about what variables need to appear in your simulated datasets to test your 
what-if research questions. At the same time, you need to ensure that you can repli-
cate the way in which these variables connect in the real world. Both of our basic 
examples focus on the role of team cohesion; but the procedures required to gener-
ate the simulated data needed to test the what-if research questions may be quite 
different. These differences can be seen in Fig. 8.2. The diagrams in Fig. 8.2 are 
flowcharts (one for each of the cohesion-effectiveness examples) that identify what 
needs to happen in a computer program to build the desired simulated dataset. The 
flowcharts contain steps associated with initializing the simulation, generating and 
storing data, and determining if the simulation run should stop.

Step 2B. Code your simulation. Based on the flowchart you (or a valued collabora-
tor familiar with computer coding) can code your simulation in a computer program 
that will provide efficient and reliable results. We have utilized Microsoft Excel, R, 
and Matlab for our own simulations. The way the diagram is translated into action-
able code will depend on the coding language and the programmer’s familiarity 
with the program. In essence you will want to think about how your simulation 
procedures play out mathematically.

Coding the simulation procedures for the continuous data basic example. To address 
the what-if research question in this basic example, we are interested in determining 
the relationship between cohesion and effectiveness under different scenarios of 
communication modalities (e.g., majority face-to-face or majority computer-mediated). 
Since cohesion and effectiveness are related, we can use the bivariate relationship to 
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describe cohesion and effectiveness variables in the computer code. Assuming that 
the variables are normally distributed, we can represent them as continuous distribu-
tions with a mean μ and covariance Σ. The mean vector contains the mean values for 
cohesion and team effectiveness from empirical data, which is set at μ = (2.0, 8.0) 
for illustration. The covariance matrix includes the conditional distribution of team 
effectiveness on the distribution of cohesion and is represented as:
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where Σ12 = Σ21 = 1.5 and indicates the covariance of cohesion and team 
effectiveness.

Now we are ready to simulate data by randomly drawing values for each variable 
from the bivariate distribution. Table 8.1 shows the translation of the survey study 
diagram into Matlab code for replicating the empirical dataset.

Coding the simulation procedures for the discrete data basic example. In this 
basic example, the what-if research question directs us to determine how the timing 

Continuous Data Simulation
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Stop
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Yes
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Fig. 8.2  Potential cohesion-effectiveness simulation diagrams
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of cohesion emergence impacts effectiveness. To answer this question, longitudinal, 
discrete data about the team’s state is needed. For illustration’s sake, let us assume 
that we observed the team doing one of four possible activities at each minute dur-
ing their 60-minute laboratory session. These observations were then converted into 
strings of activities such as Planning-Planning-Conflict-Conflict-Action-Cohesion-
Cohesion-Action-Action … and then transformed into the numerical string 4, 4, 3, 
3, 1, 2, 2, 1, 1…, where Action = 1, Cohesion = 2, Conflict = 3, and Planning = 4. 
The numerical string contains not only the information about cohesion, but also 
information about when the other activities were being completed.

As researchers, we can make a decision to create computer code that either gen-
erates the entire string of activities or generates one number that represents where 
cohesion emerges. Either approach is acceptable. Generating the complete string 
requires more time to code and run the simulation, but may be useful for additional 
research. Alternatively, generating one number may be more expedient, but the 
actionable computer code will only be useful for this specific study. Our decision is 
to generate the complete string.

To start the process of generating complete strings, we have to determine the 
appropriate distribution(s) that best represents the empirical data. For this basic 
example, we assume two patterns were observed. First, as Gersick (1988, 1989) 
predicts, the distribution of activities is different before and after the midpoint of 
team activity. Second, the length of time the team spends focused on a specific 
activity is dependent upon the type of activity, but otherwise is reasonably consis-
tent over time.

Let us assume that during the first 30 minutes, the teams’ activities occur in a 
non-parametric manner. In this case, we can use the empirical data more explicitly 
to inform activity insertion into the data string. Table 8.2 shows the empirical distri-
butions in terms of the probability mass function (pmf) and the cumulative distribu-
tion function (cdf). To determine which activity to insert during the first 30 minutes, 
(1) a random number between 0 and 1 is drawn from a uniform distribution, (2) the 
number is then matched with the appropriate interval of the cumulative distribution 
function (see top section of Table 8.2), and (3) the corresponding activity can be 
specified for insertion. Using the distribution information provided in Table 8.2, we 
can work through an example. If the random number generated for minute 17 was 
0.624, the interval would be 0.501–1.000, the specific activity for minute 17 would 
be planning, and the number 4 would be selected for insertion into the numerical 
string of activities.

During minutes 31–60, the teams are observed engaging in all four activities in 
approximately equal numbers. Here, we can use a uniform distribution to select 
which activity to insert with each activity occurring about 25 % of the time (i.e., 
U(1, 4)). This scenario can simply be coded as drawing a random number from a 
discrete uniform distribution (i.e., =randi([1 4])) and inserting it directly into the 
numerical string of activities.

Once we know the activity to insert, the second step is to figure out how long the 
team does that activity. An initial investigation of the empirical data shows that each 
activity follows a reasonably uniform distribution pattern across minutes 1–30 and 
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Table 8.1  Continuous data simulation: procedures, validation, virtual experimentation

a different, but still uniform distribution pattern occurs across minutes 31–60. As 
such, we can use a uniform distribution to represent the length of time spent doing 
the activity. The uniform distribution for each activity across time can be found in 
the bottom portion of Table 8.2. Continuing our example, we know that in the 17th 
minute, the team starts planning. We draw a random number between 0 and 8 (i.e., 
U(0, 8)) to determine how many minutes they spend on planning. If we draw a 3, 
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then minutes 17, 18, and 19 would be coded as planning (i.e., the number 4) in this 
activity string. We would then draw the next random number to determine the next 
activity that would start at minute 20.

With the distributions of variables in hand the coding of the simulation can pro-
ceed. Table 8.3 contains the Matlab code for this basic example. To represent the 
team’s activities across 60 minutes, we will need to build the activity string for one 
team at a time by following an iterative cycle of selecting an activity and how many 
observations to assign that activity. Because the distributions of selecting an activity 
and the number of observations change at the midpoint, the code contains two loops. 
One decision we will have to make is how to handle the changeover in activities 
from the first 30 minutes to the second 30 minutes. As you will see in Table 8.3, if 
an activity is to be inserted across the 30-minute mark, it is carried over from the 
earlier period rather than truncated. We had to make this decision and could have as 
easily decided to truncate at the 30-minute mark. Such decisions are common in the 
translation of simulation procedures into computer code and must be made based on 
an amalgamation of research evidence, common sense, and practicality within the 
computer program selected.

Once the team’s activity string is complete at a string length of 60, it is stored in 
a dataset, the variables are cleared, and a new team’s activity string is initialized. 
Once the desired number of teams is reached, in this case 10,000 team activity 
strings, the program stops and the dataset is written to an external text file.

Step 3. Validate simulation procedures

Purpose: 	 Compare simulation results with real-world data to ensure that the 
results reasonably represent reality

Actions:	 Test results from executing the computer code
Output:	 Valid, actionable computer code

Validation of your simulation procedures helps you ensure that your results are 
representative of the real world (Law & Kelton, 2000; Larson, 2012). In addition to 
adding rigor to your research process, this step also provides you with an opportu-
nity to improve your simulation procedures, particularly with respect to the con-
structs needed to answer your what-if research questions.

Table 8.2  The Distribution information for the discrete data simulation

Selection of Which Activity to Insert During Minutes 1–30

X 1 (Action) 2 (Cohesion) 3 (Conflict) 4 (Planning)
pmf 0.125 0.250 0.125 0.500
cdf 0.125 0.375 0.500 1.000
interval 0.000–0.125 0.126–0.375 0.376–0.500 0.501–1.000
Selection of How Many Activity Observations to Insert
X 1 (Action) 2 (Cohesion) 3 (Conflict) 4 (Planning)
From 1 to30 min U(1, 4) U(2, 4) U(2, 8) U(0, 8)
From 31 to 60 min U(2, 6) U(1, 4) U(0, 7) U(1, 6)
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Table 8.3  Discrete data simulation: procedures
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To conduct meaningful validation, you must decide which parameters need to 
reflect the real world and how you will test them. Specific validation parameter 
selection depends on the type of study being conducted, but typically includes the 
variables that will be manipulated during virtual experimentation and the results. 
These parameters will be compared to the empirical data using common statistical 
comparison tests (e.g., χ2, t-test) or other non-parametric tests (e.g., Wilcoxon rank 
sum test, Mann-Whitney test). The specific tests will be dependent upon the distri-
bution of the data being tested.

For our basic example with continuous data, we are interested in the relationship 
between cohesion and team effectiveness. Re-running the regression analyses on the 
simulated data and comparing the results to the regression results obtained using the 
original empirical data is a viable approach here for validating the simulation proce-
dures. If the regression coefficients from the simulated data have similar signs as the 
coefficients from the empirical data and the magnitude of the coefficients fall within a 
95 % confidence interval, then we may proceed to virtual experimentation. The level 
of confidence should be chosen based on what is appropriate for your study. Table 8.1 
shows the actionable code for validating the simulation procedures in this way.

For the discrete longitudinal data simulation basic example, multiple parameters will 
need to be validated including the point when cohesion emerges, the number of minutes 
devoted to cohesion, and the relationship between cohesion and effectiveness. Table 8.4 
provides the actionable code for validating the discrete data simulation procedures on 
these characteristics by comparing empirical data from ten teams to similar data from 
the simulated teams. The specific comparisons are when cohesion first surfaces, the 
number of cohesion observations per communication string, and performance. 
Performance is represented as a curvilinear relationship with cohesion. We generated a 
regression model of this cohesion-performance relationship using the empirical data. 
This model is used to calculate the performance of simulated teams by entering the point 
where cohesion surfaces into the regression model. These three characteristics of the 
simulated communication strings are then compared to the empirical data using the 
Wilcoxon rank sum test and the results are output. While the validation should indicate 
that the simulated procedures produce communication strings that are representative of 
the real world, you may also decide that you need to validate other parameters. For 
example, if you think you may be interested in inspecting the ways other topics are 
affected when cohesion is manipulated, then you will need to validate the occurrences 
of all the possible activity states, rather than only focusing on cohesion.

As we suggested in Fig. 8.1, if the evidence supports validating the simulation 
procedures, then the next step is virtual experimentation. Unfortunately, validation 
is not always easily achieved, particularly on the first try. If your testing does not 
support the validation, then you will want to stop and evaluate why the validation 
was not successful. We suggest that you have two options: (1) fix your simulation 
procedures or (2) go back to the beginning and reformulate your what-if research 
question and/or secure more (or different) empirical data. Common problems come 
from issues with the initial assumptions (e.g., normality, conditional relationships, 
linear relationships), miscalculations using the empirical data, or coding errors. You 
should start by checking for coding errors or miscalculations of parameters that can 
easily be fixed with corrective action.

D. Kennedy and S. McComb



193

You may decide that more simulation procedures are necessary. When you have 
a complex phenomenon with a lot of moving parts, you may start with the simplest 
set of simulation procedures for the sake of parsimony. But, through validation test-
ing you may determine that more procedures are needed. For example, in the second 
basic example where we generate activity strings, perhaps a division at the midpoint 
does not provide enough fidelity, and the distributions actually change across quar-
tiles. Alternatively, the activities may have more interrelationships than anticipated 
and conditional probabilities may be more appropriate (e.g., planning is generally 
followed by conflict). Whatever the reason, sometimes developing a valid set of 
simulation procedures requires additional information and/or steps to ensure statis-
tical similarity to the real-world data.

Table 8.4  Discrete data simulation: validation
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More insidious are the irregularities in the empirical data that can become ampli-
fied in the simulation when the generated sample is large. These issues can chal-
lenge your assumptions about how to characterize variables, the covariances 
between variables, and any statistical relationships among the variables. Such issues 
may be a sign that perhaps you need to take a step back to re-think theoretical 
connections, re-characterize the originally tested relationship, reconsider the what-
if research question being studied, or realize that the original data are not represen-
tative of the real-world.

Step 4. Conduct virtual experiments

Purpose: 	 Compare simulation results across varying conditions to inform theory 
construction and future research activities

Actions:	 Manipulate simulation inputs to ascertain how results change under 
varying conditions

Outputs:	 Results that answer the original what-if research questions and provide 
insights into future theory and research development

Once you have validated your simulation procedures you can conduct virtual 
experimentation. Specifically, you can now generate datasets with manipulated 
conditions by changing parameters in your simulation procedures. The way the 
parameters are changed should be based on your theoretical understanding of  
the phenomena and your what-if research questions. To determine the impact of the 
manipulations, the simulated datasets can be compared to one another and to a base-
line. Often times, the empirical data is used to represent the baseline case.

For the basic example using continuous data from a survey, the virtual experi-
ments will focus on the cohesion-team effectiveness relationship under different 
synchronicity scenarios. We partition the empirical data into teams that communi-
cated face-to-face a majority of the time (i.e., a high synchronicity condition) versus 
teams that engaged in computer-mediated communication a majority of the time 
(i.e., a low synchronicity condition). From the partitioned dataset we can calculate 
the mean and covariance information for these specific conditions; for example,  
we assume that the means are as follows for high synchronicity μhs = (4.5, 8) and 
low synchronicity μls = (2, 5), and the covariance matrices are:

	 hs ls
∑ ∑=









 =











2 4 2 5

2 5 4 2

2 1 1 7

1 7 3 2

. .

. .
,

. .

. . 	

Table 8.1 shows the implementation of virtual experimentation in the actionable 
computer code with the new parameters from the partitioned dataset. Using regres-
sion analysis on the simulated data, we obtain results that can be compared to the 
baseline condition. For example, in Fig. 8.3, plots of regression results across the 
different conditions are shown. This type of plot can be used to ascertain the influ-
ence of synchronicity on the cohesion-effectiveness relationship.

For the basic example using discrete data from a survey, the virtual experiments 
will focus on the cohesion-team effectiveness relationship when cohesion occurs 
earlier or later. We manipulate the probability of selecting cohesion in minutes 
1–30 by considering two interventions. Specifically, we examine the case that man-
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agers prompt cohesion building discussions instead of planning, or vice versa. In 
Table 8.5, the actionable code for trying these two cohesion scenarios is presented; 
the first increases the probability of selecting cohesion while decreasing the prob-
ability of selecting planning; and the second scenario decreases the probability of 
selecting cohesion while increasing the probability of selecting planning. To test 
the effects on the cohesion-performance relationship, the simulated communica-
tion strings under each scenario are evaluated for when cohesion surfaces. These 
data are then evaluated using the cohesion-performance model. Finally, a compari-
son among scenarios and the empirical data indicate that significant differences 
exist, at least between the second scenario and other datasets. Figure 8.4 shows an 
example of the boxplot and ANOVA findings from the comparisons. These results 
may help provide the theoretical impetus to pursue research about prompting cohe-
sion activities and/or delaying planning activities.

8.3  �Example Applications

We now turn to two more complex examples to demonstrate how simulation and 
virtual experimentation can be done using empirical data. The two basic examples 
we worked through in the tutorials are simplified versions of these two published 
simulation studies. In Kennedy et al. (2011), we simulate continuous data using an 
empirical dataset that was generated from employee questionnaires. We study the 
curvilinear relationship between team communication and performance under vari-
ous levels of project complexity. In Kennedy and McComb (2014), we simulate 
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Fig. 8.3  Continuous data simulation: virtual experimentation results
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Table 8.5  Discrete data simulation: virtual experimentation

(continued)
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discrete data in the form of communication strings using an empirical dataset that 
was generated by coding transcribed team communication from observed labora-
tory teams. We conduct virtual experiments to determine how the timing of when 
teams shift among processes impacts team performance.

8.3.1  �Team Communication, Performance, and Project 
Complexity

Step 1: Formulate what-if research questions and secure empirical data. The impe-
tus for this study came by combining the ideas and results from two studies con-
ducted using cross-sectional survey data. So, in this case, we had empirical data that 

Table 8.5  (continued)
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led us to a what-if research question. In the first study, Patrashkova-Vozdolska et al. 
(2003) found a curvilinear relationship between team communication and perfor-
mance that was different depending on the media used by the team to communicate. 
In the second, McComb, Green, and Compton (2007) characterized project complex-
ity as having two dimensions (i.e., multiplicity (having multiple options for accom-
plishing the project and/or possible end states to satisfy) and ambiguity (i.e., conflict 
and/or uncertainty associated with options and end states)) and found that project 
complexity moderated the relationship between team flexibility and performance. 
We were then interested in delving further into the team communication-performance 
relationship and wondered how project complexity might impact it. We did not, how-
ever, have an adequate sample to test this relationship using the empirical data avail-
able. We decided to develop simulation procedures and conduct virtual experiments 
to test the what-if research question: what if project complexity levels were different, 
how might the communication-performance relationship be affected?

To test this what-if research question, we decided to simulate team-level data 
about how frequently various communication media are used under different levels 
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Fig. 8.4  Discrete data simulation: virtual experimentation results
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of project complexity. This data could then be used to replicate the multivariate 
regression analysis from Patrashkova-Volzdolska et al. (2003), where team perfor-
mance was regressed on four control variables, three linear terms representing com-
munication media (i.e., email, telephone, and face-to-face), and a squared term for 
each communication media. Regression analysis was conducted for each level of 
project complexity.

The empirical dataset available was from a field study and contained team-level 
data from 60 cross-functional teams. The specific variables simulated in this study 
are listed in Table 8.6. These variables represent the variables in the regression 
equations reported in Patrashkova-Volzdolska et al. (2003) and the project complex-
ity variables reported in McComb et al. (2007). Mean vectors were computed for the 
performance, communication, and control variables. These vectors were then  
used to compute partitioned covariance matrices, where performance variables were 
treated as multivariate normal conditional on the media and control variables. 
Kennedy et al. (2011) provides a thorough explanation of how the covariance matri-
ces were constructed.

Table 8.6  Variables in team communication, performance, and project complexity example

Variable Definition Measurement

Sample means for 
high ambiguity 
high multiplicity 
condition

Team performance
�Goal 
achievement

Meet technical objectives 
and business goals

1=low to 5=high 3.69

�Efficiency Meet cost/time estimates 1=low to 5=high 2.98
Communication media
�Email Frequency of use 

on a scale from 
1=never to 5=often

3.95
Telephone 4.20
�Face-to-face 4.67
Control variables
Task 
significance

Project importance to 
themselves and the 
organization

1=low to 5=high Control variable 
means are not 
reported in the 
paper�Team size Number of fulltime members

�Co-location Three levels: same site; same 
city, different sites; different 
cities, states, or countries

Two dummy coded 
variables

Project complexity
�Multiplicity Having multiple options for 

accomplishing the project 
and/or possible end states to 
satisfy

Median splits used to partition data 
into high/low complexity

Ambiguity Conflict and/or uncertainty 
associated with options and 
end states
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Step 2: Develop simulation procedures. We applied the Monte Carlo method for 
multivariate normal sampling using mean (μ) and covariance (Σ). Our sample size 
was 10,000 simulation runs of 100 simulated teams each. This sample size was 
based on the guidance of Gorsuch (1983), who recommends approximately ten 
observations per independent variable for regression analysis, and Law and Kelton 
(2000) who recommend 10,000 simulation runs. A flowchart of the simulation pro-
cedures can be seen in Fig. 8.5. These procedures were coded in R (version 2.5).

Step 3: Validate simulation procedures. To validate our simulation procedures, we 
computed the mean vector and partitioned covariance matrix using the entire empirical 
dataset (i.e., no partitions for project complexity). We executed 10,000 simulation runs 
containing 100 simulated teams each. In other words, we simulated 10,000 samples 
with n=100 teams in each sample. For each sample, we estimated regression parame-
ters and averaged each regression estimate, p-value, and R2 across the 10,000 samples. 
The results of the simulated data patterned the empirical data. For example, when 
efficacy was the performance variable, both email and email2 were significant and the 
direction of the coefficients were the same (positive for email and negative for email2).

(1) Empirical Dataset

(2) Estimate 
characteristics µ andS

and 
generate simulated 

dataset

Set condition = 0

(3) Run regression 
analysis 

and
record results

(4) Run validation

condition = 8? condition = 0?

condition = condition+1

Validation 
successful?

condition = 0, ..., 8

where validation
condition = 0;
virtual experiments
condition = 1, ..., 8

Stop

Yes

Yes

Yes

No No

No

(5)

Fig. 8.5  Flowchart of simulation procedures. Reprinted from Journal of Engineering and 
Technology Management, 28, Kennedy, DM, McComb, SA, & Vozdolska RR, An investigation of 
project complexity’s influence on team communication using Monte Carlo simulation, 109–127, 
2011, with permission from Elsevier
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Step 4: Conduct virtual experiments. To answer our what-if research question 
about the impact of project complexity on the communication-performance rela-
tionship, the empirical dataset was partitioned based on the project complexity 
reported by the teams. Median values of multiplicity and ambiguity were used to 
determine if a team in the empirical dataset was completing a project of high or low 
complexity. Eight experimental conditions were examined: high multiplicity-high 
ambiguity, high multiplicity-low ambiguity, low multiplicity-high ambiguity, low 
multiplicity-low ambiguity, high multiplicity only, low multiplicity only, high ambi-
guity only, and low ambiguity only. For each condition, 10,000 samples of 100 
teams each were generated and the regression results were computed using the same 
approach as we used for validation. The results suggest that in many cases the same 
inverted curvilinear relationship between communication and performance can be 
expected. In some cases, however, more communication may be better. For exam-
ple, teams may be more efficient if they communicate face-to-face when ambiguity 
is very low or very high.

8.3.2  �Team Performance and Process Shifts

Step 1: Formulate what-if research questions and secure empirical data. In this 
example, we had a what-if research question that led us to generate an empirical 
dataset. While conducting laboratory simulations where teams of three undergradu-
ate students completed a scheduling task, we began discussing how processes 
unfold over time. We knew of the research suggesting that directing team commu-
nication toward certain topics (e.g., Okhuysen, 2001; Okhuysen & Eisenhardt, 
2002; Okhuysen & Waller, 2002) at specific points in time (e.g., Gersick, 1988, 
1989; Okhuysen & Waller, 2002; Katzenbach & Smith, 1999) may enhance team 
performance. At the same time, we were familiar with Marks, Mathieu, and Zaccaro 
(2001) recurring phase model of team activities, where teams work through transi-
tion and action phases. Pulling all of this evidence together, we decided to pose the 
what-if research question: what if interventions affected team communication about 
processes, would it change (i.e., help/hinder) the relationship between when process 
shifts occur and team performance?

Answering this what-if research question required figuring out what processes to 
manipulate, when to manipulate them, and sample sizes needed to meaningfully test 
the various conditions. We decided to turn to simulation and virtual experimentation 
to guide these decisions. Table 8.7 describes the variables of interest in our study. 
By using the videotapes of the 60 teams completing our laboratory simulations for 
a different research purpose, we were able to generate an empirical dataset by tran-
scribing and coding the team conversations, where each message exchanged among 
team members contained information about one topic. The communication strings 
were a series of numbers (i.e., 10, 20, 30, 40, 50), where each number represented a 
specific topic discussed by the teams. In other words, we had a set of discrete data 
points representing the communication of each team. The resulting empirical dataset 
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contained communication strings and the corresponding team-level cost and time 
performance data. The cost performance was calculated from the workforce sched-
ule created by laboratory teams. The time performance captures the number of min-
utes the laboratory team took to complete the scheduling task.

Step 2: Develop simulation procedures. Our initial investigation of the empirical 
data suggested that topics were discussed in different proportions across quartiles of 
communication. To ensure we were able to generate realistic communication strings, 
we calculated several distributions representing a variety of characteristics of the 
communication strings, including communication string length, topics per quartile, 
and the number of observations per topic per quartile. The simulation procedures 
included eight steps: (1) select the length of these communication string; (2) divide 
the string length so that the program can trace quartile completion and change to the 
appropriate distributions as the communication string progresses through quartiles; 
(3) go to the first observation point of the communication string; (4) call up the 
distributions about topic; (5) select the topic to be inserted into the communication 
string; (6) select the number of observations to be assigned to the topic; (7) insert 
the selected topic for the selected number of observations; and (8) update the posi-
tion point in the communication string and check whether the quartile length and/or 
string length has been reached. Once the fourth quartile length was complete, and 
thereby the communication string length was achieved, the communication string 
was stored in a dataset, the variables cleared, and the simulation readied to create 
another string. The simulation completed when 10,000 communication strings had 
been generated per the suggestion by Law and Kelton (2000). The process flowchart 

Table 8.7  Variables in team performance and process shifts example

Variables Definition Measurement Virtual experiments

Processes
�Mission analysis Task objectives, 

context, resources
Pattern recognition 
of shift point (i.e., 
message number)

Increase probability of 
selection in quartile one

�Goal specification Task goals and 
associated priorities

n/a

�Tactical strategy Approaches that could 
be used to complete 
task

Increase probability of 
selection in quartile one

�Operational 
strategy

Division of labor 
among team members

n/a

�Action process Activities that move 
task toward completion

Delay probability of 
selection to quartile two 
or three

Performance
�Schedule cost Cost of schedule 

developed by team
Dollars Calculate using a neural 

network
�Time Time to complete 

schedule
Minutes
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can be seen in Kennedy and McComb (2014). The simulation procedures were 
programmed in Matlab.

Step 3: Validate simulation procedures. To validate the procedures, we executed 
our simulation procedures to generate communication strings for 10,000 simulated 
teams. We then evaluated the simulated communication strings on six characteris-
tics: (1) communication string length, (2) topics selected per quartile, (3) number of 
observations of a topic per quartile, (4) the frequency of transitions from one topic 
to the next topic selected by quartile, (5) when teams first shifted topics, and (6) the 
performance associated with communication strings. The first four evaluations were 
straight-forward counts from each communication string. Evaluating when teams 
shifted topics was more complicated. We considered teams to have conducted a 
process shift when at least three messages were exchanged about a topic followed 
by at least 25 messages about other topics, because the process shift indicates “the 
point in time when teams complete their focus on a process and change to focus on 
one or more different processes” (Kennedy & McComb, 2014, p. 784). Each com-
munication string was evaluated using a pattern recognition sub-routine in order to 
identify when the shift point occurred for each topic.

The final evaluation required generating performance scores for each simulated 
communication string using the points where process shifts occurred. In preparation 
for this step, we trained, tested, and validated a neural network model using Matlab’s 
Neural Network Toolbox. The model links the points in the team communication 
string where process shifts occur to cost and time performance using the empirical 
data from the laboratory teams. A complete description of the model can be found 
in Kennedy and McComb (2014). The model was used to estimate the cost and time 
performance output for simulated teams based on the process shift points in the 
simulated communication strings.

Once we obtained information about the communication string characteristics, 
we compared the distributions from communication strings of the simulated teams 
to those of the laboratory teams. Where distributions were not normally distributed, 
we used the Wilcoxon rank sum statistical test to compare the data between simu-
lated teams and those of the laboratory teams, otherwise a t-test was applied. We 
found no significant difference between simulated communication string character-
istics and those of laboratory teams in terms of communication string length, topics 
selected per quartile, number of observations of a topic per quartile, or when teams 
first shifted topics and the performance associated with communication strings (i.e., 
all comparisons with p > 0.05). Of the 100 comparisons of how frequently teams 
transitioned from one topic to the next (i.e., 5 topics connecting to 5 topics including 
itself across 4 quartiles), 77 were not significantly different. Even with the disap-
pointing results for transition frequency, we concluded that our simulation proce-
dures were adequate in generating communications strings that were representative 
of the real-world teams.

Step 4: Conduct virtual experiments. To answer our what-if research question 
about the impact of process shifts on team performance, we manipulated commu-
nication by changing the probabilities depicting when a topic might be discussed. 
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Specifically, we tested eight different experimental conditions that are grounded 
in our theoretical understanding of what communication patterns may enhance 
team performance: (1) initialize mission analysis by coding it as the first message 
exchanged by teams, (2) initialize strategy formulation, (3) delay action processes 
by one quartile by setting the probability of exchanging an action message during 
the first quartile to 0; (4) delay action processes by two quartiles; (5, 6, 7, & 8) 
initialize mission analysis or strategy formulation and delay action by one or two 
quartiles. For each experimental condition, 10,000 simulated teams were gener-
ated. Each simulated team’s scaled performance measure was used to test for 
differences across the conditions. The results suggest that delaying action until 
after the midpoint of the team’s life cycle may be the most effective intervention.

8.4  �Conclusion

Simulation and virtual experimentation are accessible tools in a researcher’s  
arsenal, as we have demonstrated in this chapter. By systematically working through 
the steps we presented in our tutorial and demonstrate in the Kennedy et al. (2011) 
and Kennedy and McComb (2014) journal articles, researchers can construct simu-
lation procedures grounded with continuous or discrete empirical data to answer 
what-if questions. Simulation by no means replaces real-world investigations. But 
when valid simulation procedures are used to conduct virtual experiments, the 
results have the potential to help researchers construct theory and design future 
empirical work.
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