
Computational Social Sciences

Andrew Pilny
Marshall Scott Poole Editors

Group
Processes
Data-Driven Computational Approaches

Computational Social Sciences

Computational Social Sciences

A series of authored and edited monographs that utilize quantitative and computational
methods to model, analyze and interpret large-scale social phenomena. Titles within
the series contain methods and practices that test and develop theories of complex
social processes through bottom-up modeling of social interactions. Of particular
interest is the study of the co-evolution of modern communication technology and
social behavior and norms, in connection with emerging issues such as trust, risk,
security and privacy in novel socio-technical environments.

Computational Social Sciences is explicitly transdisciplinary: quantitative methods
from fields such as dynamical systems, artificial intelligence, network theory, agent
based modeling, and statistical mechanics are invoked and combined with state-of
the-art mining and analysis of large data sets to help us understand social agents, their
interactions on and offline, and the effect of these interactions at the macro level. Topics
include, but are not limited to social networks and media, dynamics of opinions, cul-
tures and conflicts, socio-technical co-evolution and social psychology. Computational
Social Sciences will also publish monographs and selected edited contributions from
specialized conferences and workshops specifically aimed at communicating new find-
ings to a large transdisciplinary audience. A fundamental goal of the series is to provide
a single forum within which commonalities and differences in the workings of this field
may be discerned, hence leading to deeper insight and understanding.

Series Editors

Elisa Bertino
Purdue University, West Lafayette,
IN, USA

Claudio Cioffi-Revilla
George Mason University, Fairfax,
VA, USA

Jacob Foster
University of California, Los Angeles,
CA, USA

Nigel Gilbert
University of Surrey, Guildford, UK

Jennifer Golbeck
University of Maryland, College Park,
MD, USA

Bruno Gonçalves
New York University, New York,
NY, USA

James A. Kitts
Columbia University, Amherst, MA,
USA

Larry Liebovitch
Queens College, City University of
New York, Flushing, NY, USA

Sorin A. Matei
Purdue University, West Lafayette,
IN, USA

Anton Nijholt
University of Twente, Enschede,
The Netherlands

Andrzej Nowak
University of Warsaw, Warsaw, Poland

Robert Savit
University of Michigan, Ann Arbor,
MI, USA

Flaminio Squazzoni
University of Brescia, Brescia, Italy

Alessandro Vinciarelli
University of Glasgow, Glasgow,
Scotland, UK

More information about this series at http://www.springer.com/series/11784

http://www.springer.com/series/11784

Andrew Pilny  •  Marshall Scott Poole
Editors

Group Processes
Data-Driven Computational Approaches

ISSN 2509-9574	     ISSN 2509-9582  (electronic)
Computational Social Sciences
ISBN 978-3-319-48940-7     ISBN 978-3-319-48941-4  (eBook)
DOI 10.1007/978-3-319-48941-4

Library of Congress Control Number: 2017930624

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Andrew Pilny
University of Kentucky
Lexington, KY, USA

Marshall Scott Poole
University of Illinois
Urbana, IL, USA

v

Contents

	1	 Introduction..	 1
Andrew Pilny and Marshall Scott Poole

	2	 Response Surface Models to Analyze Nonlinear
Group Phenomena...	 5
Andrew Pilny and Amanda R. Slone

	3	 Causal Inference Using Bayesian Networks..	 29
Iftekhar Ahmed, Jeffrey Proulx, and Andrew Pilny

	4	 A Relational Event Approach to Modeling Behavioral Dynamics........	 51
Carter T. Butts and Christopher Steven Marcum

	5	 Text Mining Tutorial..	 93
Natalie J. Lambert

	6	 Sequential Synchronization Analysis...	 119
Toshio Murase, Marshall Scott Poole, Raquel Asencio,
and Joseph McDonald

	7	 Group Analysis Using Machine Learning Techniques............................	 145
Ankit Sharma and Jaideep Srivastava

	8	 Simulation and Virtual Experimentation: Grounding
with Empirical Data...	 181
Deanna Kennedy and Sara McComb

1© Springer International Publishing AG 2017
A. Pilny, M.S. Poole (eds.), Group Processes, Computational Social Sciences,
DOI 10.1007/978-3-319-48941-4_1

Chapter 1
Introduction

Andrew Pilny and Marshall Scott Poole

For many young group researchers, learning about advanced statistical methods can
be quite the traumatic experience. Coupled with teaching, professional develop-
ment, and being theoretical experts in their domain, fine graining the ins and outs of
inferential statistics seemed like just another task on a full plate of work. Fortunately,
for many of us, there was a rescuer. In 2000, Andy Field published his first book,
Discovering Statistics Using SPPS for Windows, beginning a series of volumes ded-
icated to making statistics seem both easy and fun. Clarity was essential for Field,
whose volumes always provided relevant examples (usually very humorous), clear
screenshots, and example write-ups. Field’s volumes were vital for not only learn-
ing about statistics, but reducing anxiety and uncertainty the complexities of infer-
ential modeling.

However, the world has changed greatly since then, moving into what is gener-
ally referred to as the era of Big Data. Four characteristics generally characterize
Big Data (Gandomi & Haider, 2015): (1) volume (i.e., bigger size and magnitude),
(2) variety (i.e., more different types of data), (3) velocity (i.e., rate at which data is
created), and (4) complexity (i.e., complex data structures that require cleaning and
integration). But Big Data is not just about data per se, it is also about a new way
thinking about measurement (King, 2016). For instance, instead surveying groups
about their networks, we can now collect their interactions via their cell phones,
email, and social media (i.e., trace data). Unfortunately, one of the consequences of
Big Data is that many of the methods detailed by Field, which were exclusive vari-
ants of the general linear model, are either inappropriate or unsuited for much of the
data we have on groups today. For instance, for data on online groups (e.g.,

A. Pilny (*)
University of Kentucky, Lexington, KY, USA
e-mail: andy.pilny@uky.edu

M.S. Poole
University of Illinois, Urbana, IL, USA
e-mail: mspoole@illinois.edu

mailto:andy.pilny@uky.edu
mailto:mspoole@illinois.edu

2

coordination in Wikipedia), there can be millions of data points, which can results
in nearly every independent variable tested being statistically significant. Likewise,
interaction data from group members assumes a type of interdependence that vio-
lates many assumptions inherent in linear inference.

To address these issues, many researchers have called upon a paradigmatic
change in thinking, largely referred to as Computational Social Science (CSS)
(Cioffi-Revilla, 2013; Lazer et al., 2009). Computational social science is an inter-
disciplinary endeavor specifically tailored to handle the complexity of Big Data by
merging together social science problems with computer science methods. As
Wallach (2016) puts it, CSS can be thought of as research being undertaken by
groups of “social minded computer scientists and computationally minded social
scientists” (p. 317). The impact of CSS on group research has been especially nota-
ble. For instance, the new range of tools and thinking behind CSS has provoked
innovative ways of understanding different group dynamics (e.g., Klug & Bagrow,
2016; Shaw & Hill, 2014) and collecting group data (e.g. Madan, Cebrian, Moturu,
Farrahi, & Pentland, 2012; Radford et al., 2016).

Although the outlook of CSS is promising for the future of group research, there
is a looming problem (e.g., Alvarez, 2016): for all the new work being produced
using CSS methodology, there are few explicit avenues available to actually teach
these methods. In other words, pedagogy is has taken a back seat to publication. The
result is a sort of knowledge concentration or what boyd and Crawford (2012) refer
to as a digital divide between the small minority who have access to Big Data and
CSS resources and the majority who do not. Indeed, there are few graduate semi-
nars, workshops (often expensive if they do exist), or handbooks that make it easy
for the average social scientist to excel at CSS.

What is needed, therefore, is an “Andy Field book” for CSS, a resource to help
demystify these methods and make it accessible to anyone willing to follow the
white rabbit of CSS. To accomplish this goal, a resource would need to do several
things. First, it would need to emphasize a didactic, rather than an inquiry-laden
focus. That is, the primary objective is teaching rather than theory generation or
original contribution to research. Second, it would need to be transparent, which
means that codes and data should be shared and presented in a tutorial fashion.
Transparency is vital in an age where we see social science continuing to be criti-
cized for a lack of replication and secrecy regarding data and code. And finally, the
resource should be encouraging. The spirit behind such an endeavor should reflect
a growing notion that the more scholarly use of these methods, the better. As such,
opaque and ambiguous language, equations, and procedures should be avoided in
order to foster an environment that enables and empowers researchers to carry out a
similar analysis.

These three values represent the spirit behind this book. The authors were given
a relatively open format to write their chapters as long as it corresponded to a didac-
tic, transparent, and clear avenue for anyone to pick up and take off with. The diver-
sity of these chapters are quite evident: some are longer than others (e.g., Chap. 4:
Relational Event Modeling), some introduce needed theoretical introductions (e.g.,
Chap. 6: Social Sequence Analysis), some use computer code (e.g., Chap. 2:

A. Pilny and M.S. Poole

http://dx.doi.org/10.1007/978-3-319-48941-4_4
http://dx.doi.org/10.1007/978-3-319-48941-4_6
http://dx.doi.org/10.1007/978-3-319-48941-4_2

3

Response Surface Modeling), some use graphic interface programs (e.g., Chap. 5:
Text Mining; Chap. 3: Bayesian networks) and some may not even use data at all
(e.g., Chap. 8: Computational simulation).

Although no book on introducing CSS methods will be exhaustive, we aimed to
provide the audience with what might interest group researchers the most. For
instance, the growth of machine-learning is arguably one of the most dramatic
changes in inferential modeling during the last twenty years (Hindman, 2015).
Machine-learning models are often better equipped to handle Big Data because they
are not dramatically influenced by sample size, often do not make crude normality
assumptions, and have clear interpretations that explicitly acknowledge when the
model predicts both accurately and inaccurately. As such, we included two chapters
that explore different machine learning algorithms, Bayesian networks (Chap. 3)
and decision-trees (Chap. 7).

Likewise, there has been a renewed increase in group dynamics that openly
acknowledges time and order. In this case, group researchers can begin to seri-
ously consider dynamic rather than static notions of emergence (Kozlowski,
Chao, Grand, Braun, & Kuljanin, 2013). As such, Chap. 4 focuses on group inter-
actions by viewing networks as relational events (i.e., episodic interactions),
rather than relational states (i.e., enduring relationships). In this sense, relational
event modeling can reveal dominant patterns of interactions by predicting
ordered and even time-stamped histories of group interactions. Chapter 6 simi-
larly focuses on time and order, but highlights social sequences of activities. One
of the highlighted example of such a technique is that it can determine if group
members behave in a synchronized pace (i.e., entrainment), provoking an impor-
tant inquiry as to whether the emergence of group level properties are related to
group performance.

It also important to recognize the new types of data that can be exploited by
CSS methods. One example is the growing advent of analyzing text as data. In this
sense, Chap. 5 explores text mining procedures and the development of semantic
networks represented by co-occurrence relationships between different words and
concepts. Sometimes there is not enough data or something was missing from
data measurement. Chapter 9 deals with this through computational simulation
with empirical data. Finally, sometimes we have enough data on groups with
repeated observations that we can run quasi-field experiments. Chapter 2 adapts
response surface methodology, a common method in the natural and physical sci-
ences, to group research.

Lastly, as Alvarez (2016) notes, CSS is “developing at a dizzying pace” (p. 25).
While researchers are rapidly developing tools to provide unique and sometimes
ground-breaking insights into social inquiry, there is a need to pause and give back.
Many of the tools used by CSS researchers were not developed individually in a
vacuum. We owe a debt of gratitude to those who developed and taught us these
methods, and owe it to the next and current generation of CSS researchers to share
knowledge on how to use these methods. It can be seen as a sort of methodological
“pay-it-forward”. This book is one small attempt at such an endeavor.

1  Introduction

http://dx.doi.org/10.1007/978-3-319-48941-4_5
http://dx.doi.org/10.1007/978-3-319-48941-4_3
http://dx.doi.org/10.1007/978-3-319-48941-4_8
http://dx.doi.org/10.1007/978-3-319-48941-4_3
http://dx.doi.org/10.1007/978-3-319-48941-4_7
http://dx.doi.org/10.1007/978-3-319-48941-4_4
http://dx.doi.org/10.1007/978-3-319-48941-4_6
http://dx.doi.org/10.1007/978-3-319-48941-4_5
http://dx.doi.org/10.1007/978-3-319-48941-4_9
http://dx.doi.org/10.1007/978-3-319-48941-4_2

4

References

Alvarez, R. M. (2016). Computational social science: Discovery and prediction. Cambridge, MA:
Cambridge University Press.

Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, tech-
nological, and scholarly phenomenon. Information, communication & society, 15(5), 662–679.

Cioffi-Revilla, C. (2013). Introduction to computational social science: Principles and applica-
tions. London: Springer.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics.
International Journal of Information Management, 35(2), 137–144.

Hindman, M. (2015). Building better models prediction, replication, and machine learning in the
social sciences. The ANNALS of the American Academy of Political and Social Science, 659(1),
48–62.

King, G. (2016). Preface: Big data is not about the data! In R. M. Alvarez (Ed.), Computational
social science: Discovery and prediction (pp. vii–vi1). Cambridge: Cambridge University
Press.

Klug, M., & Bagrow, J. P. (2016). Understanding the group dynamics and success of teams. Open
Science, 3(4), 1–11.

Kozlowski, S. W., Chao, G. T., Grand, J. A., Braun, M. T., & Kuljanin, G. (2013). Advancing
multilevel research design capturing the dynamics of emergence. Organizational Research
Methods, 16(4), 581–615.

Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., … Gutmann, M.
(2009). Life in the network: The coming age of computational social science. Science,
323(5915), 721.

Madan, A., Cebrian, M., Moturu, S., Farrahi, K., & Pentland, A. (2012). Sensing the “health state”
of a community. IEEE Pervasive Computing, 11(4), 36–45.

Radford, J., Pilny, A., Reichelmann, A., Keegan, B., Foucault-Welles, B., Hoyde, J., et al. (2016).
Volunteer science: An online laboratory for experiments in social psychology. Social
Psychology Quarterly, 79(4), 376–396.

Shaw, A., & Hill, B. M. (2014). Laboratories of oligarchy? How the iron law extends to peer
production. Journal of Communication, 64(2), 215–238.

Wallach, H. (2016). Computational social science: Towards a collaborative future. In R. M. Alvarez
(Ed.), Computational social science: Discovery and prediction. (pp. 307–317). Cambridge
University Press.

A. Pilny and M.S. Poole

5© Springer International Publishing AG 2017
A. Pilny, M.S. Poole (eds.), Group Processes, Computational Social Sciences,
DOI 10.1007/978-3-319-48941-4_2

Chapter 2
Response Surface Models to Analyze
Nonlinear Group Phenomena

Andrew Pilny and Amanda R. Slone

2.1  �Introduction to Response Surface Methodology

Using Response Surface Methodology (RSM) is a lot like being a chef, mixing
together different combinations of ingredients to see which ones come together
to make the best dish. In this situation, strict linear thinking no longer applies.
For instance, adding just the right amount of salt to a dish can bring out the
sweetness in desserts or bump up the taste in more savory dishes. But, too much
salt can overwhelm the flavor of a dish, just as too little salt can leave it tasting
bland and unsatisfying. Chefs must find that perfect amount of salt that takes
their dish from acceptable to exceptional. In addition, chefs must consider how
the salt will interact with other ingredients in the dish. For example, salt inter-
acts with the yeast in bread to help create texture, and it helps sausage and other
processed meats come together by gelatinizing the proteins. Likewise, RSM
helps us find the optimal amount of an outcome variable based on two or more
independent variables.

This chapter will provide an introduction on how to use RSM to analyze nonlin-
ear group phenomenon. First, the chapter will outline a brief history and background
of the approach. Then, the chapter will walk the reader through a tutorial demon-
strating how to execute the second-order model using the PROC RSREG function
in SAS. Data previously collected from virtual groups in the game EverQuestII
(see Williams, Contractor, Poole, Srivastava, & Cai, 2011) will be provided as an
example.

A. Pilny (*) • A.R. Slone
University of Kentucky, Lexington, KY, USA
e-mail: andy.pilny@uky.edu; amanda.slone@uky.edu

mailto:andy.pilny@uky.edu
mailto:amanda.slone@uky.edu

6

2.2  �Brief Background of RSM

Box and Wilson’s (1951) treatment on polynomial models provided the foundation
for RSM, which evolved and developed significantly (e.g., different variations of
designs) during the 1970s (Khuri, 2006). Like many statistical methods, RSM
developed in the natural sciences, but has yet to be applied extensively within the
social sciences given the amount of repeated observations needed for RSM. Indeed,
given the complexity involved in running controlled social science experiments and
the typically low rate of manipulations, though, it is no wonder that RSM has not
taken hold. However, with the advent of Big Data providing virtual Petri dishes of
human behavior, RSM has garnered new interest in the social sciences for its ability
to answer questions about complex group interactions (Williams et al. 2011. For
example, due to its emphasis on optimization (i.e., finding the right combination of
independent variables that maximizes a dependent variable), RSM has primarily
impacted the world of business and performance management.

2.3  �Basic Processes Underlying RSM

RSM is a blend between least squares regression modeling and optimization methods.
More formally, RSM can be defined as the “collection of statistical and mathemati-
cal techniques useful for developing, improving, and optimizing processes” (Myers,
Montgomery, & Anderson-Cook, 2009, p. 1). Moreover, instead of trying to only
explain variance, RSM also seeks to clarify optimization. In other word, it is not
necessarily about how a set of independent variables explains a dependent variable,
but rather what combination of independent variables will yield the highest (or low-
est) response in a dependent variable. In order to do this, RSM requires at least three
variations in each variable, measured on a ratio or interval level.

To conduct an RSM test, there are typically five consecutive steps to go through
(SAS Institute, 2013): (1) the regression modeling, (2) lack of fit, (3) coding of
variables, (4) canonical analysis, and (5) ridge analysis. Each of these steps is
described in more detail below.

2.3.1  �Step 1: Second-Order Regression Modeling

The most common and most useful RSM design is the second-order model because
it is flexible (i.e., not limited to linear trends), easy (i.e., simple to estimate using
least-squares), and practical (i.e., has been proven to solve real world problems;
Myers et al., 2009). The general linear model formula is identical to that which is
used when conducting a regression (Eq. 2.1):

A. Pilny and A.R. Slone

7

	
y f x x e= () +1 2,

	
(2.1)

In this general linear equation, y equals a response variable, x1 and x2 represent
predictor variables, and e equals the error term.

But, RSM uses the second-order model in order to fully determine the response
shape (i.e., the observed nonlinear trend). The equation for the second-order model
is as follows (Eq. 2.2):

	 y b x b x x� �
= + +¢ ¢

0 B 	 (2.2)

In this second-order matrix equation, “b0, b, and B
�

 are the estimates of the inter-
cept, linear, and second-order coefficients” (Myers et al., 2009, p. 223) respectively.
One thing to note is that, unlike most other second-order regression models used
when conducting group research, the results provided in this model are preliminary.
That is, the results are used to determine linear, quadratic, and interactional relation-
ships between the independent variables, not to identify the response shape.

2.3.2  �Step 2: Lack of Fit

Lack of fit is how well predicted repeated observations match the observed data. In
other words, lack of fit of the second-order model indicates that the predicted values
of the data do not look like the observed values (see Montgomery, 2005, p. 421–
422). For example, though salt (independent variable) may be shown to influence
taste (dependent variable) in a second-order model (i.e., statistically significant),
when we compare the predicted responses to actual taste ratings (e.g., feedback
from customers), there are major discrepancies. This indicates a poorly fitting
model.

When we have more than one observation on an independent variable, there are
several things to look out for when calculating lack of fit. First, it is important to
differentiate pure error from lack of fit error. Pure error is more common in regres-
sion modeling is determined by looking at the sum of squares (Eq. 2.3) variability
between each repeated observation of the independent variables (yij) and the average
value of the response variable (y i):

	

SS y yPE
i

m

j

n

ij i

i

= =
åå -()

1 1

2

	

(2.3)

Lack of fit error is different because it uses a weighted version of yij and looks at
the actual observed value of the dependent variable, not the average. The Equation
(2.4) can be calculated by taking the sum of the difference of the average value of

2  Response Surface Models to Analyze Nonlinear Group Phenomena

8

the response variable (y i) the fitted value of the response variable (y� i), and weight-
ing it by the number of observations at value of the independent variable (ni):

	
SS n y yLOF

i

m

i i i
=
å -æ

è
ç

ö
ø
÷

1

2

�

	
(2.4)

From there, an F-test (Eq. 2.5) can be derived using mean squares (MS) from
both equations to determine whether or not a quadratic model is even necessary to
replace a reduced first-order model. For instance, if the lack of fit test is not signifi-
cant for a first-order model, then there could be a reasonable argument that a second-
order model is not event needed:

	
F

MS

MS
LOF

PE
0 =

	
(2.5)

Likewise, if the test is statistically significant for a second-order model, then by
Occam’s Razor (i.e., law of parsimony), we have evidence that a quadratic model
might not be appropriate.

2.3.3  �Step 3: Coding of Variables

Despite requiring variables to be measured at the interval or ratio level, RSM does
not simply examine multiple sets of linear relationships. Instead, RSM conducts an
experiment of sorts, and organizes variables into conditions to see which results in
the optimal output. As such, to make it easier to conduct the canonical analysis
(Step 4) and ridge analysis (Step 5), recoding values is a convenient way to examine
the response shape at multiple values of the independent variables. As Lenth (2009)
put it, “Using a coding method that makes all coded variables in the experiment vary
over the same range is a way of giving each predictor an equal share in potentially
determining the steepest-ascent path” (p. 3). In addition to simplifying the calcula-
tion, recoding the variables also produces results with respect to the original values
of the independent variables. A common way to recode variables, as in the SAS
package, is to do the following (Eq. 2.6):

	
Coded value

Original value M

S
=

-

	
(2.6)

whereas “M is the average of the highest and lowest values for the variable in the
design and S is half their difference” (SAS Institutive, 2013, p. 7323). For instance,
if there were five observations of on salt, ranging from two ounces to ten ounces,
then the data for salt are stored in coded form using the following (Eq. 2.7):

	
xsalt =

- -()Salt value 10 2

4 �
(2.7)

A. Pilny and A.R. Slone

9

2.3.4  �Step 4: Canonical Analysis of the Response System

The next step is to conduct a canonical analysis of each of the conditions. The pur-
pose of the canonical analysis is to determine the overall shape of the data. For a
first-order model, this is typically done through a method of steepest ascent or
descent, wherein a linear shape determines which region of values creates an opti-
mal response. However, for a second-order model, the shape can look more three-
dimensional given the addition of interaction and polynomial terms. Here, we go
back to our original Eq. (2.2) of a second-order response in matrix form (see Myers
et al., 2009, p. 223):

	 y b x b x x� �
= + + ¢¢

0 B 	

To optimize the response (y�) and locate the stationary point (xs) (i.e., the point of
highest response in the dependent variable) we can set the derivative of y� equal to 0:

	

¶
¶

= + =
y

x
b B x

�
�

2 0
	

(2.8)

and then solve for the stationary point:

	
xs = -

-1

2

1

B b
�

	

In these equations, b equals a vector of first-order beta coefficients:

	

b

b

s

q

1

.

.

.

�

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

	

(2.9)

And B
�

 includes quadratic (diagonals) and interaction (off-diagonals) beta
coefficients:

	

b b b

b b

b

� � �

� �

�

�

11 12 1

22 2

2 2

2

2

, ,

, ,

,

/ , , /

, /

. /

¼

¼

é

ë

ê
ê
ê
ê
ê
ê

ù

û

úq

q

qqsym

úú
ú
ú
ú
ú

	

(2.10)

2  Response Surface Models to Analyze Nonlinear Group Phenomena

10

For instance, consider if we trying to maximize taste (y�) with salt (x1) pepper
(x2). After running a clean second-order model (i.e., no lack of fit), we find that:

	
b =

é

ë
ê

ù

û
ú =

- -
- -
é

ë
ê

ù

û
ú

3 65

4 69

1 22 0 25

0 25 2 66

.

.
,

. .

. .
B
�

	

then

	
xs = -

-1

2

1

B b
�

	

	
= -

-
-

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú

1

2

0 84 0 08

0 08 0 38

3 65

4 69

. .

. .

.

. 	

	
=
é

ë
ê

ù

û
ú

1 34

0 75

.

. 	

To compute this equation using matrix algebra, the following R code can be
used:

	

B matrix c , , ,nrow ,ncol ,byrow TRUE= () = = =(1 22 25 25 2 66 2 2. , . . .- - -))
= () = = =()
=

b matrix c , ,nrow ,ncol ,byrow TRUE

x sol

3 65 4 69 2 1

5

. .

. *- vve B b

x

()()()%*%

	

As such, the predicted stationary point for taste based on salt and pepper (x1, x2)
is 1.34 and 0.75. If the hypothetical fitted second-order model is

	 y x x x x x x� = + + - - -69 65 12 22 3 45 9 33 6 32 4 651 2 1
2

2
2

1 2. 	

then the predicted highest response of taste ys
�æ

è
ç

ö
ø
÷ would be 63.63 by plugging in the

optimal values for salt and pepper. It can then be re-expressed in the canonical sec-
ond order form (this will be useful for later, see Montgomery, 2005, p. 446):

	 y y w ws
� �= + +l l1 1

2
2 2

2

	

	 = + +63 63 1 34 0 751
2

2
2. . .w w 	

where w1 and w2 are canonical variables (i.e., latent variables in relationship with
the original independent variables).

From this point, it is necessary to determine the shape of the stationary point. The
eigenvalues (λ) of the canonical analysis give indication to the nature of the shape
(see Montogmery, 2005, p. 446):

A. Pilny and A.R. Slone

11

	 | |B- =lI 0 	 (2.11)

If the eigenvalues for each independent variable are negative, then a maximum
stationary point has been reached. A maximum stationary point looks like a hill,
meaning that there is a point that indicates a high response. For most research, this
is good news because it means that some combinations of variables entered in the
model to produce a maximum response in the dependent variable. On the other
hand, if they are all positive, then this indicates a minimum stationary point, mean-
ing that the data will look like a valley. For most research, this is bad news because
it means that some combinations of variables entered in the model to produce a
minimum response in the dependent variable, unless a decrease in the dependent
variable was what was desired of course.

Finally, if the eigenvalues are mixed, this indicates a saddle point, meaning that
maximum or minimum solutions are not found, but rather multiple regions of high
and low variables exist. In other words, the data will look like a series of hills and
valleys, or perhaps even a plateau. For instance, a high value of x1 and low value of
x2 may produce the highest value of y, while at the same time, a low value of x1 and
low value of x2 may also produce the same value in y. Moreover, if they are all very
close, or are at zero, then there is a flat area, meaning that there was little to no rela-
tionship between the independent variables and the response variable. Beyond look-
ing at the eigenvalues, a two-dimensional contour plot is also a visual that can easily
determine the shape of the response surface.

From our current example,
|B − λI| = 0

	

- - -
- - -

é

ë
ê

ù

û
ú =

1 22 0 25

0 25 2 66
0

. .

. .

l
l 	

By taking the determinant of the matrix:

	
- -() - -() - - -() =1 22 2 66 0 25 0 25 0. . . * .l l

	

	 l l2 3 88 3 183 0+ + =. . 	

The solution, using basic completing the square calculus, is λ1 = −1.177 and
λ2 = −2.70. As such, because both eigenvalues were negative, it indicates a maximum
stationary point. This means that the canonical values for salt and pepper would yield
the highest value of taste based on the data the researcher has collected.

2.3.5  �Step 5: Conduct Ridge Analysis if Needed

Often when a saddle point is found, or if the researcher wants additional informa-
tion regarding a maximum or minimum point, a ridge analysis can be performed.
The purpose of a ridge analysis is to “anchor the stationary point inside the

2  Response Surface Models to Analyze Nonlinear Group Phenomena

12

experimental region” and to give “some candidate locations for suggested improved
operating conditions” (Myers et al., 2009, p. 236). In other words, the ridge analysis
provides an estimated response value of y for each of the different values in the
independent variables.

For instance, consider if the eigenvalue for pepper was essentially zero, but salt,
as we found out, was significantly less than zero (see, Montgomery, 2005, p. 447).
From this point, we would want to see what values of salt would yield a high amount
of taste by analyzing the predicted response in taste from different values in salt. If
the example formula was

	 y x x x x x x� = - + - - +69 65 14 87 7 94 0 33 8 89 13 651 2 1
2

2
2

1 2. 	

and the resulting response in canonical form was

	 y y w ws
� �= - -13 56 0 021 1

2
2
2. . 	

then we know we can pay more attention to salt because a single unit in the w2
canonical variable would results in a 13.56 unit change rather than a small 0.02 unit
change moved in the w2 direction. In Table 2.1, a ridge analysis used this informa-
tion to produce a line of predicted values that might indicate a trend:

From here, one can see how the decreasing levels of salt are related to a higher esti-
mated response in taste, which could prove useful for future design of experiments.

2.4  �RSM in Context

To demonstrate the usefulness of RSM in group research, this exemplar study
employs data gathered from a download of data on 100,000 characters over 5 months
in the Massive Multiplayer Online Game (MMOG) Everquest II (EQII).

Table 2.1  Example ridge analysis table

Order Estimated response in taste Un-coded value for salt Un-coded value for pepper

1 65.24 2 1
2 59.17 3 0.9
3 49.53 4 0.8
4 36.32 5 0.7
5 19.55 6 0.6

A. Pilny and A.R. Slone

13

2.4.1  �About the Game

Commercially launched in November 2004, this game was estimated to have about
200,000 active subscribers in North America alone as of early 2008, the year in
which the data was drawn from.1 These players participate in thousands of teams
over the 5 months, making it possible to draw much larger samples and making it
possible to identify large samples of teams. Moreover, they incorporate precise met-
rics for the for team performance outcomes. As such, a random sample of 154
unique groups (i.e., no shared members) was analyzed for this tutorial.

As in most MMOGs, EQII players create a character and advance that character
through challenges in a social milieu, typically banding together with other players
for help and companionship. For each character, a class is chosen to fit some varia-
tion of the three basic archetypes found in nearly every fantasy MMO: damage-
dealer, damage-taker and damage-healer. Each archetypal role has different
capabilities, weaknesses and strengths, and the choice of class then determines how
players develop their characters and how they will interact in the game environment
and with other players. Players can communicate with others in the game through
text messaging and voice chat.

Following a loose storyline, players use their characters to complete various
tasks (quests) in order to earn virtual items such as currency and equipment. One
important performance metric is number of “experience points” gained during a
quest. Players must accumulate experience points to advance their character level.
The character level is a fundamental indicator of players’ success in the game. It not
only represents a quantitative measure of players’ skill and competence, but also
determines whether players have access to certain quests and other game content,
locations, and equipment. Until they attain the maximum level of 70, the accumula-
tion of experience points is the only way for players to increase their character level.
The amount of experience points associated with a given quest is associated with the
difficulty of the quests and the value of the items won. Therefore, experience points
can be used as a simple yet powerful indicator of players’ performance at the com-
mon tasks in the game.

At the opposite end of the spectrum, a player can die during a quest. When a
player dies in the game, they are not gone forever, but do pay a cost. For instance,
for several minutes, the character is very vulnerable and cannot use many of their
capabilities until they have had time to refresh many of their spells, buffs, and item
effects. Moreover, their armor takes a significant amount of damage and if com-
pletely destroyed, the character will have to find a shop to get new armor or get it
repaired. Finally, unless they are revived from a teammate, they will likely revive at
a location far away from where the quest was being performed. As such, it is in the
team’s interest to avoid death because it can hinder their progress in the quest.

1 There is no definitive evidence for the exact size of the population on Everquest II. The number
200,00 is estimated from multiple professional and fan sites such as http://www.mmogchart.com
and http://gamespot.com

2  Response Surface Models to Analyze Nonlinear Group Phenomena

http://www.mmogchart.com
http://gamespot.com

14

This study focused on group (i.e., heroic) quests and teams of three to six mem-
bers. Generally, groups undertaking heroic quests include characters with different
capabilities and skills. As discussed earlier, experience level is an important indica-
tor of players’ capabilities and competence, and groups often have members with
different experience levels. The diversity in experience levels in a group can influ-
ence team processes substantially (Valenti & Rockett, 2008). Groups also typically
are composed of members with different archetypal roles (i.e., damage-dealers,
damage-takers, and damage-healers).

The groups in EQII that undertake heroic quests resemble the action teams
described by Sundstrom, De Meuse, and Futrell (1990) in that they have short-term
projects with clear goals and standards for evaluation, and members take on specific
highly-interdependent roles. Their projects are the quests in the game, which require
players to complete certain activities, such as finding objects or information, or kill-
ing a monster. Success or failure is clearly indicated by whether the quest is com-
pleted or not and whether or not members are killed during the quest. Analogous
real world teams include military units, emergency medical response teams, and
surgical teams.

2.5  �Dependent Variable

2.5.1  �Team Performance

Team performance was measured using two metrics. The first was the amount of
experience points each player earned during the quest. These were obtained through
the back-end database. Throughout the quest, characters earn points for successfully
completing required tasks (i.e., defeating a monster, finding hidden objects).
Likewise, death was the second and separate indicator of team performance. The
total amount of deaths was calculated and the lower the number of group deaths, the
better the performance.

2.6  �Independent Variables

2.6.1  �Complexity

Task complexity scores for each group were obtained through individually cod-
ing each quest. Detailed descriptions of each quest were obtained through ZAM
EverQuest II, the largest EQII online information database. ZAM also features
EQII wikis, strategy guides, forums, and chat rooms. Graduate and undergradu-
ate researchers independently coded each quest based on the general definition of

A. Pilny and A.R. Slone

15

task complexity given by Wood (1986). According to Wood (1986), complexity
entails three aspects: (1) component complexity (i.e., the number of acts and
information cues in the quests), (2) coordinative complexity (i.e., the type and
number of relationships among acts and cues), and (3) dynamic complexity (i.e.,
the changes in acts and cues, and the relationships among them). These features
were used to code the complexity of each quest (Mean = 21.11, SD = 17.35,
Min = 4, Max = 81).

2.6.2  �Difficulty

Difficulty scores for each quest were obtained through Sony Online Entertainment.
Each quest is given a static difficulty score ranging from 1 (least difficult) to 70
(most difficult). To create a variable that most closely resembled how difficult it was
for the group attempting it, we subtracted the difficulty of the level of the quest from
the highest player’s character level. Thus, a negative number indicates that the group
has at least one player that has a character level much higher that the quest they are
attempting, meaning that it will likely be quite easy. On the other hand, a positive
number indicates that everybody in the group has a character level below the quest
difficulty level, meaning that it will likely be quite difficult to complete
(Mean = –2.52, SD = 6.76, Min = –31, Max = 13).

2.7  �Control Variables

2.7.1  �Group Size

The more group members, the more likely there are opportunities for groups to both
earn experience points and die. As such, to account for group size, we used group
size as a covariate. Groups ranged from three (67.3 %), to four (22.2 %), five
(5.2 %), and six (5.2 %) members. Since most groups has three members, the group
size of three was used a reference point.

2.8  �Data Analysis

The current example carries out RSM in SAS, through the proc. rsreg procedure.
SAS is used here because it has perhaps the simplest code, though other programs
can easily implement RSM like R and JMP.

2  Response Surface Models to Analyze Nonlinear Group Phenomena

16

2.8.1  �Controlling for Group Size

Another benefit of using SAS is that the procedure, including contour plots and
ridge analysis, are all done through specifying a few lines of code:

	

data

g groupsize

g groupsize

g groups

rsm;

set rsm;

;

;

6 6

5 5

4

= =()
= =()
= iize

g groupsize

=()
= =()

4

3 3

;

;
	

In the above line of code, the first thing that we must do is create the covariate
variable. Since we want qualitative variable for each group size, we create four dif-
ferent variables and call them g6, g5, g4, and g3.

2.8.2  �Experience Points: A Minimum Stationary Point

The next line of code runs the RSM procedure:

	

ods ;

;

graphics

proc rsreg data plots ridge surface

model

= = ()rsm

 experience g g g g difficulty complexity covar lack_ /pts = =6 4 5 3 4 ffit

ridge

odsgraphicsoff;

;

max min;

;run

() 	

The first line (ods graphics on;), simply tells SAS to turn on the ODS Statistical
Graphics (Rodriguez, 2011). These graphics are necessary to produce the contour
plots that show the predicted response based on different values of the independent
variables. The second line of code does two things. First, it specified the data, which
we have named “rsm” (proc rsreg data = rsm). Second, it tells the program which
types of plots we want form the output. In this case, we want a ridge and surface plot
(plots = (ridge surface)). The third line of code specifies the model variables. In
model one, we are analyzing experience points as a function of quest difficulty and
complexity while treating group size as a covariate. When reading this line of code,
the dependent variable should come directly after the model term followed by an
equal sign (model experience_pts=). The independent variables should come next
(g6 g4 g5 g3 Difficulty Complexity), making sure to have the covariates come first.
The covariate command lets the program know that the first four variables are to be
treated as covariates and not included in the canonical and ridge analysis (covar = 4).

A. Pilny and A.R. Slone

17

The final line of the model command is the lack of fit test, telling the command
to include it in the output (lackfit;). Finally, we want to include the ridge analysis to
find values of the independent variables that predict a maximum or minimum
response in experience points (ridge max min;). After these commands are properly
arranged, we must tell the program to run it (run;). Turning the ODS Graphics off
is useful because it might make future commands run a bit slower, even if they are
not using the ODS Graphics.

2.9  �Results

The following figures contain screenshots from the actual SAS output to ease in initial
interpretation. Figure 2.1 contains the results from the least squares regression, includ-
ing the interaction and polynomial terms. Before the results, however, are some
descriptive information, including how the two independent variables were re-coded

The RSREG Procedure

The SAS System

Factor

-9.000000

42.500000

22.000000

38.500000

3232.605656

1359.462094

0.1533

42.0547

3 10950853 0.0348 1.98

6.39

2.67

2.03

3.26

0.1204

0.0022

0.0729

0.1560

0.0019

0.0751

0.0314

0.0120

0.1533

23611455

9855992

3758993

48177294

2

2

1

8

Subtracted off

Response Surface for Variable experience_pts:
experience_pts

Divided by

difficulty

complexity

Response Mean

Root MSE

R-Square

Coefficient of Variation

Regression DF Type I Sum of Squares R-Square F Value Pr > F

Covariates

Linear

Quadratic

Crossproduct

Total Model

Coding Coefficients for the
Independent Variables

Fig. 2.1  Coding coefficients and ANOVA (experience points)

2  Response Surface Models to Analyze Nonlinear Group Phenomena

18

for the canonical and ridge analysis, and descriptives for the dependent variable,
which in this case is experience points (M = 3232.61). The omnibus analysis of vari-
ance table compares the different models (e.g., linear, quadratic, cross-product, covari-
ate) to an intercept-only model in order to determine how much of an effect they add.
For instance, because the quadratic terms by themselves (F = 2.67, p = 0.07), more or
less, provide a better fit than an intercept-only model, it means they will likely be
influential predicting an optimal or minimal response surface.

Figure 2.2 displays information on the lack of fit test and individual estimates for
each independent variable. Overall, the lack of fit test was just above a 0.10 threshold
for significance (p = 0.11). While this is generally acceptable as a rule of thumb, it
points to some concern about how well the model predicted the actual response of
experience points. Nevertheless, there were both linear and nonlinear effects in the
model. For instance, there was a negative linear relationship with complexity
(t = −2.11, p = 0.03), meaning that groups earned more experience points with less
complex tasks. On the other hand, while there was not a linear relationship with
difficulty (t = −0.84, p = 0.40), there was a quadratic effect (t = 2.28, p = 0.02),

Residual

Lack of Fit

Pure Error

Total Error

Parameter DF

DFFactor

difficulty

complexity

Estimate
Standard

Error t Value

F Value Label

Parameter Estimate
from Coded DataPr > |t|

Pr > FSum of Squares Mean Square

Intercept

difficulty

difficulty*difficulty

complexity

complexity*complexity

g6

g4

g5

g3

complexity*difficulty

DF Sum of Squares Mean Square F Value Pr > F

120 235646022

30485732

266131755

1963717

1270239

1848137

1.55 0.1084

2326.341716<.000110.13361.579354

29.353031

25.183288

1.336332

0.874219

0.342138

514.943437

276.326599

511.576337292.070086

354.285863

1088.103762

0 - --0

-0.84

-2.11

2.28

1.43

1.51

2.11

1.28

0.3997

0.0364

0.0239

0.1560

0.1340

0.0363

0.2019

0.5689

-587.744282

-792.042760

1476.484094

1056.020971

764.267643

1088.103762

354.285863

292.070086

difficulty

complexity

0.0606

0.0025

2.52

5.01

4651495

9256312

13954485

27768937

3

3

0

24

144

0.57

0.515613

1.246778

3.050587

-53.178658

-24.793149

3661.7650631

1

1

1

1

1

1

1

1

Fig. 2.2  Model coefficients and lack of fit (experience points)

A. Pilny and A.R. Slone

19

Fig. 2.3  Canonical
analysis (experience
points)

meaning that there is a certain difficulty peak where groups tend to earn more expe-
rience points. To further investigate that point, a canonical analysis is useful here.

Figure 2.3 shows the results of the canonical analysis. Because the eigenvalues
for difficulty (λ1 = 1757.25) and complexity (λ2 = 483.50) were both positive, this
means the unique solution is a minimum. In other words, a unique combination of
difficulty and class can yield a solution in which groups earned the least amount of
experience points. As such, these two variables cannot tell us much about high per-
forming groups, but do tell us a lot about low performing groups. Moreover, because
difficulty was over three times the value of complexity, it means that experience
points changes more rapidly along changes in difficulty compared to complexity.
Finally, the table below gives the solution for the predicted minimum stationary
point of 2271.66 experience points at a value of −8.59 for difficulty and 61.96 for
complexity. Because the mean values for each variable is −2.52 and 21.11, this
means that groups perform the worst when they choose quests that are about 40 units
higher in complexity than average and when the groups highest member is about
8 units less than the quest value, which is higher than average.

Figure 2.4 shows the ridge analysis for a minimum solution. The quadratic effect
for difficulty is clearly evidence here as the values fluctuate from moving higher from
−9 to −7.87, then decreasing from −7.87 to −13.07. This is important because the
relationship as demonstrated by the regression model is not linear, suggesting that the
difficulty of the quest compared to the highest-level character in the group has a tip-
ping point (~−8.59). On the other hand, though there is an overall negative linear
trend with complexity according to the regression model, the ridge solution paints a
more complicated picture. For instance, almost equal predicted responses are
obtained with a complexity value of 42.50 and 80.33. These results are in line with

2  Response Surface Models to Analyze Nonlinear Group Phenomena

20

the critical value threshold demonstrating that a complexity value near 60 is where
groups are predicted to perform the least, much higher than average (Mcompelxity = 21.11).

Although no maximum solution was found, a ridge analysis for maximum ascent
tends to demonstrate simple linear effects for both difficulty and complexity (see
Fig. 2.5). More specifically, groups are predicted to perform better when the charac-
ter level of the highest character approaches the same level of the quest and the
complexity of the quest increases. This makes sense because it means that the quest
should not be as challenging for the group if they have at least one character in the
group that is close to the quest difficulty level. The quest is still complex enough for
group members to do activities that will give them a chance to earn points. However,
no solid conclusions should be drawn from this. Instead, it may serve as an impetus
to collect more data for future analysis.

Finally, Fig. 2.6 is a visualization of the response surface analysis as a contour
plot, with covariates fixed at their average values. This means that this plot is most
relevant for groups of three, which were the majority of groups playing this game.
The minimum solution can be easily visualized by looking at the large ring representing
values below 3000. Values closer to the center of that ring are the lowest predicted
values of experience points. If you cross the intersection between the two critical
values of −8.59 for difficulty and 61.96 for complexity, one can pinpoint to the center
of the ring. The circles represent the predicted values for each observation.

Fig. 2.4  Ridge analysis of minimum response (experience points)

A. Pilny and A.R. Slone

21

2.9.1  �Model for Deaths: A Saddle Point

For the model with deaths as the response surface, we use the same code except
switch the dependent variable form experience points to deaths:

	

ods on;

rsm ;

graphics

proc rsreg data plots ridge surface

mod

= = ()
eel deaths g g g g difficulty complexity covar lackfit

ri

= =6 4 5 3 4/ ;

ddge

odsgraphics

max min;

run;

off; 	

The initial outputs in Fig. 2.7 details similar information about the coded vari-
ables and analysis of variance.

As you can see in Fig. 2.7, there is a significant difference between an intercept
only model and the linear, quadratic and cross-product models, suggesting that the

Fig. 2.5  Ridge analysis maximum response (experience points)

2  Response Surface Models to Analyze Nonlinear Group Phenomena

22

variables have considerable influence on deaths. However, as demonstrated by
Fig. 2.8, the full model has a significant lack of fit, meaning that the average val-
ues of death deviate more than we would expect by chance from the predicted
responses of deaths.

Indeed, although there are significant effects regarding the difficulty term
(t = 3.45, p < .01) and overall interaction term (i.e., difficulty*complexity, t = 2.38,
p = .02), the lack of fit finding puts a hitch into the entire analysis because it means
that we cannot generalize much of the subsequent canonical and ridge analysis.
From here, this usually means the researcher might look into some additional rea-
sons for the lack of fit. For instance, there may not be enough variability in deaths
and it might be useful to transform it to make it look more normally distributed (e.g.,
log linear transformation). Alternatively, the researchers might attempt to add more
data or additional explanatory variables. Nevertheless, for demonstration, we will
carry on with the canonical and ridge analysis.

As expected, there was no unique solution because of the saddle point response
shape as demonstrated by the mixed signs of the eigenvalues (see Fig. 2.9).
Nevertheless, the eigenvalue for difficulty (λ1 = 12.51) is quite larger for complexity
(λ2 = −1.03), suggesting that there was more variability regarding changes in
difficulty. Because there was a significant quadratic interaction, it is useful to look

10

-10

0 20 40

complexity

Fixed at: g6=0.0523, g4=0.2222, g5=0.0523, g3=0.6732

di
ffi

cu
lty

S
ta

nd
ar

d
E

rr
or

60 80

500

1000

1500

5000
40004000

3000

4000

5000

6000

7000

Response Contour for experience_pts with Design Points

-20

-30

0

Fig. 2.6  Contour plot (experience points)

A. Pilny and A.R. Slone

23

at a maximum ridge analysis to see what exact levels of difficulty were more associ-
ated with more deaths.

The ridge analysis complicates things even further because although the
regression model suggested a nonlinear effect on difficulty, the ridge analysis
does suggest a linear relationship (see Fig. 2.10). In other words, the more groups
attempt quests that have difficulty levels higher than their highest level character,
they are more likely to die in that attempt. Again, however, this might be due to
a lack of fit.

Finally, the contour plot in Fig. 2.11 visually demonstrates the relationship
between difficulty and complexity as it relates to the number of deaths incurred on
a question. The wide open space in the middle indicates the least amount of deaths,
but does not reveal a solution because those groups varied too widely on complexity
and difficulty. Moreover, the bottom left and top right corners specify very high
predicted values of deaths, meaning that no maximum solution could be found
either because the existence of these high values occurs at seemingly opposite ends
of the spectrum. That is, a high number of deaths can occur at a combination of
either high complexity and low difficulty, or high difficulty and low complexity.

The SAS System

Coding Coefficients for the Independent
Variables

The RSREG Procedure

Factor

difficulty

Subtracted off

Response Surface for Variable deaths: deaths

Response Mean

Root MSE

R.Square

Coefficient of Variation

Regression

Covariates

DF Type I Sum of Squares R-Square F Value Pr > F

Linear

Quadratic

Crossproduct

Total Model

Divided by

-9.000000 22.000000

42.500000 38.500000

3.718954

6.680704

0.1725

179.6393

2.410.0415322.150612

394.317475

371.536805

251.930606

1339.935498

1

8

2

2

3

0.0508

0.0478

0.0324

0.1725

4.42

4.16

5.64

3.75

0.0698

0.0137

0.0175

0.0188

0.0005

complexity

Fig. 2.7  Coding coefficients and ANOVA (deaths)

2  Response Surface Models to Analyze Nonlinear Group Phenomena

24

2.10  �Conclusion

With the advent of mass amounts of data (e.g., trace data), it is possible to extract a
bulk amount of information on how groups face different environments, process
information, and perform. RSM inherently requires multiple observations on simi-
lar values of variables and is in a unique position to exploit such data. The main
contribution of RSM is optimization. That is, through enough data collection, RSM
can specify the conditions that are most likely to lead towards a certain outcome.

For instance, in the current example, traditional methods like regression and
ANOVA would have been able to detect nonlinear relationships between difficulty
and complexity, but they would not have been able to detect the specific values that
can yield a certain outcome. The canonical analysis that RSM provides is more
practical because it adds specific values and a contour plot that demonstrates how an
outcome fluctuates based on different values of the independent variables. In this
sense, the contour plot is a lot like a road map, guiding the researcher towards opti-
mal paths that can yield insightful suggestions for practical implications.

Fig. 2.8  Model coefficients and lack of fit (deaths)

A. Pilny and A.R. Slone

25

Fig. 2.9  Canonical
analysis (deaths)

Fig. 2.10  Ridge analysis for maximum response (deaths)

2  Response Surface Models to Analyze Nonlinear Group Phenomena

26

For instance, in EQII, groups are faced with decisions on which quests to attempt.
Although traditional methods can detect relationships, they do provide an easy
go-to guide that can be useful for actual decision-making. RSM, on the other hand,
provides a very useful heuristic to help groups make decisions. For example, before
a group attempts a quest, they can locate the values of the current quest and group
(e.g., its difficulty) and pinpoint via the contour plot where their performance is
predicted to land. If it lands on a very low performance spectrum, then this could be
used as an important piece of information on whether or not that group should
attempt to take on the quest.

Theoretically, RSM has the ability to test and examine a number of theoretical
perspective. Notably, however, RSM has a unique opportunity to examine the basic
tenets of chaos theory (see Tutzauer, 1996, for an application to organizations and
groups), which highlights notions of unpredictability and unstableness. For instance,
canonical and ridge analysis might not be very clean at times. That is, results that
yield saddle points do not necessarily mean null findings. Instead, they have the
ability to show how even small fluctions in the independent variables could cause
dramatic changes in an outcome variable. Indeed, chaos theory would predict that
in many contexts, a simple unique solution is not possible.

10

-10

0 20

20

20

15

15

10

10

25
30

5
0

40

complexity

Fixed at: g6=0.0523, g4=0.2222, g5=0.0523, g3=0.6732

di
ffi

cu
lty

S
ta

nd
ar

d
E

rr
or

60 80

8

6

4

2

Response Contour for deaths with Design Points

-20

-30

0 5

Fig. 2.11  Contour plot (deaths)

A. Pilny and A.R. Slone

27

References

Box, G. E. P., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions.
Journal of the Royal Statistical Society, B13(1), 1–45.

Khuri, A. I. (2006). Response surface methodology and related topics. Singapore: World Scientific
Publishing.

Lenth, R. V. (2009). Response-surface methods in R, using rsm. Journal of Statistical Software,
32(7), 1–17.

Montgomery, D. (2005). Design and analysis of experiments. Hoboken, NJ: Willey.
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. (2009). Response surface methodology.

Hoboken, NJ: Wiley.
SAS Institute Inc. (2013). SAS/STAT 9.3 User’s Guide. Cary, NC: SAS Institute Inc.
Sundstrom, E., De Meuse, K. P., & Futrell, D. (1990). Work teams: Applications and effectiveness.

American Psychologist, 45(2), 120.
Rodriguez, R. N. (2011), An Overview of ODS Statistical Graphics in SAS 9.3, Technical report,

SAS Institute Inc.
Tutzauer, F. (1996). Chaos and organization. In G. Barnett, & L. Thayler (Eds.), Organization—

Communication: The renaissance in systems thinking (vol. 5, pp. 255–273). Greenwich, CN:
Ablex Publishing.

Valenti, M. A., & Rockett, T. (2008). The effects of demographic differences on forming intra-
group relationships. Small Group Research, 39(2), 179–202.

Williams, D., Contractor, N., Poole, M. S., Srivastava, J., & Cai, D. (2011). The Virtual Worlds
Exploratorium: Using large-scale data and computational techniques for communication
research. Communication Methods and Measures, 5(2), 163–180.

Wood, R. E. (1986). Task complexity: Definition of the construct. Organizational Behavior and
Human Decision Processes, 37(1), 60–82.

2  Response Surface Models to Analyze Nonlinear Group Phenomena

29© Springer International Publishing AG 2017
A. Pilny, M.S. Poole (eds.), Group Processes, Computational Social Sciences,
DOI 10.1007/978-3-319-48941-4_3

Chapter 3
Causal Inference Using Bayesian Networks

Iftekhar Ahmed, Jeffrey Proulx, and Andrew Pilny

3.1  �Introduction

The availability of new computational technologies, data collection opportunities,
and data size is profoundly changing the nature social scientific analysis. Although
traditional social scientific analysis (Content analysis, ANOVA, Regression, etc.) is
still very much at the core of scholarly choice, newly found avenues are expanding
analytical possibilities for social scientists. Prediction and network analyses are two
of the areas impacted by newly found opportunities. Social scientists are now able
to generate predictive results beyond traditional regression methods, thus are able to
increase the power of social analysis. Hard sciences (i.e., Biology or Physics) have
already developed a rich practice of collecting and analyzing massive amounts of
data (Lazer et al., 2009). The possibility of dramatic changes in “analyzing, under-
standing, and addressing many major societal problems” became a reality due to an
increase in the availability of informative social science data (King, 2011, p. 719).
This data driven social scientific approach, popularly known as “computational
social science”, is a slowly growing field within social sciences largely spearheaded
by interdisciplinary scientific teams (Lazer et al., 2009).

I. Ahmed (*)
University of North Texas, Denton, TX, USA
e-mail: Iftekhar.Ahmed@unt.edu

J. Proulx
University of Illinois, Urbana, IL, USA
e-mail: proulx2@illinois.edu

A. Pilny
University of Kentucky, Lexington, KY, USA
e-mail: andy.pilny@uky.edu

mailto:Iftekhar.Ahmed@unt.edu
mailto:proulx2@illinois.edu
mailto:andy.pilny@uky.edu

30

A number of new techniques utilized by present day computational social scien-
tists are borrowed from computer science or information technology. Machine
learning classification algorithm (MLCA) is one of such technique. MLCA is an
umbrella term that consists of a variety of classification algorithms. The actual
choice of a MLCA technique depends upon the theoretical and predictive interests
of the researcher and the nature of data. Instead of looking for patterns in the data-
set, MLCAs use cross-validation techniques to verify patterns in the data. MLCAs
divide the data sample into several random samples, search for patterns in the earlier
samples (except the last one), create probabilities or rules based on these patterns
and then test those rules on the last sample. Bayesian network classifiers are one
group of these MLCAs. Bayesian network MLCAs use posterior probabilities (PP)
to generate classifications using Bayes’ formula.

MLCAs became more user friendly for social scientists with the availability of
Analytical Graphical User Interfaces (GUI). Weka is one of these available GUI for
researchers. Developed at the University of Waikato, New Zealand, “Weka is a col-
lection of machine learning algorithms for data mining tasks. The algorithms can
either be applied directly to a dataset or called from your own Java code. Weka
contains tools for data pre-processing, classification, regression, clustering, associa-
tion rules, and visualization.” (http://www.cs.waikato.ac.nz/ml/weka/). This chapter
introduces Bayesian Network Analysis using WEKA.

“A Bayesian network consists of a graphical structure and a probabilistic descrip-
tion of the relationships among variables in a system. The graphical structure explic-
itly represents cause-and-effect assumptions that allow a complex causal chain
linking actions to outcomes to be factored into an articulated series of conditional
relationships” (Borsuk, Stow, & Reckhow., 2004, p. 219). Because of these links
between actions and outcomes, social scientists can generate predictive results and
develop network structure among variables beyond traditional social scientific
approaches to increase the power of analysis. Conditional independence is at the
core of Bayesian networks (Pe’er, 2005). Theoretically speaking, variable X is con-
ditionally independent of variable Z given variable Y if the probability distribution
of X conditioned on both Y and Z is the same as the probability distribution of X
conditioned only on Y: P(X|Y,Z) = P(X|Y). We represent this statement as (X ┴ Z|Y).
Bayesian networks encode these conditional independencies with a graph structure
(Pe’er, 2005, p. 1). A Bayesian network MLAs use posterior probabilities (PP) to
generate classifications using Bayes’ formula (Eq. 3.1):

	

P y x
P x y P y

P x y P y x not y not y
|

|

| P | P
() = () × ()

() × () + () × ()
.

	
(3.1)

whereas P(y | x) is a posterior probability of y (dependent variable) given x (indepen-
dent variable), calculated by multiplying the likelihood of an attribute (x) given y (P(x
| y)) and the class prior probability of y (P(y)) over that value time the probability of a
false positive (P(x| not y) and the probability of a case not being y (P(not y)).

I. Ahmed et al.

http://www.cs.waikato.ac.nz/ml/weka/

31

For instance, imagine you wanted to know if group performance (i.e., HIGH) is
contingent on whether or not the group implemented a participative decision making
(PDM) structure (i.e., TRUE). The Bayesian formula (Eq. 3.2) would try to deter-
mine P(HIGH | TRUE):

P HIGH TRUE
P TRUE HIGH P HIGH

P TRUE HIGH P HIGH TRU
|

|

| P
() () ()

() ()
=

×

× + EE HIGH HIGH| Pnot not() ()× 	
(3.2)

For the current example, we will look at situations where a number of people are
working together in a complex environment. A number of these situations like
Military training or Firefighting are potentially dangerous and costly. The develop-
ment of new technology such as games provides us an opportunity to train people in
a safer environment. Because of technological development, we can make these
training simulations very close to real world actions. We use the term multiteam
system (MTS) to describe nested teams engaged in military or firefighting opera-
tions. MTSs are “teams of teams” where each team is nested within a larger collab-
orative group (Marks, DeChurch, Mathieu, Panzer, & Alonso, 2005). The purpose
of the experiment was to investigate MTS collaboration dynamics in response to
changes in the accuracy of the information environment surrounding teams.

Now consider a Military training simulation using games. Our experiment was
conducted using a computer game called Virtual Battlespace 2 (VBS2) (see Pilny,
Yahja, Poole, & Dobosh, 2014). VBS2 is a customizable combat simulation envi-
ronment and is used globally for military training and simulation as it allows
researchers to create custom scenarios where the researcher can add or remove
stimuli in the simulation environment. Each experiment session lasted approxi-
mately three hours during which all participants engaged in two missions. All ses-
sions where implemented in seven, sequential phases. For each mission, participants
either played a scenario that contained entirely accurate information or a scenario
that contained partially inaccurate information. In the experimental scenario, each
MTS contained four participants divided into two teams of two people. Teams were
tasked with navigating a map that contained landmarks and hazards along a route to
the MTS’s rendezvous point. As each team’s location was unknown to the other
team, therefore frequent communication was needed to coordinate activities.

This experiment uses participant’s survey responses to see if we can predict
which information condition the MTS assigned to groups. Each survey in this
experiment was large and contained many scales and single response items, conse-
quently providing a robust dataset. These are the types of data sets that we earlier
mentioned as new possibilities for social sciences. As investigators, our interest is to
identify factors that can predict information manipulation. However, the amount of
data that we get and the research interest that we have together persuades us to
explore new possibilities of social scientific research under the broader term “com-
putational social science”. Here, our particular interest is to see how Bayesian
Network Analysis helps us in our investigation.

3  Causal Inference Using Bayesian Networks

32

3.2  �Scenario

This tutorial uses data from an experiment investigating MTSs. The purpose of the
experiment was to investigate MTS collaboration dynamics in response to changes
in the accuracy of the information environment surrounding teams. This chapter
uses a subset of the original data. The following sections will walk the reader
through the procedures used during data collection, variable selection, and the steps
taken to prepare data for analysis.

Participants (n = 129) included undergraduate students from a large Midwestern
university who were recruited through flyers and course announcements. A total of
38 MTS experimental sessions were conducted. Each MTS was comprised of four
participants, divided into two teams of two. Of these 38 sessions, 33 yielded usable
data as five sessions needed to be discarded due to recording errors.

Teams were tasked with navigating a map that contained landmarks and hazards
along a route to the MTS’s rendezvous point. As teams’ location was unknown to
each other in the MTS, field teams needed to use radio communication to coordinate
a synchronous arrival at the rendezvous point. Once arriving at the rendezvous
point, teams were given the task of eliminating a group of enemy insurgents. As a
collective, the MTS was given three tasks: (1) to record landmarks the team navi-
gated to for reconnaissance, (2) to successfully disarm and neutralize hazards such
as explosive devices and insurgent ambushes, and (3) to coordinate a synchronous
arrival at the rendezvous point.

While traveling to their rendezvous point, teams were exposed to pre-recorded
radio messages that were intended to represent orders from the MTS’s commanding
officer. These radio messages took the form of audio played through each partici-
pant’s headset that played when teams reached certain locations in the simulation.
These messages gave teams information regarding the path that lie directly ahead of
them and were also used to assign teams tasks such as confirming that an object
exists along the path (e.g., a suspicious looking backpack) or exiting their vehicle to
disarm an explosive device. Teams were exposed to ten messages during each mis-
sion. In the accurate condition all ten messages contained correct information that
teams could verify within the simulation (e.g., if they are told there is a suspicious
abandoned vehicle ahead, the suspicious vehicle actually existed). In the inaccurate
condition two of the ten messages were inaccurate (e.g., if a team is told there is a
suspected explosive device ahead, there was no explosive device).

All self-report items were measured at the individual level and observed mea-
sures were coded for each team in each session. As observed data were aggregated
to the team level, there are two observations per session, one for each team. Screen
recordings (videos) were used to construct a behaviorally anchored coding system
and each MTS was coded for the five outcomes used in this analysis. Two indepen-
dent raters coded each video and coding was largely objective. Kappa was used to
measure interrater reliabilities and exceeded .90 in all cases thus suggesting an
acceptable level of agreement.

In this tutorial, we will be using the participant’s survey responses to predict
manipulation of information condition in the MTS missions. Each survey in this

I. Ahmed et al.

33

experiment was large and contained many scales and single response items.
Additionally, there are several observed outcome variables recorded for each mis-
sion. In this case, we chose 118 variables that are a mixture of scales, single survey
items, and outcome variables to demonstrate how Bayesian networks can be used to
accommodate robust datasets.

3.2.1  �Variables

118 variables from the dataset were initially explored in this tutorial (1 dependent and
117 independent). We will be using information accuracy as our dependent variable
(it is called MA_Accurate). Information accuracy was manipulated as a counter-bal-
anced fixed effect in the experiment as each team was randomly assigned to either the
accurate or inaccurate condition for their first mission. For the accurate information
condition, all information given to teams was accurate, for the inaccurate condition,
information given to teams contained two erroneous pieces of information. The
remaining variables are treated as independent variables in this tutorial.

3.2.2  �Data Preparation

Prior to analysis, data need to be cleaned and formatted. In this case, our data
preparation involved two steps. First, all data were merged into a single file con-
taining all of the variables we will use in our analysis. This means that survey
responses, observed outcomes, and a dummy coded variable indicating which
information condition the participant was in were combined into a single file. All
variables are numeric.

After merging data, we removed any cases that containing missing values. In this
case, a recording error occurred resulting in five sessions with partially mission
data. These sessions were removed list wise. In order to analyze the dataset in Weka
environment, we created a comma delimited file (.csv). MLCs work best with
Binary Dependent Variable that we are going to predict. However, we can also use
Nominal Variable with more than two categories.

3.3  �Description of Weka Environment

This section describes the Weka GUI and how to explore different options to run an
analysis. Figure 3.1 shows the opening window. The Explorer button allows us to
locate and choose the data file that we are going to use. Once you click the explorer tab,
it will open a window that provides an Open File option (Fig. 3.2). That option helps us
to explore our data location and choose the file we will use for this experiment.

3  Causal Inference Using Bayesian Networks

34

Fig. 3.1  WEKA main
GUI

Fig. 3.2  WEKA explorer window

I. Ahmed et al.

35

Once the file in loaded in Weka, you can click any variable and see the basic
statistics including maximum and minimum value, mean, standard deviation, and
also visual representation of the data (Fig. 3.3).

Figure 3.4 shows the variable that we are going to predict. It shows that the vari-
able is nominal with two categories. As you can see, category I has 63 cases and
category A 65 cases. It is recommended to have either exact or very close number of
cases in categories for better prediction results because classification problems can
occur from imbalanced data. A data set is imbalanced if the classes are not repre-
sented equally within the data set. It is common to have data sets with small imbal-
ances. However, large imbalances would definitely cause a problem. The best way
to tackle the problem is by collecting new data. If that is not possible, then the
option is to generate synthetic samples to balance the classes. This synthetic sample
generation usually randomly sample attributes from minority class instances. If
there are discrepancies, Weka allows to ‘under-sample’ or ‘over-sample’ a category.
Over-sampling in Weka resamples datasets by applying the Synthetic Minority
Oversampling TEchnique (SMOTE).

The Classify tab allows us to run classification algorithms. Figure 3.5 shows us a
list of classifiers available based on the nature of our data. The first option here
provides different Bayes classifiers. For this experiment, we are using BayesNet
classifier.

Fig. 3.3  Variables and basic statistics

3  Causal Inference Using Bayesian Networks

Fig. 3.4  Variables in prediction analysis

Fig. 3.5  List of available classifiers

37

3.4  �Running Bayesian Network Analysis in Weka

3.4.1  �Analysis with All Variables

There are 118 variables in our data set. MA_Accurate is the variable that provides
us binary condition that we are interested to know. The rest of the variables will be
used to predict MA_Accurate. There are three steps of running this experiment.
First, in order to see the prediction power of our data set, we are going to run an
analysis with all the variables. Having so many predictor variables is not a good
practice as it makes explanation complicated. We are using it for two reasons. First
to demonstrate advanced analysis possibilities so that we can use the technique if
experimental situation demands such a robust analysis. Second, we like to compare
results between all variables and few important variables that we are going to select
later. Figure 3.6 shows us the basic window. As you can see, the classifier choice is
BayesNet and the variable button shows MA_Accurate. It also shows that the vari-
able is Nominal. To run the classification algorithm, we simply need to hit the start
button. There is one additional step to remember. Figure 3.6 shows that, to deter-
mine the predictors of information accuracy, we are using a tenfold cross-validation
method. It means that the algorithm will divide the sample into ten random samples.
Then, it will use the first nine to create probabilities and search for patterns and

Fig. 3.6  Basic run window

3  Causal Inference Using Bayesian Networks

38

develop rules based on those patterns. Finally it will test those derived rules on the
tenth sample. The number of cross validation choice depends upon the researcher
and research interest (e.g., smaller samples may need smaller folds). A user can also
supply a completely different data set to test the MLCA. Once we hit the start but-
ton, the classifier output window provides the result (Fig. 3.7).

3.4.2  �Understanding Weka Output

There are three important sections of the output that together provides us a clear
picture of our analysis. First is the Stratified cross-validation Summary. This section
provides detail into the number of correctly and incorrectly classified instances and
total number of instances. For us these were 90 (70.31 %), 38 (29.68 %) and 128.

The most important output for us is the second part of result - Detailed Accuracy
By Class. Five important statistics for us are the Precision, Recall, F-Measure, ROC
Area, and Class (Table 3.1).

First, the Weka output table provides the rate of true positives (TP Rate) or the
ratio of instances of a given class that was correctly classified and the rate of false
positives (FP Rate) or the ratio of instances of a given class that was falsely classi-
fied. Then it provides Precision, Recall, F-Measure, ROC Area, and Class. Precision
is the ratio calculated by dividing proportion of true instances of a class by the total
number of instances classified as that class. Recall is the ratio calculated by dividing

Fig. 3.7  Output window with run results

I. Ahmed et al.

39

the proportion of instances classified as a given class by the actual total of that class.
The F-Measure (Eq. 3.3) is calculated by combining precision and recall in the
following manner:

	
F

Precision Recall

Precision Recall
= ×

×
+

2 .
	

(3.3)

The overall F-Measure (mentioned in the output as Weighted Avg.) is the model
accuracy. The accuracy of our test is shown by the ROC Area. A ROC Area value of
1 denotes a perfect test whereas a value of .5 is equal to random guessing. So, a
worthwhile value is the one above .5 and better if that is closer to 1. In this test, our
value is 0.701, which is good enough to accept results. Class denotes the values of
our binary classes. Here ‘I′ represents Inaccurate and ‘A’ represents Accurate
classes of our MA_Accurate variable. Based on our results, we can say that the test
can identify whether the information scenario given by the researchers were accu-
rate or inaccurate about seventy six percent of the time. Finally, the Confusion
Matrix provides the statistics of how many times a particular class was classified
rightly or wrongly. Our results indicate that in 50 cases of class I were classified as
I (right classification) and in 13 cases as A (Table 3.2).

3.4.3  �Assessing Information Gain

Although we have a good model that has a 70 % prediction power, a question of the
power of individual variables in prediction remains. Although we have 118 variables
in the test, it is good to find out how much each of these variables is contributing to
the prediction analysis. Assessing Information Gain is one way that allows us exactly
to do that. The reason behind this test is to identify and exclude variables that are not
contributing much to prediction, eliminating them, thus make the model more
parsimonious.

In order to run Information Gain, we need to go to Select attributes tab and
choose InfoGainAttributeEval (Fig. 3.8). The select method will automatically

Table 3.1  Weka output for full model

Precision Recall F-Measure ROC area Class

0.667 0.794 0.725 0.770 I
0.755 0.615 0.678 0.770 A

Weighted Avg. 0.711 0.703 0.701 0.770

Table 3.2  Confusion matrix
for full model

a b ← classified as

50 13 a = I
25 40 b = A

3  Causal Inference Using Bayesian Networks

40

change to ranker and will provide a window to accept that choice. Once we click
OK it will be set. By clicking the start button, we will get the Information Gain
results in the output area (Fig. 3.9).

In the Ranked attributes section, our results identified three variables with some
information gain number (Fig. 3.10). The numbers are the amount of information
gained from that particular variable (on the left side). Starting from variable ‘118
TAPOthCm2_T2’ the numbers are all 0. It means that those variables are not con-
tributing to any prediction analysis. Three variables our information gain test
identified were team efficacy, team thoroughness, and speed. All variables were
observed and measured at the interval level.

Team efficacy measures the degree to which teams accomplished their task of
neutralizing hazards in the field. High scores of team efficacy were obtained by
MTS’s that identified and neutralized threats such as explosive devices and insur-
gent ambushes efficiently and quickly. Low scores of team efficacy indicate an MTS
that did not neutralize threats, needed multiple attempts to eliminate threats, or took
damage while completing a task. MTSs were placed into three categories based on
their scores: (1) High, (2) Average, and (3) Low.

Team thoroughness measures the extent to which teams completed their task of
recording the location of landmarks and hazards during their mission. High scores

Fig. 3.8  Selection of InfoGainAttributeEval in Select attributes tab

I. Ahmed et al.

41

of team thoroughness indicate an MTS that correctly identified the name and loca-
tion of mission landmarks and hazards. Low scores of team thoroughness indicate
an MTS that did not accurately record the name or location of landmarks and haz-
ards that they were tasked to locate. They were similarly placed into.

Speed was measured as the time in seconds that it took each team to complete the
mission. Completion of the mission was denoted by the moment at which each team
first arrived at the rendezvous point and was similarly placed into three categories
based on one standard deviation: (1) Long, (2) Average, and (3) Short.

An analysis with only three identified variables with information gain statistics
would yield almost similar result. As such, it is time for us to re-run the test with
selected variables.

Fig. 3.9  Information Gain results output

3  Causal Inference Using Bayesian Networks

42

3.4.4  �Re-run with Selected Variables

In order to re-run the test, we need to go back to the Processes tab and select the
variables that we need. Here we need M1_Efficacy, M1_Speed, and M1_
Thoroughness. We also need our main variable MA_Accurate (Fig. 3.11). Once we
select these four variables by clicking the checkbox beside them, we need to click
the Invert button right above the list of variables area. This will reverse the selection
and will select all variables other than the four we need. Now we can click the
remove button right under the list area and remove all unnecessary variables from
our analysis (Fig. 3.12). Once this selection process is done, we can replicate the
analysis exactly as before.

Table 3.3 shows us our re-run results. As you can see, there is a slight decrease in
the overall F-Measure from 0.701 to 0.656. However, the important part to know is
that we have significantly decreased much of the noise in the data (i.e., variables that
do not predict well), making the data much more interpretable and more substan-
tially (rather than statistically) significant. A look at the probability distribution
table can tell us more about the specific odds used to make prediction based on
Bayes’ theorem.

Fig. 3.10  Ranked attributes section of Information Gain result

I. Ahmed et al.

43

Fig. 3.11  Selection of variables with information gain

Fig. 3.12  Selected variables for final analysis

3  Causal Inference Using Bayesian Networks

44

3.4.5  �Probability Distribution

Weka allows viewing the graphical structure of the network. By right clicking the
result in the explorer and a drop-down menu appears with a “Visualize graph”
option (Fig. 3.13). The graph represents the graphical network with relationship
among nodes (Fig. 3.14). This window allows inspecting both the network struc-
ture and probability tables. This graph is very useful to identify relationship
between nodes. Each node in the graph represents a variable or condition and their
relationships represent the network. It is similar to any other network structure.

Table 3.3  Weka output for reduced model

Precision Recall F-Measure ROC Area Class

0.727 0.508 0.598 0.701 I
0.631 0.815 0.711 0.701 A

Weighted Avg. 0.678 0.664 0.656 0.701

Fig. 3.13  Final prediction model

I. Ahmed et al.

45

Moreover, the network in the graph are directional indicating a directional relation-
ship. If you place your cursor on any node, it will get high lighted. Clicking that
node provides the probability table (Fig. 3.15). “The left side shows the parent
attributes and lists the values of the parents, the right side shows the probability of
the node clicked conditioned on the values of the parents listed on the left”
(Bouckaert, 2004, p.29).

Using these probabilities, it is possible to calculate odds using Bayes’ theorem.
For instance, consider whether or not there was a relationship between the informa-
tion manipulation and thoroughness (78 = AVG, 22 = HIGH, 28 = LOW). The cor-
responding probability of having a high thoroughness score and being in the true
information accuracy group was 0.32. If we plug this into Bayes’ theorem, we can
determine the posterior probability of an MTS in the true information condition
having a high score based on the probabilities given in Fig. 3.14 (see also Witten,
Frank, & Hall, 2011, p. 260). To calculate theses, observe that Fig. 3.14 gives the
odds of being in the True condition as 0.51 and 0.32 when thoroughness is high. The
same odd when information accuracy is False is 0.49 and 0.13. To obtain condi-
tional probabilities, we can use adapt Eqs. 3.1 into 3.4:

Information accuracy
False True
0.49 0.51

Efficacy

False
True

AVG HIGH LOW
0.07 0.23

0.040.260.70
0.71

Thoroughness

False
True

AVG HIGH LOW
0.49 0.32 0.19

0.160.130.71

Speed

False
True

AVG HIGH LOW
0.18 0.52 0.29

0.070.650.28

Fig. 3.14  Probability distribution table of one-parent model

3  Causal Inference Using Bayesian Networks

46

	

P y x
P x y P y

P x y P y x y y
|

|

| P | P
() = () × ()

() × () + () × ()not not
	

(3.1)

PP True Info High Thorough True Info

PP True Info Hig

 P |

 P

() ()
()

×

× hh Thorough True Info P High Thorough False P False | |() () ()+ × 	
(3.4)

The values from Fig. 3.14 help us solve this equation:

	

0 32 0 51

0 32 0 51 0 13 0 49
0 7193

. .

. . . .
.

×
×() × ×()

=
	

As such, the conditional probability that an MTS had a high thoroughness score
and was in the true information condition was 71.93 %, suggesting a significant
relationship between having true information and better performance.

3.4.6  �Re-run with Two Parent Nodes

Many social scientists and group researchers are interested in moderation or in other
words, interaction effects. One way to get at this type of analysis is through increasing
the parent nodes from one to two. This allows the predictor variables to interact with
one another to create join probabilities. Indeed, one of the reasons it is called Naïve
Bayes is because the predictor variables operate independent from one another.

To increase the amount of parent nodes from one to two, simply click on the
BayesNet classifier next to the “Choose” button in Weka to open the generic object
editor (Fig. 3.15). Then click on the “searchAlgorithm” box next to the “Choose”
button and increase the “madNrOfParents” from one to two (Fig. 3.15). Finally, re-
run the analysis (Table 3.4).

The table here is promising because the F-Measure has substantially increased from
0.656 to 0.702. Similarly, clicking on visualize graph will give us a probability distribu-
tion table (see Fig. 3.16). For instance, consider if we looked at efficacy and speed and
wanted to determine is those groups who had high efficacy and average speeds:

	

0 51 0 07 0 838

0 51 0 07 0 838 0 49 0 26 0 091
0 721

. . .

.
.

× ×
× ×() + × ×()

=
	

Here, we see that MTSs that had high efficacy and completed the mission in
average times (i.e., not too long or short) had a 72.1 % chance of being in the true
condition, demonstrating a significant relationship in how the manipulation may
have influenced group performance.

I. Ahmed et al.

47

3.5  �Conclusion

This article demonstrated the opportunities offered by a data driven social scientific
approach, popularly known as “computational social science”. Here we explored a
situation where a number of people were working together in a complex environ-
ment. These people constituted true groups as they were interdependent with com-
mon goal and fate. Receiving accurate information was vital in their success.
However, information accuracy was manipulated to see the effect on group pro-
cesses. It was a simulation of a real world group oriented problem, and due to recent
technological developments, the simulation was very close to real world actions.

Fig. 3.15  Setting up a two-parent model

Table 3.4  Weka output for reduced model with two parent nodes

Precision Recall F-Measure ROC area Class

0.727 0.635 0.678 0.737 I
0.685 0.769 0.725 0.737 A

Weighted Avg. 0.706 0.703 0.702 0.737

3  Causal Inference Using Bayesian Networks

48

Group communication scholars has been exploring and analyzing such situations
for a long time. What made this situation unique is the number of variables that our
system collected. We had 118 variables in the data set. What we observe here is the
opportunity of collecting massive data. Previously, social scientists would limit the
number of variables because of the complication that would arise in analysis and
explanation. Data collection in those cases would be limited based on existing theo-
ries. Although theoretically sound, this line of research would be conservative in
exploring many variables, limiting the possibility of discovering novel effects.
Computational social science helps us to address this barrier.

Another possibility that comes forward is the opposite of theory driven analysis.
Instead of an a-priory approach, now we can let the data show us relationships and

Information accuracy
False
0.49 0.51

True

Efficacy
AVG

True
False

0.71 0.07 0.23
0.70 0.26 0.04

HIGH LOW

Speed

Info.
False AVG

AVG

False
False
True
True
True

Efficacy LONG AVG SHORT

HIGH

HIGH

LOW

LOW

0.118 0.656 0.226
0.091
0.548
0.095
0.027
0.143

0.091
0.290
0.600
0.838
0.143

0.818
0.161
0.305
0.135
0.714

Thoroughness

Info.
False AVG 0.462 0.312 0.226

0.455
0.032
0.095
0.351
0.143

0.091
0.419
0.137
0.027
0.714

0.455
0.548
0.768
0.622
0.143

AVG

False
False
True
True
True

Efficacy AVG

HIGH

HIGH

HIGH

LOW

LOW

LOW

Fig. 3.16  Probability distribution table of two-parent model

I. Ahmed et al.

49

relational patterns and make sense of the relationship later based on existing theories.
During the process, this article demonstrates that the MLCA analysis could actually
discriminate variables based on their importance in understanding the situation.

This article also demonstrates new ways of interpreting and presenting social
scientific results. Here we not only see that the conditional probability that an MTS
had a high thoroughness score and was in the true information condition suggesting
a relationship between having true information and better performance, we knew
that the probability was 71.93 %. Such accuracy derived from complex situations
could be considered as a major improvement in social scientific analysis.

This demonstration represents one of many novel possibilities offered by compu-
tational social science methods to social scientific scholars. Together with tradi-
tional approaches, new methods would definitely enhance our explorations and
analysis of social situations. The significance of considering the approaches is even
higher when we consider the nature of data sets with numerous associations and
layers that we get from new and emerging media.

References

Bouckaert, R. R. (2004). Bayesian networks in Weka. Technical Report 14/2004. Computer
Science Department, University of Waikato, 1–43.

Borsuk, M. E., Stow, C. A., & Reckhow, K. H. (2004). A Bayesian network of eutrophication
models for synthesis, prediction, and uncertainty analysis. Ecological Modelling, 173(2),
219–239.

King, G. (2011). Ensuring the data-rich future of the social sciences. Science, 331(6018),
719–721.

Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., … Jebara, T. (2009).
Life in the network: The coming age of computational social science. Science, 323(5915), 721.

Marks, M. A., DeChurch, L. A., Mathieu, J. E., Panzer, F. J., & Alonso, A. (2005). Teamwork in
multiteam systems. Journal of Applied Psychology, 90(5), 964.

Pe’er, D. (2005). Bayesian network analysis of signaling networks: A primer. Sci STKE, 281, l–12.
Pilny, A., Yahja, A., Poole, M.S., & Dobosh, M. (2014). A dynamic social network experiment with

multiteam systems. Big Data and Cloud Computing, Proceedings of 2014 Social Computing,
587–593.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools and
techniques (3rd ed.,). San Francisco, CA: Morgan Kaufmann.

3  Causal Inference Using Bayesian Networks

51© Springer International Publishing AG 2017
A. Pilny, M.S. Poole (eds.), Group Processes, Computational Social Sciences,
DOI 10.1007/978-3-319-48941-4_4

Chapter 4
A Relational Event Approach to Modeling
Behavioral Dynamics

Carter T. Butts and Christopher Steven Marcum

4.1  �Representing Interaction: From Social Networks
to Relational Events

The social network paradigm is founded on the basic representation of social structure
in terms of a set of social entities (e.g., people, organizations, or cultural domain
elements) that are, at any given moment in time, connected by a set of relationships
(e.g., friendship, collaboration, or association) (Wasserman & Faust, 1994). The
success of this paradigm owes much to its flexibility: with substantively appropriate
definitions of entities (vertices or nodes in network parlance) and relationships (ties
or edges), networks can serve as faithful representations of phenomena ranging
from communication and sexual relationships to neuronal connections and the
structure of proteins (Butts, 2009). Nor must networks be static: the time evolution
of social relationships has been of interest since the field’s earliest days (see, e.g.
Heider, 1946; Rapoport, 1949; Sampson, 1969), and considerable progress has been
made on models for network dynamics (e.g. Snijders, 2001; Koskinen & Snijders,
2007; Almquist & Butts, 2014; Krivitsky & Handcock, 2014). Such models treat
relationships (and, in some cases, the set of social entities itself) as evolving in dis-
crete or continuous time, driven by mechanisms whose presence and strength can be
estimated from intertemporal network data.

C.T. Butts (*)
University of California Irvine, Irvine, CA, USA
e-mail: buttsc@uci.edu

C.S. Marcum
National Institutes of Health, Bethesda, MD, USA
e-mail: chris.marcum@nih.gov

mailto:buttsc@uci.edu
mailto:chris.marcum@nih.gov

52

A key assumption that underlies the network representation in both its static and
dynamic guises is that relationships are temporally extensive—that is, it is both
meaningful and useful to regard individual ties as being present for some duration
that is at least comparable to (and possibly much longer than) the time scale of the
social process being studied. Where tie durations are much longer than the process
of interest, we may treat the network as effectively “fixed;” thus is it meaningful for
Granovetter (1973) or Burt (1992) to speak of personal ties as providing access to
information or employment opportunities, for Freidkin (1998) to model opinion
dynamics in experimental groups, or for Centola and Macy (2007) to examine the
features that allow complex contagions to diffuse in a community, without explicitly
treating network dynamics. When social processes (including tie formation and dis-
solution themselves) occur on a timescale comparable to tie durations, it becomes
vital to account for network dynamics. For instance, the diffusion of HIV through
sexual contact networks is heavily influenced by partnership dynamics (particularly
the formation concur rent rather than serial relationships) (Morris, Goodreau, &
Moody, 2007), and health behaviors such as smoking and drinking among adoles-
cents are driven by an endogenous interaction between social selection and social
influence (see, e.g. Lakon, Hipp, Wang, Butts, & Jose, 2015; Wang, Hipp, Butts,
Jose, & Lakon, 2016). While there are many practical and theoretical differences
between the behavior of networks in the dynamic regime versus the “static” limit,
both regimes share the common feature of simultaneity: relationships overlap in
time, allowing for apparent reciprocal interaction between them.

Such simultaneous co-presence of edges forms the basis of all network structure (as
expressed in concepts ranging from reciprocity and transitivity to centrality and struc-
tural equivalence), and is the foundation of social network theory. Such simultaneity,
however, is a hidden consequence of the assumption of temporal extensiveness; in the
limit, as tie durations become much shorter than the timescale of relationship forma-
tion, we approach a regime in which “ties” become fleeting interactions with little or no
effective temporal overlap. In this regime the usual notion of network structure breaks
down, while alternative concepts of sequence and timing become paramount.

This regime of social interaction is the domain of relational events (Butts, 2008).
Relational events, analogous to edges in a conventional social network setting, are
discrete instances of interaction among a set of social entities. Unlike temporally
extensive ties, relational events are approximated as instantaneous; they are hence
well-ordered in time, and do not form the complex cross-sectional structures char-
acteristic of social networks. This lack of cross-sectional structure belies their rich-
ness and flexibility as a representation for interaction dynamics, which is equal to
that of networks within the longer-duration regime. (In fact, the two regimes can be
brought together by treating relationships as spells with instantaneous start and end
events. Our main focus here is on the instantaneous action case, however). The rela-
tional event paradigm is particularly useful for studying the social action that lies
beneath (and evolves within) ongoing social relationships. In this settings, relational
events are used to represent particular instances of social behavior (e.g., communica-
tion, resource transfer, or hostility) exchanged between individuals. To understand
how such behaviors unfold over time requires a theoretical framework and analytic

C.T. Butts and C.S. Marcum

53

foundation that incorporates the distinctive properties of such micro-behaviors.
Within the relational event paradigm, actions (whether individual or collective) are
treated as arising as discrete events in continuous time, whose hazards are poten-
tially complex functions of the properties of the actors, the social context, and the
history of prior interaction itself (Butts, 2008). In this way, the relational event para-
digm can be viewed as a fusion of ideas from social networks and allied theoretical
traditions such as agent-based modeling with the inferential foundation of survival
and event history analysis (Mayer & Tuma, 1990; Blossfeld & Rohwer, 1995). The
result is a powerful framework for studying complex social mechanisms that can
account for the heterogeneity and context dependence of real-world behavior with-
out sacrificing inferential tractability.

4.1.1  �Prefatory Notes

At its most elementary level, as Marcum and Butts (2015) point out, the rela-
tional event framework helps researchers answer the question of “what drives
what happens next” in a complex sequence of interdependent events. In this
chapter, we briefly review the relational event framework and basic model fami-
lies, discuss issues related to data selection and preparation, and demonstrate
relational event model analysis using the freely available software package relev­
ent for R (Butts, 2010). Here, we provide some additional context before turning
to the data and tutorial.

Following Butts (2008), a relational event is defined as an action emitted by one
entity and directed toward another in its environment (where the entities in question
may be sets of more primitive entities (e.g., groups of individuals), and self-
interactions may be allowed). From this definition, a relational event is thus com-
prised of a sender of action, a receiver of that action, and a type of action, with the
action occurring at a given point in time. In the context of a social system, we con-
sider relational events as “atomic units” of social interaction. A series of such events,
ordered in time, comprise an event history that records the sequence of social actions
taken by a set of senders and directed to a set of receivers over some window of
observation. The set of senders and the set of receivers may consist of human actors,
animals, objects or a combination of different types of actors. The set of action
types, likewise, may consist of a variety behaviors including communication, move-
ments, or exchanges.

The relational event framework is in an increasingly popular approach to the
analysis of relational dynamics and has been adopted by social network researchers
in a wide variety of fields. Typically, research questions addressed in this body of
work focus on understanding the behavioral dynamics of a particular type of action
(such as communication alone).

Recently, relational event models have been used to study phenomena as diverse
as reciprocity in food-sharing among birds (Tranmer, Marcum, Morton, Croft, & de
Kort, 2015); social disruption in herds of cows (Patison, Quintane, Swain, Robins,

4  A Relational Event Approach to Modeling Behavioral Dynamics

54

& Pattison, 2015); cooperation in organizational networks (Leenders, Contractor, &
DeChurch, 2015); conversational norms in online political discussions (Liang,
2014); and multiple event histories from classroom conversations (DuBois, Butts,
McFarland, & Smyth, 2013b).

Prior to the relational event framework, behavioral dynamics occurring within
the context of a social network were generally modeled using frameworks devel-
oped for dynamic network data; since, as noted above, dynamic networks are
founded on the notion of simultaneous, temporally extensive edges, use of dynamic
network models for relational event data requires aggregation of events within a
time window. Such aggregation leads to loss of information, and the results of
subsequent analyses may depend critically on choices such as the width of the
aggregation window. Model families such as the stochastic actor-oriented models
(Snijders, 1996) or the temporal exponential random graph models (Robins &
Pattison, 2001; Almquist & Butts, 2014; Krivitsky & Handcock, 2014) are appropri-
ate for studying systems of simultaneous relationships that evolve with time, but
may yield misleading results when fit to aggregates of relational events. While such
use can be motivated in particular cases, we do not as a general matter recommend
coercing event processes into dynamic network form for modeling purposes. Rather,
where possible, we recommend that relational event processes be treated on their
own terms, as sequences of instantaneous events with relational structure. In the
following sections, we provide an introduction to this mode of analysis.

4.2  �Overview of the Relational Event Framework

We begin our overview of the relational event framework by considering what a
relational event process entails. Although we provide some basic notation, we omit
most technical details; interested readers are directed to Butts (2008), DuBois et al.
(2013b), and Marcum and Butts (2015) for foundations and further developments.
We start with a set of potential senders, S, a set of potential receivers, R, and a set of
action types, C. A “sender” or “receiver” in this context may refer to a single indi-
vidual or a set thereof; in some cases, it may be useful to designate a single bulk
sender or receiver to represent the broader environment (if, e.g., some actions may
be untargeted, or may cross the boundary between the system of interest and the
setting in which that system is embedded). An example of the use of aggregate send-
ers and receivers is shown in Sect. 4.3.1. A single action or relational event, a, is
then defined to be a tuple containing the sender of that action s = s(a) ∈ S, the
receiver of the action r = r(a) ∈ R, the type of action c = c(a) ∈ C, and the time that
the action occurred τ = τ (a); formally, a = (s, r, c, t), the analog of an edge in a
dynamic network setting. In practice, we may associate one or more covariates with
each potential action (Xa), relating to properties of the sender or receiver, the sender/
receiver dyad, the time period in question, et cetera. A series of relational events
observed from time 0 (defined to be the onset of observation) and a certain time t
comprise an event history, denoted At ={Ai: τ(ai)< = t}. Typically, we will observe a

C.T. Butts and C.S. Marcum

55

realization of At and seek to infer the mechanisms that generated (which will be
expressed via a set of parameters, θ, as described below). At any given point in the
event history, the set of possible events (or support) is defined by the set A(At) ⊆ S ×
R × C, where × indicates the Cartesian product. We note that the support may be
endogenous, allowing us to consider cases in which particular actions within the
event history either make new actions possible or render previously available actions
impossible, or exogenous whereby certain possibilities in the support have been
restricted (or otherwise new opportunities availed) due to circumstances outside of
the system under study. (For instance, an individual who has left a building cannot
speak to those still within it, and the appearance of a new entrant provides a new
target for interaction).

Let A define the set of events that are possible at any moment. The propensity of
such an event to occur is defined via its hazard, i.e. the limit of the conditional rate
of event occurrence in a time window about a given point, as the width of that win-
dow approaches 0. Intuitively, the hazard of relational event a at time t is non-
negative and equal to 0 if and only if a /∈ A(At) (i.e., a is currently impossible);
larger hazards correspond to higher propensities. It is important to note that each
event that is possible at a given moment has a non-zero hazard, and not merely those
events that happen to occur; by observing both the events that transpired and the
events that could have transpired (but did not), we seek to infer the propensities for
all possible events. Such inference requires that we parameterize our event hazards,
and it is natural to conceive of each as arising from a combination of mechanistic
factors that either enhance or inhibit the realization of the event in question.
Typically, we implement this by asserting that the hazard of each event is a multipli-
cative function of a series of statistics, each of which encodes the effect of a given
mechanism on event propensity. Formally, this is expressed (Eq. 4.1) as:

	
l q

q
aAt

u s a r a c a X A AT
a t t= Î{exp((() () ())) ,()

0 otherwise
, , , if a 

	
(4.1)

where λaAtθ is the hazard of potential event a at time t given history At, θ is a vector
of real-valued parameters, and u is a vector of functions (i.e., statistics) that may
depend upon the sender, receiver, or type of an event, covariates, and/or the prior
event history. It should be noted that the log-linear form for the hazard function used
above is not strictly necessary, and other forms are possible. However, we do not
consider such alternatives here.

The role played by the u functions in a relational event model is analogous to that
of the sufficient statistics in an exponential random graph model (see, e.g. Wasserman
& Robins, 2005), or to the effects in a conventional hazard model (Blossfeld &
Rohwer, 1995): each represents a mechanism that may increase or decrease the
propensity of a given action to be taken, as governed by θ. Each unit change in ui
multiplies the hazard of an associated event by exp(θi), thereby making it (ceteris
paribus) more prevalent and quick to occur or less prevalent and slower to occur.
Typically, candidates for u are proposed on a priori theoretical grounds, with θ
being inferred from available data. Comparison of goodness-of-fit for models with

4  A Relational Event Approach to Modeling Behavioral Dynamics

56

alternative choices of u allows for alternative theories of social mechanisms to
be tested, without assuming that the dynamics are governed by any single
mechanism.

Figure 4.1 illustrates the logic of relational event framework by depicting a very
general relational event process together with its theoretical components. In this
figure, time runs downward from the top of the illustration to the bottom (as indi-
cated by the rightmost vertical axis). We begin with the state of the world prior to
any observation of a relational event. This state can be characterized by the set of
potential actions (or possible events) and their underlying propensities to occur (or
their respective event hazards). For example, we may observe a group of individuals
in a room, each of whom may direct a speech act at the others, with the hazards
representing the distribution of action propensities. Then, something happens: we
observe a realized relational event—one of the actors (the sender) addresses another
actor (the receiver). The occurrence of this particular action, in turn, may have
changed the state of the world, possibly including what actions are possible and
each individual’s propensity to act. For instance, speaking first may have embold-
ened the first sender and incremented her propensity to speak even more. Thus, we
update the set of possible events and their hazards to reflect new information given
the current state of the event history. Next, something else happens: we observe
another relational event. Again, this event may change the set of possible events and
their hazards, and we update our view of the world based on the past history. This
process continues by turns until the last event (not shown). Just as we make observations

Fig. 4.1  Schematic representation of the inferential logic of the relational event framework.
Models, proposed on theoretical grounds, determine the set of possible events and the mechanisms
governing event hazards; observations of realized events are employed to infer unknown parame-
ters governing the strengths and directions of effects, and to select among competing models

C.T. Butts and C.S. Marcum

57

on the sequence of events, we use theory and substantive knowledge about the world
to make suppositions or impose limits on the set of possible events and to derive the
u statistics that govern the event hazards.

As the above indicates, the types of effects we estimate using the relational event
framework can capture a wide range of mechanisms involving both endogenous
behavioral dynamics and exogenous effects (either covariate-based or the impact of
exogenous events). Typical examples include actor-level fixed effects (rates for
sending and receiving events for each actor), subsequence effects, and time invari-
ant and time varying covariate effects. There are many possibilities for modeling
endogenous dynamics using the relational event framework because there are many
types of event history sub-sequences from which one may build sufficient statistics.
Some such sub-sequences are of general theoretical interest. For example, we may
consider the social processes related to the persistence of action, order of action,
exchanges within triads of actors, conversational dynamics, or even dynamic pref-
erential attachment. Each of these processes can be parameterized in terms of a
series of prior events in the life history, allowing it to be implemented in the rela-
tional event framework. The selection of such effects to proposed in a candidate
model should be driven by the research question and evaluated by assessing
goodness-of-fit (options currently supported by software are listed in the tutorial,
below). For example, much research has shown that persons who have interacted
frequently in the past are likely to continue to interact in the future. In a relational
event context, we might thus hypothesize that sending events to certain individuals
increases the chances that they will remain the targets of events in the future. This
behavior may be characterized as a type of social persistence or inertia and can be
implemented with an effect that treats the fraction of previous contacts as a predic-
tor of future contact. We might also hypothesize that the order in which one received
ties from others in the past plays a role in one’s likelihood of replying. Specifically,
because the last thing that happened is very likely to be the most salient, we may
model this process with a statistic that employs the inverse of the order of an actor’s
receipt of events from others as a predictor of that actor’s sending of events back to
them in the future. If the inclusion of this effect in the model substantially improves
fit (net of degrees of freedom consumed), we conclude that the mechanism in ques-
tion is predictive of the observed social process; if, however, we do not find such an
improvement, we may thereby conclude that the observed pattern of interaction
does not support the presence of the proposed mechanism. We return to more exam-
ples of relational event effects in the tutorial, below.

Regardless of which behaviors (or covariates) are of interest, it is important to
understand the basic assumptions of the model used to estimate their effects on the
relational event process; further details can be found in Butts (2008). Here, we
briefly review three of the most relevant assumptions that most modelers should
understand before using the relational event framework. First, we assume that all
events are recorded, and that the onset of the observation period is exogenously
determined (e.g., chosen by the researcher or set by a random external event).
Second, we assume that no events can occur at exactly the same time but, rather, are
temporally ordered. This assumption is perhaps the key distinction that separates
the relational event regime from the dynamic network regime (as discussed above).

4  A Relational Event Approach to Modeling Behavioral Dynamics

58

Finally, we typically assume that event hazards and the support are piecewise
constant, with changes occurring either when an endogenous event is realized or at
exogenous “clock” events. This final assumption has numerous useful implications,
among them being ease of computation and interpretation, the ability to infer param-
eters when exact times are unknown, and the fact that the waiting times between
events are conditionally exponentially distributed. (Piecewise constancy is also a
standard assumption in the well-known Cox proportional hazards models (Mills,
2011), where it yields similar advantages). While this last assumption can be
relaxed, current software implementations of the relational event framework (e.g.
the relevent package for R, Butts, 2010) employ it.

Of these assumptions, the most critical is the notion that events are well-ordered
in time. While non-simultaneity is in practice vital only for events whose occur-
rence can affect each others’ hazards, and while there are various workarounds for
data sets with small amounts of simultaneity (e.g., due to imprecise coding event
times), large numbers of simultaneous events suggest a system which is not in the
relational event regime. Such cases may be better represented as dynamic networks,
in the manner discussed above.

While the relational event paradigm is defined in terms of instantaneous events
that unfold in continuous time, inference for relational event models does not neces-
sarily require that event times be known. It is useful in this regard to distinguish two
general cases: event histories in which only the order of events is known (“ordinal
time”); and event histories in which the exact time between events is known (“exact”
or “interval time”). Butts (2008) derives the model likelihood for both scenarios
under the assumptions listed above. Importantly, under the assumption of piecewise
constant hazards, the parameter vector θ can in principle be identified up to a pacing
constant; since relative rather than absolute hazards are typically of primary scien-
tific interest, this implies that information on event ordering is frequently adequate
to employ the framework. Such data is common e.g. in archival or observational
settings, in which it may be feasible to construct a transcript of actions taken but
difficult or impossible to time them accurately. Both the ordinal and exact cases can
be analyzed using the relevent package which, supports a variety of model effects.
Additionally, while we are here focused on the basic case dyadic relational event
models in a single event history, the framework is general enough to accommodate
multiple event histories and even ego-centered event histories (DuBois et al., 2013b;
Marcum & Butts, 2015) should one possess those types of data.

4.3  �Sample Cases

To illustrate the use of the relational event model (REM) family, we employ
sample case data from two previously published sources. First, to illustrate the
relational event model for ordinal time data, we use data from Butts, Petrescu-
Prahova, and Cross (2007). These data consist of radio communications among
37 named communicants in a police unit that responded to the World Trade
Center disaster on the morning of September 11th, 2001. Second, to illustrate

C.T. Butts and C.S. Marcum

59

REMs for exactly timed data, we use a time-modified1 subset of data from Dan
McFarland, who recorded conversations occurring between 20 participants in
classroom discussions (Bender-deMoll & McFarland, 2006). Both datasets are
available online for didactic purposes here.

For the relevent software package used in the tutorial below, data are stored in
“rectangular” format as an m × 3 matrix we call an “edgelist” (where m is the num-
ber of events). The first column of the edgelist indexes either the time or the order
of the events, depending on the type of data. The second and third columns index the
senders and receivers of the events, respectively, numbered from 1 to n (where n is
the number of interacting parties). Importantly, the edgelist must be ordered by the
first column (i.e., by time or event order). For exact timing data, the last row of the
edgelist should index a null event for the time that observation period ended (by
default, any event occurring in this row will be ignored by the software).

Optional sender and receiver covariate data may be stored separate from the
edgelist as vectors or arrays, provided that they are ordered consistently with the
actor set (1 through the number of actors). For time invariant covariates, this will
be an n × p matrix, where n indexes the actors and p indexes the covariates. For time
varying actor covariates, data should be stored in a 3-dimensional m × p × n array,
where m indexes time and p and n index covariates and actors as above.

Optional event covariate data may be stored similarly. For time invariant covari-
ates, the data should be stored in a 3-dimensional p × n × n array, where p and n
index each fixed covariate and actor, respectively. Likewise, time varying event
covariates should be stored in a 4-dimensional m × p × n × n array, where m indexes
time and the other dimensions are as above.

4.3.1  �Butts et al.’s WTC Data

The 9/11 terrorist attacks at the World Trade Center (WTC) in New York City in
2001 set off a massive response effort, with police being among the most prominent
responders. As in much routine police work, radio communication was essential in
coordinating activities during the crisis. Butts et al. (2007) coded radio communica-
tion events between officers responding to 9/11 from transcripts of communications
recorded during the event. We will illustrate ordinal time REMs using the 481 com-
munication events from 37 named communicants in that data set. It is important to
note that the WTC radio data was coded from transcripts that lacked detailed timing
information; we do not therefore know precisely when these calls were made. We do,
however, know the order in which calls were made, and can use this to fit temporally
ordinal relational event models. Additionally, we will employ a single actor-level
covariate from this dataset: an indicator for whether or not a communicant filled an
institutional coordinator role, such as a dispatcher (Petrescu-Prahova & Butts, 2008).

1 Some events were given in order, but not distinguished by time; these have been spaced by
0.1 min for purposes of illustration.

4  A Relational Event Approach to Modeling Behavioral Dynamics

60

4.3.2  �McFarland’s Classroom Data

Dan McFarland’s classroom dataset includes exactly timed interactions between
students and instructors within a high school classroom (McFarland, 2001; Bender-
deMoll & McFarland, 2006). Sender and receiver communication events (n=691)
were recorded between 20 actors (18 students and 2 teachers) along with the time of
the events in increments of minutes. The data employed here were modified slightly
to increase the amount of time occurring between very closely recorded events,
ensuring no simultaneity of events as assumed by the relational event framework.
Two actor-level covariates are also at hand in the dataset used here: whether the
actor was a teacher and whether the actor was female.

4.4  �Tutorial

Software for fitting relational event models is provided by the relevent package for
R (Butts, 2010). There are numerous tutorials available online that provide instruc-
tion on how to obtain and learn to use the free R software. We direct neophyte users
to the R project website (CRAN) to browse those resources: https://cran.r-project.
org/. In this tutorial we assume that R is installed and users have some experience
with statistical programming in that environment.

The relevent package and its dependencies can be downloaded from CRAN
using R, installed, and loaded into the user’s environment in the usual manner:

	

> ()
> ()
install packages relevent

library relevent

. " "

	

	

> ()
> ()
[]

load remdata Rdata

sociomatrix eventlist C

" .

" . . "

"

"

ls

as1 llass

ClassIntercept ClassIsFemale

ClassIsTeacher

"

" "" "

"

3

5

[]
[] "" "

" "

"

" .

" . int " .

"

sleep glbs

sleep coord

WTCPoliceCalls

7

9

[]
[]

wtc

""

"

"

"

WTCPoliceIsICR

WTCPoliceNet11[]
	

Dyadic relational event models are intended to capture the behavior of systems
in which individual social units (persons, organizations, animals, etc.) direct dis-
crete actions towards other individuals in their environment. Within the relevent

C.T. Butts and C.S. Marcum

https://cran.r-project.org
https://cran.r-project.org

61

package, the rem.dyad() function is the primary workhorse for modeling dyadic data.
From the supplied documentation in R, the rem.dyad() function definition lists a
number of arguments and parameters:

	

rem. (, , , ,acl ,dyad edgelist n effects NULL ordinal TRUE NULL

cum

= = =
iideg NULL cumodeg NULL NULL covar NULL NULL

NU

= = = = =
=

, , rrl , , ,

tri

ps

LLL optim method BFGS optim control list

coef seed NUL

, . " , . ,

.

"= = ()
= LL hessian FALSE sample size verbose TRUE

method c

, , . Inf, ,

fit .

= = =

= "" " " , .obs ,

. ,

" " "BPM MLE, , BSIR conditioned

prior mean prior

() =

=

0

0 .. , . , . ,

. , .

scale prior draws

expand

= = =
= =

100 4 500

10

nu sir

sir sir nu 44,)gof = TRUE 	

In this tutorial, we focus on the first four arguments—edgelist, n, effects, ordinal;
the ninth argument covar; and the fifteenth argument hessian. The remaining
arguments govern model fitting procedures and output and their default values will
suffice here. The first argument, edgelist, is how the user passes their data to rem.
dyad; aptly, this takes an edgelist as described above. The second argument, n,
should be a single integer representing the number of actors in the network. The
third argument, effects, is how the user specifies which statistics (effects) will be
used to model the data. This argument should be a character vector where each ele-
ment is one or more of the following pre-defined effect names:

•	 ‘NIDSnd’: Normalized indegree of v affects v’s future sending rate
•	 ‘NIDRec’: Normalized indegree of v affects v’s future receiving rate
•	 ‘NODSnd’: Normalized outdegree of v affects v’s future sending rate
•	 ‘NODRec’: Normalized outdegree of v affects v’s future receiving rate
•	 ‘NTDegSnd’: Normalized total degree of v affects v’s future sending rate
•	 ‘NTDegRec’: Normalized total degree of v affects v’s future receiving rate
•	 ‘FrPSndSnd’: Fraction of v’s past actions directed to v’ affects v’s future rate of

sending to v’

•	 ‘FrRecSnd’: Fraction of v’s past receipt of actions from v’ affects v’s future rate
of sending to v’

•	 ‘RRecSnd’: Recency of receipt of actions from v’ affects v’s future rate of send-
ing to v’

•	 ‘RSndSnd’: Recency of sending to v’ affects v’s future rate of sending to v’
•	 ‘CovSnd’: Covariate effect for outgoing actions (requires a ‘covar’ entry of the

same name)

•	 ‘CovRec’: Covariate effect for incoming actions (requires a ‘covar’ entry of the
same name)

4  A Relational Event Approach to Modeling Behavioral Dynamics

62

•	 ‘CovInt’: Covariate effect for both outgoing and incoming actions (requires a
‘covar’ entry of the same name)

•	 ‘CovEvent’: Covariate effect for each (v,v’) action (requires a ‘covar’ entry of
the same name)

•	 ‘OTPSnd’: Number of outbound two-paths from v to v’ affects v’s future rate of
sending to v’

•	 ‘ITPSnd’: Number of incoming two-paths from v’ to v affects v’s future rate of
sending to v’

•	 ‘OSPSnd’: Number of outbound shared partners for v and v’ affects v’s future
rate of sending to v’

•	 ‘ISPSnd’: Number of inbound shared partners for v and v’ affects v’s future rate
of sending to v’

•	 ‘FESnd’: Fixed effects for outgoing actions
•	 ‘FERec’: Fixed effects for incoming actions
•	 ‘FEInt’: Fixed effects for both outgoing and incoming actions
•	 ‘PSAB-BA’: P-Shift effect (turn receiving)—AB!BA (dyadic)
•	 ‘PSAB-B0’: P-Shift effect (turn receiving)—AB!B0 (non-dyadic)
•	 ‘PSAB-BY’: P-Shift effect (turn receiving)—AB!BY (dyadic)
•	 ‘PSA0-X0’: P-Shift effect (turn claiming)—A0!X0 (non-dyadic)
•	 ‘PSA0-XA’: P-Shift effect (turn claiming)—A0!XA (non-dyadic)
•	 ‘PSA0-XY’: P-Shift effect (turn claiming)—A0!XY (non-dyadic)
•	 ‘PSAB-X0’: P-Shift effect (turn usurping)—AB!X0 (non-dyadic)
•	 ‘PSAB-XA’: P-Shift effect (turn usurping)—AB!XA (dyadic)
•	 ‘PSAB-XB’: P-Shift effect (turn usurping)—AB!XB (dyadic)
•	 ‘PSAB-XY’: P-Shift effect (turn usurping)—AB!XY (dyadic)
•	 ‘PSA0-AY’: P-Shift effect (turn continuing)—A0!AY (non-dyadic)
•	 ‘PSAB-A0’: P-Shift effect (turn continuing)—AB!A0 (non-dyadic)
•	 ‘PSAB-AY’: P-Shift effect (turn continuing)—AB!AY (dyadic)

The fourth argument, ordinal, is a logical indicator that determines whether to
use the ordinal or exact timing likelihood. The default setting specifies ordinal tim-
ing (TRUE). The ninth argument, covar, is how the user passes covariate data to
rem.dyad(). Objects passed to this argument should take the form of an R list, where
each element of the list is a covariate as described above. When covariates are indi-
cated, then there should be an associated covariate effect listed in the effects argu-
ment and each element of the covar list should be given the same name as its
corresponding effect type specified in effects (e.g., ‘CovSnd’, ‘CovRec’, etc).

C.T. Butts and C.S. Marcum

63

Finally, the fifteenth argument hessian is a logical indicator specifying whether or
not to compute the Hessian of the log-likelihood or posterior surface, which is used
in calculating inferential statistics. The default value of this argument is FALSE.

Having introduced the relational event package and the model fitting function,
we now transition to examples of fitting relational event models using the two data-
sets described above. Since the case of ordinal timing is somewhat simpler than that
of exact timing, we consider the World Trade Center data first in the tutorial.

4.4.1  �Ordinal Time Event Histories

Before we move to the analysis of the WTC relational event dataset, it is useful to
visually inspect both the raw data and the time-aggregated network. The eventlist is
stored in an object called WTCPoliceCalls. Examining the first six rows of this data
reveals that the data is a matrix with the timing information, source (i.e., the sender,
numbered from 1 to 37), and recipient (i.e., the receiver, again numbered from 1 to
37) for each event (i.e., radio call):

> ()head WTCPoliceCalls

number source recipient

111632

223216

3311632

4 41632

551132

661132

Thus, we can already begin to see the unfolding of a relational event process just
by inspecting these data visually. First, we see that responding officer 16 called
officer 32 in the first event, officer 32 then called 16 back in the second (which
might be characterized as a local reciprocity effect or AB → BA participation shift
(Gibson, 2003)). This was followed by 32 being the target of the next four calls,
perhaps due to either some unobserved coordinator role that 32 fills in the commu-
nication structure or due to the presence of a recency mechanism. Further visual
inspection is certainly warranted here. We can use the included sna function as.
sociomatrix.sna() to convert the eventlist into a valued sociomatrix, which we can
then plot using gplot():

	
> < ()WTCPoliceNet sociomatrix eventlist WTCPoliceCalls, as. . 37

	

4  A Relational Event Approach to Modeling Behavioral Dynamics

64

	

> =gplot WTCPoliceNet edge WTCPoliceNet arrowhead(, . ^ . , .lwd ce75 xx

as sna col

=

()[]() + =log . . . , .edgelist WTCPoliceNet , vertex

i

3 25

ffelse WTCPoliceIsICR,, black ,, gray vertex

ve

" " " " , . . ,() =cex 1 25

rrtex sides ifelse WTCPoliceIsICR,, ,, coord coord. , .= () =4 100 wtc))
	

Figure 4.2 is the resulting plot of the time-aggregated WTC Police communica-
tion network.

Your own may look slightly different due to both random node placement that
gplot() uses to initiate the plot and because this figure has been tuned for printing.
The three black square nodes represent actors who fill institutional coordinator roles
and gray circle nodes represent all other communicants. A directed edge is drawn
between two actors, i and j, if actor i ever called actor j on the radio. The edges and
arrowheads are scaled in proportion to the number of calls over time. There are 37
actors in this network and the 481 communication events have been aggregated to
85 frequency weighted edges. This is clearly a hub-dominated network with two
actors sitting on the majority of paths between all other actors. While the actor with
the plurality of communication ties is an institutional coordinator (the square node
at the center of the figure), heterogeneity in sending and receiving communication

Fig. 4.2  Time-Aggregated WTC Police Radio Communication Network

C.T. Butts and C.S. Marcum

65

ties is evident, with several high-degree non-coordinators and two low-degree insti-
tutional coordinators, in the network. This source of heterogeneity is a good starting
place from which to build our model.

4.4.2  �A First Model: Exploring ICR Effects

We begin by fitting a very simple covariate model, in which the propensity of indi-
viduals to send and receive calls depends on whether they occupy institutionalized
coordinator roles (ICR). We fit the model by passing the appropriate arguments to
rem.dyad and summarize the model fit using the summary() function on the fitted
relational event model object.

> < = = ()wtcfit dyad WTCPoliceCalls n effects c CovInt1 37 rem. (, , " " ,,

,

)

covar list CovInt WTCPoliceIsICR

hessian TRUE

Computing

= =()
=

 preliminary statistics

Fitting model

Obtaining goodness of fit statistics

summary wtcfit

Relational Event Model Ordi

> ()1

nnal Likelihood

Estimate Z value ||z||

CovInt

()
>()Std Err. Pr

. .1 2 11044640 06981730 142 2 2 16

0 0 00

. . .

. : ’***’ .

***< e

Signif codes

11 0 01 0 05 0 1 1

6921 048 481

’**’ . ’* ’ . . . ’’

: .

’ ’

Null deviance degreon ees of freedom

Residual deviance degrees of fr: .6193 998 480on eeedom

square degrees of freedom

asymptotic p

Chi on : . ,727 0499 1

 value

AICC

0

6195 998 6196 007 6200 174AIC BIC: . : . : .

The output gives us the covariate effect, as well as some uncertainty and
goodness-of- fit information. The format is much like the output for a regression
model summary, but coefficients should be interpreted per the relational event frame-
work. In particular, the ICR role coefficient is the logged multiplier for the hazard of
an event involving an ICR versus a non-ICR event (eλ1). This effect is cumulative: an
event in which one actor in an ICR calls another actor in an ICR gets twice the log
increment (e2λ1). We can see this impact in real terms as follows, respectively:

4  A Relational Event Approach to Modeling Behavioral Dynamics

66

	

>

>

/ . /

e

Relative hazard a non a non non

event

for ICR ICR vs ICR ICR

xxp

.

.

#

wtcfit $coef

CovInt

Relative hazard an

1

1

8 202707

()

> for ICR // . /

exp *

ICR vs ICR ICRa non non event

twice the effect

wtcfi

()
> 2 tt $coef

CovInt

1

1

67 28441

()
.

. 	

In this model, ICR status was treated as a homogenous effect on sending and receiving.
Next, we evaluate whether it is worth treating these effects separately with respect

to ICR status. To do so, we enter the ICR covariate as a sender and receiver covariate,
respectively, and then evaluate which model is preferred by BIC (lower is better):

	

> < =
=

wtcfit dyad WTCPoliceCalls n effects

c CovSnd ,

2 37 rem. (, ,

" " "CCovRec

covar list CovSnd WTCPoliceIsICR,CovRec WTCPolic

" ,()
= = = eeIsICR

hessian TRUE

Computing preliminary statistics

Fit

()
=

,

)

tting model

summary wtcfit

summary wtcfit

Relational Eve

> ()
()

2

2

nnt Model Ordinal Likelihood

Estimate Z value ||z||

()
>Std Err. Pr (()

<CovSnd e

CovRec

.

. .

***1 1 9791750 09574520 671 2 2 16

1 2 2257

2200 09286223 968 2 2 16

0 0 001

. . .

. : ’***’ . ’**

***< e

Signif codes

’’ . ’* ’ . . . ’’

: .

’ ’0 01 0 05 0 1 1

6921 048 481Null deviance degrees oon ff freedom

Residual deviance degrees of freedo: .6190 175 479on mm

square degrees of freedom

asymptotic p val

Chi on

: . ,730 8731 2

uue

AICC

wtcfit wtcfit

0

6194 175 6194 2 6202 527

1

AIC BIC

BIC

: . : . : .

$> 22

1 2 352663

$

.

BIC

[] 	

C.T. Butts and C.S. Marcum

67

While there appear to be significant ICR sender and receiver effects, their
differences do not appear to be large enough to warrant the more complex model (as
indicated by the slightly smaller Bayesian Information Criterion (BIC) of the first
model). Smaller deviance-based information criteria, such as the BIC, indicate bet-
ter model fit.

4.4.3  �Bringing in Endogenous Social Dynamics

One of the attractions of the relational event framework is its ability to capture
endogenous social dynamics. Next, we examine several mechanisms that could con-
ceivably impact communication among participants in the WTC police network. In
each case, we first fit a candidate model, then compare that model to our best fitting
model thus far identified.

Where effects result in an improvement (as judged by the BIC), we include them
in subsequent models, just as we decided for the comparison of the ICR covariate
models.

To begin, we note that this is radio communication data. Radio communication is
governed by strong conversational norms (in particular, radio standard operating pro-
cedures), which among other things mandate systematic turn-taking reciprocity. We
can test for this via the use of what Gibson (2003) calls “participation shifts”. In par-
ticular, the AB-BA shift, which captures the tendency for B to call A, given that A has
just called B, is likely at play in radio communication. Statistics for these effects are
described above. Building from our first preferred model, we now add this dynamic
reciprocity term by including “PSAB-BA” in the effects argument to rem.dyad():

4  A Relational Event Approach to Modeling Behavioral Dynamics

68

	

> < =

=

wtcfit dyad WTCPoliceCalls n

effects c CovInt ,

3 37 rem. (, ,

" " "PPSAB

covar list CovInt WTCPoliceIsICR hessian TRUE

 BA" ,

,

()
= =() =))

Computing preliminary statistics

Fitting model

Obtaining gooodness of statistics

summary wtcfit

Relational Event

 fit

> ()3

 Model Ordinal Likelihood

Estimate Z value ||z||

()
>()Std Err. Pr

CCovInt e

PSAB

.

. .

***1 1 60405 0 11500 13 949 2 2 16

7 32695 0 10

<
 BA 5552 69 436 2 2 16

0 0 001 0 01

. .

. : ’***’ . ’**’ . ’*

***< e

Signif codes

’’ . . . ’’

: .

’ ’0 05 0 1 1

6921 048 481Null deviance degrees of freedon oom

Residual deviance degrees of freedom

sq

: .2619 115 479on

Chi uuare degrees of freedom

asymptotic p value

: . ,

:

4301 933 2

0

on

AIC

22623 115 2623 14 2631 467

1 3

1

. : . : .

$ $

AICC

wtcfit wtcfit

BIC

BIC BIC>

[[]3568 707.
	

It appears that there is a very strong reciprocity effect and that the new model is
preferred over the simple covariate model. In fact, the “PSAB-BA” coefficient
indicates reciprocation events have more than 1500 times the hazard of other types
of events (e7.32695 = 1520.736) that might terminate the AB—BX sub-sequence.

Of course, other conversational norms may also be at play in radio communica-
tion. For instance, we may expect that the current participants in a communication
are likely to initiate the next call and that one’s most recent communications may
be the most likely to be returned. These processes can be captured with the
participation shifts for dyadic turn receiving/continuing and recency effects,
respectively:

C.T. Butts and C.S. Marcum

69

	

>
> <

#

. (

Model includes p shift effects

wtcfit dyad WTCPolic

4

4

 rem eeCalls n effects

c CovInt , PSAB , PSAB , PSAB

, ,

" " " " " " "

= =37

 BA BY AYY" ,

,)

()
= =() =covar list CovInt WTCPoliceIsICR hessian TRUE

Computting preliminary statistics

Fitting model

Obtaining goodnesss of statistics

summary wtcfit

Relational Event Model

 fit

> ()4

OOrdinal Likelihood

Estimate Z value ||z||

CovInt

()
>()Std Err. Pr

.. ***

. .

1 1 54283 0 11818 13 0549 2 2 16

7 49955 0 11418 65

< e

PSAB

 BA .. . ***

. . . . ***

6831 2 2 16

1 25941 0 25131 5 0115 5 402 07

< e

PSAB e

PS

 BY

AAB

Signif codes

AY 0 87215 0 30612 2 8491 0 004384

0

. . . . **

. : ’***’00 001 0 01 0 05 0 1 1

6921 048 481

. ’**’ . ’* ’ . ’.’ . ’’

: .Null deviance don eegrees of freedom

Residual deviance degrees o: .2595 135 477on ff freedom

square degrees of freedom

asympto

Chi on : . ,4325 913 4

ttic p value

AICC

wtcfit

 0

2603 135 2603 219 2619 839

3

AIC BIC: . : . : .

$> BBIC BIC wtcfit4

1 12 62806

$

.[] 	

4  A Relational Event Approach to Modeling Behavioral Dynamics

70

	

>
> <

#

. (

Model adds recency effects model

wtcfit dyad WTC

5 4

5

to

rem PPoliceCalls n

effects c CovInt PSAB PSAB

, ,

(" "," "," ,

"

"

=
=

37

 BA BY

PPSAB RRecSnd RSndSnd covar

list CovInt WTCPoliceI

 AY "," "," "), =
= ssICR hessian TRUE

Computing preliminary statistics

Fitti

() =,)

nng model

Obtaining goodness of statistics

summary wtcfit

 fit

> 55()
()Relational Event Model Ordinal Likelihood

Estimate Std.EErr Z value ||z||

RRecSnd e

Pr

. . . . ***

>()
<2 38495 0 27447 8 6892 2 2 16

RRSndSnd e

CovInt

1 34623 0 22307 6 0350 1 590 09

1 1 07058 0 1

. . . .

. . .

44244 7 5160 5 640 14

4 88714 0 15293 31 9569 2 2 1

. .

. . . .

***e

PSAB e

 BA < 66

1 67939 0 26116 6 4304 1 273 10

1 39017

***. . . .

.

PSAB e

PSAB

BY

AY 00 310574 47627 597 06

0 0 001 0

. . .

. : ’***’ . ’**’

***e

Signif codes

.. ’* ’ . . . ’’

: .

’ ’01 0 05 0 1 1

6921 048 481Null deviance degrees of on ffreedom

Residual deviance degrees of freedom: .2308 413 475on

Chhi on

square degrees of freedom

asymptotic p value

: . ,4612 635 6

00

2320 413 2320 591 2345 469

4

AIC BIC

BIC

: . : . : .

$

AICC

wtcfit wtcfit> 55

1 274 3701

$

.

BIC

[] 	

The results indicate that turn-receiving, turn-continuing, and recency effects are
all at play in the relational event process. Both models improve over the previous
iterations by BIC, and the effect size reciprocity as been greatly reduced by control-
ling for other effects that reciprocity may have been masking in model 5 (i.e., the
“PSAB-BA” coefficient was reduced from > 7 to > 4). Finally, recall that our inspec-
tion the time-aggregated network in Fig. 4.2 revealed a strongly hub-dominated

C.T. Butts and C.S. Marcum

71

network, with a few actors doing most of the communication. Could this be
explained in part via a preferential attachment mechanism (per Price (1976) and
others), in which those having the most air time become the most attractive targets
for others to call? We can investigate this by including normalized total degree as a
predictor of tendency to receive calls:

Fig. 4.3  Histogram of Deviance Residuals from Ordinal Model of WTC Data

4  A Relational Event Approach to Modeling Behavioral Dynamics

72

	

> < =
=

wtcfit dyad WTCPoliceCalls n

effects c CovInt

6 37 rem. (, ,

(" ","" "," ,

" "," "," ","

"PSAB PSAB

PSAB RRecSnd RSndSnd NTDegR

BA BY

AY eec

covar list CovInt WTCPoliceIsICR hessian TRUE

Compu

"),

,)= =() =

tting preliminary statistics

Fitting model

Obtaining goodnesss of statistics

summary wtcfit

Relational Event Model

 fit

> ()6

OOrdinal Likelihood

Estimate Z value ||z||

NTDegR

()
>()Std Err. Pr

eec e

RRecSnd

3 13453 0 56678 5 5305 3 194 08

2 02903 0 28500 7

. . . .

. . .

11194 1 084 12

0 87116 0 23846 3 6533 0 0002589

.

. . . .

e

RSndSnd

Co

vvInt e

PSAB

.

. .

***1 0 70734 0 16400 4 3129 1 611 05

5 32576 0 182

 BA 336 29 2042 2 2 16

1 86023 0 26322 7 0673 1 579 12

. .

. . . .

*

< e

PSAB e

 BY ***

***. . . .

. :

PSAB e

Signif codes

AY 1 64806 0 31092 5 3005 1 155 07

00 0 001 0 01 0 05 0 1 1

6921 048

’***’ . ’**’ . ’* ’ . . . ’’

: .

’ ’

Null deviance oon

on

481

2277 263 474

degrees of freedom

Residual deviance deg: . rrees of freedom

square degrees of freedom

a

Chi on : . ,4643 785 7

ssymptotic p value

AICC

wtcf

 0

2291 263 2291 5 2320 494AIC BIC: . : . : .

> iit wtcfit5 6

1 24 97434

$ $

.

BIC BIC

[] 	

Though still significant in the presence of preferential attachment effects, recency
and ICR effect coefficients are reduced while participation shift effects are rela-
tively unchanged. This final model is also preferred by BIC and it’s clear that the
deviance reduction from the null model is quite substantial at 67 %. While we could
continue to investigate additional effects (see the list of options above), model 6
is a good candidate to evaluate model adequacy, which is addressed in the next
section.

C.T. Butts and C.S. Marcum

73

4.4.4  �Assessing Model Adequacy

Model adequacy is an important consideration: even given that our final model from
the exercises above (model 6) is the best of the set, is it good enough for our pur-
poses? There are many ways to assess model adequacy; here, we focus on the ability
of the relational event model to predict the next event in the sequence, given those
that have come before. This approach nicely falls within the relational event frame-
work. A natural question to ask in this framework is how “surprised” is the model
by the data. Put another way, when does the model encounter relational event obser-
vations that are relatively poorly predicted? To investigate this, we can examine the
deviance residuals, which are included in the fitted model object. We begin by cal-
culating the deviance residual under the null which, from the ordinal likelihood
derivation in Butts (2008), is simply twice the log product of the number of sender-
receiver pairs, and comparing that with the deviance residuals under the fitted
model:

	

>
> < ()
>

#

* log *

#

Null deviance residual

nullresid

Plot a his

 2 37 36

ttogram of the fitted model deviance residuals

hist wtcfit> (66 6$residuals main Deviance Residuals from Model

n with Nu

, "

\

=
lll Deviance Residual Indicated gray

abline v nullr

", ")"col =
> = eesid,

What fraction below the null resid

mean w

lty

are

=()
>
>

2

?

ttcfit $residuals nullresid

What fraction

6

1 0 8898129

<()
[]
>

.

aree

How

less than

mean wtcfit $residuals

s

3

6 3

1 0 6839917

?

.

"

> <()
[]
> uurprised is the model

mean wtcfit $residuals nullresid

" ?

6

1

>()
[]]0 1101871. 	

The histogram of the model deviance residuals produced from the above code
snippet is shown in Fig. 4.3. The dotted line indicates the null deviance residual: the
idea here is that we want the model deviance residuals to fall to the right of that
cut-off. Indeed, about 89 % of the model deviance residuals are smaller than the null
residual, with 68 % of them being less than three (or really, really small). These
initial checks are good conditional evidence that our model is performing really
well.

4  A Relational Event Approach to Modeling Behavioral Dynamics

74

To investigate further, we can evaluate the extent to which our model could take
a random guess about which event comes next and get it right, relative to all possi-

bilities. Here again, the deviance residuals come in handy as the quantity e
D

2 , where
Di is the model deviance residual for event i, is a “random guessing equivalent”.
That is, it is the effective number of events such that a random guess about what
happens next would be right as often as expected under the model.

	

>
>

forDistribution of random guessing equivalents model

qua

6

nntile wtcfit $residualsexp /

% % % % %

. .

6 2

0 25 50 75 100

1 073634 1 2

()()

668661 1 739723 204 539040 31632 962350. . .

#> Distribution of randoom guessing equivalents model

quantile wtcfit $resid

for 1

1> exp uuals /

% % % % %

. . . .

2

0 25 50 75 100

390 0003 390 0003 390 0003 390 0003

()()

33199 0591. 	

At least 50 % of the time our final model needs about 1 in 1.7 guesses to correctly
predict the next event. This is in contrast to our first model with just the intercept
term for ICR covariate, which needs about 390 such guesses. For an overall com-
parison, consider that the null model would get only 1 out of every 1332 (36 * 37)
events correct just guessing at random.

Model adequacy as measured by surprise can also be visually inspected. First,
one can inspect which events are surprising by adding an indicator for model sur-
prise to the original eventlist:

	

> = >head cbind WTCPoliceCalls,surprise wtcfit $residuals nullre6 ssid

number source recipient surprise

FALSE

F

()()

1 1 16 32

2 2 32 16 AALSE

FALSE

FALSE

TRUE

3 3 16 32

4 4 16 32

5 5 11 32 	

The code snippet prints just the first five events, but these are enough to get a
glimpse into why the model might be surprised. We can see that the first four events,
involving exchanges between actors 16 and 32, are not surprising and appear to
involve reciprocity and turn continuing participation shifts. The fifth event, how-
ever, is surprising, probably because it involves the sudden interruption of a new
caller (actor 11). Thus, it appears that the model is surprised, perhaps unsurpris-
ingly, when events transpire that are not specified by the model statistics such

C.T. Butts and C.S. Marcum

75

as third-party effects. These surprising events can also be projected onto the
time-aggregated network using as.sociomatrix.sna, as before:

	

> <surprising sociomatrix eventlist
WTCPoliceCalls wtcfit
 as. .

6$$residuals nullresid, ,

gplot surprising edge su

>[]()

> =

37

(, .lwd rrprising
arrowhead edgelist surprising

^ . ,
. log . .

75
cex as sna= () ,,

vertex ifelse WTCPoliceIsICR,, black ,, gra

3

25

[]()
+ =. , . " " "col yy

vertex vertex sides

ifelse WTCPoliceIsICR,,,

" ,
. . , .

()
= =cex 1 25

,,100()) 	

The resulting plot of the time-aggregated surprising event network is illustrated
in Fig. 4.4, which can be directly compared with Fig. 4.2. While there are many
fewer events that are surprising than not, it’s clear from the figure that the surprising
events resolve on where the greatest opportunity for communication exists: namely
on calls directed toward the main hub at the center and also calls sent from the sec-
ondary hub to others. This suggests the existence of some unobserved heterogeneity
related to those actors not explained by conversational norms, preferential attach-
ment to them, or whether or not they fill institutional coordinator roles.

Fig. 4.4  Time-Aggregated ‘Surprising’ Events Network Under the Final Relational Event. Model
of WTC Radio Communications

4  A Relational Event Approach to Modeling Behavioral Dynamics

76

Finally, the function rem.dyad() supplies two additional components in returned
model objects that are useful for evaluating adequacy. These are the rank of the
observed events in the predicted rate structure and a pair of indicators for whether
or not the model exactly predicts the sender and receiver, respectively, involved in
each event. While far more stringent as measures of surprise than the deviance
residuals, these statistics can be quite informative for well-fitting models.

For instance, we can inspect the empirical cumulative distribution function of the
observed ranks to assess classification accuracy of the model at various thresholds:

	

> =()()plot ecdf wtcfit $observed rank xlab Prediction(. / * , "6 37 36 Threshold

Fraction of Possible Events ylab Fraction o() =", " ff Observed Events Covered main

Classification Accuracy

",

" ")=

> aabline v c ,, ,, ,= =()()0 05 0 1 0 25 2. . . lty
	

The resulting plot of the ECDF is shown in Fig. 4.5, which shows that predic-
tions under the model very quickly cover the observed events. For the strictest mea-
sures, we can ask three questions of the exact predictions: (1) what is the fraction of

Fig. 4.5  Classification Accuracy of the Observed Ranks Under Model 6 with Prediction.
Thresholds Indicated at 0.05, 0.1, and 0.25

C.T. Butts and C.S. Marcum

77

events for which either sender or receiver are exactly predicted; (2) what is the
fraction of events for which both sender and receiver are exactly predicted; and, (3)
what are the respective fractions of events where we get the sender and receiver
right under the model. These questions are easily addressed using the fitted model
output:

	

> ()()
[]
>

mean apply wtcfit $predicted match, ,

me

6 1

1 0 7941788

.

.

any

aan apply wtcfit $predicted match, ,

colM

6 1

1 0 6839917

.

.

all()()
[]
> eeans wtcfit $predicted match

source recipient

6

0 7234927 0 75

.

. .

()

446778 	

Thus, our final model predicts something right about 79 % of the time (getting
the sender right for 72 % and the receiver right about 75 % of the events, respec-
tively) and it predicts the event that actually transpired exactly right 68 % of the
time. Despite its simplicity, this model appears to fit extremely well. Further
improvement is possible, but for many purposes we might view it as an adequate
representation of the event dynamics in this WTC police radio communication
network.

4.5  �Exact Time Histories

We now turn to a consideration of REMs for event histories with exact timing
information. As in the case of ordinal time data, it is useful to begin by examining
the raw temporal data and the time-aggregated network. The edgelist is stored in
an object called Class. Printing the first six rows and the last two rows of this
object reveals minor differences between the exact time and the ordinal time data
structures (discussed above). As before, we have three columns: the event time,
the event source (numbered from 1 to 20), and the event target (again, numbered
1 to 20). In this case, event time is given in increments of minutes from onset of
observation. Note that the last row of the event list contains the time at which
observation was terminated; it (and only it) is allowed to contain NAs, since it has
no meaning except to set the period during which events could have occurred.
Where exact timing is used, the final entry in the edgelist is always interpreted in
this way, and any source/target information on this row is ignored. This row indi-
cates that the total period of observation lasted just over 50 minutes (the length of
one class session).

4  A Relational Event Approach to Modeling Behavioral Dynamics

78

	

> ()éë ùûClass c , ,

StartTime FromId ToId

1 6 691 692

1 0 135 14 12

2 0 2

: :

.

. 770 12 14

3 0 405 18 12

4 0 540 12 18

5 0 675 1 12

6 0 810 12 1

691 50 910 17 6

6

.

.

.

.

.

992 50 920. NA NA 	

We can again use the sna toolkit to convert and plot the time-aggregated network
for inspection. Here, we color the female nodes black and the male nodes gray and
represent teachers as square-shaped nodes and students as triangle-shaped nodes.
Edges between nodes are likewise scaled proportional to the number of communica-
tion events transpiring between actors.

	

ClassNet sociomatrix eventlist Class,

gplot ClassNet

< () as. .

(

20

,, . " " " " ,vertex ifelse ClassIsFemale,, black ,, gray vertexcol = () ..

, . , . ^ .

sides

ClassIsTeacher vertex edge ClassNet

= +

= =

3

2 7cex lwd 55) 	

Figure 4.6 displays the resulting time-aggregated network. A dynamic visualiza-
tion of this data is also available online in (Bender-deMoll & McFarland, 2006) and
is well worth examining. While it is clear from this figure that teachers do a great

Fig. 4.6  Time-Aggregated
Classroom Communications

C.T. Butts and C.S. Marcum

79

deal of talking, there also appear to be several high-degree students. Female students
in this classroom also appear to be slightly more peripheral. Both of these observations
warrant inclusion of the respective covariates in our analysis, to which we now turn.

4.5.1  �Modeling with Covariates

One of the advantages that the exact time relational event model likelihood has over
the ordinal time likelihood is its ability to estimate pacing constants (i.e., the global
rates at which events transpire). Here we investigate this with a simple intercept
model, containing only a vector of 1 s as an actor-level sending effect. This vector
is saved as ClassIntercept, which we can pass to the respective covariate arguments
in rem.dyad(). Note that we must also tell rem.dyad that we do not want to discard
timing information by setting the argument ordinal=FALSE:

	

> < = = ()
=

classfit dyad Class n effects c CovSnd

covar

1 20 rem. (, , " ,"

llist CovSnd ClassIntercept

ordinal FALSE hessian TRUE

Co

=()
= =

,

,)

mmputing preliminary statistics

Fitting model

Obtaining goodnness of statistics

summary classfit

Relational Event

 fit

> ()1

MModel Temporal Likelihood

Estimate Z value ||z||

()
>()Std Err. Pr

CCovSnd e

Signif code

.

.

***1 3 332287 0 038042 87 596 2 2 16

<

ss

Null deviance

: ’***’ . ’**’ . ’* ’ . . . ’’

: .

’ ’0 0 001 0 01 0 05 0 1 1

5987 2221 691

5987 221 691

on

on

degrees of freedom

Residual deviance d: . eegrees of freedom

square e degrees of frChi on : .4 274625 11 0 eeedom

asymptotic p value

AICC

,

: . : . :

 1

5989 221 5989 227 5993AIC BIC ..759 	

The model does not fit any better than the null because it is equivalent to the null
model (as indicated by the absence of difference between the null and residual devi-
ance). As one would expect from first principles, this is really just an exponential
waiting time model, calibrated to the observed communication rate. Thus, to calcu-
late the predicted number of events per minute we may multiply the number of pos-
sible event types (here, 20 _ 19 = 380) by the coefficient for the intercept:

4  A Relational Event Approach to Modeling Behavioral Dynamics

80

	

> ()380 1

1

13 57031

*exp

.

.

classfit $coef

CovSnd

	

This simple model predicts the overall pace of events to occur at nearly 14 events
per minute and this matches quite well with the average number of events per min-
ute from the observed data:

	

> ()() []()
[]

nrow Class Class , 1 1

1 13 57031

/ max

.
	

Because we noted structural heterogeneity based on gender and status in Fig. 4.6,
we fit a more interesting covariate model that specifies these effects for senders and
receivers and evaluate whether there is any improvement over the intercept-only
model by BIC.

	

> < = =classfit dyad Class n effects c CovSnd , CovRec2 20 rem. (, , " " " "(()
= =

,

(covar list CovSnd cbind ClassIntercept,,ClassIsTeacher,,,ClassIsFemale

CovRec cbind ClassIsTeacher,ClassIsFemale

()
=

,

(() = =), ,)ordinal FALSE hessian TRUE

Computing preliminary statiistics

Fitting model

Obtaining goodness of statistics

s

 fit

>
> uummary classfit

Relational Event Model Temporal Likelihoo

2()
dd

Estimate Z value ||z||

CovSnd

()
()>Std Err. Pr

. . .1 3 834229 0 0788 442 48 6319 2 16

2 1 672561 0 091679 18 2436 2 16

. ***

. . . . *

<

<

e

CovSnd e ***

.

. . .

CovSnd

CovRec

3 0 123900 0 094931 1 3052 0 19184

1 0 373733 0 1127028 2 9421 0 00326

2 0 165729 0 080896 2 0487 0 0404

. . **

.CovRec 99

0 0 001 0 01 0 05 0 1 1

*

. : ’*** ’ . ’**’ . ’* ’ . ’.’ . ’’

Signif codes

Null deviance degrees of freedom

Residual devianc

: .5987 221 691on

ee degrees of freedom

square de

: .

: .

5652 318 687

334 9034 4

on

Chi on ggrees of freedom

asymptotic p value

AICC

,

: . : .

 0

5662 318 5662AIC 4405 5685 008

1 2

1 308 7508

BIC

BIC BIC

: .

$ $

.

>
>

[]
classfit classfit

	

C.T. Butts and C.S. Marcum

81

With multiple covariates, the model terms (CovSnd.1, CovSnd.2 etc) are listed in
the object in the same order as they were specified within the covar argument. Here,
we see a good improvement over the null model but also note that gender does not
appear to be predictive of sending communication. A better model may be one with-
out that specific term included, which we fit below and again compare to the previ-
ous model by BIC.

	

> < = =classfit dyad Class n effects c CovSnd , CovRec3 20 rem. (, , " " " "(()
()= =

,

(covar list CovSnd cbind ClassIntercept,ClassIsTeacher ,,

),CovRec cbind ClassIsTeacher,ClassIsFemale ordinal FALS= =() EE hessian TRUE

Computing preliminary statistics

Fitting mo

,)=

ddel

Obtaining goodness of statistics

summary classfit

 fit

> ()3

RRelational Event Model Temporal Likelihood

Estimate

()
Std Er. rr Z value ||z||

CovSnd e

Pr

.

>

<

()
1 3 775227 0 063623 59 3379 2 2 1 66

2 1 615762 0 079933 20 2139 2 2 16

1 0 3

. ***

. .

CovSnd e

CovRec

<

771749 0 127020 2 9267 0 003426

2 0 161154 0 080815 1 99

. . . **

. . . .CovRec 441 0 046141

0 0 001 0 01 0 05 0

. *

. : ’*** ’ . ’**’ . ’* ’ . ’.’

Signif codes .. ’’

: .

1 1

5987 221 691Null deviance degrees of freedom

Residua

on

ll deviance degrees of freedom

square

: .

: .

5654 016 688

333

on

Chi 22049 3

0

5662 016

on

AIC

degrees of freedom

asymptotic p value

A

,

: .

IICC

classfit classfit

: . : .

$ $

.

5662 074 5680 169

2 3

1 4

BIC

BIC BIC>

[]

8839661
	

Indeed, there is a marginal improvement in BIC and we retain the model lacking
the gender effect for sending communication events.

4  A Relational Event Approach to Modeling Behavioral Dynamics

82

4.5.2  �Modeling Endogenous Social Dynamics

While we find that the above covariate models perform better than the null, the final
model is still unimpressive in terms of deviance reduction, with only about a 5 %
total reduction from the null by our best fitting model. To investigate further, we
propose a set of models that capture endogenous social dynamic effects that
are reasonably presumed to be at play in classroom conversations. These include
recency effects and effects that capture aspects of conversational norms, such as
turn-taking, sequential address, and turn-usurping.

As before, we can enter these terms into the model using their appropriate effect
names.

We also preserve the covariates from best covariate model (model 3 from the
previous section) and check our improvement by BIC.

	

> +
> <

, :

. (

First just recency effects model

classfit dyad C

3

4 rem llass n

effects c CovSnd , CovRec , RRecSnd , RSndSnd

, ,

" " " " " " " "

=
= (

20

))
= = ()

,

(,covar list CovSnd cbind ClassIntercept,ClassIsTeacher

CCovRec cbind ClassIsTeacher,ClassIsFemale

ordinal FALSE

= ()
=

),

,,)hessian TRUE

Computing preliminary statistics

Fitting mod

=

eel

Obtaining goodness of statistics

This is preferred

 fit

> # :

>>

[]

>

classfit classfit

Next conversatio

3 4

1 1118 294

$ $

.

#

BIC BIC

nnal norms model

classfit dyad Class n
effects c

+
> < =

=

4

5 20 rem. (, ,
((" "," "," "," ",

" ","

CovSnd CovRec RRecSnd RSndSnd

PSAB PSAB BA AY "","),

(

"PSAB

covar list CovSnd cbind ClassIntercept,ClassI

 BY
= = ssTeacher

CovRec cbind ClassIsTeacher,ClassIsFemale

or

()
= ()

,

),

ddinal FALSE hessian TRUE

Computing preliminary statistics

= =,)

FFitting model

Obtaining goodness of statistics fit 	

C.T. Butts and C.S. Marcum

83

	

>
>

[]

:

$ $

Again an improvement

classfit classfit4 5

1 1699

BIC BIC
..716

5> ()summary classfit

Relational Event Model Temporal Likeelihood

Estimate Z value ||z||

RRecSnd

()
>()Std Err. Pr

. .2 429233 0 1155365 15 6356 2 2 16

0 986747 0 144667 6 8208 9

. .

. . . .

***< e

RSndSnd

 0053 12

1 5 003434 0 090609 55 2201 2 2 16

e

CovSnd e

Cov

***.<
SSnd e

CovRec

.

. .

***2 1 253893 0 085160 14 7239 2 2 16

1 0 722690 0

<

. . . .

***141950 5 0912 3 559 07

2 0 047936 0 081325 0 5894 0

 e
CovRec ..

. . . .

.

5556

4 622128 0 137600 33 5910 2 2 16

1 67

PSAB e

PSAB

BA

BY

<
77591 0 164930 10 1715 2 2 16

2 869968 0 103113 27 8

. . .

. . .

***< e

PSAB

 AY 3332 2 2 16

0 0 001 0 01 0 05

< .

. : ’***’ . ’**’ . ’* ’ .

’

e

Signif codes

.. . ’’

: .

’ 0 1 1

5987 221 691Null deviance degrees of freedom

Resi

on

ddual deviance degrees of freedom

square

: .

:

2803 315 683

3

on

Chi 1183 906 8

0

2821 3

. ,

: .

on

AIC

degrees of freedom

asymptotic p value
115 2821 58 2862 158AICC : . : .BIC 	

We can see that adding recency effects to the covariate model results in a
much improved fit by BIC. Moreover, there is again an improvement in BIC when
conversational norms are added into the model. The summary of the results from
model 5 also show that the remaining gender covariate effect falls out in the pres-
ence of the endogenous social dynamic effects. This hints at the possibility that
what seemed at first glance to be a difference in the tendency to receive communica-
tion by gender was in fact a result of social dynamics (perhaps stemming from the
fact that both instructors are male, with their inherent tendency to communicate
more often amplified by local conversational norms). We can confirm that second
the gender term is extraneous by evaluating whether a reduced model is preferred
by BIC.

4  A Relational Event Approach to Modeling Behavioral Dynamics

84

	

> < =
=

classfit dyad Class n
effects c CovSnd CovRec

6 20 rem. (, ,
(" "," ""," "," ",

" "," ","),"

RRecSnd RSndSnd

PSAB PSAB PSAB

cova

 BA AY BY
rr list CovSnd cbind ClassIntercept,ClassIsTeacher

CovRec

= = ()(,

== = =ClassIsTeacher ordinal FALSE hessian TRUE

Computing pre

), ,)

lliminary statistics

Fitting model

Obtaining goodness of fit sstatistics

classfit $AICC classfit $AICC>

[]
5 6

1 1 705912

.

	

And, as before, the reduced model is indeed preferred. We now have a relatively
well-fitting relational event model specified by a combination of covariate and
endogenous dynamic effects. At this point, we can turn to interpretation of fitted
model parameters and model adequacy from our current vantage point.

4.5.3  �Interpretation of a Fitted Model

It is often useful to consider the inter-event times predicted to be observed under
various scenarios by a fitted relational event model. Recall that under the piecewise
constant hazard assumption, event waiting times are conditionally exponentially
distributed. This allows us to easily work out the consequences of various model
effects for social dynamics, at least within the context of a particular scenario.

The most basic results to interpret from a fitted model are, of course, the coeffi-
cients themselves. In interpreting coefficient effects, recall that they act as logged
hazard multipliers. Taking their log-inverse (i.e., exponentiating them), produces
their hazard multiplier. For instance, the turn-taking participation-shift (p-shift)
effect from model 6 has a coefficient value of 4.623682, which corresponds to an
interpretation that response events have about 100 times the hazard of non-response
events (e4.623682 = 101.8684). While this appears to be a substantial effect, the fact
that an event has an unusually high hazard does not mean that it will necessarily
occur. For instance, while a response of B to a communication from A has hazard
that is about 100 times as great as the hazard of a non-B → A event all things con-
stant, there are many more events of the latter type. In fact, there are 379 other
events “competing” with the B → A event, and thus the chance that it will occur next
is smaller than it may appear by simply taking the hazard multiplier at face value.
This example shows that both relative rates and combinatorics (i.e., the number of
possible ways that an event type may occur) govern the result and should temper
respective interpretations.

C.T. Butts and C.S. Marcum

85

What else can be done with the model coefficients from an interpretation
perspective? One basic use of the model coefficients is to examine the expected
inter-event times under specific scenarios and conditions. For instance, one may be
interested in evaluating the predicted mean inter-event time when nothing else is
happening. This is simply governed by the global pacing constant (i.e., the average
rate that events transpire, or intercept) and the number of possible events. Or, one
may want to know how long it takes for one actor to respond to another actor given
an immediate event (or other such scenarios). Depending on the model, many of
these “waiting time” effects can be evaluated from coefficients. To accomplish this

using the exact time likelihood, some algebra comes in handy:
1

m e’× ×∑
 where m

is the number of possible events under the scenario and λ is the vector of model
parameters involving the scenario of interest. Here again, both the number of ways
that an event type can occur (m’) and the propensity of such events to occur (λ) both
matter! In the following snippet, we evaluate such waiting times under different
scenarios from model 6:

	

>

>

....

/ *

Mean inter event time if nothing else going on

1 20 199 6 1

1

0 3843285

* exp " . "

.

.

#

classfit $coef CovSnd

CovSnd

Mea

[]()()

> nn teacher student time again,if nothing else happened ()
> 1 / 22 18 6 1 2* * exp " . " " . "sum classfit $coef c CovSnd , CovSnd()éë ùû()()(()
[]

>

1 1 153845.

/Sequential address teacher w out prior intby eeraction

givena prior teacher student interaction assum

,

, and iing

nothing else happened

classfit $coef c CovSn> 1 17 6/ * exp "sum dd ,, CovSnd ,, PSAB

Teac

. " " . " "
"

.

#

1 2

1 0 1384693

 AY()é
ë

ù
û()()()

[]

> hher responding a specific student given an

immediate event

to ,

>> 1 6 1 2/ exp " . " " . " "sum Bclassfit $coef c CovSnd ,,, CovSnd ,,, PSAB AA" " "

.

#

,,, RRecSnd

Student respondi

()éë ùû()()()
[]

>

1 0 03587346

nng a specific teacher given an

immediate event

cla

to

sum

,

/ exp> 1 sssfit $coef c CovSnd ,,, CovRec ,,, PSAB ,,, RRecSn6 1 1" . " " . " " " " BA dd "

.

()éë ùû()()()
[]1 0 2657102

	

4  A Relational Event Approach to Modeling Behavioral Dynamics

86

Remember that our temporal units in the classroom dataset are increments of
minutes: multiplying these values by 60 returns how many seconds (or fractions
thereof) these predicted waiting times entail. Thus, if no other event were to inter-
vene, a teacher would initiate communication with a student after a mean waiting
time of approximately 70 seconds. Given an initial teacher→student communica-
tion and no other intervention, the same teacher will produce another speech act
after an average of roughly 8 seconds—a rapid-fire lecture mode. Interestingly, we
can also see that teachers are very quick to respond to student communications (a
delay of just over 2 s, on average), while students take somewhat longer to respond
to teachers (about 16 s). Such observations comport well with our general intuition
regarding classroom functioning, and illustrate the types of quantitative information
that can be gleaned from a REM fit.

4.5.4  �Assessing Model Adequacy

We can assess model adequacy for exact time relational event models in much the
same manner as we do for ordinal time models. The major difference is that we can-
not here use a fixed null residual or guessing equivalent. However, we can still
examine “surprise” based on the deviance residuals of fitted models. Despite not
having a fixed null residual to evaluate against, we can still inspect the distribution
of the deviance residuals. Ideally, we would like them to be small and clustered near
zero. Figure 4.7 plots the histogram of the deviance residuals from model 6. The
distribution is clearly more “lumpy” than that observed in Fig. 4.3 for the corre-
sponding the WTC model, suggesting that the classroom dyamics are less well-
predicted on average than were the radio communications.

	

> # Plot the histogram of the deviance residuals from model6

>> ()

>

hist classfit $residuals

well we predict the exact

6

How do event

mean apply classfit $predicted match,, ,,

?

.> ()()
[]

6 1

1

all

00 3299566.

#> How dowell we predict either the sender or receivver of an event

mean apply classfit $predicted match,, ,,

?

.> 6 1 anny

How do

()()
[]

>

1 0 5166425.

well we predict each part of the eevent

colMeans classfit $predicted match

FromId ToId

?

.

.

> ()6

0 50500651 0 3415340. 	

C.T. Butts and C.S. Marcum

87

Evaluating how well the model predicts each event sheds additional light on
these results.

On average, the model only predicts the event perfectly about 33 % of the time
(still a remarkable performance, given the large number of possible events). We do
a bit better with getting at least one part of the event right, correctly classifying the
sender or receiver about 50 % of the time (and we do much better at classifying
senders than receivers over all, on average). Moreover, inspection of the classifica-
tion accuracy in Fig. 4.8 for this model shows substantial lag between the prediction
threshold and fraction of the observed events covered by the model. By 25 % of the
possible events transpiring, the model has only predicted 89 % of the observed
events (compared with 98 % in the corresponding WTC case).

Fig. 4.7  Histogram of Deviance Residuals from Exact Time Model of McFarland’s Classroom.
Data

4  A Relational Event Approach to Modeling Behavioral Dynamics

88

	

>
>

#

(. / *

Classification plot

plot ecdf classfit $observed rank6 19 220()() =, "xlab Prediction

Threshold Fraction of Possible Eventts ylab Fraction of

Observed EventsCovered main Clas

() =
=

", "

, "" ssification Accuracy xlim c ,

abline v c ,, ,,

",)

. . .

= ()
> =

0 1

0 05 0 1 0 255 2

25

() =()

>

,

a comparative look the prediction thresho

lty

at th# lld

ecdf classfit $observed rank> ()()()
[]

6 19 20 25

1 0 8929088

. / * .

.

>> ()()()
[]

ecdf wtcfit $observed rank6 37 36 25

1 0 983368

. / * .

.
	

Fig. 4.8  Classification Accuracy of the Observed Ranks Under Model 6 with Prediction.
Thresholds Indicated at 0.05, 0.1, and 0.25

C.T. Butts and C.S. Marcum

89

So, comparatively, it looks that our exact time relational event model of the
classroom data isn’t performing as well as our ordinal time relational event model of
the WTC data. We may be missing some important aspect of the relational event
process in our model of the classroom conversation. We can again examine the model
“surprise” superimposed on the time-aggregated network for clues about what may
be going on. Here, because we lack a null residual, we’ll define surprising events as
those for which the observed event is not in the top 5 % of those predicted.

	

> >
> <

\ %

.

rank corresponds the here

surprising soc

19 5to cut off

as

 iiomatrix eventlist Class classfit $observed rank , ,. .6 19 20>[]()

>>
>

#

(,

Plot the resulting surprising network

gplot surprising eedge surprising
arrowhead edgelist

. ^ . ,
. log(. .

lwd
cex as sna

=
=

75
ssurprising

, vertex ifelse WTCPoliceIsICR,, b

()
[] + =3 25) . , . "col llack ,, gray

vertex

vertex sides ifelse WTCPol

" " " ,
. . ,

.

()
=

=
cex 1 25

iiceIsICR,, ,, displayisolates FALSE4 100() =,) 	

The visualization in Fig. 4.9 gives us more of a clue about what we’re missing.
Specifically, the presence of five distinct clusters represent the occurrence of vari-
ous side discussions that are not well-captured by the current model. This could be
due to the fact that things like P-shift effects fail to capture simultaneous side-
conversations (each of which may have its own set of turn-taking patterns), or to a
lack of covariates that capture the enhanced propensity of subgroup members to

Fig. 4.9  Time-Aggregated
‘Surprising’ Events
Network Under the Final
Relational Event. Model
of McFarland’s Classroom
Data

4  A Relational Event Approach to Modeling Behavioral Dynamics

90

address each other (such as students being in the same school club together). Further
elaboration could be helpful here. On the other hand, we seem to be doing reason-
ably well at capturing the main line of discussion within the classroom, particularly
vis-a-vis the instructors. Whether or not this is adequate depends on the purpose to
which the model is to be put; as always, adequacy must be considered in light of
specific scientific goals.

4.6  �Conclusion

A wide range of interaction processes—from radio communications to dominance
contests— can be fruitfully studied within the relational event paradigm. While aris-
ing as the short duration limit of the dynamic network regime, the relational event
regime has its own distinct properties and requires distinct treatment. In particular,
relational event dynamics are fundamentally about sequential relational structure,
rather than the simultaneous relational structure that is the dominant concern within
social network analysis. In this and many other respects, theory and analysis of
relational event dynamics owes as much to fields such as conversation analysis,
event history analysis, and agent-based modeling as to conventional network analy-
sis. Relational event models are still fundamentally structural, however, and we
stress that the approaches are complementary. Indeed, where exact (or exactly
ordered) data is available on relationship start and stop times, it is possible to model
dynamic networks via a REM process whose events involve the creation and termi-
nation of edges. Taking such a process to be fully latent—with only the state of the
currently active edges observed at a small number of distinct points in time—leads
one to a model family that is essentially similar to the framework of Snijders (2001).
Likewise, temporally extensive relationships are often important covariates for rela-
tional event processes, allowing one to directly assess the impact of ongoing ties on
social microdynamics.

Although we have focused here on some of the most basic types of REMs, more
complex cases are also possible. As noted, REMs for “egocentric” event data
(Marcum & Butts, 2015) can be powerful tools for modeling the responses of indi-
viduals to their local social environments, and are well-suited to the analysis of
complex event series (with many event types) punctuated by exogenous events.
Hierarchical extensions to REMs (DuBois et al., 2013b) allow for pooling of infor-
mation across multiple event sequences while still allowing the dynamics of each
sequence to differ from the others; this is particularly useful when studying many
small groups, and/or when attempting to estimate covariate effects for attributes
whose prevalence varies greatly from group to group. Endowing REMs with latent
structure also holds a host of opportunities, including the ability to infer latent inter-
action roles directly from behavioral data (DuBois, Butts, & Smyth, 2013a). Given
the breadth and flexibility of the approach, the prospects are good for many more
developments in this area. We close with the important reminder that no representa-
tion is fit for all purposes, nor is it intended to be. Many relational analysis problems

C.T. Butts and C.S. Marcum

91

involve the modeling of ongoing relationships, and are better viewed through the
lenses of static or dynamic network analysis. Where one’s focus is on micro-
interaction or other processes involving discrete behaviors whose implications cas-
cade forward through time, however, the relational event paradigm offers a powerful
and statistically grounded alternative.

References

Almquist, Z. W., & Butts, C. T. (2014). Logistic network regression for scalable analysis of
networks with joint edge/vertex dynamics. Sociological Methodology, 44(1), 273–321.

Bender-deMoll, S., & McFarland, D. (2006). The art and science of dynamic network visualiza-
tion. Journal of Social Structure, 7(2).

Blossfeld, H. P., & Rohwer, G. (1995). Techniques of Event History Modeling: New Approaches
to Causal Analysis. Lawrence Erlbaum and Associates, Mahwah, NJ.

Burt, R. S. (1992). Structural holes: The social structure of competition. Cambridge, MA: Harvard
University Press.

Butts, C. T. (2008). A relational event framework for social action. Sociological Methodology,
38(1), 155–200.

Butts, C. T. (2009). Revisiting the foundations of network analysis. Science, 325, 414–416.
Butts, C. T. (2010). Relevent: Relational event models. R package version 1.0.
Butts, C. T., Petrescu-Prahova, M., & Remy Cross, B. (2007). Responder communication networks

in the world trade center disaster: Implications for modeling of communication within emer-
gency settings. Mathematical Sociology, 31(2), 121–147.

Centola, D., & Macy, M. (2007). Complex contagions and the weakness of long ties. American
Journal of Sociology, 113(3), 702–734.

DuBois, C., Butts, C., & Smyth, P. (2013a). Stochastic blockmodeling of relational event dynam-
ics. In Proceedings of the Sixteenth International Conference on Artificial Intelligence and
Statistics, 238–246.

DuBois, C., Butts, C. T., McFarland, D., & Smyth, P. (2013b). Hierarchical models for relational
event sequences. Journal of Mathematical Psychology, 57(6), 297–309.

Freidkin, N. (1998). A structural theory of social influence. Cambridge: Cambridge University
Press.

Gibson, D. R. (2003). Participation shifts: Order and differentiation in group conversation. Social
Forces, 81(4), 1335–1381.

Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78(6),
1369–1380.

Heider, F. (1946). Attitudes and cognitive organization. Journal of Psychology, 21, 107–112.
Koskinen, J. H., & Snijders, T. A. (2007). Bayesian inference for dynamic social network data.

Journal of Statistical Planning and Inference, 137(12), 3930–3938.
Krivitsky, P. N., & Handcock, M. S. (2014). A separable model for dynamic networks. Journal of

the Rotal Statistical Society, Series B, 76(1), 29–46.
Lakon, C. M., Hipp, J. R., Wang, C., Butts, C. T., & Jose, R. (2015). Simulating dynamic network

models and adolescent smoking: The impact of varying peer influence and peer selection.
American Journal of Public Health, 105(12), 2438–2448.

Leenders, R., Contractor, N. S., & DeChurch, L. A. (2015). Once upon a time: Understanding team
dynamics as relational event networks. Organizational Psychology Review., 6(1), 92–115.

Liang, H. (2014). The organizational principles of online political discussion: A relational event
stream model for analysis of web forum deliberation. Human Communication Research, 40(4),
483–507.

4  A Relational Event Approach to Modeling Behavioral Dynamics

92

Marcum, C. S., & Butts, C. T. (2015). Creating sequence statistics for egocentric relational events
models using informr. Journal of Statistical Software, 64(5), 1–34.

Mayer, K. U., & Tuma, N. B. (1990). Event history analysis in life course research. Madison, WI:
University of Wisconsin Press.

McFarland, D. (2001). Student resistance: How the formal and informal organization of class-
rooms facilitate everyday forms of student defiance. American Journal of Sociology, 107(3),
612–678.

Mills, M. (2011). Introducing survival and event history analysis. Thousand Oaks, CA: Sage.
Morris, M., Goodreau, S., & Moody, J. (2007). Sexual networks, concurrency, and STD/HIV. In

K. K. Holmes, P. F. Sparling, W. E. Stamm, P. Piot, J. N. Wasserheit, & L. Corey (Eds.),
Sexually transmitted diseases (pp. 109–126). New York: McGraw-Hill.

Patison, K., Quintane, E., Swain, D., Robins, G. L., & Pattison, P. (2015). Time is of the essence:
An application of a relational event model for animal social networks. Behavioral Ecology and
Sociobiology, 69(5), 841–855.

Petrescu-Prahova, M., & Butts, C. T. (2008). Emergent coordinators in the World Trade Center
Disaster. International Journal of Mass Emergencies and Disasters, 26(3), 133–168.

Price, D. (1976). A general theory of bibliometric and other cumulative advantage processes.
Journal of the American society for Information Science, 27(5), 292–306.

Rapoport, A. (1949). Outline of a probabilistic approach to animal sociology. Bulletin of Mathe­
matical Biophysics, 11, 183–196.

Robins, G. L., & Pattison, P. (2001). Random graph models for temporal processes in social net-
works. Mathematical Sociology, 25, 5–41.

Sampson, S. (1969). Crisis in a cloister. Doctoral Dissertation: Cornell University.
Snijders, T. A. (1996). Stochastic actor-oriented models for network change. Mathematical

Sociology, 23, 149–172.
Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. Sociological

Methodology, 31, 361–395.
Tranmer, M., Marcum, C. S., Morton, F. B., Croft, D. P., & de Kort, S. R. (2015). Using the rela-

tional event model (rem) to investigate the temporal dynamics of animal social networks.
Animal Behaviour, 101, 99–105.

Wang, C., Hipp, J. R., Butts, C. T., Jose, R., & Lakon, C. M. (2016). Coevolution of adolescent
friendship networks and smoking and drinking behaviors with consideration of parental influ-
ence. Psychology of Addictive Behaviors, 30(3), 312–324.

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications.
Cambridge: Cambridge University Press, Cambridge.

Wasserman, S., & Robins, G. L. (2005). An introduction to random graphs, dependence graphs,
and p_. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social
network analysis (pp. 192–214). Cambridge: Cambridge University Press.

C.T. Butts and C.S. Marcum

93© Springer International Publishing AG 2017
A. Pilny, M.S. Poole (eds.), Group Processes, Computational Social Sciences,
DOI 10.1007/978-3-319-48941-4_5

Chapter 5
Text Mining Tutorial

Natalie J. Lambert

5.1  �Introduction

The world we live in is generating text at an unprecedented rate. Consider how
much new text is created by emails, newspapers, blogs, and social media websites
every day, and it quickly becomes clear that analysis of group behaviors can become
challenging due to the large amount and variety of textual data generated from
group members’ interactions. Text mining is one strategy for analyzing textual data
archives that are too large to read and code by hand, and for identifying patterns
within textual data that cannot be easily found using other methods. Text mining as
a method can be used to conduct basic exploration of textual data, or can be used in
combination with other methods like machine learning to predict group members’
future behaviors. This tutorial introduces text mining by outlining two basic meth-
ods for data exploration: generation of a concept list and generation of a semantic
network. Learning the steps it takes to prepare, import, and analyze textual data for
these simple procedures is enough to get started analyzing your own datasets. This
tutorial is only a glimpse of the text mining method, however, and new text mining
programs and algorithms are continually being developed. Readers interested in
learning more about text mining should take formal courses or explore the many
text mining packages available in programming languages like R and Python.

Most fundamentally, text mining is a methodology used to extract information,
classify data, and identify patterns within textual datasets. It is even more accurate
to say that text mining is a collection of methodologies because just as there can be
many patterns within any one collection of text, there are many ways to identify
these patterns using text mining. Historically, text mining was used to search

N.J. Lambert (*)
Brian Lamb School of Communication, Purdue University, West Lafayette, IN, USA
e-mail: njlambert@purdue.edu

mailto:njlambert@purdue.edu

94

computer documents in order to identify which documents contained a word or
words of interest, and to extract specific information from documents (Fan, Wallace,
Rich, & Zhang, 2006). Early electronic card catalogs in libraries utilized text min-
ing to tag and index catalogue holdings (Miner, 2012), and text mining has been
used to automatically generate research article abstracts from the content of articles
since the 1950s (Luhn, 1958). Text mining is used today by businesses and research-
ers for a multitude of purposes such as analyzing news stories in order to understand
the public’s perception of health topics like AIDS (Caputo, Giacchetta, & Langher,
2016), to extract trends in consumer opinions from product reviews posted online
(Dasgupta & Sengupta, 2016), and to manage information overload in research
fields like biomedical research (Cohen & Hersh, 2005).

There are many situations where other methodologies cannot provide the type of
information about a textual dataset that text mining can offer. A researcher with
60 hours of audio recordings of focus group interviews is faced with around 1,800
pages of transcriptions. Hand coding of such data for a factor of interest usually
requires multiple readings of the text by several researchers, and such large textual
datasets are often a daunting barrier to analysis even when they offer significant
benefits like coverage of a greater variety of research subject demographics and
backgrounds. Text mining can search through these large datasets for evidence of a
factor of interest in seconds as opposed to the many hours it would take to manually
search all of the transcriptions.

Another benefit of text mining is its ability to perform data-driven discovery.
Data-driven discovery is the process of looking for patterns within datasets without
pre-conceived hypotheses regarding what the researcher expects to find. Using the
traditional scientific method, the researcher with the large archive of focus group
transcriptions would have analyzed the data in order to answer a specific hypothesis
such as, “Organizational groups that utilize a cooperative approach to conflict will
attain higher productivity ratings than organizational groups that utilize a competi-
tive approach to conflict.” The researcher would likely answer this hypothesis by
focusing on instances of conflict within the transcriptions, using a method like
structural equation modeling to evaluate whether there is a relationship between
group conflict style and the groups’ productivity. Data-driven discovery conducted
using text mining allows the researcher to broaden his or her focus to anything
within the transcriptions that is significant to the conversation generated during the
focus groups. Topic modeling or cluster analysis of a semantic network generated
from the transcriptions could reveal a number of frequently-occurring topics like
wage gaps or understaffing that a hypothesis-driven approach not focused on these
topics would be unlikely to identify. Text mining can also be used in combination
with other methods to double-check whether any frequently-occurring themes or
words are present within the data that were not recognized by other forms of analy-
sis. Text mining should not, however, be considered in any way superior to tradi-
tional research methods—it simply offers a new approach to examining textual data
and is especially useful for managing data overload.

N.J. Lambert

95

5.2  �Overview of Text Mining

There are many analyses that can be performed using text mining, but the way in
which the method operates is similar for most text mining procedures. During a text
mining procedure, an algorithm built into the software contains a set of instructions
for how to examine the text data and what to make note of. For example, during the
first phase of analysis, called preprocessing (described in more detail below), the
algorithm for the procedure called “stop word removal” tells the software to look
word by word through the text data for all the words on a “stop word list,” a list of
words the researcher wants to exclude from analysis. The software “reads” through
the entire dataset one word at a time, comparing each word in the dataset to the words
on the stop word list, removing all words from the dataset that match a word found
on the list. Another common procedure in text mining is the generation of a concept
list, which is an inventory of all of the words in a dataset along with a count of how
frequently each word appears in a dataset. The algorithm that creates the concept list
also passes through the text word by word, adding new words it encounters to the
concept list and adding a count to a word’s tally number each time it reencounters the
same word in the text. There are many more sophisticated ways that text mining
algorithms draw information from a text archive than those just described, but the
basic principle is that an algorithm contains a set of instructions for how the software
should read and keep track of information found within the text. A full text mining
analysis almost always involves running multiple procedures in a particular order in
order to extract the information a researcher is interested in from the text.

As the reader likely can imagine, text mining as a method has some very specific
assumptions built into it. The biggest assumption is certainly that individual words
can have meaning even when they are far removed from their original context.
A concept list, for example, counts the total number of times each word in a dataset
appears within the text without taking the specific context where each word was
used into account. The word “hate” means something very different when someone
says “I hate my job” and “I’d hate to lose my job,” but a standard concept list cannot
tell you that. Data scientists are building algorithms and text mining approaches that
can take the context of all words into account (see Lexalytics, 2015), but for schol-
ars new to text mining it is important to remember that words spelled the same but
with different meanings can be counted as the same concept. Another common
assumption of text mining is that frequently-occurring words within a text archive
are more significant than infrequently occurring words. This may indeed be the
case, as it is in the tutorial example, or a word could simply occur frequently because
it is a commonly used word for a certain language or context. There are also cases
where word frequency is completely unimportant for understanding a particular
dataset. It is therefore the analyst’s responsibility to think through algorithms’ built-
in assumptions when performing text mining.

A third assumption of many text mining algorithms is that words that occur near
each other in a text archive are related in some way. This chapter will demonstrate
how to generate a semantic network, which is a group of words existing within a

5  Text Mining Tutorial

96

text archive that have been found to share some sort of relationship in common.
According to many text mining algorithms, what these words usually have in
common is proximity. Text mining tools commonly assign two words to the same
meaning group when they both occur within a certain distance of each other within
the text. It seems safe to assume that words that occur within the same sentence or
paragraph are related, but if we look at the “I hate my job” and “I’d hate to lose my
job” example again, it possible to see how words that occur near one another in
textual data can be related but also have context-specific meanings that can be over-
looked by algorithms only interested in words’ relative positioning.

These examples are not meant to foster mistrust in text mining, but rather for the
reader to gain an understanding of what the method can and cannot do. Text mining
can provide a researcher with valuable information about his or her data such as
which people, organizations, and places feature prominently within it, analyzed
through a procedure called entity detection. Text mining can give a data analyst a
sense of the emotion being expressed during conversations through a procedure
called sentiment analysis. The text mining method can also map out dominant con-
versations taking place within communication datasets, showing where there is over-
lap between conversation topics. Or, text mining can be used to identify important
phrases or patterns within business reports in order to expose reoccurring problems
(Choudhary, Oluikpe, Harding, & Carrillo, 2009) and to detect public health rumors
online (Collier et al., 2008). Google Book’s Ngram viewer (http://books.google.
com/ngrams) is an example of how simply tracking word frequencies over time can
result in a sense of the rise and fall of the public interest in different topics. Figure
5.1 visualizes a comparison of the frequency of the appearance of the words “war”
and “peace” over time in Google’s large book archive. Note the rise in the term
“war” following the first and second world wars. The graph also indicates that
although books contained the word “war” more frequently than “peace,” the appear-
ance of “war” and “peace” followed very similar patterns.

Fig. 5.1  Google Books Ngram viewer graph of the words “war” and “peace”

N.J. Lambert

http://books.google.com/ngrams
http://books.google.com/ngrams

97

The result of text mining analysis is a summary of a pattern identified by the proce-
dure that was run. The form this patterns takes can vary quite a bit, from a simple con-
cept list to a very complex semantic network map or a new document file containing
extracted data that fits the parameters the algorithm was designed to find, such as a
subconversation. The results of text mining reveal something about what words or sec-
tions of a text archive are meaningful either because they occur frequently, are closely
related to other words within the text, or because they fit some other parameter set by the
researcher. Text mining analysis is not complete, however, until the analyst has reexam-
ined the results back within the context of the data in order to interpret the meaning of
the pattern. While the patterns text mining can reveal often seem self-explanatory, a
deeper understanding of the data is only gained by assessing why certain words were
found to be related and not others, and what this means for the group being studied.

5.3  �Text Mining Tutorial

There are many methods that can be used to conduct exploratory text mining. This
tutorial covers basic preprocessing steps as well as the generation of a concept list
and semantic network. These text mining techniques will be demonstrated using
AutoMap (Carley, 2001), a text mining tool developed by the CASOS Group at
Carnegie Mellon University. (See Carley, Columbus, Bigrigg, Diesner, and Kunkel
(2010) for a tutorial.) There are dozens of text mining tools, each with their indi-
vidual benefits and suitable for different analyses and types of datasets. Tools like
AutoMap that have graphical user interfaces are excellent for beginners interested
in exploratory text mining. Once an analyst is comfortable with basic text mining,
however, he or she will likely need to learn some programming skills in order to
perform advanced procedures customized to his or her particular dataset.

The overall process for conducting text mining is: (1) data collection, (2) data
preparation, (3) pre-processing, (4) analysis, and (5) interpretation. This tutorial
will take you through each step of the method by describing an analysis conducted
for a research project which examined small groups of emergency medical
physicians as they drew on their professional expertise during medical consultations
in order to develop patient treatment plans (Lammers, Lambert, Abendschein,
Reynolds-Tylus, & Varava, 2016).

5.3.1  �Data Collection

The sample text corpus used in this tutorial was collected during a study of medical
consultations taking place in the emergency department of a hospital. The emer-
gency department was staffed by about two dozen full-time physicians, including
doctors, physicians’ assistants, nurse practitioners, and medical residents. The team
of researchers was permitted to observe physicians’ conversations with one another
in their shared office space away from patients. The researchers transcribed by

5  Text Mining Tutorial

98

hand, as verbatim as was possible, the conversations between physicians related to
patients’ care in the emergency department. They also noted which physician initi-
ated each conversation and which physicians participated in each conversation. The
data collection totaled 90 h of observations, which resulted in 159 pages of field
notes and a text corpus of medical consultations containing 19,868 words. The fol-
lowing is a hypothetical example of a typical medical consultation observed by the
research team, created in order to preserve participants’ privacy:

Doctor:	 What’s going on with room 23?
Resident:	 He’s a 42-year-old man, diabetic. Complaining of pain in abdomen and

side. No fever, white count is normal.
Doctor:	 Possible kidney stone. Any pain medicine prescribed? You can give

him morphine.
Resident:	 Sounds good.

The research team was interested in studying medical consultations because
existing research had shown that communication problems between physicians can
result in treatment errors, especially during patient handoffs (Maughan, Lei, &
Cydulka, 2011). Medical professionals had also called for a better understanding of
medical consultations beyond exploratory studies offering models and taxonomies
of medical consultations (Kessler et al., 2011). Little was known about what a medi-
cal consultation looks like or what topics or problems physicians encounter during
consultation, and so that is what the research team set out to learn by collecting and
analyzing empirical observations of medical consultations. Their goal was to distin-
guish between different types or topics of medical consultations in order to better
understand how medical professionals enact expertise. Text mining was a useful
method for this research project because the data collected by the team was unstruc-
tured textual data, meaning the data was in its naturally occurring form and not
classified or organized into a database. The researchers knew very little about the
data since no one had ever looked at the topics surrounding medical consultations
before. An exploratory method that could look for patterns within the textual data
was therefore the best fit, and that is what text mining is designed to do.

5.3.2  �Data Preparation

After collecting a textual dataset, the next step of the text mining method is to pre-
pare the data for analysis. Data preparation involves removing all data items from a
text archive (often called a text corpus) except for the text of interest, and converting
the data into a format that the software can import and read. In the case of the
example research team, once they decided that they wanted to analyze medical con-
sultations between all the physician role types, they removed the role labels from
the text corpus (i.e., Doctor, PA, etc.) so that only the transcribed medical consulta-
tions remained. The next step was to copy all the text transcriptions and paste them
into Notepad. When using AutoMap and many other text mining tools, the file

N.J. Lambert

99

extension of the data file must be “.txt”, because the data must be contained within
in a plain text file in order for the software to be able to read it. Other text editors
can be used instead of Notepad as long as they do not preserve file formatting and
can generate plain text files. The research team data analyst saved the plain text file
containing the medical consultation data within a new folder, and did not place
anything else in the folder. If a dataset is comprised of multiple text files, the analyst
should place all of the text files he or she wants to analyze simultaneously within
this folder. AutoMap will import all files within the folder as one dataset. The
research team data analyst next created another empty folder where the data analy-
sis output would be stored. The dataset and analysis output folders can be seen in
Fig. 5.2.

After properly formatting and storing the medical consultation data, the data
analyst imported the data file into AutoMap. To do this, the analyst began at the
AutoMap home screen (Fig. 5.3) and imported the data file by clicking on File—
Import Text Files. The next step was to click once to highlight the file folder con-
taining the data, and then click Select (Fig. 5.4). The data analyst used the preselected
settings for text encoding and text direction and pressed Enter.

Fig. 5.2  Data and output
folder creation

Fig. 5.3  The AutoMap
home screen

5  Text Mining Tutorial

100

The text contained within the data file was imported into AutoMap and displayed
in the text display pane. Due to privacy agreements with the example study’s
research subjects, this tutorial cannot show the transcription of the medical consul-
tation dataset. As an alternative, the full script of Shakespeare’s Romeo and Juliet
(Fig. 5.5) has been imported into AutoMap using the previously described steps.
This tutorial will use Romeo and Juliet as dummy data to demonstrate the next step,
data preprocessing, and then return to the medical consultation transcriptions to
show the results of a real data analysis.

As can been seen in Fig. 5.5, the all-caps indicators of the act, scene, and charac-
ters are included in the imported data file. This was done in order to learn more
about the main features of the play, and because the analyst decided in advance that
characters were important features of the play and therefore should be included in
data analysis. If the analyst was instead interested in analyzing the dialogue of the
play and wanted to compare and contrast different characters’ dialogue, her or she
would have collected each character’s lines into separate plain text files and removed
all-caps text and any other non-dialogue text from the files. Each file would be ana-
lyzed separately and comparisons made of the individual analysis results for each
character. Data preparation is a very important part of the text mining method
because during this step the analyst must make choices about what selections of a
larger text corpus to include in the analysis. Every text corpus contains different
characteristics that must be taken into consideration when making decisions about
how to best prepare data to answer a specific research question.

5.3.3  �Preprocessing

Once the dataset has been formatted and imported into AutoMap, the next step is
preprocessing of the data. Preprocessing is a term used to describe the cleaning up
and standardizing of textual data prior to analysis. Two common types of prepro-
cessing are stop word removal and stemming. Stop words are any words that would

Fig. 5.4  Importing a text
corpus into AutoMap

N.J. Lambert

101

interfere in the software’s ability to identify meaningful patterns within the data.
These are usually high frequency words that do not have a lot of significance for
most datasets such as articles, conjunctions, pronouns, number words, contractions,
simple verbs, and prepositions. Many text analyzers have built-in stop word lists
(also called “delete” lists), but a researcher can also create his or her own by making
a list of words that are known to be frequent within a dataset but do not add value to
the analysis.

To perform stop word removal on the Romeo and Juliet dataset within AutoMap,
the data analyst clicked on Preprocess—Text Refinement—Apply Delete List, and
clicked Confirm. She used the standard AutoMap delete list (which contains the
most frequently-occurring words within the English language: a, an, and, as, at, but,
for, he, her, hers, him, his, etc.), although she could have edited the delete list within
AutoMap to create a custom list. The next step was to select Rhetorical as the type
of delete processing because this setting inserts a placeholder, xxx, into the data so
that the analyst can see which words were removed due to this procedure. Rhetorical
delete processing also preserves the distance between words so that two words are
not considered closer together after the words on the delete list that exist between
them are removed. The analyst clicked OK, and the results of delete list application
can be seen in Fig. 5.6. Note that you can see the list of procedures that have been
performed on the data so far in the Message Window.

Fig. 5.5  Romeo and Juliet imported into AutoMap

5  Text Mining Tutorial

102

Further preprocessing can be done by using the Preprocess—Text Preparation
functions such as Remove Numbers as Words or Remove All Noise Words. The
analyst chose to apply Remove All Noise Words to the Romeo and Juliet dataset
because this procedure removes pronouns, verbs, possessives, number words and
other words types that researchers often find beneficial to remove from their textual
data before analysis. The amount and type of preprocessing that should be per-
formed depends on the dataset and what the researcher wishes to learn from it. For
example, in some datasets pronouns could be important indicators of personal iden-
tification, and inclusion of all verbs might be important for analysis of storytelling
or for identifying time phases. It is up to the researcher to evaluate the benefits and
impact of specific preprocessing techniques on a particular dataset. Figure 5.7
shows the dataset after all noise words were removed.

The second preprocessing technique, stemming, involves identifying the root of
a word and then standardizing all the various endings that come after a root in order
to avoid separate counts of a word that has different forms but the same meaning.
For example, the words “live,” “lived,” and “lives” would all be considered unique
words by a text analyzer unless the analyst performed preprocessing like stemming
that can reconcile these differences within the dataset. After performing stemming,
the root of these words, “live”, would take the place of all other forms of the word
within the dataset. The analyst applied stemming to the Romeo and Juliet dataset in

Fig. 5.6  Delete list applied to Romeo and Juliet dataset

N.J. Lambert

103

order to demonstrate this procedure. In AutoMap stemming is conducted by clicking
on Preprocess—Text Refinement—Apply Stemming. The analyst used the default
K-stemmer, clicked OK, chose the default option to include capitalized words in
stemming, and clicked OK again. The results (Fig. 5.8) show that verbs have been
converted to their root form, so that “lay” became “lie.” Plural nouns like “ears”
were converted to singular nouns, and all words not in their root form were brought
to their root form. It is now much less likely that words with the same meaning will
be analyzed separately because of grammar or conjugation factors.

5.3.4  �Data Analysis

Text Corpus Statistics. Now that the Romeo and Juliet dataset has been prepro-
cessed, the simplest type of exploratory analysis that can be done is generation of a
concept list. As mentioned earlier, a concept list is a inventory list of the words that
appear within a text corpus along with a count of each word’s frequency and other
attribute information. The analyst generated a concept list for the Romeo and Juliet
dataset by clicking on Generate—Concept List—Concept List (Per Text).
AutoMap’s request to “Select Directory for Concept Lists” asks the analyst to select

Fig. 5.7  Romeo and Juliet dataset after all noise words removed

5  Text Mining Tutorial

104

an output folder where he or she wants the results of the analysis to be stored. The
analyst should only click once on the output folder to highlight it, then click Select.
The next window allows the analyst to specify some concept list generation param-
eters. For this example the analyst used the default parameters and then clicked
Confirm. AutoMap gives the option to open the concept list in its built-in viewer
window, but the user can also navigate to the output folder on his or her computer
where a new folder, Concept List1, has been created to store the concept list. The
concept list is created as a Microsoft Excel file, which makes it convenient to sort
the list according to the frequency that a word appears in the dataset, or according
to any other attribute assigned by the researcher. The analyst opened the file in Excel
and then sorted the list by frequency, as seen in Table 5.1. The concept list shows
each word within the corpus, a count of how frequently it occurred within the cor-
pus, and a relative frequency score compared to the concept that occurred most
often in the corpus.

Even though the concept list is a very simple text mining method, it does reveal
some meaningful information about the data, especially for people who have never
read Romeo and Juliet or seen the play performed. The concept list can be inter-
preted as evidence that a large amount of the text is devoted to a love story in which
two characters, Romeo and Juliet, factor highly. The list indicates that night may be
an important time or setting of the play, and that a nurse, friar, and people named
Mercutio, Benvolio, and Laurence are important characters. The word “death”

Fig. 5.8  The Romeo and Juliet dataset after stemming was applied

N.J. Lambert

105

appears in the text relatively frequently, and so the analyst might assume that one or
several characters die—this might therefore be a romantic tragedy. The concept list
provides only a very basic understanding of the play that is divorced from its prose
and plot, but perhaps through this example the reader can now visualize how text
mining can aid researchers in extracting meaningful information from text corpuses
much larger than a play that would otherwise take weeks to read through and
summarize.

The concept list also points out where preprocessing improvements are neces-
sary. The list shows that ROMEO and Romeo were counted separately by AutoMap.
This result can be considered useful in that it distinguishes between the play format-
ting made in all caps and the verbal references to Romeo that appeared during the
play, but it could also be considered an error if the analyst’s goal was to count all
mentions of Romeo together. “Thy” and “thee” show up at the top of the list because
the delete list was created with modern language in mind. These pronouns should be
added to the delete list and preprocessing rerun. The word “ll” needs to be investi-
gated since it may be a result of stemming or could be part of an archaic word in the
text that could not be properly preprocessed. As the reader can see, text mining
analyses must often be repeated multiple times in order to refine preprocessing to
suit the nuances of each dataset. Conversely, in some cases the analyst may want to
do very little preprocessing in order to preserve all variation within the data for
analysis. This was the case for the medical consultation dataset. Due to its smaller

Table 5.1  Concept list generated from the Romeo and Juliet dataset

A B C

1 Concept Frequency relative_frequency
2 ROMEO 180 1
3 love 155 0.8611111
4 thy 150 0.8333333
5 thee 138 0.76666665
6 JULIET 134 0.74444443
7 Romeo 130 0.7222222
8 CAPULET 119 0.6611111
9 Nurse 114 0.6333333
10 II 91 0.50555557
11 BENVOLIO 74 0.41111112
12 night 73 0.40555555
13 Enter 72 0.4
14 FRIAR 70 0.3888889
15 MERCUTIO 69 0.38333333
16 man 69 0.38333333
17 LAURENCE 65 0.3611111
18 good 65 0.3611111
19 death 64 0.35555556
20 LADY 62 0.34444445

5  Text Mining Tutorial

106

size, stemming made it impossible to detect the nuances of conversations surround-
ing similar medical consultation topics. As a result the analyst only performed stop
word removal and removal of numbers as words when preprocessing the medical
consultation dataset.

Semantic Network Analysis. This tutorial now returns to the medical consultation
dataset in order to demonstrate how to generate a semantic network from a text
corpus. Generation of a concept list using the medical consultation dataset revealed
that “pain” was a frequently occurring word within the text corpus as was “good-
bye.” The research team wanted to know more about the context of these and other
frequently occurring words, and so the team’s data analyst constructed a co-
occurrence semantic network from the data.

Co-occurrence semantic networks are based upon two key notions: (1) the idea
that words that exist close to each other within a textual dataset are likely related in
some way, and (2) that the meaning of a text corpus can be analyzed by constructing
a network that represents all of the relationships between words in a dataset simul-
taneously. Take for example the sentence, “The patient complains of pain in his
abdomen.” Stop word removal would leave us with: “patient complains pain
abdomen.” Because these words occur near each other (within the same sentence),
AutoMap makes note of their proximal relationship. The specific way in which the
software does this is as follows. AutoMap creates a “window,” the size of which is
specified by the analyst (for example, two sentences or a paragraph in size) and then
moves the window through the data, looking at the text that fits within the window
and keeping track of the words that appear within the same window. (Figure 5.9 is
an illustration of how a two-sentence window would move through the Romeo and
Juliet dataset.) By repeating this procedure throughout the data, AutoMap collects a
count of how many times a pair of words like “patient” and “pain” co-occur with
one another within the same window. The resulting list of word pairs can be visual-
ized as a network that connects all the pairs to one another so that if “pain” and
“patient” co-occur frequently, and “chest” and “pain” co-occur frequently, one
branch of the network will look like this: patient—pain—chest. In a network
visualization, the lines that connect the words, called edges, can be used to represent

Fig. 5.9  Illustration created to demonstrate how AutoMap creates “windows” to extract word
pairs during semantic network generation

N.J. Lambert

107

how many times the same pair of words co-occurs within the dataset by thickening
the width of the line to represent a greater frequency of co-occurrence.

The first step in constructing a co-occurrence semantic network is to click on
Generate—Semantic Network—Semantic (Co-reference List). The analyst again
clicked once on the output folder to select it, then clicked Next. The network param-
eters window allows the analyst to make several decisions about how to generate the
network. Directionality refers to whether the edge between two words represents a
unidirectional (one-way flow or relationship) or bidirectional relationship (two-way
flow or mutual relationship). For the medical consultation network, the analyst
chose to setup the network as having bidirectional relationships because the research
team wanted to discover the relationships between words within the medical consul-
tation conversations without putting a word order constraint on the network. For
their project, “doctor-patient” and “patient-doctor” could be counted as the same
word pair because word order would not change which concepts were related topi-
cally to one another. Word order had the potential to cause variation in the meaning
of these topics, but that was something the analyst was aware she would need to
evaluate. Analysis of the network with no word order constraints was her team’s
best option for a first round of data analysis. Therefore, if two words co-occurred
within the same window, the software noted their mutual, proximal relationship. If
the team had been interested in identifying frequently-occurring phrases, they
would have needed to preserve the order of words within each sentence and would
have chosen instead to generate a unidirectional network. The analyst selected the
window size as a two sentence window because of the small size of the text corpus,
left the other parameters at their default values, and clicked Confirm. This analysis
generates a folder, SemanticList1, within the output folder. The output itself is an
Excel file containing two columns that represent pairs of words extracted using the
described windowing method, along with a column that is a record of how fre-
quently each pair of words occurred within the text corpus (Fig. 5.10).

Fig. 5.10  The semantic
word pair list resulting
from semantic network
generation from the
medical consultation
dataset

5  Text Mining Tutorial

108

The next step was to visualize the semantic network using a network visualization
tool. The analyst used NodeXL (Smith et al., 2010), which can be downloaded
from: https://nodexl.codeplex.com/. An easy way to import the data into NodeXL is
to delete the column headers, “source_id,” “target_id,” and “frequency” from the
semantic list, and then copy and paste all the remaining cells in column A of the
semantic list into Vertex 1 under the “Edge” tab in NodeXL. The remaining cells in
column B should be pasted under Vertex 2 (see Fig. 5.11). It is important to make
sure that the word pairs match up with one another in the NodeXL spreadsheet the
same way they do in the semantic word pair list.

NodeXL’s Width column is used to display the frequency of each word pair, and
it does this visually by adjusting the relative width of the edges linking words in the
network map. The analyst copied and pasted the frequency column of the semantic
list into the Width column in NodeXL. Next, under the “NodeXL” tab at the top of
the page, she selected AutoFill Columns and selected Vertex Label from the
“Vertex” drop down menu and clicked AutoFill. This feature displays the words as
labels on the graph. Next, the analyst pressed “Show Graph” in the Document
Actions Pane to view the semantic network (Fig. 5.12). An initial network visualiza-
tion is often uninterpretable because of the many overlapping words and connec-
tions. The analyst chose to analyze the underlying structure of the medical
consultations network by looking for evidence of subconversations. The procedure

Fig. 5.11  Transfer of the semantic list words pairs and word pair frequency into NodeXL

N.J. Lambert

https://nodexl.codeplex.com/

109

used to do this was cluster analysis, which is run by going to the “NodeXL” tab,
clicking on Groups—Group by Cluster, and in this case the analyst chose to group
the words using the Clauset-Newman-Moore (2004) cluster algorithm. Under the
Document Actions Pane she used the layout drop-down menu to select Layout
Options, and chose Lay out each of the graph’s groups in its own box. Clicking on
“Refresh Graph” visualizes the semantic network clusters (Fig. 5.13).

Each of the groups displayed in the visualization of the cluster analysis have
been grouped together by the algorithm because the words within each group co-
occur with one another more frequently than they do with other words. Each of the
groups extracted from the medical consultation dataset represented a conversation
topic that arose during the physicians’ medical consultations. The analyst examined
the individual groups by clicking on the “Groups” tab on the bottom of the NodeXL
worksheet, and then clicked on “G1” in the Groups column to highlight the largest
group. She exported this group by clicking on Export—Selection to New NodeXL
Workbook. This procedure opened up a new NodeXL workbook containing only
this group’s data. Switching the layout algorithm to Harel-Koren Fast Multiscale
(Koren, 2002) and hitting Refresh made the network structure easier to view.
The analyst also clicked on individual words (represented as circular nodes) to
adjust the graph image manually so that there were no overlapping or obstructed
words. Figure 5.14 shows the subnetwork generated through this process. Figure 5.15
is the second largest subgroup, which was extracted using the same method per-
formed on Subgroup 1.

Fig. 5.12  The semantic network generated from the medical consultation dataset

5  Text Mining Tutorial

110

F
ig

. 5
.1

3 
T

he
 m

ed
ic

al
 c

on
su

lta
tio

n
da

ta
se

t s
em

an
tic

 n
et

w
or

k
gr

ou
pe

d
by

 c
lu

st
er

N.J. Lambert

111

5.3.5  �Interpretation

When first undertaking interpretation of the results of a semantic network analysis,
it is important to remember that during this method, “word associations in texts
were analyzed, and those word associations represent[] the meaning inherent to the
data” (Doerfel, 1998, p. 23). The resulting graph, such as those in Figs. 5.12 and
5.13, as well as any other metrics or information gained through the analysis,
explain something about the relationships between words in the text. However, the
meaning of these relationships can only be gained through interpretation of
the results. For example, finding that the words “sounds” and “good” co-occur fre-
quently within the medical consultations dataset is a meaningless piece of informa-
tion unless interpretation is done to connect this result back to the data context, the
nature of the text archive, and any theoretical frameworks used to collect or interpret
the data.

The analyst’s interpretation strategy is usually a function of what analyses were
performed on the text corpus. This tutorial’s example utilized a cluster analysis, and
so interpretation of the results will largely focus on interpreting the semantic graphs

Fig. 5.14  Subgroup 1: Emergency department physician’s medical consultations revolving around
pain diagnosis and management

5  Text Mining Tutorial

112

in terms of what medical consultation conversation topics they indicate. Because so
little is known about topics of medical consultations, each conversation cluster
should also be evaluated in terms of how these topics manifest within the larger
context of the original dataset. As was mentioned earlier, AutoMap linked words
when two words existed within the same window frame. While it is likely that words
that existed near each other in the text are related in a meaningful way, there is no
guarantee that this is the case. Therefore, the prominent, and seemingly meaningful
words pairs identified by the network graphs should be searched for within the text
corpus to make sure that there are in actuality meaningful relationships between the
word pairs.

Some researchers choose to focus on the calculation of graph metrics in order to
understand a text corpus, and such metrics should be interpreted in terms of what
they explain about the relationships between words or concepts within a dataset.
Graph metrics can be calculated at the individual word level (node level metrics) to
understand how many connections exist between particular pairs of words. Metrics
can also be calculated to understand qualities of the overall graph (graph level met-
rics). Once again, the simple reporting of a metric like the number of connections
between particular words pairs is not enough—the analyst should endeavor to inter-

Fig. 5.15  Subgroup 2: Emergency department physician’s medical consultations revolving around
feedback and affirmation of treatment plans

N.J. Lambert

113

pret what meaning is indicated by strong or weak connections between word pairs.
The researcher may ask: Are there many connections between specific words pairs
because they are a common phrase, are they instead two highly-connected concepts,
or is there some other reason the words frequently co-occurred? For example,
Atteveldt (2008) examined news stories to determine whether words associated
with the word “Muslim” changed in news coverage after 9/11. The author found that
the word “Muslim” was paired with terrorism-related words in news stories signifi-
cantly more frequently after 9/11, but that other terror events did not cause an
increase in these words’ associations. Atteveldt drew on framing theory when inter-
preting these word associations, finding that “the associative frame between
Muslims and terrorism was created not by local events, but rather by 9/11 as a
global event” (2008, p. 88).

Just as there are many ways to conduct text mining, there are many approaches
to interpreting the results of a text mining study. Overall, the analyst’s goal during
interpretation should be to: (1) identify patterns generated from the results, (2) con-
firm that these patterns are true representations of the original text corpus, and (3)
interpret these patterns to explain what they represent or mean within the context of
the dataset; how they answer a hypothesis or research question; how they can be
explained using a theoretical framework; or how the patterns form the grounds for
new theory development.

Interpretation of the Medical Consultation Semantic Network Analysis. To
briefly review, the results of the text mining and subsequent semantic network anal-
ysis revealed the most common communication topics that small groups of physi-
cians in an emergency department discussed as they enacted their expertise to
coordinate patient care during medical consultations. These communication pat-
terns were extracted by conducting cluster analysis of word associations within the
semantic network. Each cluster contained a group of words that frequently co-
occurred with each other and therefore had stronger relationships with one another
than they had with other words within the text corpus. The final step of this text
mining example is to interpret these patterns.

The largest subgroup (Fig. 5.14), showed the research team that a primary topic
of medical consultations for their dataset was the diagnosing and managing of pain.
This network graph visually represents all medical consultations in the dataset
related to pain. The network graph can be read by starting at the center of the image
and tracing the connections outward. In this manner, it is possible to see how con-
sultations regarding chest pain led to the ordering of x-rays and the need for subse-
quent reports. There are many conversation paths radiating out from the pain node
that have to do with describing the exact location of a patient’s pain. How pain
started and the words patients use to describe the sensation of pain are all parts of
this medical consultation topic. From this network, the research team learned about
the many ways in which emergency department physicians investigate and treat
pain. In terms of the study’s goal of understanding physicians’ expertise, Subgroup
1 in Fig. 5.14 was interpreted as evidence that the diagnosis and treatment of
patients’ pain is a primary area of emergency physicians’ professional expertise.

5  Text Mining Tutorial

114

This finding was very interesting to the research team because even though they
had read through the transcriptions many times, none of the team members had
recognized pain as a concept of interest within the dataset. This study illustrates the
fact that even though word co-occurrence and frequency are rather simple ways of
tallying the presence of words and the relationships between them, this method can
help researchers to gain an entirely new perspective of a textual dataset.

The second most dominant pattern found through the semantic network analysis
was Subgroup 2 (Fig. 5.15). This subgroup graph displays all conversations that
have the phrases “sounds good” or “sounds great” in common, and like Subgroup 1,
the graph shows the variations in conversations surrounding these terms. The many
other affirmative phrases within this network like “sounds great,” “sounds alright,”
and “yeah” led the research team to interpret this medical conversation topic as
evidence of the use of feedback loops by physicians during medical consultation
conversations to confirm or affirm treatment plans. The team went back to the text
corpus and examined the contexts in which such phrases took place, and this follow-
up examination of the text corpus confirmed that these words were very much used
by physicians to communicate mutual understanding during medical consultations.
This subgroup was interpreted as evidence that feedback is a very important part of
enacting expertise during medical consultations. Looking again at the original text
archive, the researchers also found that all physician roles, from medical resident to
senior physician, utilized these feedback loops, indicating that feedback is an inte-
gral component of medical consultation regardless of a physician’s level of medical
expertise. Although text mining findings primarily originate from analysis of the
textual data itself, it is always advisable to collect several layers of information
about the context of a textual dataset because this contextual information can help
an analyst achieve a more meaningful interpretation of the text mining results.

5.4  �Contributions

In this tutorial, text mining aided a research team working to understand physicians’
expertise in several meaningful ways. First, the researchers initially hit a roadblock
when analyzing their dataset using traditional qualitative thematic coding. The phy-
sicians’ language contained a lot of jargon, and as outsiders to the medical world,
the researchers had a very difficult time finding topical differences that could help
them categorize the consultations. This study is also an example of how text mining
is useful for small as well as large datasets when barriers exist to traditional analysis
methods. The fact that the research team did not notice that pain was a common
medical consultation theme when reading the text corpus is further proof of the
value of even the simplest text mining procedures.

This study was also the first step towards building theories to explain how physi-
cians enact expertise and how they communicate to manage patient care. Text min-
ing was valuable in helping the researchers take this first step because it allowed
them to conduct data-driven discovery in order to identify meaningful conversation

N.J. Lambert

115

topics without having to first develop hypotheses. So little was known about the
content of medical consultations that it would have been difficult to form specific
hypotheses. Knowing that they were conducting data-driven discovery, the research
team carefully defined the scope of their data (medical consultations) and used text
mining to explore their data for significant patterns of medical consultation conver-
sations. The research team also conducted follow-up interviews with the physicians
they observed during data collection in order to get the physicians’ interpretation of
the results. The combined quantitative and qualitative results of this study are help-
ing the researchers to build empirically-driven communication and organizational
theory. Text mining is also useful for testing theories by looking for patterns within
a text corpus to see whether they support existing theory. Additionally, theory can
be used as a framework for gathering textual data or for interpreting the results of
text mining. Text mining is a very flexible method well suited to making theoretical
advancements, but as was discussed earlier, the many choices the researcher makes
during data collection, preprocessing, and analysis determine whether or not a text
mining analysis ends up being a good fit for a particular research goal like the devel-
opment of theory.

There are many more text mining procedures and techniques than the few intro-
duced during this tutorial. After discovering that pain and feedback terms were very
relevant words in the medical consultation dataset, the research team could conduct
further text mining by using these terms as key words, conducting key word analysis
in order to extract all words surrounding the words the previous analyses found to
be important within the dataset. This approach would tell the research team more
about the specific context surrounding these meaningful terms. The research team
might be able to learn more about physicians’ expertise by having emergency
department physicians rate the individual medical consultations according to the
level of expertise they represent and then analyze high and low expertise consulta-
tions separately in order to evaluate what really excellent consultations have in com-
mon and what features are associated with poorly done medical consultations. In a
different study it might make sense to take time into consideration, dividing up a
text corpus into time segments and analyzing each segment independently in order
to understand how a phenomena of interest evolves or develops over time.

There are an infinite number of ways in which to conduct text mining, and this is
both a strength of the method and a barrier to its adoption. There is no guarantee that
any meaningful results will come from many hours of data formatting, preprocess-
ing, and analysis because the patterns each text mining procedure looks for can be
present or absent from a dataset—the analyst cannot know if there is any merit in
running a procedure until the work has been invested in running it. The way in
which a dataset has been collected also greatly influences the success of text mining.
Text mining is often described as an excellent method for analyzing very large text
corpuses, but if the text contained within a very large dataset does not have very
much in common, text mining is unlikely to identify any patterns, or if it does, the
patterns may be more a function of word prevalence within a certain language or
context and not due to the existence of important patterns within the data. For exam-
ple, text mining may find patterns within a text corpus comprised of 10,000 news-

5  Text Mining Tutorial

116

paper articles, but if the researcher did not choose newspaper articles that all focus
on a specific issue or social phenomena, or if there are off-topic articles mixed in
with the corpus, the results of text mining of this data are unlikely to be interpretable
in a meaningful way. Even though text mining is a powerful computational tool, it
must be combined with good data collection and preprocessing decisions made by
a human being who understands exactly what each algorithm and procedure is
doing to the data.

Text mining is a very useful tool for both academic research and practical appli-
cations in business, education, and individual contexts. It can be used to help ana-
lysts learn more about the exponentially-increasing text archives that are generated
while we work, from online commenting and debates, through communication with
friends and family, and during every online interaction and email we send. The ben-
efits offered by text mining will increase as this method is utilized by people from
many disciplines and fields, especially if those who use text mining continue to
share the procedures and techniques they find to be useful. Although text mining has
existed since the invention of the computer, it is still in its early stages of develop-
ment and application by people who are not advanced programmers or software
engineers. The potential of text mining will increase for everyone as it is adopted for
novel applications by new users like readers of this chapter.

References

van Atteveldt, W. (2008). Semantic network analysis: Techniques for extracting, representing and
querying media content. Charleston, SC: BookSurge Publishing.

Caputo, A., Giacchetta, A., & Langher, V. (2016). AIDS as social construction: Text mining of
AIDS-related information in the Italian press. AIDS Care, 28, 1171–1176.

Carley, K. (2001). AutoMap (version 3.0.10.41) [Computer software]. Pittsburg, PA: CASOS,
Carnegie Mellon University. Retrieved from http://www.casos.cs.cmu.edu/projects/automap/
index.php

Carley, K. M., Columbus, D., Bigrigg, M., Diesner, J., & Kunkel, F. (2010). AutoMap User’s
Guide 2010 (CMU-ISR-10). Carnegie Mellon University. Retrieved from http://www.casos.
cs.cmu.edu/publications/papers/CMU-ISR-10-121.pdf

Choudhary, A. K., Oluikpe, P. I., Harding, J. A., & Carrillo, P. M. (2009). The needs and benefits
of text mining applications on post-project reviews. Computers in Industry, 60(9), 728–740.

Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large
networks. Physical Review E, 70.

Cohen, A. M., & Hersh, W. R. (2005). A survey of current work in biomedical text mining.
Briefings in Bioinformatics, 6(1), 57–71.

Collier, N., Doan, S., Kawazoe, A., Goodwin, R. M., Conway, M., Tateno, Y., … Shigematsu, M.
(2008). BioCaster: Detecting public health rumors with a Web-based text mining system.
Bioinformatics, 24(24), 2940–2941.

Dasgupta, S., & Sengupta, K. (2016). Analyzing consumer reviews with text mining approach: A
case study on Samsung Galaxy S3. Paradigm, 20(1), 56–68.

Doerfel, M. L. (1998). What constitutes semantic network analysis? A comparison of research and
methodologies. Connections, 21(2), 16–26.

Fan, W., Wallace, L., Rich, S., & Zhang, Z. (2006). Tapping the power of text mining. Commu
nications of the ACM, 49(9), 76–82.

N.J. Lambert

http://www.casos.cs.cmu.edu/projects/automap/index.php
http://www.casos.cs.cmu.edu/projects/automap/index.php
http://www.casos.cs.cmu.edu/publications/papers/CMU-ISR-10-121.pdf
http://www.casos.cs.cmu.edu/publications/papers/CMU-ISR-10-121.pdf

117

Kessler, C. S., Afshar, Y., Sardar, G., Yudkowsky, R., Ankel, F., & Schwartz, A. (2011). A prospec-
tive, randomized, controlled study demonstrating a novel, effective model of transfer of care
between physicians: The 5 Cs of consultation. Academic Emergency Medicine, 19, 968–974.

Koren, D. H. Y. (2002). A fast multi-scale method for drawing large graphs. Journal of Graph
Algorithms and Applications, 6(3), 179–202.

Lammers, J. C., Lambert, N. J., Abendschein, B., Reynolds-Tylus, T., & Varava, K. (2016).
Expertise in context: Interaction in the doctors’ room of an emergency department. In P. M.
Leonardi, & J. W. Treem (Eds.), Expertise in Organizations (pp. 145–167). Oxford: Oxford
University Press.

Lexalytics. (2015). Dealing with context in text mining [White paper]. Retrieved August 29, 2016,
from Lexalytics: https://www.lexalytics.com/content/whitepapers/Lexalytics-WP-Context.pdf

Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of Research and
Development, 2(2), 159–165.

Maughan, B. C., Lei, L., & Cydulka, R. K. (2011). ED handoffs: Observed practices and commu-
nication errors. American Journal of Emergency Medicine, 29, 502–511.

Miner, G. (2012). Practical text mining and statistical analysis for non-structured text data appli-
cations. New York: Academic Press.

Smith, M., Ceni A., Milic-Frayling, N., Shneiderman, B., Mendes Rodrigues, E., Leskovec, J., &
Dunne, C. (2010). NodeXL: A free and open network overview, discovery and exploration add-
in for Excel 2007/2010/2013/2016. Retrieved from http://nodexl.codeplex.com/

5  Text Mining Tutorial

https://www.lexalytics.com/content/whitepapers/Lexalytics-WP-Context.pdf
http://nodexl.codeplex.com/

119© Springer International Publishing AG 2017
A. Pilny, M.S. Poole (eds.), Group Processes, Computational Social Sciences,
DOI 10.1007/978-3-319-48941-4_6

Chapter 6
Sequential Synchronization Analysis

Toshio Murase, Marshall Scott Poole, Raquel Asencio, and Joseph McDonald

6.1  �Introduction

Sequences have long been a central interest in group research.1 Sequences capture
how group processes unfold over time, and characterization of sequences as a whole
and their properties offers valuable insights into group decision-making, conflict
management, group cohesion, teamwork, and many other group phenomena.

Sequences have been studied on a variety of levels in group research. Some of
the best known sequences are the stages of the group life cycle. While Tuckman’s
(1965) iconic “Forming, Norming, Storming, and Performing” stage sequence is the
best known of these, several dozen models of the group life course have been
described (Hare, 1976, 2010; LaCoursiere, 1980). Sequential models of specific
group activities such as problem solving (Bales & Strodtbeck, 1951), decision mak-
ing (Fisher, 1970; Poole & Roth, 1989), conflict (Pondy, 1967), and teamwork

1 Preparation of this chapter was supported by National Science Foundation grant #BCS 0941268
and Army Research Institute grant W5J9CQ-12-C-0017. The contents of this chapter represent the
opinions of the authors and not of these organizations.

T. Murase (*)
Department of Psychology, Roosevelt University, Chicago, IL, USA
e-mail: toshio.murase@gmail.com

M.S. Poole
University of Illinois, Urbana, IL, USA
e-mail: mspoole@illinois.edu

R. Asencio
Krannert School of Management, Purdue University, Lafayette, IN, USA
e-mail: rasencio@purdue.edu

J. McDonald
Human Interfaces, Inc., Austin, TX, USA
e-mail: joe@humaninterfaces.net

mailto:toshio.murase@gmail.com
mailto:mspoole@illinois.edu
mailto:rasencio@purdue.edu
mailto:joe@humaninterfaces.net

120

(Ishak & Ballard, 2012; Marks, Mathieu, & Zaccaro, 2001) have also been advanced.
Conceptually, these activity sequences can be thought of as embedded within longer
group life cycles. Still other scholars have focused on short cycles of group activity
that might be repeated multiple times within episodes of group work, such as
Tschan’s (1995) orientation-action-evaluation cycles, which are posited to be tied to
quality of group work.

In studying sequences, researchers can focus on the entire sequence, as did
Tuckman (1965), Bales and Strodtbeck (1951), and Poole and Roth (1989). Relevant
research questions include: Do all groups follow the proposed sequence?; What fac-
tors determine whether a given sequence occurs?; Is following the sequence related
to outcomes such as effectiveness and group cohesion? A second option it so focus
on subsequences that make up the entire sequence, as Tschan (1995) and Murase
et al. (2015) did. In this case relevant questions include: What types of subsequences
occur and what is their frequency?; How do they chain together to generate longer
sequences and what types of longer sequences occur?; How are they related to out-
comes such as group effectiveness or group cohesion? Finally, researchers may
identify characteristics of sequences or subsequences, such their frequency, com-
plexity (Poole & Roth, 1989), or conformity to an ideal sequence (Poole & Roth,
1989) or subsequence (Tschan, 1995). Relevant research questions are: How do
various sequences compare in terms of the properties?; What factors govern vari-
ability in the characteristics?; How do the characteristics relate to outcomes such as
group effectiveness or group cohesiveness?

The approaches described in the previous paragraph focus on the sequence as a
property of the group as a whole. Another approach is to decompose the sequential
data from the group level to the individual level. In this case the sequence of behav-
iors of each member is analyzed. Just as with group level sequences, individual
sequences can be characterized in terms of their overall structure, subsequences,
and characteristics, and the same questions posed for the group as a whole can be
posed for the sequences of individual members. But decomposition also enables
researchers to explore the processes that lead to the emergence of a group or its
properties from the interactions among members.

One of the oldest questions in group research is “What makes a group more than
just a collection of individuals?” There has been a long debate over whether a group
has an entitivity beyond the behaviors of its individual members (Davis, 1969;
Hewes, 1996; Kozlowski, Chao, Grand, Braun, & Kuljanin, 2013; Kozlowski &
Klein, 2000). Kozlowski and Klein (2000) argue that higher level group properties
emerge through two processes, composition of individual attitudes, knowledge, and/
or behaviors into aggregates and compilation, which depends on nonlinear combi-
nation of individual attitudes, knowledge and/or behaviors. McGrath and Kelly
(1986) and Ancona and Chong (1996) consider temporal elements of coordination
among individual member sequences. Entrainment is defined as cases in which the
pace, rhythm, and cycles of individual behaviors come into alignment with one
another. In this case, the group’s activity takes on a character of a holistic unit
greater than the individual members. McGrath and Kelly argued that entrainment
depends on an external factor such as the group’s task or a leader or events in the
environment that the group must respond to. However, it also seems possible that

T. Murase et al.

121

entrainment might also be driven by members’ desire to coordinate and engage one
another in internal group interaction. The study of synchronization and entrainment
of member behavior enables us to investigate the degree to which the group tran-
scends individual member activities.

This chapter will provide an overview of several methods for sequence analysis
that address these questions, including whole sequence methods, short cycle meth-
ods, and sequential synchronization analysis. Methods for whole sequence and
short cycle analysis have been discussed at length elsewhere, so they will be
described in general terms; sequential synchronization analysis has not been previ-
ously introduced, so the remainder of the chapter will be devoted to an explanation
of how it works and can be conducted.

6.2  �Sequence Analysis

6.2.1  �Sequence Data

Group sequence data can come from a number of sources. It can be directly recorded
by observers (e.g., Bales, 1950), or it can be coded from audio or video recordings
(e.g., Fisher, 1970; Poole, 1981). Researchers like Axelrod (1976, 2015) used
archives of diplomatic notes and negotiations to reconstruct sequences of argument.
Data can also be gathered using computerized group or team simulations of, for
example, military tasks, emergency patients, or negotiations (e.g., Schiflett, Elliott,
Salas, & Coovert, 2004), which capture automatically the choices and actions of
each member down to hundredth of a second units. Another data resource for group
research is data captured from the internet (e.g., email, social media, text messages)
and mobile devices (e.g., geolocation, sociometric badges).

Figure 6.1 presents a general illustration of the type of sequence data that results
from the operations described in the previous two paragraphs. The top row shows
the basic data units. These units are then coded into meaningful categories (in this
case A, B, C, and D), which are the elements of the sequence. As the previous dis-
cussion shows, in some cases the coding system defines the units as part of the cod-
ing process (e.g., Interaction Process Analysis), while in other cases (e.g., a military
simulation) the units are “hard-coded” into the data recording apparatus, while in
still others (e.g., server data from a massive multiplayer online game) the units must
be retrieved from a more complex data store. Each unit may also be associated with
a timestamp, shown in the bottom row of the figure; this timestamp orders the ele-
ments and may also be used to determine durations. The timestamp in this figure is
based on a “Newtonian” conception of time, in which time can be divided into equal
units and proceeds linearly into the future. The top row of the figure portrays a dif-
ferent conception of time, “event time,” in which the occurrence of events marks the
units, regardless of how long they were or the intervals between them. In addition to
time stamps, this data also indicates the source of or major actor in each unit. Note
that a member may engage in several consecutive acts.

6  Sequential Synchronization Analysis

122

Some properties of sequence data are shown in the second row of Fig. 6.1,
transitions from one element to the next. Substrings (or subsequences) are meaningful
short-term patterns of acts; they may be defined structurally by repeated sequences
of elements or theoretically by specification of meaningful sequences of elements
(e.g., plan-act-evaluate). Identification of meaningful units or subsequences some-
times proceeds through a series of hierarchical steps. As the third row of the figure
indicates, each series of similar units can be re-coded into a single occurrence or
phase of this unit. A phase is a coherent period of group activity of the same type.
In this case, the phasic sequence is ABABCDCDC. This can be reduced to a still
higher-order pattern, as shown in row four, in which repeating AB substrings are
reinterpreted as E phases and CD substrings as F phases. Poole and Roth (1989)
used this approach to simplify phase sequences in group decision-making using a
procedure formally described in Holmes and Poole (1991).

6.2.2  �Analyzing Sequences

Many group process studies analyze sequences by “collapsing” them into profiles of
the total number of each type of act in the sequence. These profiles are useful
because they show general differences between sequences. A sequence with a lot of
conflict events is clearly different from one with very few.

Information is lost, however, by synoptic measures of processes such as profiles.
Where in a decision process a conflict occurs tells us a lot about the process. A con-
flict early on may serve to raise issues for the group to discuss and resolve; a conflict
at the end may create an impasse that stymies the group. Considering the sequence
of activities tells us the “story” of the group process in a way that simple totals
cannot.

Units (U*)/Members (M*):

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17
M1 M1 M1 M2 M1 M3 M1 M3 M2 M2 M2 M1 M3 M3 M1 M2 M3

Elements Transition Substring

A A A B B A A B C C C C D C D C C

Timestamp:

01 05 11 13 16 22 31 45 51 62 67 73 79 83 88 93 98

Coded into:

Fig. 6.1  Sequences and sequence data

T. Murase et al.

123

Rudimentary sequence analysis has often been applied to coded data in the social
sciences. Human pattern recognition is powerful and adaptive, making it possible to
extract rich information about human interaction and behavior from video sessions
(e.g., DeChurch & Marks, 2006; Kozlowski, Chao, Chang, & Fernandez, 2015;
Stachowski, Kaplan, & Waller, 2009). Bales and Strodtbeck (1951), for instance,
divided their discussions into thirds and constructed graphs of amounts of orienta-
tion, evaluation, and control behavior over time to compare sequences of group
problem solving sessions. However, if researchers have sequences made up of many
units or a large set of sequences, manually identifying critical patterns is a difficult
and daunting task. Methods developed in the biological sciences to identify DNA
sequences from millions and billions of data points (Koonin & Galperin, 2003) and
in computer science, where strings of thousands of digits or lines of code must be
compared (Sankoff & Kruskal, 1983) can be brought to bear in this case. To over-
come this challenge, these disciplines developed approaches to data mining and
large scale analytics designed to find unique patterns of information and to evaluate
similarities in structure and function between sequences (Needleman & Wunsch, 1970).

Sequence analysis is particularly aligned with process models that posit that
groups develop through a series of distinct stages (Tuckman, 1965) and engage in
patterns of phases to make decisions and accomplish their tasks (Bales & Strodtbeck,
1951; Gersick, 1988; Poole & Holmes, 1995; Poole & Roth, 1989; Sambamurthy &
Poole, 1992). For example, Marks et al. (2001, see also Ishak & Ballard, 2012)
proposed temporally-based team process in which team members engage in two
types of phases alternatively to achieve objectives: transition phases—where mem-
bers engage in planning and strategizing—and action phases—where they engage
in activities directly contributing to team performance.

Sequence analysis is also appropriate for models of act-to-act sequences. The
assumption commonly shared among these models is that events and behaviors trig-
ger each other to create unique contexts in which one leads to another, which then
facilitates the occurrence of more events and behaviors later on (Lehmann-
Willenbrock, Meyers, Kauffeld, Neininger, & Henschel, 2011). Tschan’s (1995)
plan-act-evaluate behavioral cycle model of effective team activity is a good exam-
ple of this approach.

6.2.2.1  �Whole Sequence Analysis

Poole and his colleagues investigated the phasic sequences groups followed to make
decisions (Poole & Holmes, 1995; Poole & Roth, 1989; Sambamurthy & Poole,
1992). Instead of measuring members’ perceptions of their decision-making pro-
cess, Poole and Roth (1989) content-coded 47 decision processes by taking the
following steps: (a) identifying major activity (e.g., problem-focused, execution-
focused, and solution-focused activities) within each 30-second time segment of a
process to create a sequence of the activities; (b) grouping into phases the activities
of the same category if they occurred consecutively and also grouping into phases

6  Sequential Synchronization Analysis

124

activities from the different categories if they happened in a row. They used the
technique of flexible phase mapping (Holmes & Poole, 1991) to identify various
sequences and methods including optimal matching to compare and classify
sequences into types. The sequences of activity phases produced by this method
provided the fine-detailed picture of when the specific activity phases occurred and
in what order. For example, some groups always went through a fixed process of
different phases while others moved through different stages and cycled back to the
previous stages. The richness of the sequence data helped Poole and Roth uncover
that groups did not follow unitary group process but that their processes were much
more complex and diverse.

One useful technique in whole sequence analysis is optimal matching (OM),
which is designed to compare similarities of pairs of sequences (Abbott & Tsay,
2000; Aisenbrey & Fasang, 2010; Hollister, 2009; Wu, 2000). OM evaluates how
similar pairs of sequences are. It assesses the degree of difference (distance) between
pairs of sequences using substitution-insertion-deletion transformation operations
(INDEL). Suppose one wants to compare two sequences: ABC and ADE. OM cal-
culates the distance between them by using the INDEL operations. First, OM
replaces B at the second position of ABC with D; inserts E between D and C of
sequence ADC, which turns the sequence into ADEC; and then deletes C at the last
position of the sequence. The number of the operations required to convert the first
sequence into the second one is 3, which is the distance score between these two
sequences. Weights are generally attached to various INDELs based on similarity of
elements. For example of A and B both pertain to problem statements and to a solu-
tion statement, substituting A for B would make less difference than substituting C
for A, So the B-A substitution would be given lower weight (cost) than the C-A
substitution. Based on this logic optimal matching algorithms assign weighted dif-
ferences to each pair of sequences in a set. The number of ways to calculate distance
scores between a pair of long sequences increases drastically. Therefore, OM seeks
the most optimal ways to calculate distance scores among sequences (Abbott &
Tsay, 2000).

The resulting set of distance scores can then be analyzed using multidimensional
scaling or clustering techniques to derive sets of sequences with similar structures.
For example, Sambamurthy and Poole (1992) derived three different sets of seq
uences from a sample of 45 conflict management discussions: one in which conflict
was suppressed, one in which there were open disagreements that were not resolved,
and a third in which there was open discussion and cooperative management of the
conflict. The third set had more positive relationships to outcomes than the other
two. It is also possible to take a reference sequence—for example, an ideal type
sequence—and use optimal matching to determine how similar one or more
sequences are to the reference sequence.

There has been much debate over the proper use and benefits and costs of using
OM. Readers can refer to Aisenbrey and Fasang (2010) and Herndon and Lewis
(2015) for further discussion of these issues.

T. Murase et al.

125

6.2.2.2  �Subsequence Analysis

While Poole and colleagues studied entire sequences, Lehmann-Willenbrock et al.
(2011) examined whether mood emerges through short-cycles of behavioral patterns
in which complaining behavior leads to supporting behavior which leads to com-
plaining behavior. They coded discussions in which 57 company teams discussed
solutions to problems in their work activities. Each statement provided by an
employee in the conversation was assigned to one of 44 behavioral categories, result-
ing in a sequence of behaviors for the team. Lehmann-Willenbrock et al. examined
how often one behavioral type was followed by another by calculating probability
ratings among all possible pairs of behaviors in the 44 × 44 table. Using the probabil-
ity ratings, they found that team members often engaged in specific cycles of com-
plaining behaviors (e.g., complaining, complaining, and complaining; complaining,
supporting, and complaining), and that the cycles of complaining behaviors resulted
in unaroused and unpleasant group mood while the cycles of positive behaviors pro-
duced pleasant group mood. Methods such as relational event modeling can be used
to test hypotheses about short cycle sequences as well (see Chap. 4, this volume).

Murase et al. (2015) took a different approach to obtain sequences of actions from
six-person teams participating in a military simulation game. The server recorded in
milliseconds various acts which team members performed, producing sequence data
consisting of thousands of thousands of acts over time. Murase et al. developed 37
behavioral categories important for the game, each of which contained short
sequences of acts that occurred in specific orders. They then wrote scripts to count the
number of times subsequences of acts in the log that matched any of the 37 behav-
ioral categories occurred (they employed 30 s windows for sampling purposes). Their
sequence data showed which member in the team engaged in what type of behavior
in which time segment. This data was subsequently used in an analysis of social
entrainment among team members that will be described in the next section.

Poole, Lambert, Murase, Asencio, and McDonald (2017) and Cornwell (2015)
summarize these and other sequence analysis techniques, along with theoretical and
data related issues. The bibliographies of these two works list a number of refer-
ences to more detailed descriptions of specific sequence methods. The remainder of
this chapter focuses on the method of sequential synchronization analysis, which
facilitates identification of emergent processes such as teamwork through the coor-
dination of the behavioral streams of individual members.

6.3  �Sequential Synchronization Analysis

6.3.1  �Individual Sequences into Group Processes

To conduct sequential synchronization analysis the researcher first decomposes the
group sequence into a sequence for each member and then analyzes relationships
among individual data sequences to determine team level dynamics.

6  Sequential Synchronization Analysis

http://dx.doi.org/10.1007/978-3-319-48941-4_4

126

Two theoretical forms have been advanced to explain how group dynamics
emerge at the team level: compositional and compilational models (Chan, 1998;
Kozlowski & Klein, 2000; Roberts, Hulin, & Rousseau, 1978). Compositional mod-
els argue that a phenomenon at the individual level resembles the same form of the
phenomenon at the team level while compilational models argue that the forms of a
phenomenon at the individual and team level are different.

Compositional models are based on the logic that each member’s behavior can
serve as an estimate of the group or team’s behavior, because the phenomenon of
interest manifests in the same way at the individual and group levels. Averaging the
individual estimates thus yields a more reliable measure of the group or team’s
behavior. For example, in the case of group decision-making, information sharing is
such that any information given by a single member can be used by the entire group.
So it makes sense to take each members’ information sharing (or, in the case of self-
report measures, perceptions of group information sharing level) and combine or
average them to get an overall measure for the group.

In contrast, compilational models operate under a logic of individual variability
that assumes that it is the pattern or variation among members that gives the group
process its character (Murase, Doty, Wax, DeChurch, & Contractor, 2012). So, if
one member of a team is quarrelsome and difficult, this can disrupt the team’s activ-
ity no matter what other members do. Or members may specialize, as in a transac-
tive memory system, where one member specializes in remembering past mistakes
and serves as devil’s advocate, while another specializes in coming up with novel
ideas to address the problems raised by the first. Only if the group has individual
members who enact these and other key roles, will it make an effective decision. So
it is the pattern of members rather than any sort of sum total that characterizes the
emergent group, and to capture this emergence, the various types of patterns or at
least variance among members must be characterized. Measures for compilation
include the standard deviation, minimum and maximum score of the team members,
or gini coefficients on various measures such as personality traits, self-efficacy, or
member roles (Barrick, Stewart, Neubert, & Mount, 1998; Campion, Medsker, &
Higgs, 1993; Stewart, Fulmer, & Barrick, 2005). All of these measures are based on
individual characteristics of members or synoptic, summary measures of group
interaction, rather than the group process itself. One influential theory that offers a
process-oriented, nonsynoptic account of group emergence from individual
activities is the theory of social entrainment (Ancona & Chong, 1992; McGrath &
Kelly, 1986).

6.3.2  �Entrainment

A great deal of evidence suggests that human behavior—including group and team
behavior—is patterned by rhythms and temporal cycles. McGrath and Kelly (1986)
summarize evidence that human interaction is characterized by “complex temporal

T. Murase et al.

127

patternings of multiple sets of responses by multiple social actors. These patterns
have been expressed by such terms as ‘mutuality,’ ‘reciprocity,’ ‘complementarity,’
‘dominance,’ ‘similarity,’ ‘simultaneity,’ and ‘alternation’” (p. 7). Cappella (1991)
makes a case that at the dyadic level these rhythms and patterns in interaction are
biologically determined. Poole and Roth (1989) noted that about 40 % of decision-
making groups engaged in repetitive cycles of problem-solution interaction. Tschan
(1995) showed that short repetitive cycles of problem-solving were characteristic of
effective teams.

McGrath (1990) argues that activities in social systems operate in rhythmic and
cyclic forms. Multiple activities, initially operating in different rhythms, eventually
get locked into the same rhythmic pattern by influencing one another’s pace or
adjusting their activity rhythms to the rhythms of dominant members or external
events. For example, project deadlines, unexpected requests from a client, and a
competing company’s market entry function as dominant rhythms to which mem-
bers on teams must adjust their work paces (Ancona & Chong, 1992). Once the
activities have settled into a fixed rhythmic pattern, it becomes persistent even when
the dominant activity ceases, unless another disrupting event or new dominance
pacer emerges to which the activities must start entraining (Harrison, Mohammed,
McGrath, Florey, & Vanderstoep, 2003). These studies have demonstrated that
synchronization of activities among members is a mechanism underlying the emer-
gence of group-level phenomena.

Most previous research has relied on experimental manipulations and/or mea-
surement of members’ perceptions to capture synchronization. However, it is also
possible to identify synchronization from behavioral sequences.

For example, to accomplish a specific objective in a military team exercise,
members may increase the level of a relevant behavior (e.g., attacking an enemy
unit). Once the objective has been accomplished, the level of the behavior begins to
decrease and then eventually cease for a while. This cycle repeats as triggering
events (new enemy combatants) occur. In this case, members engage in oscillating
activity patterns with one cycle representing a basic behavioral unit, defined as a
peak-to-peak period (Cazelles & Stone, 2003). The overlap degree of peak-to-peak
periods between pairs of activity cycles essentially determines synchronization
degree and type.

If the peaks of multiple members’ oscillating patterns occur at the same time
points, or the pace in which the peaks occur is the same (regardless of whether or
not the peaks occur at the same time points), those members are said to be entrained
to one another (Ancona & Chong, 1992). Ancona and Chong define the former as
synchronic entrainment and the latter as tempo entrainment. If the peaks of pairs or
sets of the oscillating patterns at completely at the alternating points, they are
defined as harmonic entrainment. Figure 6.2a, b demonstrate two types of entrain-
ment where pace is defined as a period from one peak (maximum) at t time to
another peak at t+1 time of a cycle (Cazelles & Stone, 2003). Various statistical
measures of the properties of pairs or sets of patterns—discussed below—can be
used to determine whether various types of entrainments hold in a group.

6  Sequential Synchronization Analysis

128

6.4  �A Step-by-Step Guide to Sequential Synchronization
Analysis

This section is organized to provide step-by-step directions for identifying sequences
and then calculating phase-lock scores from a hypothetical time-series data, which
are used to capture the degree of synchronization of team behavior. The approach to
identifying sequences was used in Murase et al.’s study (2015) which counted fre-
quencies of sequences using the R package TraMineR (Ritschard, Bürgin, & Studer,
2013) and calculated phase-lock scores using the R package synchrony (Gouhier &
Guichard, 2014).

Fig. 6.2  Types of entrainment: (a) synchronic entrainment, (b) temporal entrainment

T. Murase et al.

129

We provide a hypothetical study in which four members participate in a military
simulation game in which two four-member teams must navigate a course through
enemy positions. In order to do perform effectively, their units collect and exchange
information important to their mission and also coordinate attacks on enemy units.
There are eight events in this scenario: (A) collecting information, (B) member’s
unit health decrease, (C) attack, (D) enemy health decrease, (E) communication, (F)
enemy death, (G) exchanging information, (H) moving with other member, (I) mov-
ing alone, and (J) moving close to the enemy. These elements are documented at
one-second intervals in the order in which they occurred during the hypothetical
mission. The data set is available for download for those who are interested in ana-
lyzing it at http://hdl.handle.net/2142/91573. The R code for conducting the analy-
sis is referenced below in the example.

The dataset is made up of two teams of four members each. Each row represents
a series of events performed by a single member. In this data, the events B, D, and
F1 appear across all the members when any of these events occurs to at least one
member because they are events that happen to or have impacts on all members of
both teams. For example, Member 1 on Team 1 starts engaging the enemy at the
19th position, and the enemy’s health decreases at the 21st position. Although this
event belongs to Member 1, it is documented across all the members, because the
enemy’s health decrement is beneficial for any member who encounters this enemy.
This irregular, “messy” data structure is typical of sequence data sets, particularly
those derived from digital traces. This underscores the value of attending to tempo-
ral patterns in data rather than individual acts: focusing on event D alone for
Members 2, 3, and 4 might lead us to conclude incorrectly that these members
engaged the enemy; but focusing on the sequence CD (attack → enemy health
decrease) for Member 1 uncovers the meaning of the event, showing that the result
for all was a product of the Member 1’s action.

The methods discussed in this section can be applied to simple units like those
just defined or to more complex units such as subsequences. In our discussion we
will use subsequences as our basic unit of analysis, on the premise discussed in
the previous paragraph, that using subsequences or cycles as basic units gives us a
more nuanced and accurate description of member behavior.

6.4.1  �Step 1: Theoretically Define the Units of Interest

The first and most important step is to develop a set of theoretically sound units of
analysis. When using single acts, the coding system often specifies them. In the case
of subsequences construct definition occurs through considering meaningful combi-
nations of acts. Not all subsequences are necessarily meaningful and even when all
are, only a few might be of interest given the theory being tested. These serve as
basic units of analysis. One challenge lies in the process of putting events in specific
orders to create sequence bases because theories in social sciences typically do not
specify sets of events and in what exact order those events should unfold. It is the

6  Sequential Synchronization Analysis

http://hdl.handle.net/2142/91573

130

researcher’s responsibility to carefully evaluate what events and behaviors need to
be included and in what order they should be placed so that the short sequences can
capture the concepts of interest.

For example, in team research, explicit and implicit coordination have been
found to influence team performance (Rico, Sánchez-Manzanares, Gil, & Gibson,
2008). Explicit coordination is defined as the process in which members communi-
cate to define responsibilities, make plans and deadlines, and exchange information
in order to orchestrate their efforts and activities to achieve common objectives. On
the other hand, implicit coordination emphasizes members’ ability to predict each
other’s activities in the process of orchestrating their efforts (Rico et al., 2008). As
can be seen, these definitions do not precisely specify what exact behavioral events
should be included and in what order. The researcher must choose the behaviors that
fit these definitions.

The subsequences of implicit and explicit coordination can include combinations
of several different types of behavioral events. For example, using the categories
defined above, one subsequence for explicit coordination starts from communica-
tion with member A to moving with member A to being close to enemy. On the
other hand, a subsequence of implicit coordination starts from moving along to
moving with member A to being close to enemy because the definition of implicit
coordination emphasizes one’s ability to predict other members’ behavior (Rico
et al., 2008). This definition suggests that communication should not be the essen-
tial part of short sequences which capture implicit coordination.

Additionally, the researcher must determine how long the subsequences should
be. An appropriate length should be long enough so that below that length a sequence
of events should not be complete, but above it a sequence can be broken down into
smaller subsequences. For example, it is difficult to determine what type of con-
struct can be captured by a subsequence of two behaviors which starts from moving
alone to communication, because depending on what behavioral events come before
or after this sequence, the meaning of the sequence changes. If the events, moving
with other team and being close to enemy, come after this sequence, the new subse-
quence with the four events could mean explicit coordination. One member tells
another member nearby that he is moving toward the enemy unit, and asks the mem-
ber to come to his location. Then these two meet and move together toward the
enemy unit. If these two behaviors do not come after the original sequence, it can be
too short to determine whether it captures explicit coordination or something else.

On the other hand, if a subsequence is too long, it could consist of two or more
subsequences, each of which alone could provide sufficient information to capture
a theoretical construct. For example, if a sequence is assumed to consist of six
actions of moving alone, communicating, moving with another member, being
close to enemy, attacking, and enemy health decrease, this sequence can be broken
into the first subsequence of four behavioral elements—moving alone, communi-
cating, moving another member, and being close to enemy—and a second subse-
quence of attacking and enemy health decrease. The first subsequence is explicit
coordination, and the second subsequence defines a new construct: engaging enemy.
Therefore, the researcher must consider not only the “what events” question (what

T. Murase et al.

131

events need to be included) but also the “how many events” question (how many
events are necessary to make one complete sequence).

Furthermore, the researcher can create multiple subsequences all of which can
belong to the same construct. There is no reason to expect that there should be only
one subsequence per construct. For example, psychological scales are comprised of
multiple items because having multiple questions is considered necessary to capture
different aspects of the same construct (Nunnally & Bernstein, 1994). This perspec-
tive can be applied to the sequence-based method. If one subsequence may not be
enough to capture the entire construct space, multiple subsequences are necessary
to obtain adequate coverage of the construct.

This first step is essential for ensuring legitimacy for this type of method. It is
common in computer science to simply mine sequences and use the obtained
set. However, if we want to relate our sequence analysis to theory, this “dustbowl
empiricist” approach would not be sufficient. For the eight act categories we had
above, there would be 56 possible pairs for each individual team member and many
more if we consider three and four act sequences. This is simply too many to sort
through. Generating the subsequences of interest based upon both theory and
empirical findings from the literature provides a solid framework through which the
researcher can appropriately interpret the meanings of subsequences uncovered
by data mining. Without theoretical guidance, the researcher will be easily over-
whelmed by the enormous number of short sequences identified through data min-
ing alone.

Out of hundreds of possible sequences, Murase et al. (2015) defined seven differ-
ent subsequence types comprised of 37 actual subsequences to represent four key
teamwork constructs: implicit coordination, explicit coordination, taskwork, and
information gathering. Two subsequence types indicated implicit coordination, two
explicit coordination, two taskwork, and one indicated information gathering. In
this case they used teamwork theory to guide a multilevel classification scheme that
started with 37 meaningful sequences, which were then grouped into seven basic
types, which were then mapped onto the four key teamwork constructs.

6.4.2  �Step 2: Extract Subsequences from Data

The next step is to extract subsequences of events from the longer sequence of each
participant. The R package TraMineR (Gabadinho, Ritschard, Mueller, & Studer,
2011) can be used to conduct a number of different types of sequence analyses.
TraMineR contains numerous R functions with which researchers can create and
manipulate data for sequence analysis, mine data to find unique sequences, and
visualize results. Researchers who are more familiar with Stata can conduct similar
types of sequence analysis using Stata packages such as SAID (Halpin, 2014) and
others (e.g., Brzinsky-Fay, Kohler, & Luniak, 2006). The rest of the analytical dem-
onstration will be conducted using TraMineR.

6  Sequential Synchronization Analysis

132

In this case we want to extract subsequences from the data. While we know
theoretically which subsequences we are looking for, it is useful to mine the full set
of subsequences for additional information. In some cases, additional unanticipated
subsequences that correspond to our theoretical constructs may be identified. In
other cases one or more subsequences might suggest additional constructs compat-
ible with our theoretical orientation.

To extract subsequences, we use the subsequence function (which is called
seqefsub in the Synchrony package) to mine event sequences in the form of shifts
from one type of behavior to another type. One consideration is subsequence length.
The length of a sequence could be anywhere from 2 units (i.e., A → B) to the entire
length of data collected in one’s study. A second consideration is how to deal with
repeats of the same unit multiple times in a row. When data are documented in every
second as they are in a game, the same event can be recorded for a member many
times in row; for instance, if the player is moving continuously, then movement will
be recorded each second so long as the continuous movement occurs. As a result,
the data can contain a long string of the same events with a different element at the
end (i.e., AAAAAAAB), and the repeats are an artifact of the recording. The subse-
quence function identifies no shift (A) and one shift from A to B (A→B) at the end,
and ignores the intervening multiple occurrences of the element.

When we employ a subsequence identification technique like seqefsub that only
identifies shifts from one type of act to another (and ignores successive repeats of
the same unit), we recommend that the researcher consider whether to break data
into multiple shorter segments to limit the time period over which subsequences can
extend. If the original sequence runs over hours, months, or days, techniques like
seqefsub might identify subsequences which extend over longer stretches of time
than humans can realistically act over or attend to. If one’s sequence data spans
60 min, for example, mining the entire sequence makes no sense because the subse-
quence function will pull out many sequences which are not meaningful. For exam-
ple, the function could identify a shift between two behaviors—communication
with member A during the first 30 s of the session and moving with member A 25 m
into the game. Such a shift does not make sense given the nature of teamwork inter-
action patterns, in which members typically respond relatively immediately to one
another. To avoid this issue, the researcher should consider breaking the time into
multiple time segments within which shifts between units are considered meaning-
ful. The appropriate length of time segments will vary according to the phenome-
non. A reasonable latency period for teamwork is relatively short, while in the case
of organizational innovation adoption sequences could extend over days, weeks, or
months and still be meaningful.

The second decision point is to determine how many shifts are allowed to be part
of short sequences. The subsequence function could completely exhaust the entire
list of short sequences, and it could take significant computing resources to com-
plete the identification process if the empirical sequence is very long. For more
efficient subsequence identification, the researcher should determine the appropri-
ate number of shits which are maximally allowed in short sequences. If too many
shifts are allowed, they would not be interpretable or can be broken down into

T. Murase et al.

133

shorter sequences. In our case, we limit the length of sequences to be no more than
3 shifts (i.e., A→B, B→C, C→D), which is in line with the decisions on this matter
made by other researchers (Lehmann-Willenbrock et al., 2011; Murase et al., 2015;
Poole & Roth, 1989).

The last decision point is to consider how far apart the behaviors within the same
shift or the shifts within the same sequence are allowed to be. Suppose that there is
a sequence of As and Bs at 10 positions (AAABAABBAA) and that the researcher
is interested in identifying the short sequence (A→B)−(B→A). First, the researcher
considers whether the events of the same shift should occur at the positions right
next to each other or at the positions somewhat apart from each other. For example,
it is important to consider whether A1 and B4 (the subscripts indicate the event posi-
tions in the sequence) are allowed to define a shift or whether only adjacent acts like
A3 and B4, and A6 and B7 should be identified as shifts. The same concern must be
exercised when the researcher considers which shifts should be included in the same
subsequence. Depending on how far apart the behaviors within the same shift and
shifts within the same short sequence are allowed to be located, the subsequence
function produces different frequencies even for the same short sequence.

To operationalize various choices related to relationships among units in subse-
quences, there are several different counting operations one can use: one occurrence
per object (COBJ), one occurrence per span-window (CWIN), distinct occurrences
with possibility of event-timestamp overlap (CDIST_O), and distinct occurrences
with no event-timestamp overlap allowed (CDIST) (Joshi, Karypis, & Kumar, 1999).

COBJ counts a specified sequence only once throughout the entire data even if
the sequence appears more than once. This is an appropriate rule to use when once
a subsequence occurs its full effect is felt. CWIN uses a moving window within
which it evaluates the occurrence of the short sequence. First, the researcher must
determine how many units a moving window covers every time it moves. For exam-
ple, if the moving window is set to cover three units, every time it moves, it assesses
whether the sequence occurs in those three units. After the moving window goes
through the entire data set, the CWIN function provides the total number of occur-
rences of the short sequence. This rule is appropriate if every occurrence of the
subsequence counts. Finally, CDIST_O identifies all possible short sequences
within the window whose length is specified by the researcher. The CDIST_O func-
tion differs from CDIST in that CDIST counts only one occurrence of the short
sequence in a window, whereas CDIST_O counts all occurrences within the win-
dow, even those that overlap. More detailed descriptions and comparisons of the
counting operations can be found in Joshi et al. (1999).

6.4.3  �Step 3: Revisit Theoretically Defined Subsequences
in Light of Sequence Mining Results

The subsequence functions CWIN and CDIST_O will identify all possible
combinations of subsequences and count their frequencies. In step 1 the researcher
makes the decisions that define the types of subsequences that will be identified.

6  Sequential Synchronization Analysis

134

No theory allows the researcher to make perfect determinations about all meaningful
subsequences that indicate theoretical constructs. Additional promising subsequen
ces may have been identified in the sequence mining process. The next task, then, is
to use these results to refine the subsequence indicators that are supposed to capture
the target constructs. Only those subsequences which indicate the target constructs
or suggest new constructs that fit within the theoretical framework should be
retained and all the rest should be discarded. Although this process seems straight-
forward, it is not.

Table 6.1 presents a scenario with the set of events which any short sequences
identified must contain. For example, two other short sequences contain the set of
AB events and provide their frequency information. Note that two letters connected
by the arrow consist of a shift while the hyphens connect two shifts to create a lon-
ger chain. Suppose you have identified A and B as critical events, and the subse-
quence function has identified two other subsequences (A→B) − (B→A) and
(A→B) − (A→B). The issue faced in this scenario is that the two latter chains con-
tain the A→B shift as part of their sequence so you wonder how this information can
be combined. Because of the same A→B shift in the both short sequences, their
frequency counts are not independent of each other but are redundant. As you can
see, the base sequence (A→B) occurred seven times. This means that any short
sequences containing the base sequence can occur more than seven times. Thus,
unless, the specific short sequence (A→B) − (B→A) is the target short sequence
whose occurrence is 6, the researcher should record 7 for this scenario while dis-
carding the other frequency numbers.

As the length of the original sequence data increases, the number of subse-
quences one can make exponentially increases and becomes impossible to count
manually. Utilizing the data mining approach provides the researcher with the new
ability to capture information that the researcher cannot think of without the data
mining technique.

6.4.4  �Step 4: Aggregate Frequency Counts of Subsequences
for Data Segments

In step 2 we argued that any long sequence could be broken into shorter segments
that reflect realistic latencies in thought and action and also ease computational
demands. Once an appropriate set of subsequence indicators have been identified,
the next step is to count them in each segment to yield a sequence of counts for each

Table 6.1  Counts of subsequences

Set of events Base sequence Short sequence 1 Short sequence 2

A, B Sequence (A→B) (A→B) − (B→A) (A→B) − (A)
Frequency 7 6 7

Note: The arrow sign indicates a shift from one behavior to another; a hyphen connects two shifts.

T. Murase et al.

135

individual member. Carrying through our example of the categories discussed in
Step 1 this would yield values of the number of subsequences devoted to explicit
coordination, implicit coordination, taskwork, and information gathering for each
segment. The result is four time series, one for each activity, for each member.

6.4.5  �Step 5: Compute Synchronization Scores

Entrainment can be assessed by calculating the degree and type of synchronization
across the individual member time series. The output of values of the algorithm
provides a means for calculating the degree to which members remain phase-locked
or socially entrained throughout the game. Suppose two members have coordination
cycles with the same pace. If they coordinate with each other at the same time
throughout the game, the cycle value differences are zero. However, even if their
paces are the same, members can engage in coordination at different time points.
For example, one member coordinates in every 5 min at the 5th, 10th, and 15th
minute, but the other member engages in coordination at the 3rd, 8th, and 13th min-
ute. In this case, the cycle value differences yield a series of non-zero constants.
Finally, if members engage in coordination at random time points and change the
pace of these cycles, the cycle differences yield a series of random numbers. It is
important to note that this third scenario represents members who are not entrained
to one another.

Because the phase-lock algorithm produces random numbers for non-entrained
members, the phase-lock calculation can determine the degree to which members
are entrained by the distribution of the previously calculated cycle differences, with
uniformly-distributed values representing low phase-lock (i.e., low entrainment)
(Cazelles & Stone, 2003). For every pair of members, cycle difference scores for
every time point are calculated to create a distribution. If two members’ coordination
cycles are in perfect sync, the cycle difference scores are zeros while two members
that constantly and randomly change their pace would create a uniform distribution
of the difference scores. Therefore, if the distribution of cycle differences has a clear
peak, two members are said to be “phase-locked”, and if the distribution spreads out
and approaches uniformity, phase-lock decreases. We use kurtosis values to repre-
sent the degree of “peakedness” of cycle-difference distributions.

Besides the phase-lock technique which is the main synchrony analysis in this
chapter, other synchrony analysis techniques which are also available in the syn-
chrony package deserve attention. Community-wide synchrony (Loreau & de
Mazancourt, 2008) evaluates the degree to which members’ time-series data fluctu-
ate in unison. Kendall’s coefficient concordance is a non-parametric statistic which
evaluates agreement among members’ time-series data (Gouhier, Guichard, &
Gonzalez, 2010). Although these statistics can be used to evaluate entrainment, the
phase-lock technique is the most appropriate because it capture similarity between
peak-to-peak paces of multiple cycles, which we used to define entrainment. When
using other techniques, we recommend that researchers carefully consider the defi-
nition of entrainment and then select the most appropriate technique.

6  Sequential Synchronization Analysis

136

6.5  �Example

In this section we analyze the sample dataset mentioned earlier. Table 6.2 summa-
rizes ten basic activity elements team members engaged in the game and describes
of which of three coordination sequences the actions should be part. These three
sequences are also specified in the Searchcode file at http://hdl.handle.net/
2142/91572. This file currently allows readers to specify up to six elements that
sequences should and should not contain. Elements that the sequences must contain
need to be specified in the “action” columns, and TRUEs must be specified in the
“yesno” column. If there are some elements that should not be part of sequences,
they must be specified in the action columns, and FALSEs must be specified at the
appropriate positions in the yesno columns. For example, the first row in the
Searchcode file contains A and G and two TRUEs, meaning that mined sequences
must contain A and G. If sequences should not contain, for example, G, the TRUE
at the second position should be changed to FALSE. If A should not be contained,
the first TRUE should be changed to FALSE.

Two R code scripts for sequence and synchrony analysis are available for down-
load at http://hdl.handle.net/2142/91573. The scripts help readers understand how
we prepared data for sequential synchrony analysis and conducted the analyses. It is
difficult to provide the full description in this chapter for what we did line-by-line
given limited space, but we attempt to highlight the main lines important for the
analysis and provide explanations. The further explanations for all the script lines
are provided directly in the scripts.

We broke the data into 10 20-second time segments as we recommend in the Step
2 section, and identified all sequences within each segment to create time-series
data per member. The code to create the time segments is shown in Table 6.3.

Table 6.2  Coding categories used in the example

Element Action

Coordination
sequence:
engaging enemy

Coordination
sequence:
exchanging
information

Coordination
sequence:
planning

A Pick up information ✓
B Health decrease
C Attack ✓
D Enemy health decrease
E Communication ✓
F1 Enemy death ✓
G Exchange information ✓
H Moving with other team ✓
I Moving alone
J Move close to enemy ✓

Note: Check mark indicates of which sequence the element/action is part

T. Murase et al.

http://hdl.handle.net/2142/91572
http://hdl.handle.net/2142/91572
http://hdl.handle.net/2142/91573

137

Next we identified sequences within each segment. First, the CDIST counting
operation was used to identify sequences that contained up to three shifts. Once
identified, sequences were evaluated for whether they captured team coordination,
and their frequency counts were documented if they contained one of the sets of
behaviors in the following order: H, J, and C; F1 and E; A and G. These three sets
of behaviors indicate different ways in which members engage in team coordina-
tion. Sequences containing H, J, and C indicate that members move together to
engage enemy. Sequences containing F and E indicate that members plan for the
next move after they complete a task (which is removing the enemy threat). Finally,
sequences containing A and G indicate that members exchange information as they
locate it. Although we could generate more combinations of behaviors, we use only
these three sequences in this demonstration. If sequences contained any other
behaviors which were not specified in this section, their frequency counts were not
documented. Table 6.4 shows the commands given to TraMineR for this operation.

The next step was to examine whether sequences members engaged in within the
same time segments were considered as redundant or unique. For example, Member
2 on MTS 1 engaged in three sequences containing H, J, and C in the seventh time
segment: (H) − (H→J) − (J→C); (H) − (J→C); and (H→J) − (J→C). If the frequen-
cies of all the three sequences were included, the total count for this segment would
be 3. However, if the chain of actions in this segment is evaluated, it is obvious that
these three are actually duplicates. The chain is HHHHHHHHJJCCCBDCDBDC. This
member engaged in this type of coordination activity only once in this time segment
as indicated in that the member engaged in one series of move activities and one
series of attack activities. Therefore, we took only one sequence out of these three
and documented its frequency count. Furthermore, we took this approach through
the entire data. This is a complex operation that is explained in the code available
for download.

Additionally, when members engaged in different types of coordination within
the same time segments, we took the sum of their frequencies. For example, Member
2 on MTS 1 engaged in two different types of sequences in the eighth segment:
(H→J) − (J→C) and (F1→E), and each sequence occurred only once. The reason

Table 6.3  Dividing data into segments

2 seg<−20

12 for(time_i in c(1:((ncol(teamdat)-3)/seg))){
13 print(paste(“MTS”,mts_i,” Mem”,member_i,” Seg”,time_i,sep=““))
14 lst<−time_i*seg
15 fst<−lst+1−seg
16 subdat<−teammemdat[1,fst:lst]
17 variability<−length(unique(apply(subdat,2,as.character)))

Line 2: Object seg indicates the 20-second time window used to divide the data into ten different
time segments
Line12: The for-in function specified the number of time the lines that follow should repeat
Lines 14–15: The beginning and ending of each time segment are calculated
Line16: Object subdat is the data segment extracted from a member’s entire data set (teammemdat)

6  Sequential Synchronization Analysis

138

for this approach being adequate is that on average the members engaged in
coordination sequences only once in each segment. Thus, summing frequencies of
different types of sequences did not distort team coordination information. However,
this approach could produce distorted information if frequencies for one type of
sequences were exceedingly larger than those for the other types of sequences, but
all the types of sequences were considered equally important. For example, in some
data teams typically engage in implicit coordination about 100 times with standard
deviation (SD) of 20 while engaging in explicit coordination 10 times with SD of 2.
Additionally, we assume the researchers consider these two types of coordination
equally important. However, if the frequency counts of these two types are summed
across, the aggregate score that is supposed to represent the coordination construct
is over-represented by implicit coordination, which is not aligned with how this
construct is conceptualized. In that case, researchers could convert frequencies into
z-scores first and take sum of them. Fortunately, in the current data, this was not a
concern.

Table 6.5 summarizes the frequency counts of sequences that met the aforemen-
tioned criteria. Member 1 and 4 on Team 1 did not engage in activities as much as
the other members while all the members on Team 2 were active throughout all the
time segments.

In the last step, calculation was conducted on the extent to which members’
activities over time were phase-locked. Using R package Synchrony (Gouhier &
Guichard, 2014), phase-lock scores were calculated for every pair of members
within each team, and then kurtosis scores were derived to evaluate the degree of
peakness (Table 6.6).

Table 6.4  Code for CDIST

18 if(variability>1){

19 datsize<−ncol(subdat)
20 eve.seq<−seqdef(subdat)
21 eve.seqe<−seqecreate(eve.seq)
22 fsubseq<−seqefsub(eve.seqe,minSupport=1,maxK=3,
23 constraint = seqeconstraint (maxGap = datsize,
24 windowSize = datsize,countMethod=‘CDIST’))
25 evecount<−matrix(seqeapplysub(fsubseq,method=“count”),
26 ncol = 1, nrow = ncol(seqeapplysub(fsubseq,method=“count”)))

Line18: The if function checks whether the segment contains different action elements
Line20: The seqdef function converts a character string into a vector of events
Line21: The seqecreate function prepares data for sequence analysis from the event sequence
object created in Line 20
Line22: The seqefsub function mines the data to produce sequences with maxK=3 meaning the
function creates sequences of up to three shifts. CDIST is selected as counting operation for this
analysis
Line25: The seqeapplysub function produces data containing frequency counts for the sequences
found in Line 22. This line prepares the frequency count data in the matrix format

T. Murase et al.

139

Table 6.5  Frequency counts of coordination sequences over Time

Team Member
Time
1

Time
2

Time
3

Time
4

Time
5

Time
6

Time
7

Time
8

Time
9

Time
10

1 1 0 1 0 0 0 1 0 1 0 1
1 2 1 1 1 1 0 0 1 2 1 1
1 3 0 1 0 2 1 0 1 2 0 0
1 4 0 0 1 0 0 0 0 0 0 1
2 1 1 1 0 1 0 2 1 2 1 1
2 2 2 1 1 1 1 2 2 1 2 0
2 3 0 1 0 1 0 2 2 1 0 1
2 4 0 1 1 1 0 2 1 1 1 0

Table 6.6  Synchrony commands

23 for(mem_ii in unique(mtsdat[,“member_i”])

24 [−1*which(unique(mtsdat[,“member_i”])==members)])
25 {
26 run<−run+1
27 t1<−as.numeric(mtsdat[mtsdat[,“member_i”]==mem_i,−1:−2])
28 t2<−as.numeric(mtsdat[mtsdat[,“member_i”]==mem_ii,−1:−2])
29 div_i<−length(unique(t1))
30 div_ii<−length(unique(t2))
31 if((div_i>=3)|(div_ii>=3)){
32 sync.maxs<−phase.sync(t1,t2,mins=TRUE)
33 k<−0
34 s<−NA
35 ave<−NA
36 sds<−NA
37 k<−kurtosis(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)
38 s<−skewness(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)
39 ave<−mean(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)
40 sds<−sd(sync.maxs$deltaphase$mod_phase_diff_2pi,na.rm.=TRUE)

Lines 27–28: This line selects a pair of members (mem_i and mem_ii) from the team data (mtsdat)
Lines 29–30: This line calculates the numbers of actions the members performed, and then calcu-
lates synchrony scores for the pairs whose numbers of actions are equal to or more than 3
Line32: The phase.sync function calculates the synchrony scores between two members’ time-
series data and automatically creates a distribution of cycle differences of the synchrony scores
Line37: The kurtosis function calculates the degree of peakedness from the distribution of the
cycle differences
Line38: The skewness function calculates how skewed the distribution is

6  Sequential Synchronization Analysis

140

Table 6.7 summarizes kurtosis scores across all the pairs of members among the
two teams, with higher scores indicating the more peaked the cycle difference dis-
tribution becomes (Cazelles & Stone, 2003). Values closer or larger than 3 indicate
that the distribution has a higher peak than the normal distribution, which indicates
that two members are entrained to each other. From this table, the 1–2 pair on Team
1, and the pairs of 1–3 and 2–3 on Team 2 have values closer to 3, indicating that
their distributions have a higher peak than the normal distribution (DeCarlo, 1997).
Interestingly, the kurtosis value between Member 1 and 2 was higher than that
between Member 2 and 3. Although Member 2 and 3 were more active than the
other members, Member 1 and 2 had more synchronization on their activities than
did the other pair. Another notable point is that the phase-lock calculation produced
NAs for the pairs involving Member 4. Member 4 was inactive as evidenced in that
this member engaged in coordination only twice. Calculating phase-lock values
requires enough fluctuation in data so it may not be useful if one’s data contain
many members being inactive throughout.

6.6  �Discussion

In this chapter, we have provided a step-by-step guide to perform sequence
synchrony analysis to investigate the degree to which team members are socially
entrained. Specifically, there are two objectives of the chapter. The first objective is
not simply to explain how to use specific R functions from the R packages “syn-
chrony” and “TraMineR”, but how to evaluate the theoretical relevance of behav-
ioral elements that should be part of subsequences. The hybrid method of data
mining and theory-based thinking provides a solid foundation on which subse-
quences mined from data acquire substantive meaning and relevance to one’s study.
The second objective is to provide a further guidance on how to obtain unique team
property “social entrainment” from subsequence data rather than simply calculating

Table 6.7  Kurtosis scores
used to evaluate
synchronization

Team Pair Kurtosis

1 1 and 2 2.73
1 1 and 3 1.84
1 1 and 4 NA
1 2 and 3 1.70
1 2 and 4 1.63
1 3 and 4 NA
2 1 and 2 1.50
2 1 and 3 2.23
2 1 and 4 NA
2 2 and 3 2.72
2 2 and 4 1.50
2 3 and 4 1.50

T. Murase et al.

141

average scores across members. By combining these two methods, sequential syn-
chrony analysis enables researchers to capture compilational forms of emergence.

Group properties emerge in compilational and compositional forms as individu-
als become cohesive functioning teams (Chan, 1998; Kozlowski & Klein, 2000).
Although researchers have argued importance for compilational forms, they have
mainly relied on compositional forms or taking average scores to capture team
properties. This practice suggests that the current state of science on group and team
process is limited because the most preferred analytical approaches are designed to
capture only compositional forms. We argue that a reason for the lack of utilizing
compilational forms is that there is no theoretical as well as analytical guide to cap-
ture them. To spur the use of compilational forms, we have attempted to develop a
solution to both of the problems.

Past studies have effectively demonstrated sequence analysis as a powerful tech-
nique in preserving contextual meanings of team processes. Sequence analysis
can capture compilational forms of emergence especially when researchers directly
conduct sequence analysis on data at the team level to obtain patterns of interactions
in the team (Lehmann-Willenbrock et al., 2011; Poole & Roth, 1989; Tschan, 1995).
However, this technique alone is not sufficient to capture compilational forms when
it is conducted on individual-level time-series data because it simply converts the
meaning of data from the raw information to subsequences. As a result, the con-
verted data still require aggregation to be elevated to the team level. This is the situ-
ation we have illustrated in the example, where researchers must have a specific
theoretical and analytical guide to obtain compilational forms.

Social entrainment (McGrath & Kelly, 1986) is a theoretical framework that
serves a guide when researchers wonder what team property emerges at the team
level in a compilational form. Social entrainment takes on a compilational form
when it emerges because each member’s behavioral rhythm does not accurately
depict how synchronized members’ behaviors are. One useful way to observe this
phenomenon is to conduct synchronization analysis on members’ time-series data.

Like all sequential process analysis, sequence synchronization analysis is a
“work in progress.” Currently, there are no definitive, canonical techniques for
process analysis as there for analysis of experimental designs. While these are
emerging, at this point sequence analysis requires improvisation and ingenuity. We
encourage readers to build on what we have described as they pursue their own
projects.

References

Abbott, A., & Tsay, A. (2000). Sequence analysis and optimal matching methods in sociology
review and prospect. Sociological Methods & Research, 29, 3–33.

Aisenbrey, S., & Fasang, A. E. (2010). New life for old ideas: The “second wave” of sequence
analysis bringing the “course” back into the life course. Sociological Methods & Research, 38,
420–462.

6  Sequential Synchronization Analysis

142

Ancona, D. G., & Chong, C. (1996). Entrainment: Pace, cycle, and rhythm in organizational
behavior. In L. L. Cummings, & B. M. Staw (Eds.), Research in Organizational Behavior (vol.
18, pp. 251–284). Greenwich, CT: JAI Press.

Ancona, D. G., & Chong, C. L. (1992, August). Timing is everything: Entrainment and perfor-
mance in organization theory. In Academy of Management Proceedings (Vol. 1992, No. 1,
pp. 166–169). Academy of Management.

Axelrod, R. (1976). Structure of decision. Princeton, NJ: Princeton University Press.
Axelrod, R. (Ed.) (2015). Structure of decision: The cognitive maps of political elites. Princeton,

NJ: Princeton University Press.
Bales, R. F. (1950). Interaction process analysis; a method for the study of small groups. Oxford,

England: Addison-Wesley Press.
Bales, R. F., & Strodtbeck, F. L. (1951). Phases in group problem-solving. The Journal of Abnormal

and Social Psychology, 46, 485–495.
Barrick, M. R., Stewart, G. L., Neubert, M. J., & Mount, M. K. (1998). Relating member ability

and personality to work-team processes and team effectiveness. Journal of Applied Psychology,
83, 377–391.

Brzinsky-Fay, C., Kohler, U., & Luniak, M. (2006). Sequence analysis with Stata. Stata Journal,
6, 435–460.

Campion, M. A., Medsker, G. J., & Higgs, A. C. (1993). Relations between work group character-
istics and effectiveness: Implications for designing effective work groups. Personnel Psycho­
logy, 46, 823–847.

Cappella, J. N. (1991). The biological origins of automated patterns of human interaction.
Communication Theory, 1(1), 4–35.

Cazelles, B., & Stone, L. (2003). Detection of imperfect population synchrony in an uncertain
world. Journal of Animal Ecology, 72, 953–968.

Chan, D. (1998). Functional relations among constructs in the same content domain at different
levels of analysis: A typology of composition models. Journal of Applied Psychology, 83,
234–246.

Cornwell, B. (2015). Social sequence analysis: Methods and applications (vol. 37). Cambridge:
Cambridge University Press.

Davis, J. H. (1969). Group performance. Reading, MA: Addison-Wesley.
DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2, 292–307.
DeChurch, L. A., & Marks, M. A. (2006). Leadership in multiteam systems. Journal of Applied

Psychology, 91, 311–329.
Fisher, B. A. (1970). Decision emergence: Phases in group decision-making. Communications

Monographs, 37, 53–66.
Gabadinho, A., Ritschard, G., Mueller, N. S., & Studer, M. (2011). Analyzing and visualizing state

sequences in R with TraMineR. Journal of Statistical Software, 40(4), 1–37.
Gersick, C. J. (1988). Time and transition in work teams: Toward a new model of group develop-

ment. Academy of Management Journal, 31(1), 9–41.
Gouhier, T. C., Guichard, F., & Gonzalez, A. (2010). Synchrony and stability of food webs in meta-

communities. The American Naturalist, 175, 16–34.
Gouhier, T. C., & Guichard, F. (2014). Synchrony: Quantifying variability in space and time.

Methods in Ecology and Evolution, 5, 524–533.
Halpin, B. (2014). Three narratives of sequence analysis. In Advances in sequence analysis:

Theory, method, applications (pp. 75–103). Springer International Publishing.
Hare, A. P. (1976). Handbook of small group research (2nd ed.,). New York: Free Press.
Hare, A. P. (2010). Theories of group development and categories for interaction analysis. Small

Group Research, 41, 106–140.
Harrison, D. A., Mohammed, S., McGrath, J. E., Florey, A. T., & Vanderstoep, S. W. (2003). Time

matters in team performance: Effects of member familiarity, entrainment, and task discontinu-
ity on speed and quality. Personnel Psychology, 56, 633–669.

T. Murase et al.

143

Herndon, B., & Lewis, K. (2015). Applying sequence methods to the study of team temporal
dynamics. Organizational Psychology Review, 5, 318–332.

Hewes, D. E. (1996). Small group communication may not influence decision-making: An ampli-
fication of socio-egocentric theory. In R. Y. Hirokawa, & M. S. Poole (Eds.), Communication
and group decision-making (2nd ed., pp. 179–212). Thousand Oaks, CA: Sage.

Hollister, M. (2009). Is optimal matching suboptimal? Sociological Methods & Research, 38,
235–264.

Holmes, M. E., & Poole, M. S. (1991). Longitudinal analysis. In B. M. Montgomery, & S. Duck
(Eds.), Studying interpersonal interaction (pp. 286–302). New York: Guilford Press.

Ishak, A. W., & Ballard, D. I. (2012). Time to re-group: A typology and nested phase model for
action teams. Small Group Research, 43, 3–29.

Joshi, M. V., Karypis, G., & Kumar, V. (1999, May). A universal formulation of sequential pat-
terns. In Proceedings of the KDD’2001 workshop on Temporal Data Mining.

Koonin, E. V., & Galperin, M. Y. (2003). Principles and methods of sequence analysis. In
Sequence—Evolution—Function, Springer US, pp. 111–192.

Kozlowski, S. W. J., & Klein, K. J. (2000). A multilevel approach to theory and research in orga-
nizations: Contextual, temporal, and emergent processes. In K. J. Klein, & S. W. J. Kozlowski
(Eds.), Multilevel theory, research, and methods in organizations: Foundations, extensions,
and new directions (pp. 3–90). San Francisco, CA: Jossey–Bass.

Kozlowski, S. W., Chao, G. T., Chang, C. H., & Fernandez, R. (2015). Team dynamics: Using “big
data” to advance the science of team effectiveness. In S. Tonidandel, E. King, & J. Cortina
(Eds.), Big data at work: The data science revolution and organizational psychology. New York,
NY: Routledge.

Kozlowski, S. W., Chao, G. T., Grand, J. A., Braun, M. T., & Kuljanin, G. (2013). Advancing
multilevel research design capturing the dynamics of emergence. Organizational Research
Methods, 16, 581–615.

Lacoursiere, R. B. (1980). The life cycle of groups. New York: Human Sciences Press.
Lehmann-Willenbrock, N., Meyers, R. A., Kauffeld, S., Neininger, A., & Henschel, A. (2011).

Verbal interaction sequences and group mood exploring the role of team planning communica-
tion. Small Group Research, 42, 639–668.

Loreau, M., & de Mazancourt, C. (2008). Species synchrony and its drivers: Neutral and nonneu-
tral community dynamics in fluctuating environments. The American Naturalist, 172, 48–66S.

Marks, M. A., Mathieu, J. E., & Zaccaro, S. J. (2001). A temporally based framework and taxon-
omy of team processes. Academy of Management Review, 26, 356–376.

McGrath, J. E. (1990). Time matters in groups. In J. Galegher, R. E. Kraut, & C. Egido (Eds.),
Intellectual teamwork: Social and technological foundations of cooperative work (pp. 23–61).
New York: Lawrence Erlbaum Associates, Inc..

McGrath, J. E., & Kelly, J. R. (1986). Time and human interaction: Toward a social psychology of
time. New York: Guilford Press.

Murase, T., Asencio, R., McDonald, J., Poole M.S., DeChurch, L. A., & Contractor, N. (2015). The
effect of synchronization of group processes on multiteam system effectiveness. Presented at
the annual meeting of National Communication Association, Las Vegas, NV.

Murase, T., Doty, D., Wax, A. M. Y., DeChurch, L. A., & Contractor, N. S. (2012). Teams are
changing: Time to “think networks”. Industrial and Organizational Psychology, 5, 41–44.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similari-
ties in the amino acid sequence of two proteins. Journal of Molecular Biology, 48, 443–453.

Nunnally, J., & Bernstein, I. H. (1994). Psychometric therapy. New York, NY: McGraw-Hill.
Pondy, L. R. (1967). Organizational conflict: Concepts and models. Administrative Science

Quarterly, 12, 296–320.
Poole, M. S. (1981). Decision development in small groups I: A comparison of two models.

Communication Monographs, 48(1), 1–24.
Poole, M. S., & Holmes, M. E. (1995). Decision development in computer-assisted group decision

making. Human Communication Research, 22, 90–127.

6  Sequential Synchronization Analysis

144

Poole, M. S., & Roth, J. (1989). Decision development in small groups IV a typology of group
decision paths. Human Communication Research, 15, 323–356.

Poole, M. S., Lambert, N. J., Murase, T., Asencio, R., & McDonald, J. (2017). Sequential analysis
of processes. In H. Tsoukas, & A. Langley (Eds.), The SAGE handbook of organizational
process studies. Thousand Oaks, CA: Sage.

Rico, R., Sánchez-Manzanares, M., Gil, F., & Gibson, C. (2008). Team implicit coordination pro-
cesses: A team knowledge–based approach. Academy of Management Review, 33, 163–184.

Ritschard, G., Bürgin, R., & Studer, M. (2013). Exploratory mining of life event histories. In J. J.
McArdle, & G. Ritschard (Eds.), Contemporary issues in exploratory data mining in the behav­
ioral sciences (pp. 221–253). New York: Routledge.

Roberts, K. H., Hulin, C. L., & Rousseau, D. M. (1978). Developing an interdisciplinary science
of organizations. San Francisco: Jossey-Bass.

Sambamurthy, V., & Poole, M. S. (1992). The effects of variations in capabilities of GDSS designs
on management of cognitive conflict in groups. Information Systems Research, 3, 224–251.

Sankoff, D., & Kruskal, J. B. (Eds.) (1983). Time warps, string edits, and macromolecules: The
theory and practice of sequence comparison. Reading, MA: Addison-Wesley.

Schiflett, S. G., Elliott, L. R., Salas, E., & Coovert, M. D. (Eds.) (2004). Scaled worlds: Develop­
ment, validation, and applications. Hants: Ashgate.

Stachowski, A. A., Kaplan, S. A., & Waller, M. J. (2009). The benefits of flexible team interaction
during crises. Journal of Applied Psychology, 94, 1536–1543.

Stewart, G. L., Fulmer, I. S., & Barrick, M. R. (2005). An exploration of member roles as a multi-
level linking mechanism for individual traits and team outcomes. Personnel Psychology, 58,
343–365.

Tschan, F. (1995). Communication enhances small group performance if it conforms to task
requirements: The concept of ideal communication cycles. Basic and Applied Social Psychology,
17, 371–393.

Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological Bulletin, 63,
384–399.

Wu, L. (2000). Some comments on sequence analysis and optimal matching methods in sociology:
Review and prospect. Sociological Methods & Research, 29, 41–64.

T. Murase et al.

145© Springer International Publishing AG 2017
A. Pilny, M.S. Poole (eds.), Group Processes, Computational Social Sciences,
DOI 10.1007/978-3-319-48941-4_7

Chapter 7
Group Analysis Using Machine Learning
Techniques

Ankit Sharma and Jaideep Srivastava

7.1  �Machine Learning Techniques and Tools

Our aim in the following text is to provide a hands-on experience for group researchers
to use machine learning and data-mining methods. Our main focus is to analyze and
understand variables that may affect the group’s performance. Keeping that in mind
we shall illustrate the use of two machine learning and data-mining methods in a
variety of combinations for group performance analysis. We employ an existing
implementation of these methods in data-mining GUI based software named Weka
(Hall et al., 2009). We shall also illustrate the process of moving from individual
level variables to group level metrics in the Data Description Section. In the next
subsections we describe the methods (Decision Trees and Feature Selection meth-
ods) and introduce the Weka tool.

7.1.1  �Decision Trees

In machine learning, decision trees were first introduced by Quinlan (1986) in form
of the ID3 algorithm. Later, Quinlan (1993) proposed the C4.5 algorithm to improve
upon the limitation of ID3 algorithm. The major improvements upon ID3 are (1)
C4.5 can handle both discrete as well as continuous data, (2) it can also handle miss-
ing data, and (3) C4.5 also does tree pruning. In the following chapter we shall be
using the C4.5 algorithm for building the decision trees because of these reasons.

A. Sharma (*) • J. Srivastava
University of Minnesota, Minneapolis, MN, USA
e-mail: sharm170@umn.edu; srivasta@cs.umn.edu

mailto:sharm170@umn.edu
mailto:srivasta@cs.umn.edu

146

Decision trees are supervised learning methods that make use of already classified
training data to build predictive models. The aim of a decision tree classifier is to
divide the training samples into partitions that are homogeneous with respect to the
dependent variable (which in our analysis would be the group’s performance). The
algorithm outputs a model in the form of a tree where the bottom or end nodes
(leaves) are the final predictions (or the classification class) and all the other nodes
(non-leaves) represent some independent variables. During the construction of a
tree, that independent variable is chosen as the node which splits its set of samples
in the most homogeneous fashion i.e. each split is homogeneous with respect to the
dependent variable. For this, the C4.5 algorithm employs a normalized information
gain (Quinlan, 1993) as the criterion for variable selection and the variable with the
highest normalized information gain (i.e., best predictor) is chosen as the node.

As an example we have 14 samples where each sample has a day’s humidity and
outlook and depending upon these variables if a group plays a cricket game or not,
given in the Table 7.1. Using the C4.5 implementation in Weka software we achieve
the decision tree shown in the Fig. 7.1b. If we look at the tree, the root is chosen as
“humidity” by the algorithm and not the “outlook” variable. To understand this, if we
try to split the days if the team will play or not, on the basis of the values of “outlook”
and “humidity” variables individually, we get splits as shown in Fig. 7.1a. As we can
see that if “humidity” variable is “normal” then we get a split of seven instance days
on which the group always plays. In this sense, this split generated by “humidity”
variable is pure i.e. all the instances are “yes” only. This purity is what we have been
referring to as homogeneous split. Given that “humidity” is able to generate a more
homogeneous split we say it is a more informative variable and thus, choose it over
the “outlook” variable. Right now for illustration purposes we diagrammatically
illustrated the splits and just by eye balling we can understand which split is homo-

Table 7.1  Training samples of 14 days with two features and dependent variable as team played
or not that day

Outlook Humidity Play

1 Sunny High No
2 Sunny High No
3 Rainy High Yes
4 Rainy High Yes
5 Rainy Normal Yes
6 Rainy Normal Yes
7 Sunny Normal Yes
8 Sunny High No
9 Sunny Normal Yes
10 Rainy Normal Yes
11 Sunny Normal Yes
12 Sunny High Yes
13 Rainy Normal Yes
14 Rainy High No

A. Sharma and J. Srivastava

147

no

sunny= =

== high

humidity

normal

Impure
(Heterogeneous)

Impure
(Heterogeneous)

Pure
(Homogeneous)

Impure
(Heterogeneous)

rainy

outlook
a

b

Play
(dependent

variable)

Play
(dependent

variable)

no

no

no
yes

yes
yes
yes

yes

no
no

no

no

yes

yes

yes
yes
yes
yes
yes
yes

yes

yes

yes

yes
yes
yes
yes

sunny

Non-leaf

outlook

rainy

high normal

yes (7.0)

Leaves

Roothumidity

==

==

no (4.0 /1.0) yes (3.0 /1.0)

Fig. 7.1  (a) Splits generated by individual features. (b) Decision Tree classifying the samples
from Table 7.1

7  Group Analysis Using Machine Learning Techniques

148

geneous or more informative or not. However, this is impractical in practice and C4.5
employs an information theoretic measure of normalized information gain (Quinlan,
1993) as the criterion for variable selection. For further details of this measure we
encourage readers to visit the Quinlan’s text (Quinlan, 1993).

The biggest advantage of decision trees is that a single tree has the ability to
describe the whole feature space. This ease of interpretability makes them quite
popular among practitioners and therefore, we propose them for social scientists as
a tool to understand the feature space pertaining to groups. We make use of an open
source implementation of this algorithm available in the Weka software we use.

7.1.2  �Feature Selection

Given the training samples, the aim of feature selection is to select a compact subset
of independent variables that can predict the dependent variable without much loss
of information. In other words, the purpose is the trim the dataset into a manageable
one by focusing on independent variables that have high predictive power. Feature
selection mines the most informative features and gets rid of the redundant or
strongly correlated features. This process helps achieve a compact smaller set of
features (i.e., parsimony) and therefore, improves model interpretability as well as
training time and generalization by less over fitting (modal selection) (Guyon,
Saffari, Dror, & Cawley, 2010). For a general overview of feature selection
in machine learning we refer to (Guyon & Elisseeff, 2003) and the survey
(Chandrashekar & Sahin, 2014).

Feature selection methods are mainly categorized into three types: (1) Filter, (2)
Wrapper and (3) Embedded (Guyon et al., 2010). A subset of features can be judged
as informative or not irrespective of how well they are able to predict the target or
dependent variable. Algorithms that perform feature selection in this manner are
called Filtering methods but as the selection is independent of the prediction accu-
racy, they usually may not perform optimally. Wrapper methods evaluate the model
accuracy using a learning method for different subset of features and return the best
performing feature subset. But the evaluation and search are done separately, mak-
ing wrapper methods often computationally expensive. Embedded methods, on the
contrary try to merge the subset search and evaluation phase, by incorporating the
search within the machine learning model itself. Therefore, the information obtained
while training the model are used to eliminate or retain features, all this done while
model training itself.

In this paper we describe the application of a popular embedded method called
SVM-RFE (Support Vector Machine based on recursive feature elimination) (Guyon
Weston, Barnhill, & Vapnik, 2002). This algorithm reclusively learns SVM based
model and eliminates independent variables or features with low weights. For fur-
ther details of the algorithm we refer the reader to the original paper in (Guyon
et al., 2002). We make use of the open-source implementation of SVM-RFE in
Weka, which is called “SVMAttributeEval”.

A. Sharma and J. Srivastava

149

7.1.3  �Introducing WEKA: GUI Based Machine Learning Tool

We conduct analysis using the tool called Waikato Environment for Knowledge
Analysis (Weka), written in Java and developed at University of Waikato, New
Zealand. This is a free software available for Windows, Linux as well as Macintosh
environments at (Hall et al., 2009). The tool’s website has link to numerous tutorials
and they also have video based courses at YouTube. The best part of tool is the easy
Graphical User Interface (GUI) which makes it very popular among data-mining
and machine learning practitioners.

7.2  �Dataset and Metrics

7.2.1  Dataset Collection and Description

The dataset was collected using a game based test-bed: SABRE - Situation Authorable
Behavior Research Environment, developed by BBN Technologies, using the
Bioware’s Neverwinter Nights game and its provided toolset (Leung, Diller, &
Ferguson, 2004). In this research we employ a NATO dataset collected using the game-
based test-bed (SABRE) (Fig. 7.2). During the experiment 56 teams, of four members

Fig. 7.2  A screenshot from the SABRE game based test-bed

7  Group Analysis Using Machine Learning Techniques

150

each, were required to search for hidden weapons caches in an urban environment
(town) while earning or loosing Goodwill points. Different amount of Goodwill points
were earned depending on whether the weapons cache was found indoor or outdoor.
Team also can lose points if for example they open a weapon-less container, etc.
Players have a significant choice over the amount, timing, and type of interactions like
chatting to specific individuals or broadcast, communication using structured formats
using the journal-management or map-marking tools provided to the members. There
were several phases in the game starting with Survey, followed by Training and
Planning phases and finally, the Executing phase. It is the Execution phase, 1 h in
length, where the four member teams search for the weapons and earn good will points.

7.2.2  �Individual Level Metrics

In our analysis we develop two types of Individual Level Metrics from the SABRE
dataset. The first are the Role type metrics. These are based upon the kind of role the
individual is playing within the team. There are a total of seven Role Metrics for
each individual member of a team:

	1.	 Number of Tips from NPC (Non-Player Character--automated in the game)
	2.	 Number of Conversations initiated with NPC
	3.	 Number of Chats Sent
	4.	 Number of Chats Received
	5.	 Number of Buildings Entered
	6.	 Number of Tips Sent
	7.	 Number of Tips Received

These metrics try to quantify the Role an individual is playing within the team
while keeping track of the various actions he or she performs or his/her in-game
dynamics.

The second type of metrics are the Skill type metrics which reflect upon the skill
of a team member. These were ascertained via a pre-game survey filled by each of
the members for all the teams. In all we have 18 different kinds of Skill-type indi-
vidual metrics (Table 7.2).

7.2.3  �Constructing Group Level Metrics (Control Variables)
from Individual Metrics

We now develop group or team level metrics using the two types of Individual
Metrics discussed in the previous subsection. We construct the group level metrics
by aggregating the individual level metrics for all the four individuals in each group.
We aggregate in two ways to get two kinds of group level metrics. For the first kind,
we take sum of values of an individual metric for all team members and we refer to
these as the “TOTAL” group metrics. The second group metric is attained by taking

A. Sharma and J. Srivastava

151

into consideration the heterogeneity among the group members with respect to a
given individual metric. We quantify this heterogeneity by employing the concept of
Information Entropy (Teachman, 1980). We define the Information Entropy for a
group of four members for a given individual metric “x” as:

	
H x p p

n
n n() = - ()

=
å

1

4

2log
	

(7.1)

where

	

p
x

x
n

n

n
n

=
()

=
∑

1

4

	

(7.2)

is the fractional contribution of the member n for individual metric x and xn is the
value of the individual metric x for the member n of the group. As there are only four
members in each group we have H in the range [0, 2]. The higher the entropy, the
lower the heterogeneity. Table 7.3, illustrates the values for the values attained by
“TOTAL” and “ENTROPY” metrics for some example values of the “Tips Sent”
individual metric i.e. x = “Tips Sent”.

Tables 7.4 and 7.5, show the Group Level Metrics corresponding to the Role and
Skill Type Individual Metrics, respectively, along with their mean values across all
the 56 Groups in the SABRE dataset.

Table 7.2  List of skill type individual metrics with their type and range

Member Skill Type Value

English native Yes or no {1,2}
English ability 4 level choices {1,2,3,4}
Stress in English environment 4 level choices {1,2,3,4}
Reserve for English view 5 level choices {1,2,3,4,5}
Computer expertise 3 level choices {1,2,3}
Own computer Yes or no {1,2}
Email usage 5 level choices {1,2,3,4,5}
Browser usage 5 level choices {1,2,3,4,5}
Teleconference usage 5 level choices {1,2,3,4,5}
Chat usage 5 level choices {1,2,3,4,5}
Net-meeting usage 5 level choices {1,2,3,4,5}
Own game console 4 category choices {1,2,3,4}
Comp games time spent Number of hours Real
Multiplayer comp game Yes or no {1,2}
Neverwinter Nights Yes or no {1,2}
Comp game names Yes or no {1,2}
Game mods Yes or no {1,2}
Game list Yes or no {1,2}

7  Group Analysis Using Machine Learning Techniques

152

Furthermore, we also have information per team regarding the type of configura-
tion they adopted while playing the game. There are five group configurations as
follows:

	1.	 {1-1-1-1}: All working separate.
	2.	 {1-1-2}: Two working together and the other two separately.
	3.	 {1-3}: One working separately and three together.
	4.	 {2-2}: Working in groups of two.
	5.	 {4}: All working together.

Corresponding to the above five group configurations we have define five TOTAL
Group Level Metrics:

	1.	 Group_Conf_1-1-1-1_Total: Percentage of time spent in configuration {1-1-1-
1} configuration

	2.	 Group_Conf_1-1-2_Total: Percentage of time spent in configuration in {1-1-2}
configuration

	3.	 Group_Conf_1-3_Total: Percentage of time spent in configuration in {1-3}
configuration

	4.	 Group_Conf_2-2_Total: Percentage of time spent in configuration in {2-2}
configuration

	5.	 Group_Conf_4_Total: Percentage of time spent in configuration in {4}
configuration

Table 7.3  Four example teams with different kinds of variety with respect to tips sending behavior.
Tips Sent Entropy and Total metrics are also shown

Attribute: tips sent

Member 1 Member 2 Member 3 Member 4
Entropy
metric Total metric

1 (p1 = 1/8) 0 (p2 = 0/8) 1 (p3 = 1/8) 6 (p3 = 6/8) 1.06 8
6 6 5 6 1.99 23
0 0 0 1 0 1
6 6 6 6 2 24

Table 7.4  List of all the group level role type metrics along with their mean values across groups

Total role metric Mean value Entropy role metric Mean value

Tips_from_NPC_Total 17.625 Tips_from_NPC_Entropy 1.770445
NPC_Interacted_Total 85.98214 NPC_Interacted_Entropy 1.711167
Chats_Received_Total 657.1607 Chats_Received_Entropy 1.982355
Chats_Sent_Total 657.1607 Chats_Sent_Entropy 1.87555
Buildings_Entered_Total 61.33929 Buildings_Entered_Entropy 1.847229
Tips_Received_Total 23.96429 Tips_Received_Entropy 1.492368
Tips_Sent_Total 23.96429 Tips_Sent_Entropy 1.537586
Total_Mean_Total 218.1709 Total_Mean_Entropy 1.7452

A. Sharma and J. Srivastava

153

Ta
bl

e
7.

5 
L

is
t o

f
al

l t
he

 g
ro

up
 le

ve
l s

ki
ll

ty
pe

 m
et

ri
cs

 a
lo

ng
 w

ith
 th

ei
r

m
ea

n
va

lu
es

 a
cr

os
s

gr
ou

ps

T
O

TA
L

 s
ki

ll
m

et
ri

cs
M

ea
n

M
in

M
ax

E
N

T
R

O
PY

 s
ki

ll
m

et
ri

cs
M

ea
n

M
in

M
ax

E
ng

lis
h_

N
at

iv
e_

To
ta

l
4.

67
85

71
4

8
E

ng
lis

h_
N

at
iv

e_
E

nt
ro

py
1.

98
60

54
1.

92
19

2
E

ng
lis

h_
A

bi
lit

y_
To

ta
l

11
7

16
E

ng
lis

h_
A

bi
lit

y_
E

nt
ro

py
1.

96
75

25
1.

89
11

2
St

re
ss

_i
n_

E
ng

lis
h_

To
ta

l
9.

64
28

57
6

14
St

re
ss

_i
n_

E
ng

lis
h_

E
nt

ro
py

1.
94

13
23

1.
53

05
2

R
es

er
ve

_f
or

_E
ng

lis
h_

V
ie

w
_T

ot
al

13
.1

42
86

10
18

R
es

er
ve

_f
or

_E
ng

lis
h_

V
ie

w
_E

nt
ro

py
1.

96
23

73
1.

83
52

2
G

am
e_

M
od

s_
To

ta
l

4.
14

28
57

4
5

G
am

e_
M

od
s_

E
nt

ro
py

1.
98

88
43

1.
92

19
2

C
om

p_
G

am
e_

N
am

es
_T

ot
al

3.
17

85
71

1
4

C
om

p_
G

am
e_

N
am

es
_E

nt
ro

py
1.

61
22

32
0

2
N

ev
er

w
in

te
r_

N
ig

ht
s_

To
ta

l
4.

28
57

14
4

6
N

ev
er

w
in

te
r_

N
ig

ht
s_

E
nt

ro
py

1.
98

03
46

1.
91

83
2

M
ul

tip
la

ye
r_

C
om

p_
G

am
e_

To
ta

l
7.

65
53

57
0.

2
27

.2
M

ul
tip

la
ye

r_
C

om
p_

G
am

e_
E

nt
ro

py
1.

12
44

91
0.

10
12

5
2

G
am

e_
L

is
t_

To
ta

l
4.

23
21

43
4

6
G

am
e_

L
is

t_
E

nt
ro

py
1.

98
32

1.
91

83
2

E
m

ai
l_

U
sa

ge
_T

ot
al

19
.4

46
43

16
20

E
m

ai
l_

U
sa

ge
_E

nt
ro

py
1.

99
32

27
1.

82
32

2
B

ro
w

se
r_

U
sa

ge
_T

ot
al

19
.0

89
29

13
20

B
ro

w
se

r_
U

sa
ge

_E
nt

ro
py

1.
98

01
16

1.
82

32
2

Te
le

co
nf

er
en

ce
_U

sa
ge

_T
ot

al
8.

26
78

57
4

15
Te

le
co

nf
er

en
ce

_U
sa

ge
_E

nt
ro

py
1.

85
46

05
1.

65
2

C
ha

t_
U

sa
ge

_T
ot

al
13

.9
46

43
5

20
C

ha
t_

U
sa

ge
_E

nt
ro

py
1.

87
69

64
1.

65
2

N
et

m
ee

tin
g_

U
sa

ge
_T

ot
al

6.
48

21
43

4
13

N
et

m
ee

tin
g_

U
sa

ge
_E

nt
ro

py
1.

85
83

14
1.

54
88

2
O

w
n_

G
am

e_
C

on
so

le
_T

ot
al

6.
07

14
29

4
11

O
w

n_
G

am
e_

C
on

so
le

_E
nt

ro
py

1.
92

83
54

1.
75

2
C

om
p_

G
am

es
_T

im
e_

Sp
en

t_
To

ta
l

15
.5

41
79

0.
04

62
.0

4
C

om
p_

G
am

es
_T

im
e_

Sp
en

t_
E

nt
ro

py
1.

14
79

74
0.

02
90

89
2

C
om

pu
te

r_
E

xp
er

tis
e_

To
ta

l
9.

48
21

43
6

12
C

om
pu

te
r_

E
xp

er
tis

e_
E

nt
ro

py
1.

97
19

93
1.

89
11

2
O

w
n_

C
om

pu
te

r_
To

ta
l

3.
94

64
29

3
4

O
w

n_
C

om
pu

te
r_

E
nt

ro
py

1.
97

77
68

1.
58

5
2

7  Group Analysis Using Machine Learning Techniques

154

We also define one ENTROPY metric for group configuration which captures the
diversity in group configuration over time. We refer to it as, “Group_Conf_Entropy”.

7.2.4  �Group Performance (Dependent Variables)

As the teams search for weapons they earn or lose goodwill points. We define
Performance of a team as the Net Change in number of goodwill points earned by
each team. The histogram of team performance is shown in Fig. 7.3. The middle of
the three red vertical lines is the mean performance (840.71) and the other two
denote the top and bottom 25 % performance cutoff for teams. We use these cutoffs
to define three categories (0, 1 and 2) of team as follows:

Category 0—Low Performing teams (bottom 25 %): Net Goodwill points ≤500.
Category 1—Medium Performing teams: 500 < Net Goodwill points < 1150.
Category 2—High Performing teams (top 25 %): Net Goodwill points ≥ 1150.

Fig. 7.3  Histogram of the group performance of 56 groups in SABRE dataset

A. Sharma and J. Srivastava

155

7.3  �Experimentation Methodology

Our experiments involve the application of machine learning methodologies
described in Sect. 7.1 to perform group analysis of teams in the SABRE dataset. We
divide the experiments into two types of major levels (see Fig. 7.4). First, is the
Micro-Level analysis where we perform the group analysis using a single type of
group metrics (variables). As we have three types (Role, Skill & Group Configuration)
of group-level metrics, the Micro-Level contains three experiments where we only
consider attributes from within each of these three types. Second, we have Macro-
Level analysis where we consider all the three type of metrics simultaneously.
Within the Macro-level we consider all the three metrics together.

As the reader can observe each of the just described experiments different in the
type of group attributes employed for analysis. Each of these experiments is con-
ducted in four phases (see Fig. 7.5). Each phase helps us understand, from a variety
of perspectives, including insights from their attributes (features), their relation-
ships, and their effects on the group performance. We start with simple correlation

Experiments

Micro-Level

Role Metrics Skill Metrics Group
Configuration

Macro-Level

All 3 Metrics
Together

Fig. 7.4  Segregation of the different types of analysis conducted

•How group of
individual metrics
affect each other and
the performance?

Decision Trees on
Selected Group of
Metrics

•Select the most
important group of
metrics that affect
performance?

Feature Selection

•How group of individual
metrics affect each other
and the performance?

Decision Trees

•How individual metrics
affect the performance?
How pairs of individual
metrics affect each other
and the performance?

•

Correlation Analysis

Fig. 7.5  Diagram showing the various analysis phases along with their purposes

7  Group Analysis Using Machine Learning Techniques

156

analysis to find pair-wise dependence between all variables, both within and between
each dependent and independent variable. This is followed by a decision tree, which
explicitly highlights the patterns of relationships between different variables that
may affect group performance. We perform feature selection next in order to focus
on the dominating or most explanatory variables and discuss why the selected fea-
tures can possibly be relevant. Finally, we again perform decision tree analysis
using on the selected features from the previous phase and hope to find more strong
and interesting patterns. We overall, therefore, have four sets of experiments and in
each experiment we analyze groups from a series of four phases as we just described.
Also within each of the four sets we consider both the TOTAL and ENTROPY vari-
ants of the group metrics.

7.4  �Experiment 1: Group Analysis Using Role Based Metrics

7.4.1  �Phase 1: Correlation Analysis

Table 7.6 shows the correlations with group performance among the different inde-
pendent variables. The total amount of Tips Sent (total metric correlation of 0.43)
and entropy of Tips Sent (entropy correlation of 0.30) were both significantly cor-
related. There was also a negative correlation with entropy regarding the number of
buildings entered (negative entropy correlation of −0.22). Overall, it also seems that
the TOTAL metrics are more related in general to the performance rather than the
ENTROPY metrics.

The correlations between total group level metrics suggest some interesting and
explainable dependencies (Table 7.7). For example, the more a team interacts with
the NPCs the more likely the team gets more tips from them (correlation of 0.646).
Also, as one of the team member gets tips from NPCs he or she is likely to forward
them to other members, therefore, increasing the total tips flux within the group
(observe the correlation 0.30).

Table 7.6  Correlation between independent variables and performance (dependent variable)

Total role metric Correlation score Entropy role metric Correlation score

Tips from NPC 0.383145 Tips from NPC −0.009487
NPC interacted 0.310966 NPC interacted 0.104403
Chats received 0.269815 Chats received −0.102956
Chats sent 0.269815 Chats sent −0.221359
Buildings entered 0.279464 Buildings entered −0.221359
Tips received 0.430349 Tips received 0.081854
Tips sent 0.430349 Tips sent 0.300998
Total mean 0.339129 Total mean 0.0066

A. Sharma and J. Srivastava

157

Ta
bl

e
7.

7 
Pa

ir
-w

is
e

co
rr

el
at

io
n

be
tw

ee
n

to
ta

l r
ol

e
ty

pe
 g

ro
up

 m
et

ri
cs

C
or

re
la

tio
n

G
ot

_T
ip

_f
ro

m
_

N
PC

_T
ot

al
N

PC
_i

nt
er

ac
te

d_
To

ta
l

C
ha

ts
_

R
ec

ei
ve

d_
To

ta
l

C
ha

ts
_

Se
nt

_T
ot

al
B

ui
ld

in
gs

_
E

nt
er

ed
_T

ot
al

T
ip

s_
R

ec
ei

ve
d_

To
ta

l
T

ip
s_

Se
nt

_
To

ta
l

G
ot

_T
ip

_f
ro

m
_N

PC
_T

ot
al

1.
00

0
N

PC
_i

nt
er

ac
te

d_
To

ta
l

0.
64

6
1.

00
0

C
ha

ts
_R

ec
ei

ve
d_

To
ta

l
0.

09
3

0.
10

7
1.

00
0

C
ha

ts
_S

en
t_

To
ta

l
0.

09
3

0.
10

7
1.

00
0

1.
00

0
B

ui
ld

in
gs

_E
nt

er
ed

_T
ot

al
0.

18
7

0.
12

8
−

0.
02

2
−

0.
02

2
1.

00
0

T
ip

s_
R

ec
ei

ve
d_

To
ta

l
0.

30
0

0.
22

9
0.

13
5

0.
13

5
0.

10
1

1.
00

0
T

ip
s_

Se
nt

_T
ot

al
0.

30
0

0.
22

9
0.

13
5

0.
13

5
0.

10
1

1.
00

0
1.

00
0

7  Group Analysis Using Machine Learning Techniques

158

Let’s focus now on the Entropy metrics and their pair-wise correlations, as
depicted in Table 7.8. High Entropy for a given variable indicates that team members
behave similarly with respect to that variable and Low Entropy indicates that there is
a large variation among the team members for the given variable. Now we see a
pretty high correlation between the entropies of interactions initiated with NPCs and
the tips received by NPCs (correlation 0.595). This may make sense because if every-
one initiates a conversation with NPCs (high entropy of initiation) everyone is likely
to get a tip (high entropy of tips from NPC). Similarly, if only a few interact with
NPCs (low entropy for initiation) only those few would receive tips from NPCs (low
entropy). Although, this argument is straight forward, the point we wish to highlight
is that this reasoning is not possible without a team diversity metric like entropy.

Further more interesting would be to utilize the correlation between the entropy
metrics and the total metrics as shown in Table 7.9. For example, we observe a nega-
tive correlation between Chats received as well as the Chats sent entropy and the
total amount of buildings entered by the team. A possible explanation would be that
team is busy in chatting and therefore, fail to enter several buildings. Also chat-
receiving entropy is negatively correlated with the total amount of tips received
from NPC (correlation –0.226). This suggests that possibly a few team members are
busy getting tips from NPC (making high total NPC tips for team) and these mem-
bers are not receiving much chats, as compared to other members (low entropy),
because they are busy interacting with NPCs.

7.4.2  �Phase 2: Decision Tree Analysis

Weka was employed for Decision Tree Analysis using the J48 Decision Tree imple-
mentation provided in the software. To give a more hands-on experience, Fig. 7.6
shows the “Preprocess tab” when we load the data (only the Role type group met-
rics) in the Weka software.

In order to perform decision tree analysis we move to the “Classify” tab (see Fig.
7.7) and choose using the “Choose” button the J48 (which can be found under weka
>classifier −> trees) classifier. Run the classifier using the “Start” button on the left
after choosing the “Use training set” option under the “Test options”.

At this point, we would again highlight here that our major focus in these experi-
ments is not to build strong predictive models where the only concern is to improve
the prediction accuracy over the unseen examples as a test set. Contrary to this, our
main focus is to perform feature space analysis which involves objectives like
reducing the number of independent variables to a manageable set. Furthermore, we
would like to understand how the various features interact and which are the most
important features that can help us understand the given data samples sufficiently
well, rather than the generalization power of model to unknown test samples.

In other words, we are satisfied if our model fits the training data sufficiently well
and focus on interpretation of feature space. For this reason, we choose the “Use
training set” option under the “Test options” on the left. This tells Weka to evaluate
the accuracy of the learnt model on the training data itself.

A. Sharma and J. Srivastava

159

Ta
bl

e
7.

8 
Pa

ir
-w

is
e

co
rr

el
at

io
n

be
tw

ee
n

ro
le

 ty
pe

 e
nt

ro
py

 g
ro

up
 m

et
ri

cs

C
or

re
la

tio
n

N
PC

_t
ip

s_
E

nt
ro

py
N

PC
_i

ni
tia

te
d_

E
nt

ro
py

C
ha

t_
R

ec
ei

ve
d_

E
nt

ro
py

C
ha

t_
Se

nt
_

E
nt

ro
py

B
ul

di
ng

s_
E

nt
er

ed
_

E
nt

ro
py

T
ip

s_
R

ev
c_

E
nt

ro
py

T
ip

s_
Se

nt
_

E
nt

ro
py

N
PC

_t
ip

s_
E

nt
ro

py
1.

00
0

N
PC

_i
ni

tia
te

d_
E

nt
ro

py
0.

59
5

1.
00

0
C

ha
t_

R
ec

ei
ve

d_
E

nt
ro

py
0.

32
4

0.
11

4
1.

00
0

C
ha

t_
Se

nt
_E

nt
ro

py
0.

03
1

−
0.

01
0

0.
19

6
1.

00
0

B
ul

di
ng

s_
E

nt
er

ed
_E

nt
ro

py
0.

07
2

−
0.

07
5

0.
06

4
0.

00
4

1.
00

0
T

ip
s_

R
ev

c_
E

nt
ro

py
−

0.
14

2
−

0.
14

0
−

0.
09

8
−

0.
00

1
0.

09
9

1.
00

0
T

ip
s_

Se
nt

_E
nt

ro
py

−
0.

07
6

0.
05

1
−

0.
02

4
0.

01
2

−
0.

14
1

0.
34

6
1.

00
0

7  Group Analysis Using Machine Learning Techniques

160

Ta
bl

e
7.

9 
C

or
re

la
tio

n
be

tw
ee

n
ro

le
 ty

pe
 e

nt
ro

py
 v

/s
 to

ta
l g

ro
up

 m
et

ri
cs

E
nt

ro
py

 v
/s

 T
ot

al
G

ot
_T

ip
_f

ro
m

_
N

PC
_T

ot
al

N
PC

_i
nt

er
ac

te
d_

To
ta

l
C

ha
ts

_
R

ec
ei

ve
d_

To
ta

l
C

ha
ts

_
Se

nt
_T

ot
al

B
ui

ld
in

gs
_

E
nt

er
ed

_T
ot

al
T

ip
s_

R
ec

ei
ve

d_
To

ta
l

T
ip

s_
Se

nt
_

To
ta

l

N
PC

_t
ip

s_
E

nt
ro

py
−

0.
09

0
0.

04
6

0.
06

4
0.

06
4

0.
05

8
−

0.
09

7
−

0.
09

7
N

PC
_i

ni
tia

te
d_

E
nt

ro
py

−
0.

02
2

0.
08

0
0.

15
2

0.
15

2
0.

10
4

−
0.

06
3

−
0.

06
3

C
ha

t_
R

ec
ei

ve
d_

E
nt

ro
py

−
0.

22
6

−
0.

04
9

0.
15

9
0.

15
9

−
0.

29
3

−
0.

11
8

−
0.

11
8

C
ha

t_
Se

nt
_E

nt
ro

py
−

0.
01

8
0.

01
4

0.
32

4
0.

32
4

−
0.

19
7

0.
24

8
0.

24
8

B
ul

di
ng

s_
E

nt
er

ed
_E

nt
ro

py
−

0.
22

6
−

0.
12

3
−

0.
06

8
−

0.
06

8
0.

15
5

0.
10

9
0.

10
9

T
ip

s_
R

ev
c_

E
nt

ro
py

−
0.

13
8

−
0.

11
6

−
0.

23
7

−
0.

23
7

0.
15

8
0.

36
9

0.
36

9
T

ip
s_

Se
nt

_E
nt

ro
py

0.
18

4
−

0.
03

1
0.

30
0

0.
30

0
0.

00
5

0.
56

7
0.

56
7

A. Sharma and J. Srivastava

161

After running the analysis, the output screen on right shows the results, as shown
in Fig. 7.7. As we can observe the decision tree fits the 56 group samples fairly well.
In order to visualize the tree, right click on the Result list at the bottom left and
choose “Visualize Tree” option. Figure 7.8 shows the resultant tree for the total as
well as entropy type group metrics together. Recall we had mentioned that we divide
the teams in three categories: low (0), medium (1) and high (2), based upon their
performance. Our aim in the Decision Tree analysis is to find those path ways or
relationships between different variables starting from the top of tree that take us to
high performing (labeled 2) leaves i.e. bottom-most nodes (dependent variable) in
the tree. This helps us better understand the relationship in a visual fashion. Note the
format of the leaves in the decision tree is of type x(y/z) where x is the class label
(0: low, medium:1 or 2:high), y is the number of samples or instances correctly clas-
sified and z is the number of samples incorrectly classified. We would like to have
the fraction (y/z) as high as possible for a reliable decision on the leaf node.

We observe in Fig. 7.8, that sub-tree to the right of the nodes: TIPS_RECV_
TOTAL and TIPS_SENT_ENTROPY, contains mostly medium and high perform-
ing leaves. Therefore, higher tips circulated within the team and higher tips sent
entropy are all related to team performance according to the model (i.e. everyone
sending tips results in good team performance).

Fig. 7.6  Preprocess tab in Weka

7  Group Analysis Using Machine Learning Techniques

162

Also, we observe that the high performing teams (leaves with label ‘2’) are either
in the right sub-trees of TIPS_SENT_ENTROPY node or of the NPC_INTER_
TOTAL node. But we can notice that even after this, if a group falls in the left sub-
tree of NPC_INTER_TOTAL (≤91) node, it is still predicted to have medium
performance by having sufficiently high (>18) total tips from NPCs (i.e. right of
TIP_NPC_TOTAL is a medium (‘1’) leaf). This reflects the importance of tips from
NPCs. However, we also find three high performing groups (leaf labeled ‘2 (3.0)’)
to the left of TIP_NPC_ENTROPY. This means that if the tips receiving entropy of
the group is less than 1.7 it is predicted to be high performing. For a four member
team this typically should mean that only one or two members should be receiving
those tips from NPCs. Readers are encouraged to see Table 7.3 to get a sense of the
range of entropy and the type of values assumed by team members for a metric.

Note that we chose the minimum number of classified instances as two using the
“−M” option for our classifier as “J48 –C 0.25 –M 2” (see top of Fig. 7.7). This
means that our decision tree will assign a new variable node even if the instances it
is able to split are as low two. Therefore, if the leaf format in the visualized tree is
x(y/z) then y ≥ m if we select option “−M m”. In our case we observe this limit in
the leaf “0(2.0/1.0)” where y = 2 as we chose m = 2. Notice that as we increase ‘m’,
the misclassification instances i.e. z will also increase. We however, leverage the
small size of our data to completely interpret our data by generating a tree node even
if it is able to classify as low as two instances only.

Fig. 7.7  Full role metric model fit statistics

A. Sharma and J. Srivastava

163

<
=

7

<
=

1.
64

24

<
=

91

<
=

0
>

 0

>
 6

8

>
1.

99
65

>
1.

91
83

<
=

68

<
=

1.
99

65

<
=

1.
91

83

<
=

1.
70

02
>

1.
70

02

<
=

18
>

18

>
1.

84
5

1
(3

.0
/1

.0
)

1(
5.

0)

0
(9

.0
/1

.0
)

0
(2

.0
/1

.0
)

2
(7

.0
/1

.0
)

1
(3

.0
)

1(
12

.0
)

2
(3

.0
)

1(
5.

0/
1.

0)
2(

3.
0)

<
=

1.
84

5

0
(4

.0
)

>
7

>
1.

64
24

>
91

T
IP

S
_R

E
C

V
_T

O
T

A
L

T
IP

S
_S

E
N

T
_E

N
T

R
O

P
Y

C
H

A
T

_R
E

C
V

_E
N

T
R

O
P

Y

T
IP

S
_S

E
N

T
_E

N
T

R
O

P
Y

T
IP

_N
P

C
_E

N
T

R
O

P
Y

TI
P

_N
P

C
_T

O
TA

L

N
P

C
_I

N
T

E
R

_T
O

T
A

L B
U

LD
_E

N
T

E
R

_T
O

T
A

L

T
IP

S
_R

E
C

V
_E

N
T

R
O

P
Y

N
P

C
_I

N
T

E
R

_E
N

T
R

O
P

Y

F
ig

. 7
.8

 
Fu

ll
ro

le
 m

et
ri

c
m

od
el

 d
ec

is
io

n
tr

ee

7  Group Analysis Using Machine Learning Techniques

164

Adding to discussion on generalizability of the models we are using, we would
also bring into notice that our dataset size is quite small and sparse with the sample
size being the same as the number of dimension (56 sample size and 56 metrics with
total and entropy types combined). Therefore, the generalizability and prediction on
out of sample test cases for our models is not high. But they very well explain the
training samples and how features affect the given data. We have chosen this smaller
dataset in order to illustrate how beautifully we can zoom into the feature space. Our
focus is therefore, how well can the group features explain the data samples. So in
some sense we are fitting the machine learning model to the training set and care
less about the prediction capability. If we have a larger dataset we can have more
generalizability and less prediction error on testing this set as well.

7.4.3  �Phase 3: Feature Selection

In the previous two sections, our analysis consisted of all the 16 available metrics of
the role type. However, not all the metrics might be that relevant for a performance
analysis of the teams. In machine learning, a subset of the most important variables
and rank among them is done using feature selection methods (Guyon et al., 2010).
Although there are a variety of feature selection methods, we will focus on of the
powerful SVM classification based embedded method (Guyon et al., 2002) dis-
cussed earlier. In the Weka software this SVM based method is implemented under
the name “SVMAttributeEval” in the Attribute Evaluators which is under “Select
Attributes” tab (see Fig. 7.9). There are several options within SVMAttributeEval
that we can play with, but for this illustration we restrict to the default options. Note,
“attribute evaluator” scores the worth a subset of features and “search method”
determines what kind of search is performed. We encourage readers to try different
kinds feature selection methods.

After pressing the “start” button, the method returns a ranked list of all the attri-
butes as per their relevance (as can be observed in the Attribute Selection output on
the right). SVM-RFE algorithm implemented within “SVMAttributeEval” elimi-
nates as well as rank the features iteratively. In each iteration the features are elimi-
nated if required and are ranked as per their performance classification accuracy
over the training set when used within the SVM classifier. We observe in the selected
features, similar to the decision tree analysis in the previous section, that the tips
exchanging behavior of members, captured in TIPS_SENT_ENTROPY and TIPS_
SENT_TOTAL metrics, plays an important role in deciding team success.
Furthermore, unlike any of the previous analysis, feature selection also indicates
that chatting behavior of members also affects the performance.

Recall we are only concerned with the accuracy of the model on the training set
and therefore, we choose the “Use training set” option under “Test options” on the
left. If we have a larger sample size, then we can go for cross-validation as well. In
fact, for our data, both for decision trees as well as feature selection, there was
almost no difference between the models built using training set (with low error)

A. Sharma and J. Srivastava

165

and via cross-validation (with less accuracy). This further confirms that our
generalizability is restricted by lack of enough data samples. We therefore, focus on
training set performance only.

7.4.4  �Phase 4: Decision Tree Analysis over Selected Features

Notice that decision trees, as we saw in Phase 2, can tell us exactly whether it was
the low or high value of a variable and in what context of other variable’s values,
affects group performance. This is in contrast to the black box approach of feature
selection in Phase 3, which gives a list of highly important variables, but there is no
way to ascertain what kind of values of these selected features affect the perfor-
mance in what way.

In this phase we try to combine the best of both worlds. We use the top five
highly ranked features, which in our case are the group level role metrics. In this
way we leverage the ranking information from feature selection to lower the size of
feature set from 16 to the five most important ones. We then build decision trees
using only the top five role metrics just selected.

Fig. 7.9  Ranked attributes for role model using SVM

7  Group Analysis Using Machine Learning Techniques

166

Before we go ahead with analysis of decision tree, we would like to comment on
how to choose number of top ranked features. This choice is more of an art, espe-
cially if our focus is on feature space interpretation. Now as we increase the K top
attributes, the training error on the decision tree built on it decreases. On the other
hand, the number of attributes increases, making the tree possibly cumbersome to
analyze. However, the latter is not always the case. Therefore, it becomes more of a
subjective choice of K, which gives an interestingly interpretable decision tree and
might have a sufficiently low training error as well.

For our choice of top five, the resultant tree is shown in Fig. 7.10b above and the
model fit on training data is shown in Fig. 7.10a. As we can see that we now have a
tree of just four metrics out of the 5 previously selected in Phase 3. This tree is suf-

Chats_Received_Total

<= 454

<= 36

<= 1.9896 > 1.9896

<= 17 > 17

<= 1.3996 > 1.3996

> 1.5868

> 1.9183<= 1.9183

<= 1.9965 > 1.9965

> 805<= 805

1 (3.0) 2 (3.0/1.0)

2 (3.0)

1 (13.0)

2 (3.0/1.0)1 (5.0)

0 (4.0/1.0)

0 (15.0/5.0) 2 (2.0)

2 (5.0/1.0)

<= 1.5868

> 454

> 36

Chats_Received_Total

Chat_Received_Entropy Chats_Received_Entropy

Tips_Sent_Entropy

Tips_Sent_Entropy

Tips_Sent_Total

Tips_Sent_Total

Tips_Sent_Entropy

a

b

Fig. 7.10  (a) Reduced role metric model fit statistics. (b) Reduced role metric model decision tree

A. Sharma and J. Srivastava

167

ficiently detailed and precisely tells us which kind of groups fall in intersection of
which values of just these four group metrics. The big marked circle on the right
contains a sub-tree whose leaves are either medium or high performing, implying
that if a team falls in this sub-tree it is highly probable that it would perform well (at
least medium if not high). In order to fall in this sub-tree, the team members should
be chatting a lot and should have a similar tip sending behavior among the members
(see the nodes in the two small circles).

Also if we observe the root node (CHAT_RECV_TOTAL), the left of root occurs
if a group is chatting quite a bit less (<454). This value is significantly lower than
the mean total chat across groups (see Table 7.4). If group members chat less and do
not also send tips much, i.e. fall on left of TIPS_SENT_TOTAL node (left of root
node), this group is more likely to perform low. As we can see the label of the leaf
to the left of TIPS_SENT_TOTAL as “0(15.0/5.0)”. There are 15 low performing
groups out of the total 19 low performing groups that were predicted to fall in this
leaf. Now, on the other hand, notice if we concentrate on the right of TIPS_SENT_
TOTAL. This happens if a low chatting group has significantly high (>36) tips cir-
culated in group. Note the mean TIPS_SENT_TOTAL, from Table 7.4, is
approximately equal to 24. So what this tells is that even a very low chatting group,
if its members are circulating large volume of tips (> 36 much greater than mean of
24), it is predicted to perform well. As the label leaf on the right of TIPS_SENT_
TOTAL says there are only two such cases seen so far i.e. “2 (2.0)”. Therefore,
although such events are possible, they are very unlikely. So it is best for the team
members to chat more (i.e., over 454).

Also if we observe the two TIPS_SENT_TOTAL nodes (one on top left and one
bottom of the tree), we realize that higher total sent tips results into high perfor-
mance even if the team is chatting less and has less tip sending entropy (i.e. only a
few members send a large number of tips). As such, this indicates that high tip send-
ing behavior may be favorable in the absence of chat receiving.

Summarizing this example, we found through four different types of analysis
that for good performance, everyone in team should be communicating via both
chatting as well as exchanging tips, but only a few members should be receiving a
lots of tips from NPC and entering buildings.

7.5  �Experiment 2: Group Analysis Using Skill Based Metrics

7.5.1  �Phase 1: Correlation Analysis

We shall proceed for the group analysis using Skill metrics in a fashion similar to
Role metrics performed in the last experiment. The Skill metric largely refers to
the diversity of skills that make up each team and can be important regarding the
assembly of teams. However, this time we assume that, with the detailed description
in previous example, the reader is acquainted with the interpretation of entropy met-
rics as a variety quantifier. Firstly, we will see the correlation with the performance

7  Group Analysis Using Machine Learning Techniques

168

variable on different independent variables (both total and entropy metrics
for all the skill type variables) as shown in Table 7.10. All the interesting cor-
relations are highlighted using bold font. Overall, total English and Computer
expertise as well as Native English speaking ability in the team are good predic-
tors (positive corr. = 0.396 between total English native speaking ability of team
with performance) of group performance. However, only “few” Native English
speakers are better (negative corr. = −0.186 between Native English speaking
Entropy and Performance). Teams having the most members with knowledge
of Computer (positive corr. = 0.408 between Computer Expertise and perfor-
mance) and spending time on Computer games (positive corr. = 0.334 between
Comp. Games Time spent and performance) had a positive relationship with team
performance.

The correlations between Entropy and Total skill metrics are shown in Table
7.11. The diagonal of this table is pretty important and interesting. All the interest-
ing correlations are highlighted with bold font in Table 7.11. If a particular diagonal
element is highly positive, it implies that the variable representing this row/column
is high for all the individuals (high entropy) if total sum of all the team members for
this variable is high (high total). On contrary if this diagonal element is highly nega-
tive, then it suggests that when the total group metric for this variable is high (high
total metric), then only few (possible 1 or 2 in our four team member case) members
are responsible or have high value for this variable (low entropy). Let us explain this
with an example. Observe that Browser_Usage_Total is highly correlated with
Browser_Usage_Entropy (positive corr. = 0.885 highlighted on the diagonal). This
means that if the total browser usage in a team is high then the entropy with respect
to browser usage in the team is also high. High entropy means that all the members
of the team exhibit similar behavior. Given that team has high total browser usage,
this indicates that all the team members are equally contributing to this high browser
usage of the team. Note that it could have been possible that only a single member
is responsible for all or most of the browser usage. If this would have been the case,
this cell corresponding to Browser_Usage_Total and Browser_Usage_Entropy
would have been dark green (i.e. highly negatively correlated). In fact such is the
case for the pair of Neverwinter_Nights_Entropy and Neverwinter_Nights_Total,
which is highly negatively correlated with a value of −0.949. This indicates that if
the total team’s score for playing Neverwinter Night is high, then it is highly likely,
in our four team member case, that it was possibly just single member responsible
for this score (very low entropy).

This diagonal element property that we just stressed is very important as it high-
lights the importance of the two group level metrics Total and Entropy. This fine
grained description that we are able to achieve just at the level of correlation analy-
sis, shows the value of these group level metrics.

A. Sharma and J. Srivastava

Ta
bl

e
7.

10
 

C
or

re
la

tio
n

be
tw

ee
n

in
de

pe
nd

en
t v

ar
ia

bl
es

 a
nd

 p
er

fo
rm

an
ce

 (
de

pe
nd

en
t v

ar
ia

bl
e)

C
or

re
la

tio
n

w
ith

pe

rf
or

m
an

ce
E

ng
lis

h
na

tiv
e

E
ng

lis
h

ab
ili

ty

St
re

ss
 in

E

ng
lis

h
en

vi
ro

nm
en

t

R
es

er
ve

fo

r
E

ng
lis

h
vi

ew
G

am
e

m
od

s

C
om

p
ga

m
e

na
m

es
N

ev
er

w
in

te
r

N
ig

ht
s

M
ul

tip
la

ye
r

co
m

p
ga

m
e

G
am

e
lis

t
E

m
ai

l
us

ag
e

B
ro

w
se

r
us

ag
e

Te
le

co
nf

er
en

ce

us
ag

e
C

ha
t

us
ag

e

N
et

m

ee
tin

g
us

ag
e

O
w

n
ga

m
e

co
ns

ol
e

C
om

p
ga

m
es

tim

e
sp

en
t

C
om

pu
te

r
ex

pe
rt

is
e

O
w

n
co

m
pu

te
r

To
ta

l m
et

ri
c

0.
39

6
0.

43
5

0.
11

5
−

0.
01

1
0.

07
8

0.
34

5
0.

18
6

0.
32

0
0.

24
6

0.
01

7
0.

07
1

−
0.

18
9

0.
33

3
−

0.
00

1
0.

32
4

0.
33

4
0.

40
8

0.
10

8

E
nt

ro
py

 m
et

ri
c

−
0.

18
6

0.
02

1
0.

02
9

0.
24

4
−

0.
07

8
0.

35
2

−
0.

22
9

−
0.

33
2

−
0.

25
7

0.
01

9
0.

07
9

−
0.

24
5

0.
05

3
−

0.
15

0
−

0.
21

4
0.

24
0

0.
23

8
0.

10
8

Ta
bl

e
7.

11
 

C
or

re
la

tio
n

be
tw

ee
n

sk
ill

 ty
pe

 e
nt

ro
py

 v
/s

 to
ta

l g
ro

up
 m

et
ri

cs

E
nt

ro
py

 v
/s

to

ta
l

E
ng

lis
h_

N
at

iv
e_

To
ta

l

E
ng

lis
h_

A
bi

lit
y_

To
ta

l

St
re

ss
_

in
_

E
ng

lis
h_

To
ta

l

R
es

er
ve

_
fo

r_
E

ng
lis

h_
V

ie
w

_
To

ta
l

G
am

e_
M

od
s_

To
ta

l

C
om

p_
G

am
e_

N
am

es
_

To
ta

l

N
ev

er

w
in

te
r_

N
ig

ht
s_

To
ta

l

M
ul

tip
la

ye
r_

C
om

p_
G

am
e_

To
ta

l

G
am

e_
L

is
t_

To
ta

l

E
m

ai
l_

U
sa

ge
_

To
ta

l

B
ro

w
se

r_
U

sa
ge

_
To

ta
l

Te
le

co
n

fe
re

nc
e_

U
sa

ge
_

To
ta

l

C
ha

t_
U

sa
ge

_
To

ta
l

N
et

m
ee

tin
g_

U
sa

ge
_T

ot
al

O
w

n_
G

am
e_

C
on

so
le

_
To

ta
l

C
om

p_
G

am
es

_
T

im
e_

Sp
en

t_
To

ta
l

C
om

pu
te

r_
E

xp
er

tis
e_

To
ta

l

O
w

n_
C

om
pu

te
r_

To
ta

l

E
ng

lis
h_

N
at

iv
e_

E
nt

ro
py

−
0.

11
4

−
0.

04
0

−
0.

15
8

−
0.

01
4

0.
05

7
0.

04
6

−
0.

10
2

0.
16

4
0.

03
2

−
0.

07
4

0.
08

9
−

0.
00

5
0.

09
6

0.
07

5
0.

04
7

0.
06

9
0.

15
1

−
0.

11
1

E
ng

lis
h_

A
bi

lit
y_

E
nt

ro
py

0.
30

1
0.

38
5

−
0.

12
9

0.
00

0
0.

03
1

0.
15

8
0.

19
5

0.
15

9
0.

12
0

0.
21

6
0.

41
4

0.
01

0
0.

13
4

−
0.

12
7

0.
35

2
0.

16
5

0.
29

7
0.

31
2

St
re

ss
_i

n_
E

ng
lis

h_
E

nt
ro

py

0.
20

5
0.

26
6

0.
05

2
−

0.
26

8
−

0.
02

8
0.

11
3

0.
17

1
0.

13
4

0.
05

8
0.

28
4

0.
29

5
0.

11
2

0.
07

8
−

0.
14

0
0.

04
6

0.
11

3
0.

14
4

0.
12

1

R
es

er
ve

_f
or

_
E

ng
lis

h_
V

ie
w

_
E

nt
ro

py

0.
28

8
0.

26
9

−
0.

03
1

−
0.

14
3

0.
11

7
0.

09
1

0.
24

5
0.

11
6

0.
18

2
0.

03
2

0.
39

7
0.

12
7

0.
25

9
−

0.
03

3
0.

30
2

0.
15

4
0.

24
4

0.
26

5

G
am

e_
M

od
s_

E
nt

ro
py

0.
01

7
−

0.
11

0
−

0.
12

0
−

0.
10

3
−

1.
00

0
−

0.
03

6
0.

12
5

−
0.

09
9

−
0.

67
8

0.
13

6
−

0.
11

1
0.

07
7

−
0.

13
0

−
0.

13
3

−
0.

01
3

−
0.

14
5

−
0.

31
4

0.
13

0

C
om

p_
G

am
e_

N
am

es
_E

nt
ro

py
0.

10
7

0.
12

6
0.

03
4

0.
04

3
0.

07
3

0.
98

2
0.

09
0

0.
45

8
0.

15
6

−
0.

06
7

0.
09

1
0.

12
1

0.
36

8
0.

17
0

0.
20

3
0.

47
1

0.
48

2
0.

04
7

N
ev

er
w

in
te

r_
N

ig
ht

s_
E

nt
ro

py
−

0.
54

6
−

0.
50

9
−

0.
10

4
−

0.
15

4
0.

11
9

−
0.

12
9

−
0.

94
9

−
0.

44
6

0.
02

4
−

0.
24

5
−

0.
10

4
−

0.
05

4
−

0.
03

7
0.

08
1

−
0.

43
4

−
0.

47
1

−
0.

31
5

−
0.

13
7

M
ul

tip
la

ye
r_

C
om

p_
G

am
e_

E
nt

ro
py

−
0.

13
6

−
0.

27
3

−
0.

24
7

−
0.

21
5

−
0.

18
9

−
0.

35
4

−
0.

15
8

−
0.

27
2

−
0.

10
4

0.
19

4
−

0.
16

2
−

0.
18

8
−

0.
33

9
−

0.
27

2
−

0.
07

6
−

0.
28

5
−

0.
35

4
−

0.
01

3

G
am

e_
L

is
t_

E
nt

ro
py

−
0.

29
3

−
0.

33
7

0.
09

5
0.

05
7

−
0.

66
0

−
0.

15
4

0.
03

6
−

0.
06

6
−

0.
96

5
0.

06
0

−
0.

05
6

0.
09

8
−

0.
12

1
0.

01
7

−
0.

10
5

−
0.

19
1

−
0.

41
3

0.
06

8

E
m

ai
l_

U
sa

ge
_

E
nt

ro
py

0.
13

3
0.

16
2

0.
20

6
0.

08
5

−
0.

27
4

0.
05

1
0.

12
6

0.
17

5
−

0.
20

3
0.

68
7

0.
27

2
0.

06
2

0.
11

7
−

0.
16

1
0.

24
6

0.
12

0
−

0.
04

3
0.

54
3

B
ro

w
se

r_
U

sa
ge

_E
nt

ro
py

0.
12

6
0.

19
1

0.
10

5
0.

01
1

−
0.

01
8

0.
12

2
0.

04
0

−
0.

07
0

0.
04

4
0.

09
1

0.
88

5
0.

28
5

0.
15

9
0.

17
3

0.
19

3
0.

08
1

0.
19

0
0.

47
5

Te
le

co
nf

er
en

ce
_

U
sa

ge
_E

nt
ro

py
−

0.
08

0
0.

09
3

0.
17

6
0.

01
9

−
0.

04
6

−
0.

14
5

0.
07

3
−

0.
00

3
−

0.
08

5
0.

21
3

0.
17

4
−

0.
06

2
−

0.
21

0
−

0.
02

7
−

0.
02

9
−

0.
06

6
0.

07
8

−
0.

06
6

C
ha

t_
U

sa
ge

_
E

nt
ro

py
−

0.
06

4
0.

00
7

−
0.

06
0

0.
04

7
0.

00
6

0.
17

6
−

0.
18

5
0.

35
6

0.
03

8
0.

06
2

−
0.

04
0

0.
00

9
0.

74
9

0.
16

3
0.

08
7

0.
25

1
0.

12
0

0.
07

3

N
et

m
ee

tin
g_

U
sa

ge
_E

nt
ro

py
0.

00
6

0.
10

8
−

0.
07

1
−

0.
04

9
−

0.
10

4
−

0.
18

1
−

0.
09

0
−

0.
07

8
0.

06
9

0.
29

7
−

0.
08

4
−

0.
33

9
−

0.
30

0
−

0.
67

5
0.

14
6

−
0.

02
6

−
0.

25
7

−
0.

00
7

O
w

n_
G

am
e_

C
on

so
le

_
E

nt
ro

py

−
0.

07
1

−
0.

24
5

−
0.

19
9

−
0.

17
5

−
0.

20
3

−
0.

07
5

−
0.

06
4

−
0.

06
2

−
0.

09
6

−
0.

31
1

−
0.

02
5

0.
23

3
0.

02
6

0.
17

6
−

0.
29

0
−

0.
11

0
−

0.
25

1
−

0.
11

0

C
om

p_
G

am
es

_
T

im
e_

Sp
en

t_
E

nt
ro

py

−
0.

07
1

−
0.

06
0

−
0.

00
6

0.
14

7
0.

05
0

0.
48

5
0.

14
8

0.
27

8
−

0.
02

8
−

0.
12

8
−

0.
16

1
−

0.
15

9
0.

10
6

−
0.

03
2

0.
04

5
0.

31
1

0.
04

6
−

0.
27

4

C
om

pu
te

r_
E

xp
er

tis
e_

E
nt

ro
py

0.
21

0
0.

28
0

−
0.

14
9

0.
00

3
0.

02
1

0.
08

3
0.

21
2

0.
18

1
0.

15
8

0.
27

7
0.

12
9

−
0.

27
1

−
0.

14
4

−
0.

32
5

0.
27

4
0.

13
9

0.
26

1
0.

06
9

O
w

n_
C

om
pu

te
r_

E
nt

ro
py

0.
12

3
0.

17
0

0.
23

8
0.

10
1

−
0.

13
0

0.
05

3
0.

13
0

0.
14

8
−

0.
05

2
0.

35
8

0.
53

7
0.

25
5

0.
28

8
0.

11
6

0.
05

7
0.

18
4

0.
23

7
1.

00
0

172

7.5.2  �Phase 2: Decision Tree Analysis

The decision tree using the Skill based metrics is shown in the Fig. 7.11a and the
corresponding model accuracy on the training instances is shown in Fig. 7.11b. We
know from Table 7.4 that the average Teleconference_Usage_Total across all the
groups is around 8. The leaf right of the root node (Teleconference_Usage_Total)
is attained if the group has very high (>13) Teleconference usage relative to the
mean of 8. Unfortunately, this leaf is labeled “0 (3.0)”, meaning three low perform-
ing groups have been observed with such high Teleconference usage. Here, Daily

<= 15

<= 1.9242

<= 8

<= 1.9749

<= 11

> 15

> 1.9242

> 8

> 1.9749

0 (3.0)

Teleconference_Usage_Total

Chat_Usage_Total

Browser_Usage_Total

Teleconference_Usage_Total

Reserve_for_English_View_Entropy

Computer_Expertise_Entropy

English_Native_Total2 (12.0/2.0)

a

b

1 (6.0)

1 (2.0) 2 (3.0) 1 (12.0)

0 (6.0/2.0) 1 (5.0/1.0)

0 (2.0)

0 (5.0/1.0)

Reserve_for_English_View_Entropy

<= 1.0414 > 1.0414

> 1.971<= 1.971

> 4<= 4

> 11

Multiplayer_Comp_Game_Entropy

> 13<= 13

Fig. 7.11  (a) Full skill metric model decision tree. (b) Full skill metric model fit

A. Sharma and J. Srivastava

173

or Weekly Teleconference usage was predicted as something agnostic to group
performance.

Moreover, low entropy in multi-player game playing and low entropy in native
English speakers had a positive relationship with high group performance. That is,
groups with low entropy values on these two variables were overwhelmingly
predicted to be in the high performance class. By following the parent nodes of
these two variables (i.e. Multiplayer_Comp_Gam_Entropy ≥ Reserve_for_English_
View_Entropy) to the leaves, it shows that 23 (e.g., add up all the predicted cases in
the left, 12 + 6 + 2 + 3) groups fall in these leaves. Out of these 23 groups, 15 (12+3,
~65 %) were predicted as high performing groups (only two were incorrect). As
such, out of the 14 high performing groups, these rules correctly classified 13 of
them (~93 %), leaving only one false negative (i.e., a high performing group incor-
rectly predicted as not high performing).

7.5.3  �Phase 3: Feature Selection

Similar to previous example, using Weka we performed the SVM based feature
selection using the SVMAttributeEval functionality provided in Weka. The Attribute
selection output contains the ranked list of various skill type group metrics is shown
in Fig. 7.12.

7.5.4  �Phase 4: Decision Tree Analysis over Selected Features

Finally, we perform a decision tree analysis using the selected features. This time
we chose the top ten features out of the total 36 skill metrics which are shown in
decreasing ranks in Table 7.12. We also tried other values for the number of top
attributes to use, but they did not generate useful trees. In fact, the resulting J48
decision tree shown in the Fig. 7.13a employs only five features out of the ten
selected features. However, as we can observe in Fig. 7.13a the left sub-tree of root
has similar relationships to those in the tree built in Phase 2 (Fig. 7.10a). The left
sub-tree highlighted with a red circle is the most interesting as it contains only high
or medium performing groups. The corresponding model fit is given in the
Classification output in Fig. 7.13b.

To summarize this example, the best predictor of high performing teams is a
combination of low values regarding entropy in skill related to multiplayer com-
puter games, total teleconference usage, and entropy in Reserve in English View
presentation (12 predicted to be high performing, only two were incorrect). Like
wise, high performing teams tended to have high entropy in Computer expertise and
Game Mods (4 predicted to be high performing, one incorrect).

7  Group Analysis Using Machine Learning Techniques

174

7.6  �Experiment 3: Group Analysis Using Group
Configuration Metrics

In this section we focus on the effect of the group configuration metrics on the group’s
performance. Table 7.12 shows the correlation score of the different group configura-
tion metrics with group performance (the dependent variable). The correlation of
Group_Conf_1-1-1-1_Total with performance reflects that working separately is cor-
related with good performance, suggesting a division of labor may be beneficial
rather than working collectively at the same time. To see this more visually we plot
the linear regression curve in Fig. 7.14a where the line has a positive slope.

If we focus on the Group_Conf_Entropy, we observe a negative correlation with
performance. Note that the Group_Conf_Entropy variable reflects homogeneity
with respect to the different possible group configurations over time. It is high when
a group spends equal time in each of the five configurations and lowest when the
team is just playing in a single configuration during the entire playing time. The
negative correlation therefore, suggests that in general, spending time in fewer

Fig. 7.12  Ranked attributes for skill model using SVM

A. Sharma and J. Srivastava

175

Fig. 7.13  (a) Reduced skill metric model decision tree. (b) Reduced skill metric model fit

Multiplayer_Comp_Game_entropy

Teleconferance_Usage_Total

Reserve _for_English_View_Entropy

Game_Mods_Entropy

Computer_Expertise_Entropy

Teleconferance_Usage_Total Reserve _for_English_View_Entropy

Computer_Expertise_Entropy

Computer_Expertise_Entropy

English_Ability_Total

>13<=13

<= 1.971 >1.971

<= 1.0414

a

> 1.0414

0 (3.0)

2 (12.0/2.0)

1 (4.0)

1 (3.0) 2 (4.0/1.0)

>1.9219

>1.9749 <= 1.9502

<= 1.9749

<= 12 > 12

> 1.9749

> 1.922<= 1.922

> 1.9502

<= 8 > 8

<= 1.9749

<= 1.9219

0 (3.0/1.0)

0 (6.0) 0 (2.0)

1 (6.0/1.0)

1 (9.0)

1 (4.0)

Table 7.12  Correlation scores of the different group configuration metrics with group
performance

Total metrics Performance

Group_Conf_1-1-1-1_Total 0.314
Group_Conf_1-1-2_Total −0.136
Group_Conf_1-3_Total −0.369
Group_Conf_2-2_Total −0.185
Group_Conf_4_Total −0.177
Entropy metrics

Group_Conf_Entropy_Entropy −0.349

7  Group Analysis Using Machine Learning Techniques

176

different configurations has a positive relationship with performance (rather than
being equally distributed in all the configurations). This can be visually seen in the
linear regression plot in Fig. 7.14b. Hence, analyzing both Entropy and Total metrics
is important because both had significant relationships with group performance.

7.7  �Experiment 4: Using All Types of Metrics Combined
for Group Analysis

In this section we shall consider a mixed model that combines the set of all the three
metric types: 16 role types, 36 skill types and 6 group configuration types together.
Given we had already analyzed the correlation of these three types separately in the

2500

2000

1500

1000

500

0

2500

2000

1500

1000

500

0
0 0.5 1 1.5 2 2.5

0 20 40 60 80 100

Percentage 1;1;1;1

Group Configuration Entropy

R2 =0.09829

R2 =0.12174

P
er

fo
rm

an
ce

P
er

fo
rm

an
ce

a

b

Fig. 7.14  (a) Plot of group performance and working separately. (b) Plot of group performance
and Group Configuration Entropy

A. Sharma and J. Srivastava

177

previous three experiments, we would not mention it further. We would also skip the
pair-wise correlation analysis, although there are several interesting dependencies
across different type metrics, but the across-type pairs are simply too many to ana-
lyze and describe. In fact, as the combined set of all the three types has a large
number of metrics, we would directly perform decision tree analysis on SVM
selected features (i.e. Phase 4). The attribute ranking of this combined set of metrics
using the SVMAttributeEval in Weka is shown in the Fig. 7.15.

In this case we again go with top ten metrics, in decreasing order of rank.
Moreover, the J48 decision tree classifier output tree is shown in Fig. 7.16b and the
classification accuracy output from Weka is shown in Fig. 7.16a. The important
point here is that now we are at the stage where we are considering all the 56 differ-
ent metrics together. Therefore, we would now be able to compare and select met-
rics that are important across all the types. This should help us understand which are
the most globally important metrics.

Although we had selected the top ten group metrics from the SVM ranking list,
the decision tree only used eight out of these ten. We observe that among Role
Metrics, Total Tips Sent, and Tips Entropy seem to play a very important role. That
is, low performing groups tend to send few tips, while high performing groups tend
to have higher levels of Total Tips and Tips Entropy. Within the Skill Metrics,

Fig. 7.15  Ranked attributes for mixed model using SVM

7  Group Analysis Using Machine Learning Techniques

178

Fig. 7.16  (a) Mixed model fit. (b) Mixed model decision tree

heterogeneity of being Reserve in English View presentation and high English
Ability tend to predict high performing groups. Teleconference Usage Entropy,
Total Email, and Chat Usage turn out to be key factors as well.

As has been observed in previous analyses, total amount of time spent in {1,1,1,1}
type Group Configuration is one the very crucial factors for team success. In fact, if
we observe the pair-wise correlation matrix (see Table 7.13), we observe that when
members work separately they chat less and spend more time in interaction with
NPCs and gather tips from NPCs. This knowledge gathered from NPCs, we can
hypothesize, may be highly influential for group success.

A. Sharma and J. Srivastava

179

Ta
bl

e
7.

13
 

Pa
ir

-w
is

e
co

rr
el

at
io

n
fo

r
m

ix
ed

 m
od

el
 v

ar
ia

bl
es

C
or

re
la

tio
n

be
tw

ee
n

to
ta

l m
et

ri
cs

G
ot

 ti
p

fr
om

 N
PC

N
PC

in

te
ra

ct
ed

C
ha

ts

re
ce

iv
ed

C
ha

ts

se
nt

B
ui

ld
in

gs

en
te

re
d

T
ip

s
re

ce
iv

ed
T

ip
s

se

nt
G

ro
up

_C
on

f_
1-

1-
1-

1_
To

ta
l

G
ot

 ti
p

fr
om

 N
PC

1.
00

0
N

PC
 in

te
ra

ct
ed

0.
64

6
1.

00
0

C
ha

ts
 r

ec
ei

ve
d

0.
09

3
0.

10
7

1.
00

0
C

ha
ts

 s
en

t
0.

09
3

0.
10

7
1.

00
0

1.
00

0
B

ui
ld

in
gs

 e
nt

er
ed

0.
18

7
0.

12
8

−
0.

02
2

−
0.

02
2

1.
00

0
T

ip
s

re
ce

iv
ed

0.
30

0
0.

22
9

0.
13

5
0.

13
5

0.
10

1
1.

00
0

T
ip

s
se

nt
0.

30
0

0.
22

9
0.

13
5

0.
13

5
0.

10
1

1.
00

0
1.

00
0

1-
1-

1-
1

0.
33

0
0.

42
0

−
0.

34
4

−
0.

34
4

0.
24

3
0.

07
1

0.
07

1
1.

00
0

7  Group Analysis Using Machine Learning Techniques

180

Overall, the mixed model, beyond just being the best in terms of model fit,
demonstrates how complex the interactions are amongst the different sets of vari-
ables. Following the different paths along the decision tree can yield important
insights into how these variables moderate one another. As to which model is best
depends on the goals of the researcher. All the models ran had overall accuracy
levels nearing 90 %. As such, a parsimonious model, though slightly less accurate,
may be useful for those attempting to seek out which are the “big” factors discrimi-
nating between high and low performing teams. On the other hand, a more complex,
less parsimonious predictive model may be useful if the goal is to “predict at all
costs”, which may be useful developing predictive applications (e.g., a team assem-
bly application).

7.8  �Conclusion

In this work we illustrated how to analyze small group behavior using individual
level data. In this direction we show two possible ways of aggregating individual
level information to generate group level metrics. Further, we show how traditional
correlation analysis can substantially be supplemented with the help of the proposed
metrics. In this sense, the techniques are not competing, but complementary. Finally,
we employ these metrics within existing machine learning and data-mining
techniques and illustrate, with the help of Weka data-mining software, how group
performance can be analyzed using data-mining.

References

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers &
Electrical Engineering, 40(1), 16–28.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of
Machine Learning Research, 3(Mar), 1157–1182.

Guyon, I., Saffari, A., Dror, G., & Cawley, G. (2010). Model selection: Beyond the bayesian/
frequentist divide. Journal of Machine Learning Research, 11(Jan), 61–87.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification
using support vector machines. Machine Learning, 46(1–3), 389–422.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA
data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Quinlan, J. R. (1993). C4. 5: Programs for machine learning. San Mateo: Morgan Kaufmann.
Teachman, J. D. (1980). Analysis of population diversity measures of qualitative variation.

Sociological Methods & Research, 8(3), 341–362.
Warren, R., Diller, D., Leung, A., Ferguson, W., Sutton, J.L (2005). Simulating scenarios for

research on culture and cognition using a commercial role-playing game. Proceedings of the
2005 Winter Simulation Conference, Orlando, FL, December 4-7, 2005.

A. Sharma and J. Srivastava

181© Springer International Publishing AG 2017
A. Pilny, M.S. Poole (eds.), Group Processes, Computational Social Sciences,
DOI 10.1007/978-3-319-48941-4_8

Chapter 8
Simulation and Virtual Experimentation:
Grounding with Empirical Data

Deanna Kennedy and Sara McComb

8.1  �Introduction

A decade ago, Davis, Harrison, and their colleagues encouraged researchers in the
organizational sciences to embrace simulation as a means of augmenting theory
building in the field (Davis, Eisenhardt, & Bingham, 2007; Harrison, Lin, Carroll,
& Carley, 2007). This call for simulation research in the organizational context was
not the first (e.g., McGrath, 1981), nor the last (e.g., Wang, Zhou, & Zhang, 2016).
It did appear, however, at a time when the computational tools available and
researcher sophistication vis-à-vis computational approaches were aligned to stimu-
late the movement.

Simulation, in conjunction with virtual experimentation, is a useful tool for the
organizational researcher because it facilitates comparative analyses of complex,
multilevel team processes (e.g., Kozlowski, Chao, Grand, & Braun, 2016) that occur
across a range of different contexts (Carley & Prietula, 1994; Davis et al., 2007;
Prietula, Carley, & Gasser, 1998) and over time (Kozlowski, Chao, Grand, Braun, &
Kuljanin, 2013). Results may be leveraged to inform theory building (Kozlowski
et al., 2013) and guide the efficient design of future field or laboratory research, par-
ticularly when large resource expenditures may be required (Kennedy & McComb,
2014; Kennedy, McComb, & Vozdolska, 2011). Team researchers have embraced
this simulation movement by examining, for instance, collective learning (Anderson
& Lewis, 2013), interaction modes (Bhuiyan, Gerwin, & Thomson, 2004), cognition
(Grand, Braun, Kuljanin, Kozlowski, & Chao, 2016), communication patterns

D. Kennedy (*)
School of Business, University of Washington Bothell, Bothell, WA, USA
e-mail: deannak@uw.edu

S. McComb
School of Nursing and School of Industrial Engineering, Purdue University,
West Lafayette, IN, USA
e-mail: sara@purdue.edu

mailto:deannak@uw.edu
mailto:sara@purdue.edu

182

(Kennedy & McComb, 2014), project complexity (Kennedy et al., 2011),
communication frequency (Patrashkova & McComb, 2004), transactive memory
(Ren, Carley, & Argote, 2006), and team member replacement (Solow, Vairaktarakis,
Piderit, & Tsai, 2002).

McGrath (1981) suggests that all research designs pose dilemmas for the
researcher in that tradeoffs must be made between generalizability to populations of
interest, precision in the measurement and control of variables, and realism related
to the context in which the behaviors would be observed. In characterizing a variety
of research strategies (e.g., laboratory experiments, field studies, judgment tasks),
McGrath depicts computer simulation as a viable theoretical (vs. empirical)
approach to conduct unobtrusive research (i.e., no observation of behavior is
required) of a particular behavior system. As such, simulation provides a solution
that attempts to address generalizability and realism, at the expense of precision.
When selecting this approach, the researcher consciously decides to accept this
compromise, since no design can maximize all three aspects simultaneously.

Once the decision to use computer simulation has been made, researchers must
decide what type of simulation procedures they want to develop and validate. For
instance, some of the aforementioned examples from the team domain developed
simulation procedures via mathematical interpretations of theoretical relationships
(e.g., Anderson & Lewis, 2013; Grand et al., 2016; Patrashkova & McComb, 2004;
Solow et al., 2002), whereas others grounded their procedures with empirical data
(e.g., Bhuiyan et al., 2004; Kennedy & McComb, 2014; Kennedy et al., 2011).
Neither approach is right or wrong. As with all research, determining the best path
forward must be based on criteria such as the research questions of interest, access
to data, availability of adequate theory to model, etc. Regardless of the approach
selected, ensuring that the simulation procedures, when executed, provide results
that depict a reasonable representation of reality is of primary importance.

Herein, our purpose is to demonstrate (1) how simulation procedures can be
developed and validated with existing empirical data and (2) how these procedures
can be executed to conduct virtual experiments. To accomplish this purpose, we
demonstrate how empirically collected data can inform simulation procedures to
answer what-if research questions; the answers to which can, in turn, guide future
empirical data collection. We discuss two examples to demonstrate the range of
what-if questions that may be addressed via this approach. First, we provide guid-
ance for developing simulation procedures that incorporate continuous data. At the
end of the chapter, we describe how this approach was implemented in Kennedy
et al. (2011). In that research, we used available team-level, continuous, cross-
sectional data that had been collected via questionnaires to examine how project
complexity impacts the curvilinear relationship between team communication and
performance identified in Patrashkova-Vozdolska, McComb, Green, and Compton
(2003). Virtual experiments were conducted by executing the simulation proce
dures under varying levels of project complexity to garner insights about the
communication-performance relationship.

Second, we demonstrate how to develop simulation procedures with discrete
data. We then provide the example of this approach, from Kennedy and McComb

D. Kennedy and S. McComb

183

(2014), where we used transcribed and coded communication strings (i.e., discrete,
longitudinal data) from a laboratory study to understand the relationship between
team performance and when teams shift their conversations among different pro-
cesses. Virtual experiments were conducted to ascertain what happens if certain
process shifts occur earlier or later in the team’s life cycle. Results of both studies
inform theory about team communication and can be tested through laboratory and/
or field experimentation.

8.2  �Basic Overview of Simulation and Virtual
Experimentation

In the following tutorial, we will demonstrate two methods: simulation and virtual
experimentation. Some researchers suggest that simulation is virtual experimenta-
tion (Davis et al., 2007). We forward the notion that they are two distinctly different
methods that may be used together. Simulation requires computer code and random
numbers. The computer code imitates processes in the real world and the random
numbers represent the variability inherent in those processes. A simulation occurs
when the computer code is executed or run.

Virtual experiments are not unlike laboratory experiments. Researchers use
closed systems (computer code in virtual experiments or laboratory apparatus in
laboratory experiments) and manipulate parameters within those systems to study
how the parameters influence outcomes. In virtual experimentation, the experiment
is conducted using simulation. Specifically, the computer code is executed multiple
times to conduct one simulation run for each manipulation designed into the experi-
ment. One benefit of virtual experimentation is that each manipulation can be run
hundreds or thousands of times in a matter of minutes. Sample sizes this large in a
laboratory would probably be cost prohibitive and require significantly more time.
We are by no means suggesting that virtual experimentation should replace labora-
tory experimentation. Both types of experiments have a role to play in organization
science. Laboratory experiments may provide data that can inform the computer
code used for virtual experiments. The results from virtual experiments may help
researchers select more meaningful manipulations for laboratory experiments.

8.2.1  �Tutorial

A number of resources provide guidelines for conducting simulation in general
(e.g., Law & Kelton, 2000) and simulating organizational phenomena in particular
(Burton & Obel, 2011; Hulin & Ilgen, 2000; Larson, 2012). We expand on these
guidelines to provide step-by-step instructions for conducting simulation and virtual
experimentation research. Herein, we summarize the purpose each step serves, the
actions required for each step, and the outputs a researcher can anticipate upon

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

184

completion of the step. To depict how research progresses through these steps, we
built a flowchart (see Fig. 8.1). As you can see in Fig. 8.1, ensuring that you have a
valid model in the third step is an integral part of the process. If the simulation pro-
cedures are not valid, you have two options. On the one hand, if the results indicate
that some minor tweaks might help you achieve validity, you may return to the
second step and hone your simulation procedures. On the other hand, you may
decide that validity is not attainable and go back to the first step to reformulate the
research questions. The most important point here is that without a valid model, you
should not move on to the fourth step and run virtual experiments.

In the following sections, we will expand upon this information by detailing the
decisions and actions required for researchers to achieve their research objectives.
Two basic examples, one with continuous data and the other with discrete data, will
be used to demonstrate our points. These examples focus on the relationships among
communication modalities, cohesion, and team effectiveness. Actionable computer
code from Matlab R2015b is provided for these basic examples.

Step 1. Formulate what-if research questions and secure empirical data

Purpose: 	 Establish coherence among your research questions, variables, and
available data

Actions:	 Determine research questions regarding process of interest, identify
corresponding variables, and secure empirical data

Outputs:	 Study goals, process parameters, and empirical data
This step might be called the chicken and egg step, because we don’t always

know if we will start with research ideas or the data required to test them when

Step 1.
Formulate what-if research

questions and secure
empirical data

Step 3.
Validate simulation

procedures

Step 4.
Conduct virtual

experiments

Valid?

Step 2.
Develop simulation

procedures
Modify?Yes

Yes

No

No

Fig. 8.1  Flowchart of key simulation steps

D. Kennedy and S. McComb

185

conducting simulation research. You may decide that you would like to expand on
some results you obtained from a questionnaire field study, but your sample size is
too small to ensure adequate power to test more complex models. Alternatively, you
may have an interesting idea but inadequate resources to fully test it in a laboratory
or field setting. In either case, you can formulate what-if research questions that can
be addressed by simulation and virtual experimentation.

We use the scenario where data came first to develop our basic example using
continuous data. Suppose we have data from an employee survey designed to solicit
perceptions about the emergent state of team cohesion and team effectiveness from
teams that use multiple communication modalities (e.g., face-to-face, computer-
mediated). Our results support media synchronicity theory (Dennis, Fuller, &
Valacich, 2008), which suggests a positive relationship between cohesion and effec-
tiveness that is moderated by modality. The exact nature of that relationship within
each modality cannot be tested though, because of our sample size. We are not sure
that spending additional resources to collect more data will be a good investment. In
this case, simulation can help us make the most of our empirical data and provide a
more nuanced perspective of the cohesion-effectiveness relationship. The results
from virtual experiments can help us decide if further laboratory or field research
is warranted. Our what-if research question is: what-if teams use communication
modalities with more or less synchronicity; does the cohesion-effectiveness rela-
tionship change? The variables of interest are cohesion, effectiveness, and modality.
Empirical data from the employee survey is available and can be partitioned by
communication modality.

We develop our discrete data basic example to demonstrate a scenario where an
idea came first. While conducting a laboratory experiment requiring face-to-face
teams to complete a planning task, we observed differences in the cohesion among
team members. We also know that researchers have suggested that cohesion emerges
and becomes pertinent as the teams complete their task (Kozlowski & Chao, 2012).
Cohesion was not a variable of interest in the primary study, but we have access to
a video of every team’s laboratory session. If we develop a dataset that indicates
when cohesion surfaces for each team, we can use virtual experimentation to exam-
ine the plethora of possible timing scenarios and compare the effectiveness achieved
for each scenario. Such results may provide initial insights for theory building and
provide information about the scenarios with the most potential for impactful results
that can be tested in the laboratory or the field. In this example, our what-if research
question is: what-if cohesion surfaces earlier or later; does the timing impact the
cohesion-effectiveness relationship? The variables of interest are the point in time
when cohesion emerges during the team’s life cycle and team performance. By cod-
ing the videos, we can build the empirical dataset needed.

Step 2. Develop simulation procedures

Purpose: 	 Articulate relationships among variables and the processes connecting
them, ensure adequate power for generalizability, and convert simula-
tion steps into actionable computer code

Actions:	 Identify simulation steps, establish stopping criteria, and code
simulation procedures

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

186

Outputs:	 Logical depiction of the real-world process of interest, sample size
requirements, and actionable computer code

Simulation procedures are commonly developed using the Monte Carlo simulation
method. This method comes from a class of computational algorithms that uses repeated
random sampling to generate results (Metropolis & Ulam, 1949). The method is imple-
mented by drawing random samples from defined distributions and analyzing the behav-
ior of the generated samples. Monte Carlo simulation has been applied in many different
ways across organizational and management science, including imputing missing values
(e.g., Newman, 2003; Roth, Switzer, & Switzer, 1999), estimating multistage outcomes
(e.g., Charnes & Shenoy, 2004), and observing parameter variations (e.g., Avramidis &
L’Ecuyer, 2006; Chance, Hillebrand, & Hillard, 2008; Valenzuela & Mazumbar, 2003).
Building on this foundation, we will demonstrate how to apply random sampling to data
distributions to (1) replicate the variables in the empirical dataset and (2) generate simu-
lated datasets under changed or new conditions.

Before describing the specifics about how to develop simulation procedures, we
need to discuss briefly when to stop a simulation run. Many approaches can be con-
sidered (e.g., convergence of the population (Georgieva & Jordanov, 2009)), but the
common approach is to use sample size. Law and Kelton (2000), the seminal source
for simulation, recommend a sample size of 10,000 to ensure robust sampling from
the data distribution. Now, back to developing simulation procedures.

Step 2A. Identify simulation steps. The procedures you create should reflect your
decisions about what variables need to appear in your simulated datasets to test your
what-if research questions. At the same time, you need to ensure that you can repli-
cate the way in which these variables connect in the real world. Both of our basic
examples focus on the role of team cohesion; but the procedures required to gener-
ate the simulated data needed to test the what-if research questions may be quite
different. These differences can be seen in Fig. 8.2. The diagrams in Fig. 8.2 are
flowcharts (one for each of the cohesion-effectiveness examples) that identify what
needs to happen in a computer program to build the desired simulated dataset. The
flowcharts contain steps associated with initializing the simulation, generating and
storing data, and determining if the simulation run should stop.

Step 2B. Code your simulation. Based on the flowchart you (or a valued collabora-
tor familiar with computer coding) can code your simulation in a computer program
that will provide efficient and reliable results. We have utilized Microsoft Excel, R,
and Matlab for our own simulations. The way the diagram is translated into action-
able code will depend on the coding language and the programmer’s familiarity
with the program. In essence you will want to think about how your simulation
procedures play out mathematically.

Coding the simulation procedures for the continuous data basic example. To address
the what-if research question in this basic example, we are interested in determining
the relationship between cohesion and effectiveness under different scenarios of
communication modalities (e.g., majority face-to-face or majority computer-mediated).
Since cohesion and effectiveness are related, we can use the bivariate relationship to

D. Kennedy and S. McComb

187

describe cohesion and effectiveness variables in the computer code. Assuming that
the variables are normally distributed, we can represent them as continuous distribu-
tions with a mean μ and covariance Σ. The mean vector contains the mean values for
cohesion and team effectiveness from empirical data, which is set at μ = (2.0, 8.0)
for illustration. The covariance matrix includes the conditional distribution of team
effectiveness on the distribution of cohesion and is represented as:

	
∑ =









 =











£ £
£ £

11 12

21 22

2 0 1 5

1 5 3 0

. .

. . 	

where Σ12 = Σ21 = 1.5 and indicates the covariance of cohesion and team
effectiveness.

Now we are ready to simulate data by randomly drawing values for each variable
from the bivariate distribution. Table 8.1 shows the translation of the survey study
diagram into Matlab code for replicating the empirical dataset.

Coding the simulation procedures for the discrete data basic example. In this
basic example, the what-if research question directs us to determine how the timing

Continuous Data Simulation

Initialize:
Select the communication

modality condition

Stop

Generate & Store:
Based on the condition,
generate an instance of

cohesion and team
effectiveness

Decision:
10,000

instances?

Yes

No

Discrete Data Simulation

Generate & Store:
Build team activities with
cohesion surfacing per the

condition

Stop

Decision:
10,000

instances?

Initialize:
Select the cohesion condition

Yes

No

Fig. 8.2  Potential cohesion-effectiveness simulation diagrams

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

188

of cohesion emergence impacts effectiveness. To answer this question, longitudinal,
discrete data about the team’s state is needed. For illustration’s sake, let us assume
that we observed the team doing one of four possible activities at each minute dur-
ing their 60-minute laboratory session. These observations were then converted into
strings of activities such as Planning-Planning-Conflict-Conflict-Action-Cohesion-
Cohesion-Action-Action … and then transformed into the numerical string 4, 4, 3,
3, 1, 2, 2, 1, 1…, where Action = 1, Cohesion = 2, Conflict = 3, and Planning = 4.
The numerical string contains not only the information about cohesion, but also
information about when the other activities were being completed.

As researchers, we can make a decision to create computer code that either gen-
erates the entire string of activities or generates one number that represents where
cohesion emerges. Either approach is acceptable. Generating the complete string
requires more time to code and run the simulation, but may be useful for additional
research. Alternatively, generating one number may be more expedient, but the
actionable computer code will only be useful for this specific study. Our decision is
to generate the complete string.

To start the process of generating complete strings, we have to determine the
appropriate distribution(s) that best represents the empirical data. For this basic
example, we assume two patterns were observed. First, as Gersick (1988, 1989)
predicts, the distribution of activities is different before and after the midpoint of
team activity. Second, the length of time the team spends focused on a specific
activity is dependent upon the type of activity, but otherwise is reasonably consis-
tent over time.

Let us assume that during the first 30 minutes, the teams’ activities occur in a
non-parametric manner. In this case, we can use the empirical data more explicitly
to inform activity insertion into the data string. Table 8.2 shows the empirical distri-
butions in terms of the probability mass function (pmf) and the cumulative distribu-
tion function (cdf). To determine which activity to insert during the first 30 minutes,
(1) a random number between 0 and 1 is drawn from a uniform distribution, (2) the
number is then matched with the appropriate interval of the cumulative distribution
function (see top section of Table 8.2), and (3) the corresponding activity can be
specified for insertion. Using the distribution information provided in Table 8.2, we
can work through an example. If the random number generated for minute 17 was
0.624, the interval would be 0.501–1.000, the specific activity for minute 17 would
be planning, and the number 4 would be selected for insertion into the numerical
string of activities.

During minutes 31–60, the teams are observed engaging in all four activities in
approximately equal numbers. Here, we can use a uniform distribution to select
which activity to insert with each activity occurring about 25 % of the time (i.e.,
U(1, 4)). This scenario can simply be coded as drawing a random number from a
discrete uniform distribution (i.e., =randi([1 4])) and inserting it directly into the
numerical string of activities.

Once we know the activity to insert, the second step is to figure out how long the
team does that activity. An initial investigation of the empirical data shows that each
activity follows a reasonably uniform distribution pattern across minutes 1–30 and

D. Kennedy and S. McComb

189

Table 8.1  Continuous data simulation: procedures, validation, virtual experimentation

a different, but still uniform distribution pattern occurs across minutes 31–60. As
such, we can use a uniform distribution to represent the length of time spent doing
the activity. The uniform distribution for each activity across time can be found in
the bottom portion of Table 8.2. Continuing our example, we know that in the 17th
minute, the team starts planning. We draw a random number between 0 and 8 (i.e.,
U(0, 8)) to determine how many minutes they spend on planning. If we draw a 3,

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

190

then minutes 17, 18, and 19 would be coded as planning (i.e., the number 4) in this
activity string. We would then draw the next random number to determine the next
activity that would start at minute 20.

With the distributions of variables in hand the coding of the simulation can pro-
ceed. Table 8.3 contains the Matlab code for this basic example. To represent the
team’s activities across 60 minutes, we will need to build the activity string for one
team at a time by following an iterative cycle of selecting an activity and how many
observations to assign that activity. Because the distributions of selecting an activity
and the number of observations change at the midpoint, the code contains two loops.
One decision we will have to make is how to handle the changeover in activities
from the first 30 minutes to the second 30 minutes. As you will see in Table 8.3, if
an activity is to be inserted across the 30-minute mark, it is carried over from the
earlier period rather than truncated. We had to make this decision and could have as
easily decided to truncate at the 30-minute mark. Such decisions are common in the
translation of simulation procedures into computer code and must be made based on
an amalgamation of research evidence, common sense, and practicality within the
computer program selected.

Once the team’s activity string is complete at a string length of 60, it is stored in
a dataset, the variables are cleared, and a new team’s activity string is initialized.
Once the desired number of teams is reached, in this case 10,000 team activity
strings, the program stops and the dataset is written to an external text file.

Step 3. Validate simulation procedures

Purpose: 	 Compare simulation results with real-world data to ensure that the
results reasonably represent reality

Actions:	 Test results from executing the computer code
Output:	 Valid, actionable computer code

Validation of your simulation procedures helps you ensure that your results are
representative of the real world (Law & Kelton, 2000; Larson, 2012). In addition to
adding rigor to your research process, this step also provides you with an opportu-
nity to improve your simulation procedures, particularly with respect to the con-
structs needed to answer your what-if research questions.

Table 8.2  The Distribution information for the discrete data simulation

Selection of Which Activity to Insert During Minutes 1–30

X 1 (Action) 2 (Cohesion) 3 (Conflict) 4 (Planning)
pmf 0.125 0.250 0.125 0.500
cdf 0.125 0.375 0.500 1.000
interval 0.000–0.125 0.126–0.375 0.376–0.500 0.501–1.000
Selection of How Many Activity Observations to Insert
X 1 (Action) 2 (Cohesion) 3 (Conflict) 4 (Planning)
From 1 to30 min U(1, 4) U(2, 4) U(2, 8) U(0, 8)
From 31 to 60 min U(2, 6) U(1, 4) U(0, 7) U(1, 6)

D. Kennedy and S. McComb

191

Table 8.3  Discrete data simulation: procedures

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

192

To conduct meaningful validation, you must decide which parameters need to
reflect the real world and how you will test them. Specific validation parameter
selection depends on the type of study being conducted, but typically includes the
variables that will be manipulated during virtual experimentation and the results.
These parameters will be compared to the empirical data using common statistical
comparison tests (e.g., χ2, t-test) or other non-parametric tests (e.g., Wilcoxon rank
sum test, Mann-Whitney test). The specific tests will be dependent upon the distri-
bution of the data being tested.

For our basic example with continuous data, we are interested in the relationship
between cohesion and team effectiveness. Re-running the regression analyses on the
simulated data and comparing the results to the regression results obtained using the
original empirical data is a viable approach here for validating the simulation proce-
dures. If the regression coefficients from the simulated data have similar signs as the
coefficients from the empirical data and the magnitude of the coefficients fall within a
95 % confidence interval, then we may proceed to virtual experimentation. The level
of confidence should be chosen based on what is appropriate for your study. Table 8.1
shows the actionable code for validating the simulation procedures in this way.

For the discrete longitudinal data simulation basic example, multiple parameters will
need to be validated including the point when cohesion emerges, the number of minutes
devoted to cohesion, and the relationship between cohesion and effectiveness. Table 8.4
provides the actionable code for validating the discrete data simulation procedures on
these characteristics by comparing empirical data from ten teams to similar data from
the simulated teams. The specific comparisons are when cohesion first surfaces, the
number of cohesion observations per communication string, and performance.
Performance is represented as a curvilinear relationship with cohesion. We generated a
regression model of this cohesion-performance relationship using the empirical data.
This model is used to calculate the performance of simulated teams by entering the point
where cohesion surfaces into the regression model. These three characteristics of the
simulated communication strings are then compared to the empirical data using the
Wilcoxon rank sum test and the results are output. While the validation should indicate
that the simulated procedures produce communication strings that are representative of
the real world, you may also decide that you need to validate other parameters. For
example, if you think you may be interested in inspecting the ways other topics are
affected when cohesion is manipulated, then you will need to validate the occurrences
of all the possible activity states, rather than only focusing on cohesion.

As we suggested in Fig. 8.1, if the evidence supports validating the simulation
procedures, then the next step is virtual experimentation. Unfortunately, validation
is not always easily achieved, particularly on the first try. If your testing does not
support the validation, then you will want to stop and evaluate why the validation
was not successful. We suggest that you have two options: (1) fix your simulation
procedures or (2) go back to the beginning and reformulate your what-if research
question and/or secure more (or different) empirical data. Common problems come
from issues with the initial assumptions (e.g., normality, conditional relationships,
linear relationships), miscalculations using the empirical data, or coding errors. You
should start by checking for coding errors or miscalculations of parameters that can
easily be fixed with corrective action.

D. Kennedy and S. McComb

193

You may decide that more simulation procedures are necessary. When you have
a complex phenomenon with a lot of moving parts, you may start with the simplest
set of simulation procedures for the sake of parsimony. But, through validation test-
ing you may determine that more procedures are needed. For example, in the second
basic example where we generate activity strings, perhaps a division at the midpoint
does not provide enough fidelity, and the distributions actually change across quar-
tiles. Alternatively, the activities may have more interrelationships than anticipated
and conditional probabilities may be more appropriate (e.g., planning is generally
followed by conflict). Whatever the reason, sometimes developing a valid set of
simulation procedures requires additional information and/or steps to ensure statis-
tical similarity to the real-world data.

Table 8.4  Discrete data simulation: validation

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

194

More insidious are the irregularities in the empirical data that can become ampli-
fied in the simulation when the generated sample is large. These issues can chal-
lenge your assumptions about how to characterize variables, the covariances
between variables, and any statistical relationships among the variables. Such issues
may be a sign that perhaps you need to take a step back to re-think theoretical
connections, re-characterize the originally tested relationship, reconsider the what-
if research question being studied, or realize that the original data are not represen-
tative of the real-world.

Step 4. Conduct virtual experiments

Purpose: 	 Compare simulation results across varying conditions to inform theory
construction and future research activities

Actions:	 Manipulate simulation inputs to ascertain how results change under
varying conditions

Outputs:	 Results that answer the original what-if research questions and provide
insights into future theory and research development

Once you have validated your simulation procedures you can conduct virtual
experimentation. Specifically, you can now generate datasets with manipulated
conditions by changing parameters in your simulation procedures. The way the
parameters are changed should be based on your theoretical understanding of
the phenomena and your what-if research questions. To determine the impact of the
manipulations, the simulated datasets can be compared to one another and to a base-
line. Often times, the empirical data is used to represent the baseline case.

For the basic example using continuous data from a survey, the virtual experi-
ments will focus on the cohesion-team effectiveness relationship under different
synchronicity scenarios. We partition the empirical data into teams that communi-
cated face-to-face a majority of the time (i.e., a high synchronicity condition) versus
teams that engaged in computer-mediated communication a majority of the time
(i.e., a low synchronicity condition). From the partitioned dataset we can calculate
the mean and covariance information for these specific conditions; for example,
we assume that the means are as follows for high synchronicity μhs = (4.5, 8) and
low synchronicity μls = (2, 5), and the covariance matrices are:

	 hs ls
∑ ∑=









 =











2 4 2 5

2 5 4 2

2 1 1 7

1 7 3 2

. .

. .
,

. .

. . 	

Table 8.1 shows the implementation of virtual experimentation in the actionable
computer code with the new parameters from the partitioned dataset. Using regres-
sion analysis on the simulated data, we obtain results that can be compared to the
baseline condition. For example, in Fig. 8.3, plots of regression results across the
different conditions are shown. This type of plot can be used to ascertain the influ-
ence of synchronicity on the cohesion-effectiveness relationship.

For the basic example using discrete data from a survey, the virtual experiments
will focus on the cohesion-team effectiveness relationship when cohesion occurs
earlier or later. We manipulate the probability of selecting cohesion in minutes
1–30 by considering two interventions. Specifically, we examine the case that man-

D. Kennedy and S. McComb

195

agers prompt cohesion building discussions instead of planning, or vice versa. In
Table 8.5, the actionable code for trying these two cohesion scenarios is presented;
the first increases the probability of selecting cohesion while decreasing the prob-
ability of selecting planning; and the second scenario decreases the probability of
selecting cohesion while increasing the probability of selecting planning. To test
the effects on the cohesion-performance relationship, the simulated communica-
tion strings under each scenario are evaluated for when cohesion surfaces. These
data are then evaluated using the cohesion-performance model. Finally, a compari-
son among scenarios and the empirical data indicate that significant differences
exist, at least between the second scenario and other datasets. Figure 8.4 shows an
example of the boxplot and ANOVA findings from the comparisons. These results
may help provide the theoretical impetus to pursue research about prompting cohe-
sion activities and/or delaying planning activities.

8.3  �Example Applications

We now turn to two more complex examples to demonstrate how simulation and
virtual experimentation can be done using empirical data. The two basic examples
we worked through in the tutorials are simplified versions of these two published
simulation studies. In Kennedy et al. (2011), we simulate continuous data using an
empirical dataset that was generated from employee questionnaires. We study the
curvilinear relationship between team communication and performance under vari-
ous levels of project complexity. In Kennedy and McComb (2014), we simulate

-5 0 5 10
Cohesion

-2

0

2

4

6

8

10

12

14

E
ffe

ct
iv

en
es

s
baseline
high synchronicity
low synchronicity

Fig. 8.3  Continuous data simulation: virtual experimentation results

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

196

Table 8.5  Discrete data simulation: virtual experimentation

(continued)

D. Kennedy and S. McComb

197

discrete data in the form of communication strings using an empirical dataset that
was generated by coding transcribed team communication from observed labora-
tory teams. We conduct virtual experiments to determine how the timing of when
teams shift among processes impacts team performance.

8.3.1  �Team Communication, Performance, and Project
Complexity

Step 1: Formulate what-if research questions and secure empirical data. The impe-
tus for this study came by combining the ideas and results from two studies con-
ducted using cross-sectional survey data. So, in this case, we had empirical data that

Table 8.5  (continued)

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

198

led us to a what-if research question. In the first study, Patrashkova-Vozdolska et al.
(2003) found a curvilinear relationship between team communication and perfor-
mance that was different depending on the media used by the team to communicate.
In the second, McComb, Green, and Compton (2007) characterized project complex-
ity as having two dimensions (i.e., multiplicity (having multiple options for accom-
plishing the project and/or possible end states to satisfy) and ambiguity (i.e., conflict
and/or uncertainty associated with options and end states)) and found that project
complexity moderated the relationship between team flexibility and performance.
We were then interested in delving further into the team communication-performance
relationship and wondered how project complexity might impact it. We did not, how-
ever, have an adequate sample to test this relationship using the empirical data avail-
able. We decided to develop simulation procedures and conduct virtual experiments
to test the what-if research question: what if project complexity levels were different,
how might the communication-performance relationship be affected?

To test this what-if research question, we decided to simulate team-level data
about how frequently various communication media are used under different levels

1 2 3
Scenarios

400

600

800

1000

1200

1400

1600

1800

2000
P
er
fo
rm

an
ce

Source

Groups 8.57199e+08 2 428599494.9 5336.12 0
Error 1.60697e+09 20007 80320.5
Total 2.46417e+09 20009

SS df MS F Prob>F
ANOVA Table

Fig. 8.4  Discrete data simulation: virtual experimentation results

D. Kennedy and S. McComb

199

of project complexity. This data could then be used to replicate the multivariate
regression analysis from Patrashkova-Volzdolska et al. (2003), where team perfor-
mance was regressed on four control variables, three linear terms representing com-
munication media (i.e., email, telephone, and face-to-face), and a squared term for
each communication media. Regression analysis was conducted for each level of
project complexity.

The empirical dataset available was from a field study and contained team-level
data from 60 cross-functional teams. The specific variables simulated in this study
are listed in Table 8.6. These variables represent the variables in the regression
equations reported in Patrashkova-Volzdolska et al. (2003) and the project complex-
ity variables reported in McComb et al. (2007). Mean vectors were computed for the
performance, communication, and control variables. These vectors were then
used to compute partitioned covariance matrices, where performance variables were
treated as multivariate normal conditional on the media and control variables.
Kennedy et al. (2011) provides a thorough explanation of how the covariance matri-
ces were constructed.

Table 8.6  Variables in team communication, performance, and project complexity example

Variable Definition Measurement

Sample means for
high ambiguity
high multiplicity
condition

Team performance
�Goal
achievement

Meet technical objectives
and business goals

1=low to 5=high 3.69

�Efficiency Meet cost/time estimates 1=low to 5=high 2.98
Communication media
�Email Frequency of use

on a scale from
1=never to 5=often

3.95
Telephone 4.20
�Face-to-face 4.67
Control variables
Task
significance

Project importance to
themselves and the
organization

1=low to 5=high Control variable
means are not
reported in the
paper�Team size Number of fulltime members

�Co-location Three levels: same site; same
city, different sites; different
cities, states, or countries

Two dummy coded
variables

Project complexity
�Multiplicity Having multiple options for

accomplishing the project
and/or possible end states to
satisfy

Median splits used to partition data
into high/low complexity

Ambiguity Conflict and/or uncertainty
associated with options and
end states

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

200

Step 2: Develop simulation procedures. We applied the Monte Carlo method for
multivariate normal sampling using mean (μ) and covariance (Σ). Our sample size
was 10,000 simulation runs of 100 simulated teams each. This sample size was
based on the guidance of Gorsuch (1983), who recommends approximately ten
observations per independent variable for regression analysis, and Law and Kelton
(2000) who recommend 10,000 simulation runs. A flowchart of the simulation pro-
cedures can be seen in Fig. 8.5. These procedures were coded in R (version 2.5).

Step 3: Validate simulation procedures. To validate our simulation procedures, we
computed the mean vector and partitioned covariance matrix using the entire empirical
dataset (i.e., no partitions for project complexity). We executed 10,000 simulation runs
containing 100 simulated teams each. In other words, we simulated 10,000 samples
with n=100 teams in each sample. For each sample, we estimated regression parame-
ters and averaged each regression estimate, p-value, and R2 across the 10,000 samples.
The results of the simulated data patterned the empirical data. For example, when
efficacy was the performance variable, both email and email2 were significant and the
direction of the coefficients were the same (positive for email and negative for email2).

(1) Empirical Dataset

(2) Estimate
characteristics µ andS

and
generate simulated

dataset

Set condition = 0

(3) Run regression
analysis

and
record results

(4) Run validation

condition = 8? condition = 0?

condition = condition+1

Validation
successful?

condition = 0, ..., 8

where validation
condition = 0;
virtual experiments
condition = 1, ..., 8

Stop

Yes

Yes

Yes

No No

No

(5)

Fig. 8.5  Flowchart of simulation procedures. Reprinted from Journal of Engineering and
Technology Management, 28, Kennedy, DM, McComb, SA, & Vozdolska RR, An investigation of
project complexity’s influence on team communication using Monte Carlo simulation, 109–127,
2011, with permission from Elsevier

D. Kennedy and S. McComb

201

Step 4: Conduct virtual experiments. To answer our what-if research question
about the impact of project complexity on the communication-performance rela-
tionship, the empirical dataset was partitioned based on the project complexity
reported by the teams. Median values of multiplicity and ambiguity were used to
determine if a team in the empirical dataset was completing a project of high or low
complexity. Eight experimental conditions were examined: high multiplicity-high
ambiguity, high multiplicity-low ambiguity, low multiplicity-high ambiguity, low
multiplicity-low ambiguity, high multiplicity only, low multiplicity only, high ambi-
guity only, and low ambiguity only. For each condition, 10,000 samples of 100
teams each were generated and the regression results were computed using the same
approach as we used for validation. The results suggest that in many cases the same
inverted curvilinear relationship between communication and performance can be
expected. In some cases, however, more communication may be better. For exam-
ple, teams may be more efficient if they communicate face-to-face when ambiguity
is very low or very high.

8.3.2  �Team Performance and Process Shifts

Step 1: Formulate what-if research questions and secure empirical data. In this
example, we had a what-if research question that led us to generate an empirical
dataset. While conducting laboratory simulations where teams of three undergradu-
ate students completed a scheduling task, we began discussing how processes
unfold over time. We knew of the research suggesting that directing team commu-
nication toward certain topics (e.g., Okhuysen, 2001; Okhuysen & Eisenhardt,
2002; Okhuysen & Waller, 2002) at specific points in time (e.g., Gersick, 1988,
1989; Okhuysen & Waller, 2002; Katzenbach & Smith, 1999) may enhance team
performance. At the same time, we were familiar with Marks, Mathieu, and Zaccaro
(2001) recurring phase model of team activities, where teams work through transi-
tion and action phases. Pulling all of this evidence together, we decided to pose the
what-if research question: what if interventions affected team communication about
processes, would it change (i.e., help/hinder) the relationship between when process
shifts occur and team performance?

Answering this what-if research question required figuring out what processes to
manipulate, when to manipulate them, and sample sizes needed to meaningfully test
the various conditions. We decided to turn to simulation and virtual experimentation
to guide these decisions. Table 8.7 describes the variables of interest in our study.
By using the videotapes of the 60 teams completing our laboratory simulations for
a different research purpose, we were able to generate an empirical dataset by tran-
scribing and coding the team conversations, where each message exchanged among
team members contained information about one topic. The communication strings
were a series of numbers (i.e., 10, 20, 30, 40, 50), where each number represented a
specific topic discussed by the teams. In other words, we had a set of discrete data
points representing the communication of each team. The resulting empirical dataset

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

202

contained communication strings and the corresponding team-level cost and time
performance data. The cost performance was calculated from the workforce sched-
ule created by laboratory teams. The time performance captures the number of min-
utes the laboratory team took to complete the scheduling task.

Step 2: Develop simulation procedures. Our initial investigation of the empirical
data suggested that topics were discussed in different proportions across quartiles of
communication. To ensure we were able to generate realistic communication strings,
we calculated several distributions representing a variety of characteristics of the
communication strings, including communication string length, topics per quartile,
and the number of observations per topic per quartile. The simulation procedures
included eight steps: (1) select the length of these communication string; (2) divide
the string length so that the program can trace quartile completion and change to the
appropriate distributions as the communication string progresses through quartiles;
(3) go to the first observation point of the communication string; (4) call up the
distributions about topic; (5) select the topic to be inserted into the communication
string; (6) select the number of observations to be assigned to the topic; (7) insert
the selected topic for the selected number of observations; and (8) update the posi-
tion point in the communication string and check whether the quartile length and/or
string length has been reached. Once the fourth quartile length was complete, and
thereby the communication string length was achieved, the communication string
was stored in a dataset, the variables cleared, and the simulation readied to create
another string. The simulation completed when 10,000 communication strings had
been generated per the suggestion by Law and Kelton (2000). The process flowchart

Table 8.7  Variables in team performance and process shifts example

Variables Definition Measurement Virtual experiments

Processes
�Mission analysis Task objectives,

context, resources
Pattern recognition
of shift point (i.e.,
message number)

Increase probability of
selection in quartile one

�Goal specification Task goals and
associated priorities

n/a

�Tactical strategy Approaches that could
be used to complete
task

Increase probability of
selection in quartile one

�Operational
strategy

Division of labor
among team members

n/a

�Action process Activities that move
task toward completion

Delay probability of
selection to quartile two
or three

Performance
�Schedule cost Cost of schedule

developed by team
Dollars Calculate using a neural

network
�Time Time to complete

schedule
Minutes

D. Kennedy and S. McComb

203

can be seen in Kennedy and McComb (2014). The simulation procedures were
programmed in Matlab.

Step 3: Validate simulation procedures. To validate the procedures, we executed
our simulation procedures to generate communication strings for 10,000 simulated
teams. We then evaluated the simulated communication strings on six characteris-
tics: (1) communication string length, (2) topics selected per quartile, (3) number of
observations of a topic per quartile, (4) the frequency of transitions from one topic
to the next topic selected by quartile, (5) when teams first shifted topics, and (6) the
performance associated with communication strings. The first four evaluations were
straight-forward counts from each communication string. Evaluating when teams
shifted topics was more complicated. We considered teams to have conducted a
process shift when at least three messages were exchanged about a topic followed
by at least 25 messages about other topics, because the process shift indicates “the
point in time when teams complete their focus on a process and change to focus on
one or more different processes” (Kennedy & McComb, 2014, p. 784). Each com-
munication string was evaluated using a pattern recognition sub-routine in order to
identify when the shift point occurred for each topic.

The final evaluation required generating performance scores for each simulated
communication string using the points where process shifts occurred. In preparation
for this step, we trained, tested, and validated a neural network model using Matlab’s
Neural Network Toolbox. The model links the points in the team communication
string where process shifts occur to cost and time performance using the empirical
data from the laboratory teams. A complete description of the model can be found
in Kennedy and McComb (2014). The model was used to estimate the cost and time
performance output for simulated teams based on the process shift points in the
simulated communication strings.

Once we obtained information about the communication string characteristics,
we compared the distributions from communication strings of the simulated teams
to those of the laboratory teams. Where distributions were not normally distributed,
we used the Wilcoxon rank sum statistical test to compare the data between simu-
lated teams and those of the laboratory teams, otherwise a t-test was applied. We
found no significant difference between simulated communication string character-
istics and those of laboratory teams in terms of communication string length, topics
selected per quartile, number of observations of a topic per quartile, or when teams
first shifted topics and the performance associated with communication strings (i.e.,
all comparisons with p > 0.05). Of the 100 comparisons of how frequently teams
transitioned from one topic to the next (i.e., 5 topics connecting to 5 topics including
itself across 4 quartiles), 77 were not significantly different. Even with the disap-
pointing results for transition frequency, we concluded that our simulation proce-
dures were adequate in generating communications strings that were representative
of the real-world teams.

Step 4: Conduct virtual experiments. To answer our what-if research question
about the impact of process shifts on team performance, we manipulated commu-
nication by changing the probabilities depicting when a topic might be discussed.

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

204

Specifically, we tested eight different experimental conditions that are grounded
in our theoretical understanding of what communication patterns may enhance
team performance: (1) initialize mission analysis by coding it as the first message
exchanged by teams, (2) initialize strategy formulation, (3) delay action processes
by one quartile by setting the probability of exchanging an action message during
the first quartile to 0; (4) delay action processes by two quartiles; (5, 6, 7, & 8)
initialize mission analysis or strategy formulation and delay action by one or two
quartiles. For each experimental condition, 10,000 simulated teams were gener-
ated. Each simulated team’s scaled performance measure was used to test for
differences across the conditions. The results suggest that delaying action until
after the midpoint of the team’s life cycle may be the most effective intervention.

8.4  �Conclusion

Simulation and virtual experimentation are accessible tools in a researcher’s
arsenal, as we have demonstrated in this chapter. By systematically working through
the steps we presented in our tutorial and demonstrate in the Kennedy et al. (2011)
and Kennedy and McComb (2014) journal articles, researchers can construct simu-
lation procedures grounded with continuous or discrete empirical data to answer
what-if questions. Simulation by no means replaces real-world investigations. But
when valid simulation procedures are used to conduct virtual experiments, the
results have the potential to help researchers construct theory and design future
empirical work.

References

Anderson Jr., E. G., & Lewis, K. (2013). A dynamic model of individual and collective learning
amid disruption. Organization Science, 25(2), 356–376.

Avramidis, A. N., & L’Ecuyer, P. (2006). Efficient Monte Carlo and quasi—Monte Carlo option
pricing under the variance gamma model. Management Science, 52(12), 1930–1944.

Bhuiyan, N., Gerwin, D., & Thomson, V. (2004). Simulation of the new product development
process for performance improvement. Management Science, 50(12), 1690–1703.

Burton, R. M., & Obel, B. (2011). Computational modeling for what-is, what-might-be, and what-
should-be studies-And triangulation. Organization Science, 22(5), 1195–1202.

Carley, K., & Prietula, M. (Eds.) (1994). Computational organization theory. Hillsdale, NJ:
Erlbaum.

Chance, D. M., Hillebrand, E., & Hillard, J. E. (2008). Pricing an option on revenue from an inno-
vation: An application to movie box office revenue. Management Science, 54(5), 1015–1028.

Charnes, J. M., & Shenoy, P. P. (2004). Multistage Monte Carlo method for solving influence dia-
grams using local computation. Management Science, 50(3), 405–418.

Davis, J. P., Eisenhardt, K. M., & Bingham, C. B. (2007). Developing theory through simulation
methods. The Academy of Management Review, 32, 480–499.

Dennis, A. R., Fuller, R. M., & Valacich, J. S. (2008). Media, tasks, and communication processes:
A theory of media synchronicity. MIS Quarterly, 32(3), 575–600.

D. Kennedy and S. McComb

205

Georgieva, A., & Jordanov, I. (2009). Global optimization based on novel heuristics, low-
discrepancy sequences and genetic algorithms. European Journal of Operational Research,
196, 413–422.

Gersick, C. J. G. (1988). Time and transition in work teams: Toward a new model of group devel-
opment. Academy of Management Journal, 31, 9–41.

Gersick, C. J. G. (1989). Marking time: Predictable transitions in task groups. Academy of
Management Journal, 32, 274–309.

Gorsuch, R. L. (1983). Factor Analysis (2nd ed.,). Hillsdale, NJ: Lawrence Erlbaum.
Grand, J. A., Braun, M. T., Kuljanin, G., Kozlowski, S. W. J., & Chao, G. T. (2016). The dynamics

of team cognition: A process-oriented theory of knowledge emergence in teams. Journal of
Applied Psychology, 101(10), 1353–1385.

Harrison, J. R., Lin, Z., Carroll, G. R., & Carley, K. M. (2007). Simulation modeling in organiza-
tional and management research. The Academy of Management Review, 32, 1229–1245.

Hulin, C. L., & Ilgen, D. R. (2000). Introduction to computational modeling in organizations: The
good that modeling does. In D. R. Ilgen, & C. L. Hulin (Eds.), Computational modeling of
behavior in organizations: The third scientific discipline (pp. 3–18). Washington, DC: American
Psychological Association.

Katzenbach, J., & Smith, D. (1999). The wisdom of teams: Creating the high-performance organi-
zation. Cambridge, MA: Harvard Business School Press.

Kennedy, D. M., & McComb, S. A. (2014). When teams shift among processes: Insights from
simulation and optimization. Journal of Applied Psychology, 99(5), 784–815.

Kennedy, D. M., McComb, S. A., & Vozdolska, R. (2011). Using simulation to analyze complex
behavioral models: An investigation of project complexity’s influence on team communication.
Journal of Engineering and Technology Management., 28(3), 109–127.

Kozlowski, S. W., & Chao, G. T. (2012). The dynamics of emergence: Cognition and cohesion in
work teams. Managerial and Decision Economics, 33(5–6), 335–354.

Kozlowski, S. W., Chao, G. T., Grand, J. A., Braun, M. T., & Kuljanin, G. (2013). Advancing
multilevel research design capturing the dynamics of emergence. Organizational Research
Methods, 16(4), 581–615.

Kozlowski, S. W. J., Chao, G. T., Grand, J. A., & Braun, M. T. (2016). Capturing the multilevel
dynamics of emergence: Computational modeling, simulation, and virtual experimentation.
Organizational Psychology Review, 6(1), 3–33.

Larson Jr., J. R. (2012). Computer simulation methods for groups. In A. B. Hollingshead, & M. S.
Poole (Eds.), Research methods for studying groups and teams (pp. 329–357). New York, NY:
Routledge.

Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis (3rd ed.,). New York, NY:
McGraw-Hill.

Marks, M. A., Mathieu, J. E., & Zaccaro, S. J. (2001). A temporally based framework and taxon-
omy of team processes. Academy of Management Review, 26, 356–376.

McGrath, J. E. (1981). Dilemmatics: The study of research choices and dilemmas. The American
Behavioral Scientist, 25(2), 179.

McComb, S. A., Green, S. G., & Compton, W. D. (2007). Team flexibility’s relationship to staffing
and performance in complex projects: An empirical analysis. Journal of Engineering
Technology Management, 24, 293–313.

Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of the American Statistical
Association, 44(247), 335–341.

Newman, D. A. (2003). Longitudinal modeling with randomly and systematically missing data: A
simulation of ad hoc, maximum likelihood, and multiple imputation techniques. Organizational
Research Methods, 6(3), 328–362.

Okhuysen, G. A. (2001). Structuring change: Familiarity and formal interventions in problem-
solving groups. Academy of Management Journal, 44, 794–808.

Okhuysen, G. A., & Eisenhardt, K. E. (2002). Integrating knowledge in groups: How formal inter-
ventions enable flexibility. Organization Science, 13, 370–386.

8  Simulation and Virtual Experimentation: Grounding with Empirical Data

206

Okhuysen, G. A., & Waller, M. J. (2002). Focusing on midpoint transitions: An analysis of bound-
ary conditions. Academy of Management Journal, 45, 1056–1065.

Patrashkova, R., & McComb, S. A. (2004). Exploring why more communication is not better:
Insights from a computational model of cross-functional teams. Journal of Engineering and
Technology Management, 21(1–2), 23–81.

Patrashkova-Volzdoska, R. R., McComb, S. A., Green, S. G., & Compton, W. D. (2003). Examining
a curvilinear relationship between communication frequency and team performance in cross-
functional project teams. IEEE Transactions on Engineering Management, 50(3), 262–269.

Prietula, M., Carley, K., & Gasser, L. (Eds.) (1998). Simulating organizations: Computational
models of institutions and groups. Cambridge, MA: MIT Press.

Ren, Y., Carley, K. M., & Argote, L. (2006). The contingent effects of transactive memory: When
is it more beneficial to know what others know? Management Science, 52(5), 671–682.

Roth, P. L., Switzer III, F. S., & Switzer, D. M. (1999). Missing data in multiple item scales:
A Monte Carlo analysis of missing data techniques. Organizational Research Methods, 2,
211–232.

Solow, D., Vairaktarakis, G., Piderit, S. K., & Tsai, M. (2002). Managerial insights into the effects
of interactions on replacing members of a team. Management Science, 48(8), 1060–1073.

Valenzuela, J. M., & Mazumbar, M. (2003). Commitment of electric power generators under
stochastic market prices. Operations Research, 51(6), 880–893.

Wang, M., Zhou, L., & Zhang, Z. (2016). Dynamic modeling. Annual Review of Organizational
Psychology and Organizational Behavior, 3, 241–266.

D. Kennedy and S. McComb

	Contents
	Chapter 1: Introduction
	References

	Chapter 2: Response Surface Models to Analyze Nonlinear Group Phenomena
	2.1 Introduction to Response Surface Methodology
	2.2 Brief Background of RSM
	2.3 Basic Processes Underlying RSM
	2.3.1 Step 1: Second-Order Regression Modeling
	2.3.2 Step 2: Lack of Fit
	2.3.3 Step 3: Coding of Variables
	2.3.4 Step 4: Canonical Analysis of the Response System
	2.3.5 Step 5: Conduct Ridge Analysis if Needed

	2.4 RSM in Context
	2.4.1 About the Game

	2.5 Dependent Variable
	2.5.1 Team Performance

	2.6 Independent Variables
	2.6.1 Complexity
	2.6.2 Difficulty

	2.7 Control Variables
	2.7.1 Group Size

	2.8 Data Analysis
	2.8.1 Controlling for Group Size
	2.8.2 Experience Points: A Minimum Stationary Point

	2.9 Results
	2.9.1 Model for Deaths: A Saddle Point

	2.10 Conclusion
	References

	Chapter 3: Causal Inference Using Bayesian Networks
	3.1 Introduction
	3.2 Scenario
	3.2.1 Variables
	3.2.2 Data Preparation

	3.3 Description of Weka Environment
	3.4 Running Bayesian Network Analysis in Weka
	3.4.1 Analysis with All Variables
	3.4.2 Understanding Weka Output
	3.4.3 Assessing Information Gain
	3.4.4 Re-run with Selected Variables
	3.4.5 Probability Distribution
	3.4.6 Re-run with Two Parent Nodes

	3.5 Conclusion
	References

	Chapter 4: A Relational Event Approach to Modeling Behavioral Dynamics
	4.1 Representing Interaction: From Social Networks to Relational Events
	4.1.1 Prefatory Notes

	4.2 Overview of the Relational Event Framework
	4.3 Sample Cases
	4.3.1 Butts et al.’s WTC Data
	4.3.2 McFarland’s Classroom Data

	4.4 Tutorial
	4.4.1 Ordinal Time Event Histories
	4.4.2 A First Model: Exploring ICR Effects
	4.4.3 Bringing in Endogenous Social Dynamics
	4.4.4 Assessing Model Adequacy

	4.5 Exact Time Histories
	4.5.1 Modeling with Covariates
	4.5.2 Modeling Endogenous Social Dynamics
	4.5.3 Interpretation of a Fitted Model
	4.5.4 Assessing Model Adequacy

	4.6 Conclusion
	References

	Chapter 5: Text Mining Tutorial
	5.1 Introduction
	5.2 Overview of Text Mining
	5.3 Text Mining Tutorial
	5.3.1 Data Collection
	5.3.2 Data Preparation
	5.3.3 Preprocessing
	5.3.4 Data Analysis
	5.3.5 Interpretation

	5.4 Contributions
	References

	Chapter 6: Sequential Synchronization Analysis
	6.1 Introduction
	6.2 Sequence Analysis
	6.2.1 Sequence Data
	6.2.2 Analyzing Sequences
	6.2.2.1 Whole Sequence Analysis
	6.2.2.2 Subsequence Analysis

	6.3 Sequential Synchronization Analysis
	6.3.1 Individual Sequences into Group Processes
	6.3.2 Entrainment

	6.4 A Step-by-Step Guide to Sequential Synchronization Analysis
	6.4.1 Step 1: Theoretically Define the Units of Interest
	6.4.2 Step 2: Extract Subsequences from Data
	6.4.3 Step 3: Revisit Theoretically Defined Subsequences in Light of Sequence Mining Results
	6.4.4 Step 4: Aggregate Frequency Counts of Subsequences for Data Segments
	6.4.5 Step 5: Compute Synchronization Scores

	6.5 Example
	6.6 Discussion
	References

	Chapter 7: Group Analysis Using Machine Learning Techniques
	7.1 Machine Learning Techniques and Tools
	7.1.1 Decision Trees
	7.1.2 Feature Selection
	7.1.3 Introducing WEKA: GUI Based Machine Learning Tool

	7.2 Dataset and Metrics
	7.2.1 Dataset Collection and Description
	7.2.2 Individual Level Metrics
	7.2.3 Constructing Group Level Metrics (Control Variables) from Individual Metrics
	7.2.4 Group Performance (Dependent Variables)

	7.3 Experimentation Methodology
	7.4 Experiment 1: Group Analysis Using Role Based Metrics
	7.4.1 Phase 1: Correlation Analysis
	7.4.2 Phase 2: Decision Tree Analysis
	7.4.3 Phase 3: Feature Selection
	7.4.4 Phase 4: Decision Tree Analysis over Selected Features

	7.5 Experiment 2: Group Analysis Using Skill Based Metrics
	7.5.1 Phase 1: Correlation Analysis
	7.5.2 Phase 2: Decision Tree Analysis
	7.5.3 Phase 3: Feature Selection
	7.5.4 Phase 4: Decision Tree Analysis over Selected Features

	7.6 Experiment 3: Group Analysis Using Group Configuration Metrics
	7.7 Experiment 4: Using All Types of Metrics Combined for Group Analysis
	7.8 Conclusion
	References

	Chapter 8: Simulation and Virtual Experimentation: Grounding with Empirical Data
	8.1 Introduction
	8.2 Basic Overview of Simulation and Virtual Experimentation
	8.2.1 Tutorial

	8.3 Example Applications
	8.3.1 Team Communication, Performance, and Project Complexity
	8.3.2 Team Performance and Process Shifts

	8.4 Conclusion
	References

