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Abstract. In this work, we present a comparison between the use of a simple
and multi objective MBPC in robots control for tracking trajectories and
obstacle avoidance. Two cases were considered, in the first each robot has its
own MPC controller where in the second a single two- objectives MPC con-
troller is used for both robots. In the second case; two approaches were proposed
to solve the multi objective optimization problem arising in the MOMPC: the
multi objective Particle Swarm Optimization (MOPSO) and weighted sum
method. The simulation results show that the robots movement is more stable by
the MOPSO-NMPC than the PSO-NMPC. Computation times as expected are
shorter PSO-NMPC; however MOPSO-NMPC although more time consuming
is still feasible.
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1 Introduction

Model based predictive control (MBPC) is based on the use of a model for predicting
the future behavior of the system over a finite future horizon. The current control action
is obtained by solving on-line, at each sampling instant, a finite horizon optimal control
problem, using the current state of the plant as the initial state [1]. The optimization
yields an optimal control sequence and the first control in this sequence is applied to the
plant. The solution of the optimization problem depends on the nature of the model and
constraints.

Multi objective model based predictive control (MOMBPC) has been proposed by
a number of authors with improved performance. For example, in [2], the authors use
multi objective optimization to tune nonlinear model predictive controllers based on a
weighted sum objective function and in [3] authors shown that it is possible to compute
a Pareto optimal solution as an explicit piecewise affine function after recasting the
optimization problem associated with the multi objective MPC as a multi parametric
multi objective linear or quadratic program.
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In this work, we present a comparison between the use of a simple and multi
objective MBPC in robots control for tracking trajectories and obstacle avoidance.
Each robot tracks a specified reference trajectory. In the first case, each robot has its
own MPC controller and the Particle Swarm Optimization algorithm PSO is used for
the solution of the optimization problem arising in the MPC. In the second case, a
single two- objectives MPC controller is used for both robots. This last problem was
solved using two approaches: the first is the use of multi-objectives PSO for the
solution of the multi objective optimization problem arising in MOMPC, the second is
to transform the multi objective optimization problem to simple optimization one using
the weighted sum method.

The paper is organized as follows: Sect. 2 gives the formulation of simple and
Multi objective nonlinear model predictive control, Sect. 3 provides the description of
the MOPSO and the weighted sum method, Sect. 4 simulation results are given.

2 Model Predictive Control

Consider a nonlinear system described by the discrete state space model:

x kþ 1ð Þ ¼ f x kð Þ; u kð Þð Þ ð1Þ

where x(k) is the state, u(k) the control signal and f are a continuous mapping.
The control signal uðkÞ is such that:

uðkÞ 2 U � R
m ð2Þ

U is a compact convex set with 0 2 intðUÞ and f 0; 0ð Þ ¼ 0. Moreover the state may
be constrained to stay into a convex and closed set:

xðkÞ 2 X ð3Þ

The problem solved by the non linear model predictive control is to regulate the
state to the origin by solving the following optimization problem:

minU JN x; k;Uð Þ ð4Þ

With (1), (2) and (3) Where

JN x; k;Uð Þ ¼ F x kþNð Þð Þþ
XkþN�1

i¼k
L x ið Þ; u ið Þð Þ ð5Þ

Where N is the optimization horizon. F(x(k + N)) is a weight of the final state.
Moreover, the final state may be constrained to be in a final region:

x kþNð Þ 2 Xf � X ð6Þ
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The weight F and the final region are introduced to guarantee stability of the
nonlinear MPC.

The solution gives the control sequence up to N

U ¼ uðkÞ uðkþ 1Þ � � � uðkþN � 1Þ½ � 2 U
N

and only u(k) is applied at sampling instant k. The procedure is repeated at each
sampling instant.

The optimization problem (5), (6) is generally non convex. The straightforward
algorithm for solving this problem is the sequential quadratic programming, SQP, an
extension of the active set method used for solving quadratic program [4]. This method
is difficult to code and time consuming. A number of algorithms have been proposed
for solving this problem in a reasonable amount of time such that the multiple shooting
method [5] and nonlinear sum of squares [6, 7]. In this work, Particle Swarm Opti-
mization algorithm [8], PSO, is applied to the solution of this problem.

The problem of multi objective model predictive control is to minimize, at each
sampling time, the l follows functions cost:

Ji U; xð Þ ¼ Fi x kþNð Þð Þ
þ

XkþN�1

k¼j
Li xðjÞ; uðjÞð Þwith i ¼ 1; � � � ; l ð7Þ

Fi x kþNð Þð Þ is a weight on the final state. Moreover, the final state may be con-
strained to be in a final region kþNð Þ 2 Xf � X. The weight Fi and the final region are
introduced to guarantee stability of the nonlinear MPC.

The solution gives the set of Pareto front and only one Pareto optimal solution is
selected and applied at sampling instant k. The procedure is repeated at each sampling
time. In this work we use Multi Objective Particle Swarm Optimization, MOPSO [9],
to generate a set of approximately Pareto-optimal solutions in a single run and we use a
weighted sum approach to convert the multi objective MPC to a single one.

3 Solution of the Multi Objective Predictive Control Problem

1. The MOPSO

Particle swarm optimization is an evolutionary computation technique developed
by Kennedy and Eberhart in 1995 [8]. The particle swarm concept originated as a
simulation of a simplified social system. The success of the particle swarm optimization
algorithm motivated the researchers to apply it to multi-objective optimization prob-
lems. The MOPSO [9] is one of the algorithms proposed to solve the multi objective
optimization problem using particle swarm optimization algorithm. The MOPSO
maintains two archives, one for storing the global non-dominated solutions and the
other for storing the individual best solutions attained by each particle. Basically, the
updating of the particle is performed as follows:
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V tþ 1ð Þ ¼ w � V tð ÞþR1 � pbest tð Þ � p tð Þð Þ
þR2 � ðRepðhÞ � pðtÞÞ ð8Þ

p tþ 1ð Þ ¼ p tð ÞþV tþ 1ð Þ ð9Þ

Where V is the particle velocity, p(t) is the current position of the particle, w is a
constant, R1 and R2 are random numbers in [0 1]. REP is a repository where are stored
the positions of the non dominated particles and h is an index in the repository that is
introduced to ensure some fitness sharing [10].

REP is updated by inserting the currently non dominated positions and dominated
positions are eliminated. The size of the repository being limited when it becomes full
and particles in less populated areas are given priority over those highly populated
regions.

2. Weighted sum method for multi-objective optimization

This method is the simplest and widely used classical method. It allows the
transformation of the objective functions vector into a single-objective function. The
single criterion is obtained by the sum of the weighted criteria as follows:

min
Xk

i¼1
wiJiðxÞWithwi � 0 ð10Þ

wi: is the affected weight to the objective i where:

Xk

i¼1
wi ¼ 1

Weights Value depends on the relative importance of each objective. In this work,
objectives have the same weight.

4 Application

We consider four mobile robots, two real and two virtual, the real robots track the
virtual ones. It is assumed that there is a pure rolling. The contact between the wheels
and the ground is supposed to be frictionless. The kinematic model of the real robots is
given by:

_xi tð Þ ¼ vri tð Þþ vliðtÞ
2

cos hiðtÞ ð11Þ

_yi tð Þ ¼ vri tð Þþ vliðtÞ
2

sin hiðtÞ ð12Þ

_hi tð Þ ¼ vri tð Þ � vliðtÞ
b

ð13Þ
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xi ¼ ðvri � vli=bÞ ð14Þ

Where i = 1, 2, vri 2 R and vli 2 R are the right and the left wheels linear velocities
of the real robot i, b 2 R is the distance between the wheel centers. hi are the robots
orientation and xi are the angular velocities. The objective is to find a control law
defined by vri tð Þ, vli tð Þ (i = 1, 2) that allows the robots to:

• track a given reference trajectories defined by: xri tð ÞyriðtÞ½ �; i ¼ 1; 2, respectively
• Avoid fixed obstacles on the trajectories
• Avoid collisions

This problem is set as a single objective MPCs and multi-objective MPC with
constraints. The optimization problem arising in the MPCs is solved by the particle
swarm optimization meta-heuristic, PSO. The optimization problem arising in
MOMPC is solved using two different approaches. The first consists in converting the
multi objective optimisation problem to single one where the resulting objective
function is a weighted sum of the two objective functions. The second approach
consists of using the multi objective particle swarm optimisation algorithm (MOPSO)
to generate a set of optimal Pareto solutions.

The first reference trajectory is given by:
xr1 tð Þ ¼ cos x0tð Þ; yr1 tð Þ ¼ sin 2 � x0tð Þ; x0 ¼ 0:02 rad/s is the signal pulsation,

the second reference trajectory is given by: xr2 tð Þ ¼ cos x0tþuð Þ; yr2 tð Þ
¼ sin 2 � x0tþuð Þ;

The control signals are constrained to:

�0:7� vri � 0:7� 0:7� vli � 0:7 ð15Þ

and the angular velocity is constrained to:

�5�xi � 5 ð16Þ

These algorithms are run until a satisfactory response is obtained. The collision
point of the robots is m(0,0). The robots start from their initial positions (0.25, 0),
(−0.75, 0) and track their own trajectories. It is observed that both have good tracking
and avoid all fixed obstacles on their trajectories. However, the behavior of the robots
in the collision point is different for each algorithm where:

• For the first and the second algorithms (PSO-NMPCs and MOPSO-NMPC), it is
observed that the second robot continues its tracking while the first avoids it by
decreasing its velocity to keep a safe distance. Then, they continue their tracking
and avoid the obstacles encountered. One can also observe that their movement is
more stable by the MOPSO-NMPC than the PSO-NMPC (Fig. 1).

• For the last algorithm, the WS-MOMPC, it is observed that each robot avoids the
collision with the other. Then, they continue their tracking and avoid fixed obstacles
encountered. We also observe a dynamic movement of the robots.
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(a) Robot 1 trajectory

(b) Robot1 velocities
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(c) Robot2 trajectory 

(d) Robot2 velocities
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Fig. 1. Results with Two PSO-NMPC controllers. (a) Robot 1 trajectory (b) Robot1 velocities
(c) Robot2 trajectory (d) Robot2 velocities
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(a) Robot1 trajectory 
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(b) Robot1 velocities 

(c) The second robot trajectory 

(d) The second robot velocities 
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Fig. 2. Results with the Pareto: MOPSO-NMPC (a) Robot1 trajectory (b) Robot1 velocities (c)
The second robot trajectory (d) The second robot velocities
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(a) Robot1 trajectory 

(b) Robot1 velocities 
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(c) Robot2 trajectory

(d) Robot2 velocities 
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Fig. 3. Results with WS-MOMPC (a)Robot1 trajectory (b)Robot1 velocities. (c) Robot2
trajectory (d) Robot2 velocities
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Computation times are given in Table 1, where it can be seen that PSO-NMPC
outperforms the other algorithms. The constraints on the control signals are always
satisfied as shown in Figs. 2 and 3.

5 Conclusion

In this work, we have developed a comparison between single objective and multi
objective MBPC in robots control for tracking trajectories and obstacle avoidance.
Each robot tracks a specified reference trajectory. In the first case, each robot has its
own MPC controller and the Particle Swarm Optimization algorithm PSO is used for
the solution of the optimization problem arising in the MPC. In the second case, a
single two- objectives MPC controller is used for both robots. This last problem was
solved using two approaches: the first is the use of multi-objectives PSO for the
solution of the multi objective optimization problem arising in MOMPC, the second is
to transform the multi objective optimization problem into a single objective opti-
mization using the weighted sum method. The simulation results show that the robots
movement is more stable by the MOPSO-NMPC than the PSO-NMPC. Computation
times as expected are shorter PSO-NMPC, however MOPSO-NMPC although more
time consuming, is still feasible.
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