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Abstract. In this paper, a projective synchronization scheme for a class of
master–slave chaotic systems subject to dynamic disturbances and input non-
linearities (dead-zone and sector nonlinearities) is investigated. To practically
achieve this synchronization, an adaptive fuzzy variable-structure control system
is designed. The fuzzy systems are used to appropriately approximate the
uncertain nonlinear functions. A Lyapunov approach is employed to prove the
boundedness of all signals of the closed-loop control system as well as the
exponential convergence of the synchronization errors to an adjustable region.
Simulations results are presented to illustrate the effectiveness of the proposed
projective synchronization scheme.
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1 Introduction

Chaos synchronization is an important topic in nonlinear science. It has received
increasing attention thanks to their applications in information processing, secure
communications, pattern recognition, power convertors, chemical reactions, laser
systems, ecological and biological systems, and so on [1–5]. The initial configuration
of chaos synchronization consists of master-slave systems. The master system drives
the slave one via the transmitted signals. In the past two decades, various types of the
chaos synchronization have been revealed, such as complete synchronization (CS) [6],
phase synchronization (PHS) [7], projective synchronization (PS) [8, 9], and so on.
In PS, the state vectors of two synchronized systems evolve in a proportional scale.

Based on the universal approximation theorem [10], many adaptive fuzzy control
systems have been incorporated in the synchronization schemes [11–16] to solve the
problem of uncertainties. The problem of the input nonlinearities has been also con-
sidered in [17–19] in the designing of the control-based synchronization systems for a
class of uncertain chaotic systems. However, the class of chaotic systems considered in
these works is relatively simple, affine and free of the dynamical disturbances.

Therefore, in this paper, we aim at addressing the projective synchronization
problem of a class of multivariable nonaffine chaotic systems subject to both dynamic
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disturbances and input nonlinearities. This synchronization can be achieved via a
suitable fuzzy adaptive variable-structure controller. The main difficulties of this work
are how to deal with unknown nonlinear functions, nonaffine multivariable control, the
uncertain input nonlinearities and the combined effect of the uncertain dynamic dis-
turbances, fuzzy approximation errors together with the higher-order terms (HOT) is-
sued from the use of the Taylor series expansion. In this study, these difficulties can be,
respectively, solved by fuzzy system approximation, Taylor series expansion, variable
structure control and robust dynamical control. A Lyapunov approach is adopted to
carry out the parameter adaptation design, the convergence of the synchronization error
and the stability analysis involved in this proposed synchronization scheme. The main
contributions of this paper lie in the following:

(1) A new projective synchronization scheme based on fuzzy adaptive controller is
proposed for uncertain perturbed chaotic systems with input nonlinearities (i.e.
dead-zone and sector nonlinearities).

(2) The model of the considered chaotic systems is assumed to be completely
unknown (except its relative degree), multivariable, nonaffine in control, subject
to both input nonlinearities and dynamical disturbances. To our best knowledge,
such a class of chaotic systems with all these features has not been already studied
in the literature.

The rest of the paper is organized in the following manner. Section 2 presents the
problem formulation and preliminaries, followed by the design of fuzzy adaptive
controller to practically achieve a projective synchronization in Sect. 3. The simulation
results are presented to demonstrate the effectiveness of proposed synchronization
scheme in Sect. 4. Section 5 contains the conclusion.

2 Problem Statements and Preliminaries

Consider the following class of uncertain chaotic master systems:

_Y ¼ H1 Yð Þ ð1Þ

where Y ¼ ½y1; . . .; yn�T 2 Rn is the overall state vector of the master system which is
assumed to be measureable. H1 Yð Þ ¼ ½h11 Yð Þ; . . .; h1n Yð Þ�T 2 Rn is a vector of smooth
unknown nonlinear functions.

The uncertain chaotic multivariable slave system affected by unknown dynamic
disturbances can be given as:

_X ¼ H2 X; vð Þþ ^ Xð Þ ð2Þ

Where X ¼ ½x1; . . .:; xn�T 2 Rn is the overall state vector of the slave system which is
assumed to be measureable. H2 X; vð Þ ¼ ½h21 X; vð Þ; . . .:; h2n X; vð Þ�T 2 Rn denotes

unknown nonaffine functions vector, with v ¼ u uð Þ ¼ u1 u1ð Þ; . . .;un unð Þ�T is a
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nonlinear input functions vector satisfying some properties which will be given later
and ^ Xð Þ ¼ ½^1 Xð Þ; . . .;^n Xð Þ�T is the unknown external disturbance vector.

Assumption 1: The matrix @H2 X; vð Þ=@v is non-singular and its sign is assumed to be
known.

Design Objective: Determine an adaptive fuzzy variable- structure law ui (for all i = 1,
…,n) which achieves a practical projective synchronization between the master system
(1) and the slave one (2) and ensures the boundedness of all the signals in the derived
closed-loop system remain.

To quantify this objective, we define the synchronization error between systems (1)
and (2) for this PS, as follows

E ¼ X � BY , with E ¼ e1; . . .; enð ÞT ; B ¼ Diag b1; . . .; bnð Þ
and ei ¼ xi � biyi ði ¼ 1; 2; . . .; nÞ.

Definition 1: For the master system (1) and the slave system (2), there is said to be
projective synchronization if there exists a nonzero constant B such that
limt!1 X � BYk k ¼ 0; where :k k represents the Euclidean norm.

Definition 2: The PS is said to be practically achieved, if there exists a strictly positive
constant e such that limt!1 X � BYk k� e, where e depends on the design parameters.

The dynamics of the synchronization error vector are

_E ¼ H2 X; vð Þþ ^ Xð Þ � BH1 Yð Þ ð3Þ

Let us define a PI sliding surface as follows:

S ¼ ½S1; S2; . . .; Sn�T ¼ d
R t
0 E sð Þds� �
dt

þ k
Z t

0
E sð Þds

� �
¼ Eþ k

Z t

0
E sð Þds ð4Þ

where k is a positive design constant. The time derivative of S is given by

_S ¼ H2 X; vð Þþ ^ Xð Þ � BH1 Yð Þþ kE ð5Þ

By means of Taylor series expansion, the nonaffine system (5) can be transformed
into an affine system in control, around an unknown ideal control v ¼ v� Xð Þ as follows:

H2 X; vð Þ ¼ F Xð ÞþG Xð ÞvþHOT X; vð Þ ð6Þ

with

G Xð Þ ¼ gij Xð Þ� � ¼ @H2 X; vð Þ
@v

� �
v¼v� Xð Þ
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and

F Xð Þ ¼ H2 X; v� Xð Þð Þ � @H2 X; vð Þ
@v

� �
v¼v� Xð Þ

v� Xð Þ

where HOT X; vð Þ is the higher order terms (HOT) of the expansion, and v ¼ v� Xð Þ is
an unknown smooth function minimizing the HOT.

Since the matrix G(X) is not necessarily symmetric, the following important lemma
will be used in the control design and the stability analysis [20–23]:

Lemma 1: Any real matrix G Xð Þ 2 Rn�n with non-zero leading principal minors can
be factorized as follows:

G Xð Þ ¼ Gs Xð ÞDT Xð Þ ð7Þ

where Gs Xð Þ 2 Rn�n is a symmetric and positive-definite matrix, D 2 Rn�n is a diag-
onal matrix with +1 or −1 on its diagonal, and T Xð Þ 2 Rn�n is a unity upper-trian-
gular matrix. The diagonal elements of Dare nothing else than the ratios of the signs of
the leading principal minors of G(X).

Using the matrix factorization (7) and the expression (6), the dynamics of S can be
expressed as follows:

_S ¼ F Xð ÞþGs Xð ÞDT Xð Þu uð ÞþHOT X;u uð Þð Þþ ^ Xð Þ � H3 Y ;Eð Þ ð8Þ

where

H3 Y ;Eð Þ ¼ BH1 Yð Þ � kE ð9Þ

Assumption 2: The matrix G(X) is of class C1 and satisfies the following property:

1
2

dGs Xð Þ
dt

���� ���� ¼ 1
2

@Gs Xð Þ
@X

_X

���� ����� �g Xð Þ;

where �g Xð Þ is an unknown positive function.

A. Input Nonlinearity. The mathematical model of the input nonlinearity u uð Þ ¼
½u1 u1ð Þ; . . .;un unð Þ�T under consideration (i.e. sector nonlinearity and dead-zone) is
given by [17]:

ui uið Þ ¼
uiþ uið Þ ui � uiþð Þ; ui [ uiþ
0; �ui� � ui � uiþ
ui� uið Þ ui þ ui�ð Þ; ui\� ui�

8<: ð10Þ

where uiþ uið Þ[ 0 and ui� uið Þ[ 0 are nonlinear functions of ui, and uiþ [ 0 and
ui� [ 0.
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We can show that ui uið Þ satisfies the following properties:

ui � uiþð Þui uið Þ�m�
iþ ui � uiþð Þ2; ui [ uiþ ;

ui þ ui�ð Þui uið Þ�m�
i� ui þ ui�ð Þ2; ui\� ui�;

ð11Þ

where m�
iþ and m�

i� are strictly positive constants witch called “gain reduction
tolerances”.

Assumption 3: Assume that:

(a) The functions uiþ uið Þ and ui� uið Þ and the constants m�
iþ and m�

i� are uncertain,
(b) The constants uiþ and ui� are known and strictly positive.

B. Description of the Fuzzy Logic System. The fuzzy system is based on particular
knowledge of four main modules, namely: the rule base, fuzzifier, the inference engine
and defuzzifier, as shown in Fig. 1.

The fuzzy inference engine uses the IF–THEN rules to achieve a mapping from an
input vector xT ¼ x1; x2; . . .:; xn½ � 2 Rn to an output scalar f̂ 2 R: The ith fuzzy rule can
be written as:

R ið Þ : if x1 is Ai
1 and. . .and xn is A

i
n then f̂ is f

i ð12Þ

where Ai
1;A

i
2; . . .:: and Ai

n are fuzzy sets and fi is the fuzzy singleton for the output in
the ith rule. The fuzzy-logic system can be expressed in the following form:

f̂ ðxÞ ¼
Pm

i¼1 f i
Qn

j¼1 lAi
j
xj
� �	 


Pm
i¼1

Qn
j¼1 lAi

j
xj
� � ¼ hTwðxÞ ð13Þ

Fuzzy Rule Base 

Fuzzifier 

Fuzzy Inference 

Engine 

x )(ˆ xf
Defuzzifier 

Fig. 1. Basic configuration of a fuzzy logic system.
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where lAi
j
xj
� �

is the membership function of Ai
j, m is the number of fuzzy rules,

hT ¼ f 1; f 2; . . .::; f m½ � is the adjustable parameter vector (composed of consequent
parameters), and wT ¼ w1w2. . .wm� �

with

wiðxÞ ¼
Qn

j¼1 lAi
j
ðxjÞPm

i¼1

Qn
j¼1 lAi

j
ðxjÞ

	 
 ð14Þ

being the fuzzy basis function (FBF). Throughout the paper, it is assumed that the FBFs
are properly chosen so that there is always at least one active rule,
i.e.

Pm
i¼1 ð

Qn
j¼1 lAi

j
ðxjÞÞ[ 0, [10].

3 Design of Fuzzy Adaptive Controller

Multiplying the Eq. (8) by G�1
s Xð Þ and by posing �S ¼ D�1S or �Si ¼ diiSi (as D�1 ¼

DT ¼ D and dii ¼ þ 1 or � 1), we get

G1 Xð Þ _�S ¼ D�1F1 X; Yð Þþu uð ÞþD�1P X;uðuÞð Þ ð15Þ

where G1 Xð Þ ¼ D�1G�1
s Xð ÞD,

F1 X; Yð Þ ¼ G�1
s Xð Þ F Xð Þ � H3 Y ;Eð Þ½ � þ DT Xð Þ � D½ �u uð Þ,

P X;u uð Þð Þ ¼ G�1
s Xð ÞHOT X;u uð Þð ÞþG�1

s Xð ÞK Xð Þ.
The dynamics (15) can be rewritten as follows

1
2
_G1 Xð Þ�SþG1 Xð Þ _�S ¼ a zð Þþu uð Þþ 1

2
_G1 Xð Þ�S� �g Xð Þ�SþR X;u uð Þð Þ ð16Þ

with R X;u uð Þð Þ ¼ D�1P X;uðuÞð Þ,

a zð Þ ¼ ½a1 z1ð Þ; . . .; an znð Þ�T ¼ �gðXÞ�SþD�1F1 X; Yð Þ ð17Þ

where z ¼ ½zT1 ; . . .; zTn �T . The vectors zi will be determined later.

Assumption 4: There exists an unknown continuous positive function �ai zið Þ such that:
ai zið Þj j � g�ai zið Þ; 8zi 2 Xzi with g ¼ min m�

iþ ;m
�
i�

� �
for i ¼ 1; . . .; n.

By examining the expressions of F1 X; Y ; uð Þ and a zð Þ, and because the state vector
of the master system Yis always bounded, the vectors zi can be determined as follows:

z1 ¼ ½XT ; u2; . . .:; un�T
z2 ¼ ½XT ; u3; . . .:; un�T

..

.

zn�1 ¼ ½XT ; un�T
zn ¼ X

ð18Þ
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The corresponding operating compact sets are defined as follows:

Xzi ¼ ½XT ; uiþ 1; . . .; un�T X 2 XX 	 Rn; Y 2 XYj� �
;

Xzn ¼ X X 2 XX 	 Rnjf g:

It is clear that z1 depends on control inputs u2; . . .:; un; z2 depends on u3; . . .:; un,
and so on. In fact, the structure of the nonlinearities a zð Þ is known under the name
“upper triangular control structure”.

The unknown nonlinear function �ai zið Þ can be approximated, on the compact set
Xzi , by the fuzzy systems (13) as follows:

�̂ai zi; hið Þ ¼ hTi wi zið Þ; with i ¼ 1; . . .; n ð19Þ

where wi zið Þ is the fuzzy basis function (FBF) vector, which is fixed a priori by the
designer, and hi is the adjustable parameter vector of the fuzzy system. Then, we
define:

h�i ¼ argmin supj�ai zið Þ � b�ai zi; hið Þj� �
as the optimal value of hi which is mainly

introduced for analysis purposes as its value is not needed when implementing the
controller.

Define

~hi ¼ hi � h�i
ei zið Þ ¼ �ai zið Þ � b�ai zi; h

�
i

� � ¼ �ai zið Þ � h�Ti wi zið Þ
ð20Þ

as the parameter estimation error and the fuzzy approximation error, respectively. As in
[10, 17–22], the fuzzy approximation error is assumed to be bounded for all zi 2 Xzi ,
i.e.:

jei zið Þj ��ei ; 8zi 2 Xzi ð21Þ

where �ei is an unknown constant.
Now, let us denote

�̂a z; hð Þ ¼ �̂a1 z1; h1ð Þ; . . .; �̂an zn; hnð Þ� �T¼ hT1w1 z1ð Þ; . . .; hTnwn znð Þ� �T
e zð Þ ¼ e1 z1ð Þ; . . .; en znð Þ½ �T ;
�e zð Þ ¼ �e1; . . .;�en½ �T :

Then, we have

�̂a z; hð Þ � �a zð Þ ¼ �̂a z; hð Þ � �̂a z; h�ð Þþ �̂a z; h�ð Þ � �a zð Þ
¼ �̂a z; hð Þ � �̂a z; h�ð Þ � �e zð Þ ¼ ~hTw zð Þ � �e zð Þ ð22Þ

where ~hTw zð Þ ¼ ~hT1w1 z1ð Þ; . . .; ~hTnwn znð Þ
h i

and ~hi ¼ hi � h�i , for i ¼ 1; . . .; n.
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Assumption 5: We assume that:

e zð ÞþR X;u uð Þð Þj j � g�R X; uð Þj�

with �R X; uð Þ ¼ 1þ Xk kþ uk k, where j� ¼ ½j�1; . . .; j�n�T is an unknown constant
vector to be estimated.

To practically achieve a projective synchronization between the master system (1)
and the slave system (2), we can consider the following fuzzy adaptive
variable-structure controller:

ui ¼
�qi tð Þsign �Sið Þ � ui�; �Si [ 0
0; �Si ¼ 0
�qi tð Þsign �Sið Þþ uiþ ; �Si\0

8<: ð23Þ

with

qi tð Þ ¼ jurij þ k0i þ k1ij�Sij þ hTi wi zið Þ 8i ¼ 1; . . .; n ð24Þ
_hi tð Þ ¼ �chirhihi þ chi �Sij jwi zið Þ; with hij 0ð Þ[ 0 ð25Þ

where chi; rhi, k0i and k1i for i ¼ 1; . . .; n are free positive design constants and ur ¼
ur1; . . .; urn½ �; uri 0ð Þ[ 0 is an adaptive control term added in order to dynamically
compensate for the uncertain nonlinearity.

_ur ¼ �crur þ cr Eurj�Sj � sign urð ÞPn
i¼1 urij j þ d2

�R X; uð ÞjT j�Sj
" #

ð26Þ

_d ¼ �cdrdd� cd
dPn

i¼1 jurij þ d2
�R X; uð ÞjT j�Sj; d 0ð Þ[ 0 ð27Þ

_j ¼ �cjrjjþ cj�R X; uð Þj�Sj; ji 0ð Þ� 0 ð28Þ

where Eur ¼ diag sign ur1ð Þ; . . .; sign urnð Þ½ �; cj; rj; cd; rd and cr are strictly positive
design parameters.

By exploiting Eq. (22), Assumptions 2, 4 and 5, and control law (23)–(25), (16)
can be rewritten as follows

d
dt

1
2g

�STG1 Xð Þ�S
� �

�
Xn

i¼1
j�Sij�ai zið Þþ 1

g
�STu uð Þ

þ �R X; uð Þj�T j�Sj � �STe zð Þ
� �

Xn

i¼1
j�Sij urij j þ k1i �Sij j þ ~hTi wi zið Þ

	 

þ

Xn

i¼1
j�Sij urij j þ k1ij�Sij þ hTi wi zið Þ� �

þ 1
g
�STu uð Þþ �R X; uð Þj�T j�Sj

ð29Þ
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Theorem 1. Consider the master-slave system (1) and (2) with Assumptions 1–5.
Then, the control law given by (23)–(28) can guarantee the following properties:

• All the variables in the closed-loop control system are semi-globally uniformly
ultimately bounded (SUUB).

• The synchronization errors Si exponentially converge to an adjustable domain
defined as:

XSi ¼ Sij Sij j � 2p
rg1l

 �1=2
( )

ð30Þ

where p; l and rg1 will be defined later.

Proof. Consider the following Lyapunov function candidate:

V ¼ 1
2g

�STG1 Xð Þ�Sþ 1
2

Xn

i¼1

1
chi

~hTi ~hi þ
1
2cj

~jT~jþ 1
2cd

d2 þ 1
2cr

uTr ur ð31Þ

The time derivative of V is given by

_V ¼ 1
g
�STG1 Xð Þ _�Sþ 1

2g
�ST _G1 Xð Þ�Sþ

Xn

i¼1

1
chi

~hTi
_hi þ 1

cj
~jT _jþ 1

cd
d _dþ 1

cr
uTr _ur ð32Þ

From (11) and Eq. (23), we can easily get the following expressions:

ui\� ui�for �Si [ 0)

ui þ ui�ð Þui uið Þ�m�
i� ui þ ui�ð Þ2 � g ui þ ui�ð Þ2 ð33Þ

and
ui [ uiþ for �Si\0)

ui � uiþð Þui uið Þ�m�
i� ui � uiþð Þ2 � g ui � uiþð Þ2 ð34Þ

From the above analysis and (23), we can conclude that

�Si [ 0) ui þ ui�ð Þui uið Þ ¼ � qi tð Þsignð�SiÞui uið Þ
�m�

i�q
2
i tð Þ signð�SiÞ½ �2 � gq2i tð Þ

ð35Þ

�Si\0) ui � uiþð Þui uið Þ ¼ � qi tð Þsignð�SiÞui uið Þ
�m�

iþ q
2
i tð Þ signð�SiÞ½ �2 � gq2i tð Þ

ð36Þ
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Using the fact that �Sisignð�SiÞ ¼ j�Sij, for �Si [ 0 and �Si\0, we have

�qi tð Þ�S2i signð�SiÞui uið Þ� gq2i tð Þ�S2i ¼ gq2i tð Þj�Sij2 ð37Þ

Finally, while qi tð Þ[ 0, for all �Si we have

�Siui uið Þ� � gqi tð Þj�Sij ð38Þ

Using expressions (24)–(28), (29) and (38), (32) becomes

_V � �
Xn
i¼1

j�Sij urij j þ k0i þ k1ij�Sijð Þ �
Xn
i¼1

rhi~h
T
i hi þ �R X; uð Þj�SjTj� þ 1

cj
~jT _j

þ 1
cd

d _dþ 1
cr
uTr _ur

� �
Xn

i¼1
u2ri �

Xn

i¼1
k1i�S

2
i �

Xn

i¼1
rhi~h

T
i hi � rj~j

Tj� rdd
2

ð39Þ

Now, we can use the following inequalities

�rj~j
Tj� � rj

2
~jk k2 þ rj

2
j�k k2

�rhi~h
T
i hi � � rhi

2
~hi

�� ��2 þ rhi
2

h�i
�� ��2

Then, (39) becomes

_V � �
Xn

i¼1
u2ri �

Xn

i¼1
k1i�S

2
i �

Xn

i¼1

rhi
2

~hi
�� ��2 þ Xn

i¼1

rhi
2

h�i
�� ��2

� rj
2

~jk k2 þ rj
2

j�k k2�rdd
2 ð40Þ

Thanks to the property of Gs xð Þ, there exists a positive scalar rgs such that
Gs xð Þ� rgsIn yields

�STG1 xð Þ�S ¼ STG�1
s S� 1

rgs
�Sk k2 ð41Þ

And using (40) and (41), we obtain

_V � � lV þ p ð42Þ

with ¼ Pn
i¼1

rhi
2 h�i
�� ��2 þ Pn

i¼1
rji
2 j�k k2, and

l ¼ min min 2grgsk1i
� �

;min chirhif g; 2cdrd; 2cr; ckrk
� �
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Multiplying (42) by elt, we get

d Veltð Þ
dt

� pelt ð43Þ

And integrating (43) over [0,t], we have

0�V tð Þ� p
l
þ V 0ð Þ � p

l

 �
e�lt ð44Þ

Thus, all signals in the closed-loop control system are SUUB. And hence the input
ui is bounded.

From (43) and (31), and using the properties (the symmetry and its sign) of G1 xð Þ
i.e. there exists an unknown positive constant rg1 such that: G1 xð Þ� rg1In. Then the
following inequality results:

�Sij j ¼ Sij j � 2
rg1

p
l
þ V 0ð Þ � p

l

 �
e�lt

 � �1=2

ð45Þ

i.e. the solution of Si exponentially converges to a bounded adjustable domain defined
as follows:

XSi ¼ Sij Sij j � 2p
rg1l

	 
1=2
� �

. This ends the proof.

4 Simulation Results

This section is carried out to show the effectiveness of the proposed synchronization
scheme. For this end, we consider the following two identical chaotic satellites systems
[2]:

The master system

_y1 ¼ 1
3 y2y3 � 0:4y1 þ

ffiffi
6

p
6 y3

_y2 ¼ �y1y3 þ 0:175y2
_y3 ¼ y1y2 �

ffiffiffi
6

p
y1 � 0:4y3

8<: ð46Þ

The slave system controlled and being subject to input nonlinearities and dynamical
external disturbances is described by:

_x1 ¼ 1
3 x2x3 � 0:4x1 þ

ffiffi
6

p
6 x3 þu1 u1ð Þþu1 u1ð Þ3 þ ^1 Xð Þ

_x2 ¼ �x1x3 þ 0:175x2 þu2 u2ð Þþ ^2 Xð Þ
_x3 ¼ x1x2 �

ffiffiffi
6

p
x1 � 0:4x3 þu3 u3ð Þþ 2u3 u3ð Þ3 þ ^3 Xð Þ

8<: ð47Þ

where the external disturbances are selected as follows:^1 Xð Þ ¼ 0:5x1, ^2 Xð Þ ¼ 0:5x22
and ^3 Xð Þ ¼ 0:5x33. The input nonlinearities ui uið Þ for i ¼ 1; 2; 3 are described by:
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ui uið Þ ¼
ui � 3ð Þ 1� 0:3 sin uið Þð Þ; ui [ 3
0; �3� ui � 3
ui þ 3ð Þ 0:8� 0:3 cos uið Þð Þ; ui\� 3

8<: ð48Þ

The initial conditions of master-slave systems and the adaptation laws are respec-
tively selected as: Y 0ð Þ ¼ 5; 3;�1½ �; X 0ð Þ ¼ 3; 4:1; 2½ �; ur1 0ð Þ ¼ ur2 0ð Þ ¼ ur3 0ð Þ ¼
0; d 0ð Þ ¼ 2; j1 0ð Þ ¼ j2 0ð Þ ¼ j3 0ð Þ ¼ 10 and h1j 0ð Þ ¼ h2j 0ð Þ ¼ h3j 0ð Þ ¼ 0:001; for
j = 1,…,m, where m is the number of the fuzzy rules.

The design parameters are chosen as: ch1 ¼ ch2 ¼ ch3 ¼ 300, rh1 ¼ rh2 ¼
rh3 ¼ 10�3, cr1 ¼ cr2 ¼ cr3 ¼ 200; cj1 ¼ cj2 ¼ cj3 ¼ 200, rd1 ¼ rd2 ¼ rd3 ¼ 10�7,
cd1 ¼ cd2 ¼ cd3 ¼ 10�5, rj1 ¼ rj2 ¼ rj3 ¼ 2� 10�3.

The proposed synchronization scheme is simulated in several cases according to the
value of the scaling factor B, as shown in Figs. 2, 3 and 4. Firstly, when B = 2, a
projective synchronization is achieved as shown in Fig. 2. Furthermore, we choose
B = 1, Fig. 3 shows a complete synchronization where the trajectories of the master
system converge to those of the slave one. And finally, with B = −1, an anti-phase
synchronization is effectively obtained in Fig. 4.

In summary, we can conclude that all simulation results demonstrate the effec-
tiveness of the proposed projective synchronization scheme.
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Fig. 2. Projective synchronization (B = 2): (a) x1 (solid line) and y1 (dotted line). (b) x2 (solid
line) and y2 (dotted line). (c) x3 (solid line) and y3 (dotted line).
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5 Conclusion

In this paper, we have presented a projective synchronization scheme of two uncertain
(chaotic or hyper-chaotic) systems subject to dynamic nonlinear disturbances and input
nonlinearities (namely, dead-zone and sector nonlinearities). A fuzzy adaptive
variable-structure controller has been designed to adequately achieve this projective
synchronization. A Lyapunov based analysis has been carried out to conclude about the
stability of the closed-loop system as well as the convergence of the synchronization
error. Numerical simulations are presented to demonstrate the effectiveness of the
proposed synchronization system.
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Fig. 3. Complete synchronization (B = 1): (a) x1 (solid line) and y1 (dotted line). (b) x2 (solid
line) and y2 (dotted line). (c) x3 (solid line) and y3 (dotted line).
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Fig. 4. Anti-phase synchronization (B = −1): (a) x1 (solid line) and y1 (dotted line). (b) x2 (solid
line) and y2 (dotted line). (c) x3 (solid line) and y3 (dotted line).
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