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Abstract. The autoregressive moving average exogenous (ARMAX) model
validation of civil engineering structure under earthquake is developed in this
paper. The Kanai-Tajimi and Clough-Penzien seismic models are developed. An
identification process is used to estimate the polynomial parameters for
unknown simulated seismic signal in order to take into account the soil-structure
interaction (SSI) within the structural model. The results show that the ARMAX
model presents an interesting representation for the linear stochastic systems in
control point of view. Simulation tests using a single-degree-of-freedom struc-
ture are performed to show the efficiency of introducing the SSI, by identifi-
cation, in the response of the structure under the seismic ground motion.

Keywords: Dynamics of structures � ARMAX model � Seismic ground
motion � Soil structure interaction � Identification

1 Introduction

The impact of control theory in the different domains of engineering and applied
sciences has become increasingly important in the last few decades, and the specialists
of civil engineering structures are very interested in structural control against earth-
quakes. One of the important missions of structural control is to ensure the safety of
structures and cities in large earthquakes. In spite of the unpredicted nature and the
uncertainty of the seismic phenomenon, the structural control should provide the
structure the possibility to control itself during perturbation [10, 17]. Vigorous
researches on structural control have given more interesting solutions; some of them
have already been adopted in actual building structures. These researches have also
stimulated global and interdisciplinary activities giving rise to a wide variety of
interesting work in many fields [3, 10].

It has been shown in the literature that in the last two decades, control devices and
algorithms have been interesting to enhance the structural control performances [17].
The performance of such systems under environmental loads has improved greatly as a
result of theoretical and experimental research and related development efforts [11].

Several models of the structures have been developed in the literature. Kareem
et al. use state-space representation of the linear stochastic model for real-time model
predictive control [11]. Whereas Sheng-Guo Wang, Shafieezadeh et al., Purohit and
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Chandiramani use the state-space model to develop different strategies of optimal
control [13, 15, 16]. Indeed, Guenfaf and Allaoua have presented an active control
strategy using a state-space model to develop the linear quadratic controller for
structural vibration control [6]. Also, J. Awrejcewicz and P. Olejnik have presented an
active control law of buildings for the general concept of stabilization against external
excitations. The problem was analyzed in a two case studies for not excited and
externally loaded two degrees-of-freedom dynamical system by using state-space
model [2, 17]. They developed a LQR algorithm with an augmented model introducing
seismic excitation as external loading. An augmented state space model is used for
calculating this control law. But the excitation dynamical model is not introduced in the
system model and the obtained law is deduced from deterministic criterion [12].

Nonlinear model has been presented by Guenfaf el al. for a Generalized Minimum
Variance Gain Scheduling Controller using Nonlinear Structural Systems under Seis-
mic Ground Motion [7]. Ying also presented a nonlinear model for Stochastic Optimal
Control of Structural Systems [18].

In the last few years there has been increased interest in the study of soil-structure
interaction (SSI) effects on the structures subjected to active control. The dynamic
response of massive structures, such as high-rise buildings and dams, may be influ-
enced by soil-structure interaction as well as the characteristics of exciting loads and
structures. The effect of soil-structure interaction is noticeable especially for stiff and
massive structures resting on relatively soft ground. It may alter the dynamic charac-
teristics of the structural response significantly. As a result, these interaction effects
have to be considered in the dynamic analysis of structures [5].

Although, different investigations have been conducted to soil-structure interaction
analysis, depending on the modeling method for the soil region. For earthquake
resistant design of critical structures, a dynamic analysis, either response spectrum or
time history is frequently required. To provide input excitations to structural models for
sites with no strong ground motion data, it is necessary to generate artificial excitations.
In practice, it has long been established that different earthquake records show different
characteristics; this is due to parameters such as geological conditions of the site,
distance from the source, fault mechanism, etc. Thus, the simulated earthquake records
must have realistic duration, frequency content, and intensity, representing the physical
conditions of the site. Therefore, it is reasonable to identify certain parameters to
measure the resulting differences in the strong ground motion data [14].

2 Dynamic Model of the Structure

In this section, a motion equation is developed for a single degree of freedom (SDOF)
structure under a seismic motion as illustrated in Fig. 1. First the following assump-
tions are considered:

• The structure is supposed to be a lumped mass m in the beam.
• The two vertical axes are weightless and inextensible in the vertical direction with

spring constant k/2 each.
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The essential physical properties of any linearly elastic structural system subjected
to dynamic load include its mass, elastic properties and, energy-loss mechanism
(damping), and the external source of excitation or loading. In the simplest model of

SDOF system, each of these properties is assumed to be concentrated in a single
physical element. The system as described is shown in Fig. 2 [4].

The entire mass m of this system is included in the rigid block. Rollers constrain
this block so that it can move only in simple translation; thus the single displacement
coordinate x completely defines its position. The elastic resistance of the displacement
is provided by the weightless spring of stiffness k, while the energy-loss mechanism is
represented by the damper c. The external-loading mechanism producing the dynamic
response of this system is the time varying load €xgðtÞ:

The equation of motion for the system presented in Fig. 2 can be derived by
directly expressing the equilibrium of all forces acting on the mass as follows:

m€x0ðtÞþ c _xðtÞþ kxðtÞ ¼ uðtÞ ð1Þ
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Fig. 1. Model of single degree of freedom structure

Fig. 2. Idealized SDOF structure model
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Where:

xðtÞ0 ¼ xðtÞþ xgðtÞ ð2Þ

With xgðtÞ being the ground motion, and u(t) the external control force.
Using Eqs. (1) and (2), we have:

m€xðtÞþ c_xðtÞþ kxðtÞ ¼ uðtÞ � m€xgðtÞ ð3Þ

€xgðtÞ is the ground acceleration.
Here, we developed the dynamic model of single-degree-of-freedom structure with

its physical characteristics submitted to a seismic motion.

3 Seismic Dynamic Model

The aim of this work is to develop a model which takes into account the soil-structure

interaction in order to have a response which represents closely the displacement of the
structure under the seismic motion (e: the smaller the better) as shown in Fig. 3. For
this, the ground motion model is given, so that the earthquake will be a white noise
filtered by a function taken into account the specific soil parameters in where the
structure is built as we can see it in Fig. 6.

m

Actuator

soil

Fig. 3. Structural model under seismic motion
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To formulate an optimal problem, it is necessary to specify the process dynamics
and its environment. It is assumed that the influence of the environment can be
characterized by disturbances which are stochastic process [1]. As the system is linear,
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Fig. 4. Block diagram of comparing structural model with the ARMAX model
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Fig. 5. Block diagram of comparing structural model with introducing soil characteristics
(SSI) and the ARMAX model
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Fig. 6. Kanai-Tajimi seismic model simulated
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we can represent all disturbances as single disturbance acting on the output as shown in
Figs. 4 and 5.

Kanai-Tajimi and Clough-Penzien have presented a seismic model based on a
filtered white noise depending on soil characteristics.

The earthquake ground acceleration is modeled as a uniformly modulated
non-stationary random process [10].

€xgðtÞ ¼ wðtÞ€xsðtÞ ð4Þ

Where wðtÞ a deterministic non-negative envelope is function and €xsðtÞ is a sta-
tionary random process with zero mean and a Kanai-Tajimi power spectral density.

Ug xð Þ ¼
1þ 4n2gðxxg
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Where ng; xg filter parameters which depend on the site soil characteristics and S0
are is the constant spectral density of the white noise which reflects the seismic
intensity [4]. Using such a second high-pass filter the Kanai-Tajimi spectrum is
modified as follows to obtain the Clough-Penzien spectrum:

Uc xð Þ ¼
1þ 4n2gð xxg
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A particular envelope function wðtÞ given below will be used:

wðtÞ ¼
0 for t\0

t
t1

� �2
for 0� t� t1

1 for t1 � t� t2
exp �a t � t2ð Þ½ � for t� t2

8>>><
>>>:

ð7Þ

Where t1, t2 and a are parameters that should be selected appropriately to reflect the
shape and the duration of the earthquake ground acceleration. Numerical values of
parameters are t1 = 3 s, t2 = 13 s, a = 0.26, ng = 0.65, xg = 19 rad/s, S0 = 0.8*10
−2 m/s [7, 9] (Fig. 7).

4 ARMAX Model of the Structure

Determination of the ARMAX model of the structure under seismic excitation can be
done using equation of motion (3).

After dividing this equation by m and introducing the notations below Eq. (3)
becomes
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€x tð Þþ 2nx0 _x tð Þþx2
0x tð Þ ¼ 1

m
u tð Þ � €xg tð Þ ð8Þ

Applying Laplace transform to Eq. (8), we obtain

X sð Þ ¼
1
m

s2 þ 2nx0sþx2
0
U sð Þ � 1

s2 þ 2nx0sþx2
0

€Xg sð Þ ð9Þ

Where X sð Þ; €Xg sð Þ and U sð Þ are the Laplace transform of x(t), €xg tð Þ and u(t)
respectively.

Depending on the model of seismic excitation, different ARMAX models can be
obtained, and the following cases [8]:

The seismic excitation model is unknown or is not taken into consideration.
Equation (9) has the form:

X sð Þ ¼ H1N sð Þ
HD sð Þ U sð Þþ H2N sð Þ

HD sð Þ
€Xg sð Þ ð10Þ

The ARMAX model of the structure is obtained by discretization of Eq. (10) using
computer programs (MATLAB R2010a).

x tð Þ ¼ B q�1ð Þ
A q�1ð Þ u tð Þþ C q�1ð Þ

A q�1ð Þ €xg tð Þ ð11Þ

Kanai-Tajimi model: In this case we take into consideration the SSI. The ground
acceleration is described by the Kanai-Tajimi model as shown in Fig. 8 and in the
following equation:
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Fig. 7. Clough-Penzien seismic model simulated
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€Xg sð Þ ¼ G1 sð ÞE sð Þ ð12Þ

Where

G1 sð Þ ¼ G1N sð Þ
G1D sð Þ ¼ 2ngxgsþx2

g

� �
=ðs2 þ 2ngxgsþx2

gÞ

And E(s) is the Laplace transform of white noise.

Clough-Penzien model: In this case the ground acceleration is described by
Clough-Penzien model and introduced in the dynamic model of the structure as shown
in Fig. 9. This excitation is described by the following equations.

€Xg sð Þ ¼ G2 sð ÞE sð Þ ð13Þ

Where G2 sð Þ ¼ G2N sð Þ
G2D sð Þ ¼

2ngxgsþx2
gÞ

s2 þ 2ngxgsþx2
g

� �
s2

s2 þ 2ncxcsþx2
c

� �

It has been shown that the response without taking the SSI into account is not close
to the structural one. Also, it has been presented a model taking wrong soil parameters
into account, whereas, the best results has been given by the model response which
included SSI with the right parameters [8].

Fig. 8. Block diagram of the structural Kanai-Tajimi model.

Fig. 9. Block diagram of the structural Clough-Penzien model.
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5 ARMA Model Identification

According to the previous results, it is suitable to use an identification process to
estimate the parameters of unknown earthquakes. We can find in the literature several
identification algorithms such as ‘recursive least square’ (RLS) one, as represented in
Fig. 10.

The recursive least square identification algorithm has been used to estimate the
model parameters. It is based on the minimization of a quadratic criterion as follows:

J tð Þ ¼
Xt

i¼0
½z ið Þ � ẑ ið Þ�2 ¼

Xt

i¼0
e2 tð Þ ð14Þ

With
z(t) Actual output of the system, ẑ(t) Model output, e Error.

ẑ tð Þ ¼ ĥT tð Þ/ t � 1ð Þ ð15Þ

With

ĥT tð Þ ¼ ba1 ; . . .; ban ; bc1 ; . . .; bcl½ � ð16Þ

/T ¼ �z t � 1ð Þ; ::;�z t � nð Þ; e t � 1ð Þ; ::; e t � lð Þ½ �

Where

J tð Þ ¼
Xt

i¼0
z ið Þ � ĥT ið Þ/ i� 1ð Þ
h i2

ð17Þ

The minimization of J gives the parametric adaptation of recursive least square
algorithm:

Fig. 10. Block diagram of the recursive identification method.
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ĥ tþ 1ð Þ ¼ ĥ tð ÞþF tð Þ/ tð Þe tþ 1ð Þ ð18Þ

F tþ 1ð Þ�1¼ F tð Þ�1 þ/ tð Þ/ tð ÞT ð19Þ

F tþ 1ð Þ ¼ F tð Þ � F tð Þ/ tð Þ/ tð ÞTF tð Þ
1þ/ tð ÞTF tð Þ/ tð Þ ð20Þ

e tþ 1ð Þ ¼ z tþ 1ð Þ � ĥT tð Þ/ tð Þ
1þ/ tð ÞTF tð Þ/ tð Þ ð21Þ

With F(t) is the adaptation of the gain matrix.
We consider in this paper a structure under an unknown earthquake. For this, a

simulated seismic signal is carried out which is a linear combination between the
Kanai-Tajimi and the Clough-Penzien models (described by Eqs. (12) and (13)
respectively) as follows (Fig. 11):

€Xn ¼ 1=2 G1 sð ÞþG2 sð Þð ÞE sð Þ ð22Þ

In order to show the effect of the SSI, we compare both the structural and the
ARMA model responses following the cases:

Case 1: We compare the structural response model with the ARMA one described
by Eq. (11), without introducing the soil characteristics (without considering SSI).
Figure 12 shows the block diagram which calculates the error (e) between the structural
response and the ARMA model response with no control force (open loop).

Case 2: In this case, we have taken the estimated ARMA model with taking into
account the soil-structure interaction. The soil characteristics had been identified by
RLS algorithm and introduced in the structural model with no control force (U(s) = 0)
as it is shown in Fig. 13.
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Fig. 11. Simulated earthquake (€Xn)
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6 Simulation Results

A single-degree-of-freedom (SDOF) structure with the following structural properties
is used [8, 9] m = 2921 kg, k = 1389kN/m, n = 0.0124. The sampling period
Te = 0.02 s.

The Table 1 shows the error variance between structural response and the ARMAs
models in different cases.

Parameters of ARMA model for the different cases are shown in the Table 2.
Simulations results have shown that the response without taking SSI into account is

not close to the structural response as represented in Figs. 14 and 16. Whereas it is
shown that the best results are obtained when we consider the soil characteristics
(estimated model) as presented in Figs. 15 and 17.

Fig. 12. Comparing model responses without considering soil-structure interaction (Case 1)

Fig. 13. Comparing model responses with considering soil-structure interaction (Case 2)

Table 1. Different error’s variance

Cases Case 1 Case 2

Errors variance ðd2Þ 5.6524e-007 4.8807e-008
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Fig. 14. Model responses under an unknown earthquake (Case 1).
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Fig. 15. Model responses under an unknown earthquake (Case 2).

Table 2. Parameters of ARMA models

Case 1 Case 2

a0 1 1
a1 −1.803 −3.4003
a2 0.9892 4.5455
a3 – −2.7995
a4 – 0.6689
c0 0 0
c1 −1.961*10−4 0.2872*10−4

c2 −1.954*10−4 0.8853*10−4

c3 – −0.7033*10−4

c4 – −0.2634*10−4
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7 Conclusions

The autoregressive moving average exogenous (ARMAX) of the structure has been
developed in this paper. The Kanai-Tajimi and Clough-Penzien Seismic models have
been presented and introduced in the dynamic of the structure. The earthquake signal
identification study has been carried out and has given us the possibility to introduce
the SSI within the structural ARMA model. We have chosen as example a structure
built upon unknown soil. A simulated seismic signal has been formulated by a linear
combination between Clough-Penzien and Kanai-Tajimi characteristics. The results
leads us to conclude that the ARMA model with introducing SSI represents faithfully
the complete structural model under a seismic ground motion.
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Fig. 17. Model error responses (Case 2).
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Fig. 16. Model error responses (Case 1).
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