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Abstract. This paper introduces a rational function approximation of the
fractional order transfer function H(s) = %, for 0 <o < 0.5. This
0:
fractional order transfer function is one of the fundamental functions of the
linear fractional system of commensurate order corresponding to pure complex
conjugate poles or eigenvalues, in s*. Hence, the proposed approximation will
be used in the solution of the linear fractional systems of commensurate order.
Ilustrative examples are given to show the exactitude and the efficiency of the

approximation method.
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1 Introduction

The theory of fractional order systems has gained some importance during the last
decades (Miller et al. 1993), (Podlubny 1999), (Kilbas et al. 2006), (Monje et al. 2010),
(Caponetto et al. 2010). Therefore, active research work to find accurate and efficient
methods to solve linear fractional order differential equations is still underway to
establish a clear linear fractional order system theory accessible to the general engi-
neering community. More recently, a great deal of effort has been expended in the
development of analytical techniques to solve them. The goal of these methods is to
derive an explicit analytical expression for the general solution of the linear fractional
differential equations (Charef 2006a), (Bonilla et al. 2007), (Oturang et al. 2008), (Hu
et al. 2008), (Arikoglu et al. 2009), (Odibat 2010), (Charef et al. 2011).

A linear single input single output (SISO) fractional system of commensurate order
is described by the following linear fractional order differential equation:

z a;D™y(t) = Z b;D™u(t) (1)
i=0 J=0
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where u(t) is the input, y(t) is the output, o is a real number such that 0 < < 1, q;
(1 <i < Nandb;(0 < j < M) are constant real numbers with M < N. With zero
initial conditions, the fractional order system transfer function is given as:

G(s) =~ =10 —— 2)
3 ai(s?)’

i=0

This fractional transfer function can be decomposed into several elementary fun-
damental functions corresponding to different types of poles, in s”, as:

G(s) = Z H(s) 3)

where the functions H;(s) are given, according to the poles of the fractional system, as:

e For a simple real pole:

1
(s*+p)

Hk(S) =

e For a pair of complex poles with negative real part:

w?

Hk(s) = [S21+2CC()ZS“+(U%] (5)

5%+ w,(

H, =
(s) [s2% + 2L w,s* + w?]

e For a pair of complex poles with null real part:

2

wn
Hk(s) = m (7)
Hi(s) = %—i—iyﬂ (8)

In previous works (Charef 2006a) and (Charef et al. 2011), (Nezzari et al. 2011),
(Boucherma et al. 2011), the elementary fundamental functions defined in (4), (5), (6)
and (7) have been approximated by rational ones in order to represent them by linear
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time-invariant system models so as to derive their closed form impulse and step
responses as well as their performance characteristics. Using these approximations,
simple analog circuits have been also derived to represent the above irrational functions
of the fractional order system. This paper gives a rational function approximation of the
fundamental function represented by the irrational transfer function of (8) which cor-
responds to pure complex conjugate poles or eigenvalues, in s* In (Boucherma et al.
2011), the approximation of (8) has been done for 0.5 <a<1. In this work the
approximation of (8) will be done for 0 <o < 0.5. First, the basic ideas and the derived
formulations of the approximation technique are presented. Then, the impulse and step
responses of this type of fractional system are derived. Finally, illustrative examples are
presented to show the exactitude and the usefulness of the approximation method.

2 Rational Function Approximation
For (t9)"= win, (8) can be rewritten as:

H(s) = X©) _ Gl h<u<os 9)

E(s) (14 (t08)™

The above irrational function is the transfer function of the linear fractional order
system represented by the following fundamental linear fractional order differential
equation:

Zadzax(t)
dr?

Lde(t)

(%0) dr

+x(1) = (70) (10)

In this context, the transfer function of (9) has two pure complex conjugate poles, in
s*. To represent the linear fractional order system of (10) by a linear time-invariant
system model so as to derive their closed form impulse and step responses, its irrational
transfer function of (9) will be approximated by a rational function. To do so, we will
consider two cases based on the fractional derivative o.

21 Casel:0<a<0.5

For this case, the function of (9) can be decomposed in two functions as follows:

1

HIS) = H(9) > Hals) = (0s) ' 1

(11)

where H(s) = (t0s)” and Ha(s) = —L1—;

T ()
In a given frequency band of interest [or, wy], around the frequency wy = (1/79),
the fractional order differentiator H;(s) = (tos)” can be approximated by a rational
function as follows (b, 2006):
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Ny
| ()
Hi(s) = (108)"= 1 | Kp o (12)
1 (1 + ;)
where the poles pi and the zeros z; (0 < i < N1), the constant Kp and the number N1
of the approximation are given by:

p; = py (ab)', z; = 7y (ab)', Kp = (o.)%,

Ny = {Integer [W} N 1} (13)

For some given real values y (dB), & and B, the approximation parameters a, b, po,
Zg, ®, and ®,,,, can be calculated as:

_y
a— 10[10(14)} b= 10[#],600 = dwy, (14)

Omax = POy, 29 = o.Vb and Po = azo

By the decomposition of the rational function of (12), we will get:

Ny
o " k,'S
H(s) = (t08)"= 15 | Kp+ 27 (15)
i=0 (1 + ﬁ)
T (i)

< 1:%(1 —a(ab)'™)
ki=———P iﬁv ,i=0,1,...,Nl1 (16)

po(ab) 1—1 (1— (ab)(i—./'))

j=0,ij

Because 0 < o < 0.5 the number 2a is then 0 < 2o < 1; hence, in a given fre-

quency band [0, ®g], the fractional system H(s) = W can be approximated by a
TS

rational function as follows (Charef 2006a):

PARESE SN, (17)
2($) = ———5; = S
L™ (14 5)

where the poles pp; and the residues kk; (for 1 < j < 2N,—1), and the number N, of
the approximation are given, for some given real values A and (3, by:
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(=N)
pPpj = *) ’
To
1 sin[(1 — o) 7]
Kk = 2 lcosh[oc log(m;pj)] — cos[(1 — a)n}} (18)

1
N, = Integer 70‘%[%&011] +1
log(4)

Therefore, the function of (11) is approximated by a rational function as follows:

M ke ot gk
H(s) = | Kp+ Z% Y (19)
i=0 (1 + [‘7[) =1 (1 + m)
H(s) = 2%? (w4Kp) (ppikk;)
“\ & G 0)
(335 ki)
= = G+p) ) (s +ppy)
By the decomposition of the rational function of (20), we will get:
H(s) = 2%1 (v8Kp) (Ppikk;)
C\F (stem)
(21)

N 2Nyl g B.
+ y + y
(; ; (s +pi) (S+ppj)>
where the residues Aj; and By (for 0 < i < Nyand 1 < j < 2N,—1) are given by:

o 2 o 2
%) ( p*k; ) (ppikk; %) (pik:) | pp~kk;
y ( 0)( i )( j J)’ B (5) ( ! J) (22)
Pi — DDj pPpPj — Di

Hence, we can write that:

H(s) <2Nf (x6K>) (ijkk.i)>

=T (s +pp;)
N 2N,—1
2N, —1 Z B N, Z Ajj (23)

i=0 J=1
& e || &G

j=1 i=0
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Mg, &' OB
= (Z (s +pi)> " (Z mppj)) -

2N271 Nl

A=Y Ay B = [(Ko) (ppikky)] + > By (25)

j=1 i=0

22 Case2:a=0.5
For this case, the function of (9) can be rewritten as:

0.5

H(s) = )

“ Tt (wy) (26)

From Eq. (15), the above function is approximated by a rational function as
follows:

H(s) =1 | Kp+ ﬁ: ( ki‘v;> (1 +tros)> (27)

i

(~0.5)

M) Ni (To )(piki)s
He) = ((S0+1/T0)>+ 25T PG+ 1/ 2%)

By the decomposition of the rational function of (28), we will get:

(=0.5) Ny

T Kp Ci D;
H(s) >~ | 2—= | + ( + > 29
) <<s+ 1/m>> (Z o) G 1/m) 29

where the residues C; and D; (for 0 < i < N;) are given by:
-0.5 ~15

c (Té )) (p7ki) b (Té )) (piki) (30)

opi—1lw T 1w—pi

Hence, we can write that:
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. . — — (~0.5) M
with the residues C; = C; (for 0 < i < N))and D = {To - KD} + Y. D;f.
i=0

3 Time Responses

31 Casel: 0<a<0.5
From Eq. (24), we have that:

then,

E(s) (33)

woo, Wl g
X(s) = l(; (s+Pi)> " ( ; m)

For e(t) = d(t) the unit impulse E(s) = 1, we will have:

Moo, ! B;
o= [(2 (s +pi)> ' <,§1: Wﬂ ”

Hence, the impulse response of (10) is:

Ny
x(r) = L7H{X(s)} = (Zgi eXP(‘PJ))
i=0
N, —1
+ (Z B, exp(—mﬂ))

For e(t) = u(t) the unit step E(s) = 1/s, (33) will be:

Ny Zi ! Ej l
X(s) = [(; (s+p,~)> + (; W)] (;) (36)

Xi) = (i e @) y (Nzﬁ <l)> G7)
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YLAN (1 1
X — -t Z
0= (356G wm)
2 /B 1 1
+ - -
( ; (ij) <S (s +ppj)>>
Hence, the step response of (10) is:

x(t) = L7YX(s)} = (ZI: (2') 1- exp(—p,-t)])

i=0 !

i <2§1 (p%) [1- eXP(—PPﬂ)]>

3.2 Case2:a=0.5
From Eq. (31), we have that:

X6 _ (&G D
His) = E(s) (lz(; (s +pi)> " ((S+ 1/T0)>

then,

ME D
X(s) = [(; (s—!—l’i)> + ((s+ l/To))lE(S)

For e(t) = 3(t) the unit impulse E(s) = 1, we will have:

W/NYs] D
X(s) = [(Z m) : (m)]

Hence, the impulse response of (10), for « = 0.5, is:

N,
x(t) =L {X(s)} = (Za eXP(—Pil)>
i=0

+ (Eexp(—t/ro))

(40)
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For e(t) = u(t) the unit step E(s) = 1/s, (41) will be:

X6 = KZ e i@)) (s fl/m))] ) o

o= (35t () (Fm)0) e

Hence, the step response of f (10), for o = 0.5, is:

) =L {X(5)) = (2 (S)n- exp(—p,m) )

+ (D o[l — exp(—t/10)))

4 TIllustrative Example

Let us first consider the fractional system represented by the following fundamental
linear fractional order differential equation with « = 0.35 and 15 = 2 as:

d0'7x(t) dO,SSe(l)
(@5 al) = (2" (48)
its transfer function is given by:
24)035
H) =1 o (49)

Its rational function approximation, in a given frequency band, is given as:

o 5% (& 7 Wl g,
H(s) = 1+ (297 (Z; (s +p,-)) i (Z (s +PP.1')> 0

J=1

For the fractional order differentiator (25)°°, the frequency band of approximation

is [w;, oyl = [1074 rad/s, 10* rad/s], around wg = (1/19) = 0.5 rad/s, y =1 dB,

6=0.1, and B =100. For the fractional system W, the frequency band of
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approximation [0, wg] = [0, 10* rad/s], A = 4 and = 100. Then, the approximation
parameters of H(s) are:

a= 14251, b=1.9307, w. = 107>, Wpar = 10°,

po = 1.9802%107°, K;, = 0.0178, Ny =25, and N, = 11

Hence, poles p;, the residues A; (0 < i < 25), the poles pp; and the residues Ej

(1 < j < 20), are given by:

pi = (1.9802 % 107%)(2.7514)'
[ (1.1230 +10°77) ((2.7514)"(4)0'*“)) ]
25 .
I [1 - ((1.4251)(2.7514)“‘”)}
j=0
* 2 (51)

1 (1-(2.7514)0)
=1 L J=0,i#j

[n [(0.5)(4)0*“) — (1.9802 10*5)(2.7514_1)’”

. sin[(0.3)7]
cosh[(0.35) log((4)" )] — cos[(0.3)]

=l
Il
=

pp; = (0.5)(4)" "
5 _ (0.0057) oy

j =

[ sin{(0.3)7] ]
T cosh[(0.35) log((4)" )] — cos[(0.3)x]

ﬁ [1—(1.4251)(2.7514) )

—(0.0029)(4)2V- 1D 2

- (52)
[T a-@7s14))
25 20,
+ ; n[(o.S)(4)U“‘) — (1.9802 10*5)(2.7514)’}

y sin[(0.3)7]
cosh[(0.35) log((4) "] — cos[(0.3)7]
Figures 1 and 2 show the bode plots of the fundamental linear fractional order
system transfer function of (49) and of its proposed rational function approximation of
(50). We can easily see that they are all quite overlapping in the frequency band of
interest.

Figures 3 and 4 show, respectively, the impulse and the step responses of the
fractional order system of (48).
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Fig. 1. Magnitude bode plots of (49) and of its proposed approximation.
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Fig. 3. Impulse response of (48) from its proposed approximation.
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Fig. 4. Step response of (48) from its proposed approximation.
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As a second example, we will consider the fractional order system represented by
the following fundamental linear fractional order differential equation with a = 0.5 and
79 = 0.16 as:

dx(t) 05d%e(1)
0.16 t) =(0.16)" 53
(0.16) 7 +1(1) = (0.16) " (53)
its transfer function is given by:
(0.165)%3
H(s) = —F—— 54
) =1+ 0.169) (54)
Its rational function approximation, in a given frequency band, is given as:

(0.165)°7 AINe ( D )
H()=——"—=<= + | — 55
(s) 1+(0.165) ; (s+pi) (s+1/70) (53)

For the fractional differentiator (0.16 5)*°, the frequency band of approximation is
[w;, oyl =[10"*rad/s, 10* rad/s], around g = (1/xo) = 6.25 rad/s, y =1 dB,
0 =0.1, and § = 100. Then, the approximation parameters of H(s) are:

a=1.5849, b=1.5849, w. = 107>, Wy = 10°,
po = 1.9953 % 1075, K = 0.0032 and N; = 28

Hence, poles p;, the residues C; (0 < i < 25), and the residue D, are given by:

pi = (1.9953 % 107°)(2.5119)’
_ ( —(1.5963 % 10-7)(2.5119)’ )
Ci= q

1.9953 + 10-9)(2.5119)'6.25]

6
12'8[ (1 - (1.5849)(2.5119)<i*i>) (56)
j=0
1 (1- (i)
jzg#(l (2.5119) )
D = (0.008)
i ~(0.05) .
[6.25 — (1.9953  105)(2.5119)']
28 2 - (57)
> [1 (1 - (1.5849)(2.5119)(”1))
i=0 =0
i (1- (i)
i ,-:E#(l (2.5119) )
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Fig. 6. Phase bode plot of (54) and of its proposed approximation.
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Figures 5 and 6 show the bode plots of the fundamental linear fractional system
transfer function of (54) and of its proposed rational function approximation of (55).
We note that they are overlapping in the frequency band of interest.

Figures 7 and 8 show, respectively, the impulse and the step responses of the
fractional order system of (53).

5 Conclusion

In this paper, we have presented a rational function approximation of the fractional

order transfer function H(s) :%, for 0<a<0.5. This fractional order
T0S

transfer function is one of the fundamental functions of the linear fractional system of
commensurate order, represented by the linear fractional state-space D*x(t) = A x(¢).
H(s) corresponds to pure complex conjugate eigenvalues of the A matrix. First, closed
form of the approximation technique has been derived. Then, the impulse and step
responses of this type of fractional system have been obtained. Finally, illustrative
examples are presented to show the exactitude and the usefulness of the approximation
method.
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