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Abstract. In this paper, by using the dynamic surface control technique, an
adaptive backstepping controller using combined direct and indirect r-mod-
ification adaptation is proposed for a class of parametric strict-feedback systems.
In this approach, a r-modification parameter adaptation law that combines direct
and indirect update laws is proposed. At first, the x-swapping identifier with a
gradient-type update law is presented for a class of parametric strict-feedback
nonlinear systems. Next, the main steps of the controller design for a class of
nonlinear systems in parametric strict-feedback form are described. The
closed-loop error dynamics is shown to be globally stable by using the Lya-
punov stability approach. Finally, simulation results for a single-link
flexible-joint robot manipulator are given to illustrate the tracking perfor-
mance of the proposed adaptive control scheme.

Keywords: Backstepping control � Direct and indirect adaptive control �
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1 Introduction

Backstepping has been a powerful method for synthesizing adaptive controllers for the
class of nonlinear systems with linearly parameterized uncertainties [1]. The uncer-
tainties are assumed to be linear in the unknown constant parameters [2]. The adaptive
backstepping control techniques have been found to be particularly useful for con-
trolling parametric strict-feedback nonlinear systems [3], which achieve boundedness
of the closed-loop states and convergence of the tracking error to zero. However,
adaptive backstepping control can result in overparametrization and adaptation laws
differentiations [3], a significant drawback that can be eliminated by introducing tuning
functions [4]. For nonlinear systems with parametric lower-triangular form, several
adaptive approaches were also presented in [5].

Though, backstepping technique has become one of the most popular design
methods for a large class of single-input single-output (SISO) nonlinear systems [3, 5].
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A drawback in the traditional backstepping technique is the problem of ‘‘explosion of
complexity’’ [2, 6, 7]. That is, the complexity of the controller grows drastically as the
system order increases [1]. This problem is caused by the repeated differentiations of
certain nonlinear functions such as virtual controls [2, 6, 7]. In [6], a procedure to deal
with this problem for the non-adaptive case has been presented for a class of
strict-feedback nonlinear systems, and it is called dynamic surface control (DSC). This
problem is eliminated by introducing a first-order filtering of the synthetic virtual
control input at each step of the traditional backstepping approach [1, 6–8]. In [2],
authors are extending this technique to the adaptive control approach and it is called
adaptive dynamic surface control.

The methodology proposed in this paper is an extension of the ideas presented in
[9–11] for the adaptive backstepping design. This paper presents a new approach that
combines direct and indirect r-modification adaptation mechanism for adaptive
backstepping control of parametric strict-feedback nonlinear systems. In fact, the
tracking error based parameter adaptation law of the direct adaptive backstepping
control with DSC [2, 11] will be combined with an identification error based parameter
adaptation law of the indirect adaptive backstepping control [5, 11–14]. The combined
adaptive law is introduced in order to achieve better parameter estimation and hence
better tracking performance. The stability analysis of the closed-loop system is per-
formed by using the Lyapunov stability theorem.

This paper is organized as follows. In Sect. 2, the identification based x-swapping is
provided. The combined direct/indirect adaptive backstepping control with DSC is
presented in Sect. 3. The stability analysis of the closed-loop system is given in Sect. 4.
In Sect. 5, numerical example for a single-link flexible-joint robot manipulator is used
to demonstrate the effectiveness of the proposed approach. Conclusion is contained in
Sect. 6.

2 Identification Based x-Swapping

The goal of a swapping filter is to transform a dynamic parametric model into a static
form, such that standard parameter estimation algorithms can be used. The term
swapping describes the fact that the order of the transfer function describing the
dynamics and the time varying parameter error ~h is exchanged [14]. Two types of
swapping schemes are presented in [5, 12–14], the z-swapping-based identifier derived
from the tracking error model and the x-swapping-based identifier derived from the
state dynamics [14]. Each of these two swapping-based identifiers allows application of
gradient and least squares update laws. In this paper we use the gradient update law. To
illustrate the x-swapping-based identifier procedure, we consider the following non-
linear system in parametric x-model [5, 12–14]

_xi ¼ fi x; uð ÞþFT
i x; uð Þhi ð1Þ
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where

fi x; uð Þ ¼ xiþ 1; i ¼ 1; � � � ; n� 1

fn x; uð Þ ¼ u

�

FT
i x; uð Þ ¼ uT

i �xið Þ;�xi ¼ x1 x2 � � � xi½ �T ; i ¼ 1; � � � ; n
ð2Þ

hi 2 R
pi .

Then, we introduce the following two filters

_X0i ¼ Ai x; tð Þ X0i þ xið Þ � fi x; uð Þ;X0i 2 R ð3Þ
_XT
i ¼ Ai x; tð ÞXT

i þFT
i x; uð Þ;Xi 2 R

pi ð4Þ

where, i ¼ 1; � � � ; n, and Ai x; tð Þ\0 is a negative definite matrix for each x continuous
in t. We define the estimation error vector as

ei ¼ xi þX0i � XT
i ĥi; ei 2 R ð5Þ

with ĥi the estimate of hi and let

~ei ¼ xi þX0i � XT
i hi;~ei 2 R ð6Þ

Then, we obtain

ei ¼ XT
i
~hi þ~ei ð7Þ

The error signal ~ei satisfies

_~ei ¼ _xi þ _X0i � _XT
i hi ¼ Ai x; tð Þ~ei ð8Þ

To guarantee boundedness of Xi when Fi x; uð Þ grows unbounded, a particular
choice of Ai x; tð Þ is made [5, 14]

Ai x; tð Þ ¼ A0i � kiF
T
i x; uð ÞFi x; uð ÞPi ð9Þ

where ki [ 0 and A0i is an arbitrary constant matrix satisfying

PiA0i þAT
0iPi ¼ �I;Pi ¼ PT

i [ 0 ð10Þ

The update law for ĥi employs the estimation error ei and the filtered regressor Xi.
The gradient update law is given by

_̂hi ¼ Ci
Xiei

1þ mitr XT
i Xi

� � ;Ci ¼ CT
i [ 0; mi � 0 ð11Þ

where, i ¼ 1; � � � ; n.
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To establish the identifier properties, let 0; tf
� �

be the maximal interval of existence
of solutions of (1), the x-swapping filters (3) and (4), and the gradient update law (11).
Then for mi � 0 the following properties hold [5, 12–14]

(i) ~hi 2 L1 0; tf
� �

(ii) ei 2 L2 0; tf
� �\ L1 0; tf

� �
(iii) _̂hi 2 L2 0; tf

� �\ L1 0; tf
� �

We consider the following Lyapunov function

Vi ¼ 1
2
~hTi C

�1
i
~hi þ~eTi Pi~ei ð12Þ

Along of Eqs. (8) and (11), the derivative of the Lyapunov function (12) is

_Vi ¼ ~hTi C
�1
i

_~hi þ _~eTi Pi~ei þ~eTi Pi _~ei

¼ ~hTi C
�1
i

_~hi þ~eTi A
T
i x; tð ÞPi~ei þ~eTi PiAi x; tð Þ~ei

� � ~hTi C
�1
i

_̂hi � ~eTi ~ei ¼ �
~hTi Xiei

1þ mitr XT
i Xi

� �� ~eTi ~ei

¼� eTi ei
1þ mitr XT

i Xi
� � þ eTi

1þ mitr XT
i Xi

� �~ei � ~eTi ~ei

� � 3
4

eTi ei
1þ mitr XT

i Xi
� �� 1

4
eTi ei

1þ mitr XT
i Xi

� �� �2 þ eTi
1þ mitr XT

i Xi
� �~ei � ~eTi ~ei

¼� 3
4

eTi ei
1þ mitr XT

i Xi
� �� ei

2 1þ mitr XT
i Xi

� �� �� ~ei

 !T
ei

2 1þ mitr XT
i Xi

� �� �� ~ei

 !

� � 3
4

eTi ei
1þ mitr XT

i Xi
� � ; i ¼ 1; � � � ; n

ð13Þ

Since _Vi is negative semi-definite, one has ~hi 2 L1 0; tf
� �

. From ei ¼ XT
i
~hi þ~ei and

the boundedness of Xi, one concludes that ei and
_~hi 2 L2 0; tf

� �\ L1 0; tf
� �

.

3 Direct/Indirect Adaptive Backstepping Control with DSC

In the direct/indirect adaptive backstepping control with DSC procedure, the control
law and the parameter estimation are not separated. In this paper, the parameter update
law for ĥi combine gradient-type update laws based on the x-swapping identifier and
tracking error based update laws. The control objective is to achieve the asymptotic
tracking of a reference signal yr by x1. The reference signal yr and its derivatives
_yr; . . .; y nð Þ

r are assumed piecewise continuous and bounded. In the following, we
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describe the main steps of the controller design for the nonlinear system in parametric
strict-feedback form

_x1 ¼ x2 þuT
1 ðx1Þh1

_xi ¼ xiþ 1 þuT
i ð�xiÞhi; i ¼ 2; � � � ; n� 1

_xn ¼ uþuT
n ðxÞhn

ð14Þ

where, x ¼ x1 x2 � � � xn½ �T2 R
n and u 2 R are the state variables vector and the

input of the system, respectively. hi 2 R
pi are unknown constant parameter vectors,

�xi ¼ x2 x3 � � � xi½ �T . The nonlinear functions uT
i ð�xiÞ : Ri ! R

pi are known.

Step 1 i ¼ 1ð Þ
The first surface is defined by S1 ¼ x1 � x1d , and its time derivative is given by

_S1 ¼ _x1 � _x1d ¼ x2 þuT
1 ðx1Þh1 � _x1d ð15Þ

we choose �x2 to drive S1 towards zero with

�x2 ¼ �uT
1 ðx1Þĥ1 þ _x1d � K1S1 ð16Þ

we pass �x2 through a first order filter, with time constant s2, to obtain x2d

s2 _x2d þ x2d ¼ �x2; x2d 0ð Þ ¼ �x2 0ð Þ ð17Þ

_x2d ¼ 1
s2

�x2d � uT
1 ðx1Þĥ1 þ _x1d � K1S1

� 	
ð18Þ

Step i i ¼ 2; � � � ; n� 1ð Þ
The ith surface is defined by Si ¼ xi � xid , and its time derivative is given by

_Si ¼ _xi � _xid ¼ xiþ 1 þuT
i ð�xiÞhi � _xid ð19Þ

we choose �xiþ 1 to drive Si towards zero with

�xiþ 1 ¼ �uT
i ð�xiÞĥi þ _xid � KiSi ð20Þ

we pass �xiþ 1 through a first order filter, with time constant siþ 1, to obtain xiþ 1d

siþ 1 _xiþ 1d þ xiþ 1d ¼ �xiþ 1; xiþ 1d 0ð Þ ¼ �xiþ 1 0ð Þ ð21Þ

_xiþ 1d ¼ 1
siþ 1

�xiþ 1d � uT
i ð�xiÞĥi þ _xid � KiSi

� 	
ð22Þ

Step n
The nth surface is defined by Sn ¼ xn � xnd , and its time derivative is given by
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_Sn ¼ _xn � _xnd ¼ uþuT
n ðxÞhn � _xnd ð23Þ

we choose the control input u to drive Sn towards zero with

u ¼ �uT
n ðxÞĥn þ _xnd � KnSn ð24Þ

The update laws (direct part) for the parameter estimates are given by [2, 11]

_̂h1 ¼ �C1S1u1ðx1Þ
_̂hi ¼ �CiSiuið�xiÞ; i ¼ 2; � � � ; n� 1
_̂hn ¼ �CnSnunðxÞ

ð25Þ

where, �Ci [ 0 i ¼ 1; � � � ; nð Þ are design parameters that can be adjusted for the rate of
convergence of the parameter estimates.

Let us introduce the following two filters

_X0i ¼ Ai x; tð Þ X0i þ xið Þ � fi x; uð Þ;X0i 2 R ð26Þ
_XT
i ¼ Ai x; tð ÞXT

i þFT
i x; uð Þ;Xi 2 R

pi ð27Þ

where, i ¼ 1; � � � ; n, and

Ai x; tð Þ ¼ A0i � kiF
T
i x; uð ÞFi x; uð ÞPi ð28Þ

where ki [ 0 and A0i is an arbitrary constant matrix satisfying

PiA0i þAT
0iPi ¼ �I;Pi ¼ PT

i [ 0 ð29Þ

The gradient update law (indirect part) is given by [5, 11–14]

_̂hi ¼ Ci
Xiei

1þ mitr XT
i Xi

� � ;Ci ¼ CT
i [ 0; mi � 0 ð30Þ

where, i ¼ 1; � � � ; n and ei ¼ xi þX0i � XT
i ĥi; ei 2 R.

Now we propose the following combined direct and indirect r-modification
adaptation law [11]

_̂hi ¼ �CiSiuið�xiÞ � �Ciri ĥi � �hi
� 	

; �Ci [ 0 ð31Þ

where, i ¼ 1; � � � ; n, ri is a small positive constant, �Ci is a positive definite constant
matrix and �hi is computed with the gradient method as follows
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_�hi ¼ Ci
Xiei

1þ mitr XT
i Xi

� � ;Ci ¼ CT
i [ 0; mi � 0 ð32Þ

where, Ci is a positive definite constant matrix and ei ¼ xi þX0i � XT
i
�hi; ei 2 R.

4 Stability Analysis

We define the boundary layer error as [2, 11, 15]

yi ¼ xid � �xi; i ¼ 2; � � � ; n ð33Þ

and the parameter estimate errors as

~hi ¼ hi � ĥi; i ¼ 1; 2; � � � ; n ð34Þ

Then the closed-loop dynamics can be expressed in terms of the surfaces Si, the
boundary layer errors yi, and the parameter estimate errors ~hi.

The dynamics of the surfaces are expressed, for i ¼ 1, as

_S1 ¼ _x1 � _x1d ¼ x2 þuT
1 ðx1Þh1 � _x1d

¼ S2 þ x2d þuT
1 ðx1Þh1 � _x1d

¼ S2 þ y2 þ�x2 þuT
1 ðx1Þh1 � _x1d

¼ S2 þ y2 � K1S1 þuT
1 ðx1Þ~h1

ð35Þ

For i ¼ 2; � � � ; n� 1

_Si ¼ _xi � _xid ¼ xiþ 1 þuT
i ð�xiÞhi � _xid

¼ Siþ 1 þ xiþ 1d þuT
i ð�xiÞhi � _xid

¼ Siþ 1 þ yiþ 1 þ�xiþ 1 þuT
i ð�xiÞhi � _xid

¼ Siþ 1 þ yiþ 1 � KiSi þuT
i ð�xiÞ~hi

ð36Þ

For i ¼ n

_Sn ¼ _xn � _xnd ¼ uþuT
n ðxÞhn � _xnd ¼ �KnSn þuT

n ðxÞ~hn ð37Þ

The dynamics of the boundary layer errors yi are expressed, for i ¼ 2, as

_y2 ¼ _x2d � _�x2 ¼ 1
s2

�x2d � uT
1 ðx1Þĥ1 þ _x1d � K1S1

� 	
� _�x2

¼ 1
s2

�x2d þ�x2ð Þ � _�x2 ¼ 1
s2

�y2 � �x2 þ�x2ð Þ � _�x2 ¼ � 1
s2

y2 � _�x2

ð38Þ
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For i ¼ 3; � � � ; n

_yi ¼ _xid � _�xi ¼ 1
si

�xid � uT
i�1ð�xi�1Þĥi�1 þ _xi�1d � Ki�1Si�1

� 	
� _�xi

¼ 1
si

�xid þ�xið Þ � _�xi ¼ 1
si

�yi � �xi þ�xið Þ � _�xi ¼ � 1
si
yi � _�xi

ð39Þ

Let us consider the following Lyapunov function

V ¼
Xn
i¼1

Vis þ
Xn
i¼2

Viy þ
Xn
i¼1

Vi ð40Þ

where

Vis ¼ 1
2
S2i ;Viy ¼ 1

2
y2i ;Vi ¼ 1

2
~hTi �C

�1
i
~hi ð41Þ

Then, one has

_Vis ¼ Si _Si¼SiSiþ 1 þ Siyiþ 1 � KiS2i þ SiuT
i ð�xiÞ~hi

� Sij j Siþ 1j j þ Sij j yiþ 1j j � KiS
2
i þ Siu

T
i ð�xiÞ~hi

� 1� Kið ÞS2i þ
1
2
S2iþ 1 þ

1
2
y2iþ 1 þ SiuT

i ð�xiÞ~hi; i ¼ 1; � � � ; n� 1

ð42Þ

_Vns ¼ Sn _Sn¼� KnS
2
n þ Snu

T
n ðxÞ~hn � � KnS

2
n þ Snu

T
n ðxÞ~hn ð43Þ

We assume that, yi _�xij j �M1iy2i þM2iS2i þ d2i , where, M1i and M2i are positive
constants, and di are bounded functions, then, we can write

_Viy ¼ yi _yi ¼ � 1
si
y2i þ yi _�xi � � 1

si
y2i þ yi _�xij j

� � 1
si
y2i þM1iy

2
i þM2iS

2
i þ d2i ; i ¼ 2; � � � ; n

ð44Þ

_Vi ¼ ~hTi �C
�1
i

_~hi ¼ �~hTi �C
�1
i

_̂hi

¼ �~hTi �C
�1
i

�CiSiuið�xiÞ � �Ciri ĥi � �hi
� 	� 	

¼ �~hTi Siuið�xiÞþ ~hTi ri ĥi � �hi
� 	

; i ¼ 1; � � � ; n
ð45Þ

One has: hi � �hi is bounded, thus: ehi ¼ hi � �hi is bounded, �hi ¼ hi � ehi and
~hi ¼ hi � ĥi.
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_Vi ¼ �~hTi Siuið�xiÞþ ~hTi ri ĥi � hi þ ehi
� 	

¼ �~hTi Siuið�xiÞ � ri~h
T
i
~hi þ ri~h

T
i ehi

� � ~hTi Siuið�xiÞ � ri~h
T
i
~hi þ ri

2
~hTi
~hi þ ri

2
eThi ehi

� � ~hTi Siuið�xiÞ �
ri
2
~hTi
~hi þ ri

2
eThi ehi

ð46Þ

_V ¼
Xn
i¼1

_Vis þ
Xn
i¼2

_Viy þ
Xn
i¼1

_Vi

�
Xn�1

i¼1

1� Kið ÞS2i þ
1
2
S2iþ 1 þ

1
2
y2iþ 1 þ Siu

T
i ð�xiÞ~hi


 �
� KnS

2
n þ Snu

T
n ðxÞ~hn

þ
Xn
i¼2

� 1
si
y2i þM1iy

2
i þM2iS

2
i þ d2i

� 

�
Xn
i¼1

~hTi Siuið�xiÞ �
Xn
i¼1

ri
2
~hTi ~hi þ

Xn
i¼1

ri
2
eThi ehi

� � K1 � 1ð ÞS21 �
Xn�1

i¼2

Ki �M2i � 3
2

� 

S2i � Kn �M2n � 1

2

� 

S2n �

Xn
i¼2

1
si
� 1
2
�M1i

� 

y2i

þ
Xn
i¼2

d2i �
Xn
i¼1

ri
2
~hTi
~hi þ

Xn
i¼1

ri
2
eThi ehi

ð47Þ

If we assume that, di 2 L1, ehi 2 L1, K1 [ 1, Ki [M2i þ 3
2, Kn [M2n þ 1

2 and
1
si
[ 1

2 þM1i, we obtain the boundedness of all signals Si, yi and ~hi. Moreover, the
surface Si can be made arbitrarily small by adjusting the design parameters Ki.

5 Numerical Example

Consider the single-link flexible-joint robot shown in Fig. 1. The dynamic model of
this robot is given as follow [16, 17]

L

M, J1

J2

u
q1 q2

K

L

M, J1

J2

u
q1 q2

K

Fig. 1. Single link flexible joint robot.
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J1€q1 þMgL sin q1ð ÞþK q1 � q2ð Þ ¼ 0

J2€q2 � K q1 � q2ð Þ ¼ u
ð48Þ

where u is the input torque. J1 and J2 are the inertias of the link and the motor
respectively. M is the link mass. g is the gravity. L is the link length. K is the stiffness.
q1 and q2 are the angular positions of the link and the motor shaft, respectively.

Let the state variables defined as follows: x1 ¼ q1, x2 ¼ _q1, x3 ¼ q2 and x4 ¼ _q2,
and its dynamic model becomes

_x1 ¼ x2
_x2 ¼ f1 x1; x3ð Þþ g1x3
_x3 ¼ x4
_x4 ¼ f2 x1; x3ð Þþ g2u

ð49Þ

with

f1 x1; x3ð Þ ¼ �MgL
J1

sin x1ð Þ � K
J1

x1; g1 ¼ K
J1

f2 x1; x3ð Þ ¼ K
J2

x1 � x3ð Þ; g2 ¼ 1
J2

ð50Þ

The single-link flexible-joint robot model used in this paper is given by (49) where
the parameter values are given in Table 1 [17].

For the numerical simulation, the unknown parameter h1 of the system is selected
as h1 ¼ MgL. Our objective is to force the output of the system to follow the reference
trajectory given by: yd ¼ 0:1 sin tð Þ.

We choose �x2, �x3 and �x4 to drive S1, S2 and S3 towards zero with

�x2 ¼ _x1d � K1S1 ¼ s2 _x2d þ x2d; x2d 0ð Þ ¼ �x2 0ð Þ ð51Þ

_x2d ¼ 1
s2

�x2d þ _x1d � K1S1ð Þ ð52Þ

Table 1. Single-link flexible-joint robot model parameters.

Symbols Values Units

g 9, 81 [m/s2]
M 1 [kg]
L 1 [m]
J1 0.4 [kg.m2]
J2 0.02 [kg.m2]
K 100 [N.m/rad]
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�x3 ¼ 1
g1

ĥ1
J1

sin x1ð Þþ K
J1

x1 þ _x2d � K2S2

 !
¼ s3 _x3d þ x3d; x3d 0ð Þ ¼ �x3 0ð Þ ð53Þ

_x3d ¼ 1
s3

�x3d þ 1
g1

ĥ1
J1

sin x1ð Þþ K
J1

x1 þ _x2d � K2S2

 ! !
ð54Þ

�x4 ¼ _x3d � K3S3 ¼ s4 _x4d þ x4d; x4d 0ð Þ ¼ �x4 0ð Þ ð55Þ

_x4d ¼ 1
s4

�x4d þ _x3d � K3S3ð Þ ð56Þ

We choose the control u to drive S4 towards zero with

u ¼ 1
g2

� K
J2

x1 � x3ð Þþ _x4d � K4S4

� 

ð57Þ

For the swapping-based identifier we use the following filters

_X0 ¼ � 1
2
� k � sin x1ð Þ

J1

� 
2
 !

X0 þ x2ð Þþ K
J1

x1 � g1x3 ð58Þ

_XT ¼ � 1
2
� k � sin x1ð Þ

J1

� 
2
 !

XT � sin x1ð Þ
J1

ð59Þ

The combined direct and indirect r-modification adaptation law is given by

_̂h1 ¼ �
�C
J1

S2 sin x1ð Þ � �Cr ĥ1 � �h
� 	

; �C[ 0 ð60Þ

where, �h is computed with the gradient method as

_�h ¼ C
Xe

1þ mtr XTX
� � ;C ¼ CT [ 0; m� 0: ð61Þ

where, e ¼ x2 þX0 � XT�h.

The selected initial conditions are: x 0ð Þ ¼ 0:1 0 0:1þ MgL
K sin 0:1ð Þ 0

� �T
,

ĥ1 0ð Þ ¼ �h 0ð Þ ¼ 0 and X0 0ð Þ ¼ XT 0ð Þ ¼ 0. The design parameters are selected as
follows: K1 ¼ 1, K2 ¼ 80, K3 ¼ 10, K4 ¼ 100, �C ¼ 15; r ¼ 0:5, C ¼ 20; s2 ¼ s3 ¼
s4 ¼ 0:009 and k ¼ m ¼ 0:1.

Numerical simulation results are shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.
Figures 2, 3, 4 and 5 show actual and desired trajectories of the angular position and
velocity of the link and the motor shaft. Figures 6, 7, 8 and 9 show the trajectories of
the surfaces. Figure 10 shows the trajectory of the control input signal u. Figure 11
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shows the trajectory of the estimated parameter ĥ1. From these results, we observe that
the actual trajectories converge towards the desired trajectories, and that the errors
converge to zero and the estimated parameter ĥ1 converge towards h1. We can see that
the results show that the proposed method has good tracking performance.

Fig. 2. Angular position of the link: actual x1
(“�”) and desired x1d (“��”).

Fig. 3. Angular velocity of the link: actual x2
(“�”) and desired x2d (“��”).

Fig. 4. Angular position of the motor shaft:
actual x3 (“�”) and desired x3d (“��”).

Fig. 5. Angular velocity of the motor shaft:
actual x4 (“�”) and desired x4d (“��”).

Fig. 6. Surface S1. Fig. 7. Surface S2.
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6 Conclusion

In this paper, adaptive backstepping control using combined direct and indirect r-
modification adaptation based gradient update law is designed using the DSC technique
for a class of parametric strict-feedback nonlinear systems. The proposed approach
eliminates the problem of explosion of complexity of the traditional backstepping
approach. Stability analysis shows that the uniform ultimate boundedness of all signals
in the closed-loop system can be guaranteed, and the tracking error can be made
arbitrarily small by adjusting the control design parameters. Numerical simulation
results demonstrate the effectiveness of the proposed approach.
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