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Abstract. In this paper, we are considering a model based T-S fuzzy predictive
control using LMI optimization. The purpose of T-S fuzzy predictive control
law is to drive the state of the system to the original state. Adopting the PDC
controller and using non quadratic case of the Lyapunov function to study the
stability of the controlled systems were ensuring with the stabilizing controller.
The stability is guaranteed based on the conditions expressed of terms of LMIs.
In addition, input and output constraints of the fuzzy system are satisfied with
the PDC controller. Where, the optimal solution has been obtained at each
sampling time. The simulations results are show the effectiveness of this
approach.

Keywords: Parallel distributed compensation PDC � Model predictive control
(MPC) � Takagi-Sugeno (T-S) fuzzy systems � Linear matrix inequality (LMI)

1 Introduction

Constrained fuzzy model predictive control become among efficient techniques in
control for its tolerance, and admiration of imposed constraints. MPC is based to use a
model for the prediction of future behavior of the system [1]. A constrained optimal
control problem is solved at each sampling instant in online MPC approaches; several
schemes are offered to put ideas for adopting in online optimization for the control of
medium and high speed systems [2–4]. Relaxed conditions in form of LMIs are
introduced in [5]. This form is usually used for studying robustness and stability of
fuzzy systems which are analyzing using Lyapunov function for the both cases:
quadratic [6], and non-quadratic case for discrete time fuzzy systems [7].

The Lyapunov function is used to study the stability problems [8, 9] of optimization
was employed and becomes the most using techniques to analysis stability, where fuzzy
techniques are adopted for the optimization in MPC for nonlinear systems [10–14].

In addition, the fuzzy control law parallel distributed compensation (PDC) has been
implemented during the last three decades [6, 15, 16]. This approach is based on
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quadratic Lyapunov function and becomes the most favorite control law has been
applying for fuzzy systems.

In this work, we consider to study an optimal linear control law non quadratic based
on the conception of model predictive control for discrete T-S model [14]. The main
idea is to calculate the gains of the control law by solving the optimization of the LMIs
constrained problem at each sampling time by correct some errors in [14], even in
presence of extern uncertainties. The stability and also the robustness are ensured. The
results show the effectiveness of the studying control law by stabilizing the constrained
systems.

This paper is organized as follows: Sect. 2 introduces the notation and some pre-
liminary results of the basic elements, MPC, T-S fuzzy system. Section 3 presents the
proposed strategy to obtain control law for regulation of the closed-loop system. In
Sect. 4, simulation results are presented.

2 Backgrounds

2.1 Model Predictive Control

Let us consider the following problem, which minimizes the following objective
function in an infinite horizon [5]:

min
u kþ i=kð Þ¼F xð Þx kþ i=kð Þ

max
i[ 0

J1 kð Þ ð1Þ

yh;min � yh kþ i=kð Þ� yh;max; i� 0; h ¼ 1; 2; . . .; q

uh;min � uh kþ i=kð Þ� uh;max; i� 0; h ¼ 1; 2; . . .; p

J1ðkÞ ¼
X1

i¼0
X kþ ið ÞþU kþ ið Þ½ � ð2Þ

With
X kþ ið Þ ¼ xT kþ i=kð ÞQ0x kþ i=kð Þ
U kþ ið Þ ¼ uT kþ i=kð ÞR0u kþ i=kð Þ

�
ð3Þ

Q0 [ 0 and R0 [ 0, are two known weighting matrices.

2.2 Fuzzy Discrete Time T-S Model

Let us consider the following fuzzy discrete Time T-S system which represents a
discrete time nonlinear system as follows:

Rule i : if z1 kð Þ is Mi1. . .and zp kð Þ is Mip

then
x kþ 1ð Þ ¼ Aix kð ÞþBiu kð Þ

y kð Þ ¼ Cix kð Þ
�

i ¼ 1. . .r ð4Þ

With fuzzy discrete Time T-S model

Constrained Fuzzy Predictive Control Design 141



x kþ 1ð Þ ¼Pr
i¼1

hi z kð Þð ÞðAix kð ÞþBiu kð ÞÞ

y kð Þ ¼Pr
i¼1

hi z kð Þð ÞCix kð Þ

8>><
>>: i ¼ 1. . .r ð5Þ

And Ai;Bi and Ci are states matrices of system.

2.3 PDC Fuzzy Control Law

We use the PDC control law presented in [6]. Which describe and can writing as
follows:

u kð Þ ¼ �
Xr
j¼1

hjðzðkÞÞFj

 !
x kð Þ ¼ �

Xr
j¼1

hjðzðkÞÞYjG�1x kð Þ ð6Þ

By substituting (6) in (5), the closed loop system is obtained as follows:

x kþ 1ð Þ ¼ ðAz � BzFzÞx kð Þ
y kð Þ ¼ Czx kð Þ

�
ð7Þ

With:

Az ¼
Xr
i¼1

hi z kð Þð ÞAi;Bz ¼
Xr
i¼1

hi z kð Þð ÞBi;Cz ¼
Xr
i¼1

hi z kð Þð ÞCi;

Fz ¼
Xr
j¼1

hj z kð Þð Þ ¼
Xr
j¼1

hj z kð Þð ÞYjG

3 Robust T-S Predictive Control Model Using PDC
Controller

Theorem 1 [14].
Let us consider the constrained closed-loop system in (7) at time instant k, The

equilibrium of the closed-loop discrete fuzzy model, given by (5), is globally
asymptotically stable if there exists a matrix Pi [ 0 define positive, � ij; Yj;G and
Xii [ 0 and Xij ¼ XT

ij , while:

min
P̂i;Yj;G

c ð8Þ

c xTðk=kÞ
xðk=kÞ P̂i

� �
[ 0 ð9Þ
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� ij ¼
GT þG� P̂i ðAiG� BiYjÞT YT

j R0 GTQ0

ðAiG� BiYjÞ P̂i 0 0
R0Yj 0 R0 0
Q0G 0 0 Q0

2
664

3
775 ð10Þ

W CiðAiG� BiYjÞ
ðAiG� BiYjÞTCT

i GT þG� P̂i

� �
[ 0 ð11Þ

U Yj
YT
j GT þG� P̂i

� �
[ 0 ð12Þ

� ij [Xii i 2 1; . . .; rf g ð13Þ

� ij þ� ij [Xij þXT
ij i; j 2 1; . . .; rf g; i\j ð14Þ

With : Xl ¼
2X11 ð�Þ ð�Þ ð�Þ
X12 2X22 � � � ð�Þ
..
. ..

. . .
. ..

.

X1r X2r � � � 2Xrr

2
6664

3
7775[ 0 ð15Þ

Proof: Recall the closed-loop system in (7) and consider the following Non-quadratic
Lyapunov function candidate:

Vðxðk=kÞÞ ¼ xTðk=kÞ
Xr
i¼1

hiPi

 !�1

xðk=kÞ ð16Þ

To ensure the stability of (4), it’s necessary to satisfy the next inequalities:

Vðxðkþ iþ 1=kÞÞ � Vðxðkþ i=kÞÞ� � X kþ ið ÞþU kþ ið Þ½ � ð17Þ

�Vðxðk=kÞÞ� � J1ðkÞ ð18Þ

We can write it:

max
Ai;Bi;i[ 0

J1ðkÞ�Vðxðk=kÞÞ� c ð19Þ

While the problem of minimization become

min
P̂i;Yj;G

c ð20Þ
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With:

xTðk=kÞP̂�1
i xðk=kÞ� c , c� xTðk=kÞP̂�1

i xðk=kÞ� 0 ð21Þ

Using schur’s complement to (21) we obtain:

c xTðk=kÞ
xðk=kÞ P̂i

� �
[ 0 ð22Þ

In the next, the PDC control law will be used to introduce more conditions that are
ensuring the stability of system (5).

We have (17) it can be writing as:

Vðxðkþ iþ 1=kÞÞ � Vðxðkþ i=kÞÞ
� � ðxT kþ i=kð ÞQ0x kþ i=kð ÞÞþ ðuT kþ i=kð ÞR0u kþ i=kð ÞÞ� �

That can be writing as:

½xTðkþ iþ 1=kÞP̂�1
i xðkþ iþ 1=kÞ� � ½xTðkþ i=kÞP̂�1

i xðkþ i=kÞ�
\� ðxT kþ i=kð ÞQ0x kþ i=kð ÞÞþ ðuT kþ i=kð ÞR0u kþ i=kð ÞÞ� �

We replace u kþ i=kð Þ by (6):

xTðkþ i=kÞ½xTðkþ 1=kÞP̂�1
i xðkþ 1=kÞ � P̂�1

i �xðkþ i=kÞ
\� xT kþ i=kð Þ½Q0 þG�TYT

j R0YjG
�1�x kþ i=kð Þ

With substitution of x kþ 1=kð Þ by (7) we obtain:

xTðkþ i=kÞ½ðAi � BiYjG
�1ÞT P̂�1

i ðAi � BiYjG
�1Þ � P̂�1

i �xðkþ i=kÞ
\� xT kþ i=kð Þ½Q0 þG�TYT

j R0YjG
�1�x kþ i=kð Þ

This inequality is equivalent to next inequality:

ðAi � BiYjG
�1ÞT P̂�1

i ðAi � BiYjG
�1Þ � P̂�1

i \� Q0 � G�TYT
j R0YjG

�1 ,

We multiple in the left by GT and by G in the right we get:

ðAiG� BiYjÞT P̂�1
i ðAiG� BiYjÞ � GTP̂�1

i G\� GTQ0G� YT
j R0Yj ,

Then we obtain:

GTP̂�1
i G� ðAiG� BiYjÞTP̂�1

i ðAiG� BiYjÞ � GTQ0G� YT
j R0Yj [ 0 ð23Þ
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The term GTP̂�1
i G, can be writing as follows:

GT � P̂i
� �

P̂�1
i G� P̂i
� �� 0 )

GTP̂�1
i G� GTP̂�1

i P̂i � P̂iP̂
�1
i Gþ P̂iP̂

�1
i P̂i � 0 ,

GTP̂�1
i G� GT � Gþ P̂i � 0 ,

GT þG� P̂i �GTP̂�1
i G ,

GT þG� P̂i �GTP̂�1
i G ð24Þ

We hold (24) in (23):

GT þG� P̂i � ðAiG� BiYjÞT P̂�1
i ðAiG� BiYjÞ � GTQ0G� YT

j R0Yj [ 0

With a small addition of Q0 and R0 matrices to the precedent inequality, we find:

ðGT þG� P̂iÞ � ðAiG� BiYjÞT P̂�1
i ðAiG� BiYjÞ � YT

j R0R
�1
0 R0Yj

� GTQ0Q
�1
0 Q0G[ 0

ð25Þ

Using generalized schur’s complement and propriety in [12] to (25), we obtain:

GT þG� P̂i ðAiG� BiYjÞT YT
j R0 GTQ0

ðAiG� BiYjÞ P̂i 0 0
R0Yj 0 R0 0
Q0G 0 0 Q0

2
664

3
775[ 0 ð26Þ

The inequality (26) represents the LMI form of model fuzzy predictive control.
Now, we also must put the constraints in the form of LMIs.

– Output Constraints

yh;min � yh kþ i=kð Þ� yh;max; i� 0; h ¼ 1; 2; . . .; q

yh kþ i=kð Þj j � yh;max; i� 0; h ¼ 1; 2; . . .; q

ymax ¼ W

y kþ i=kð Þk kmax , max
i

yiðkþ i=kÞ

With (7), we can write:

max
i[ 0

y kð Þk kmax � max
i[ 0

CiðAi � BiYjG
�1ÞP̂�1

i xðkÞ		 		
max
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Using the LMI constraints in [5]. We obtain:

W CiðAi � BiYjG�1Þ
ðAi � BiYjG�1ÞTCT

i P̂i

� �
[ 0

By using Congruence property with full rank matrix
I 0
0 GT

� �
gives:

W CiðAiG� BiYjÞ
ðAiG� BiYjÞTCT

i GT þG� P̂i

� �
[ 0 ð27Þ

– Input Constraints

uh;min � uh kþ i=kð Þ� uh;max; i� 0; h ¼ 1; 2; . . .; p

uh kþ i=kð Þj j � uh;max; i� 0; h ¼ 1; 2; . . .; p

umax ¼ U

u kþ i=kð Þk kmax , max
i

uiðkþ i=kÞ

With (6), we can write:

max
i[ 0

u kð Þk kmax � max
i[ 0

YjG
�1P̂�1

i xðkÞ		 		
max

Use again the LMI constraints in [5]. We obtain:

U ðYjG�1Þ
ðYjG�1ÞT P̂i

� �
[ 0

By using Congruence property with full rank matrix
I 0
0 GT

� �
gives:

U Yj
YT
j GT þG� P̂i

� �
[ 0 ð28Þ

146 A. Zahaf et al.



4 Simulation Results

In this section we present the design of conditions that ensure stability for nonlinear
systems by the presented strategy, Constrained MPC for Fuzzy discrete time by PDC
controller. Two examples are presented with and without uncertainties. The online set
solutions were carried out using the YALMIP toolbox [17].

4.1 Example 1

The following system is taken from [18]:

Rule1 : if x1 kð Þ is M1; then
_x tð Þ ¼ A1x tð ÞþB1u tð Þ

y tð Þ ¼ C1x tð Þ
�

Rule2 : if x1 kð Þ is M2; then
_x tð Þ ¼ A2x tð ÞþB2u tð Þ

y tð Þ ¼ C2x tð Þ
�

8>><
>>: ð29Þ

Using sector nonlinearity with the sampling time 1 s the T-S fuzzy discrete time
system represents with:

A1 ¼ 0:9504 0:9834
�0:09834 0:9504

� �
; A2 ¼ 0:9635 0:6218

�0:06218 0:3417

� �

B1 ¼ 0:4958
0:9834

� �
;B2 ¼ 0:365

0:6218

� �
;C1 ¼ 1 0½ �;C2 ¼ 1 0½ �

Weighting matrices and membership functions for rule 1 and rule 2 are:

Q0 ¼ 1 0
0 1

� �
; R0 ¼ 0:5; M1 x1 kð Þð Þ ¼ �x22 þ 1; M2 x2 kð Þð Þ ¼ x22

Under the constraints: �2\yðkÞ\2; �0:5\uðkÞ\0:5.
With the initials conditions are: x1 0ð Þ ¼ 0; x2 0ð Þ ¼ 0.
The results in Figs. 1 and 2 shows that the conception of control law with cor-

rections gives a better responses when we compare the results with that given in [15]. It
is clearly that the stability is guarantee with respect of imposed constraints.

Also results in Fig. 3 show the robustness behavior of the study approach in
presence of extern uncertainties.
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4.2 Example 2

The following system is taken from [14], with the states matrices:

A1 ¼ �0:5 2
�0:1 1:1

� �
; A2 ¼ �0:19 0:5

�0:1 �1:2

� �

B1 ¼ 4:1
4:8

� �
; B2 ¼ 3

0:1

� �
; C1 ¼ 1 0:3½ �; C2 ¼ 0:8 0:2½ �
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Fig. 1. Response of control input u(k)
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Fig. 2. Response of output signal y(k)
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Weighting matrices:

Q0 ¼ 0:8 0:1
0:1 0:95

� �
; R0 ¼ 0:9:

And membership functions for rule 1 and rule 2 are:

M1 x1 kð Þð Þ ¼ 1
1þ exp �2x1 kð Þð Þ ; M2 x2 kð Þð Þ ¼ 1�M1 x1 kð Þð Þ
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Fig. 3. Response of control input u(k) and output signal y(k)
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Under the constraints: �2:5\y kð Þ\2:5; �1\uðkÞ\1.
With the initials conditions are:

x1 0ð Þ ¼ �0:3; x2 0ð Þ ¼ �1; u 0ð Þ ¼ �0:5; y 0ð Þ ¼ �0:5:

The results in Figs. 4 and 5 of the simulation show that the conception of corrected
control law performance gives better results when we compare with [14]. The com-
parison is presented in Table 1.

Even in presence of extern uncertainties, results in Figs. 6 and 7 are showing that
the robustness of this approach is ensured.
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Fig. 4. Response of state X1(k) and X2(k)
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Fig. 5. Response of control input u(k) and output signal y(k)

Table 1. Comparison results with [14].

Comparison results This paper [14]

Chattering interval of x1 −0.4–0.1 −3.3–3.2
Chattering interval of x2 −0.7–0.7 −0.9–1.1
Chattering interval of u −0.2–0.3 −0.9–0.7
Chattering interval of y −1.2–0.1 −2.4–2.3
Convergence time at All 1.3–2.0 3.1–3.5
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5 Conclusion

In this paper, corrections of controller performance based T-S fuzzy predictive control
under constraints was introduced. The PDC is designed with an infinite horizon pre-
dictive control; therefore the optimization problem with input constraint is transformed
into constraint LMI problem. Thus LMI optimization is well suited for online imple-
mentation, which is essential for predictive control. The using of fuzzy controller PDC
in this work shows good results for a class of nonlinear systems. Finally, the stability of
the closed-loop system is guaranteed by the Lyapunov approach.
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Fig. 7. Response of control input u(k) and output signal y(k)
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