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Abstract. When using the chi-squared goodness-of-fit tests, the problem of
choosing boundary points and the number of grouping intervals is always
urgent, as the power of these tests considerably depends on the grouping method
used. In this paper, the investigation of the power of the Pearson and
Nikulin-Rao-Robson chi-squared tests has been carried out for various numbers
of intervals and grouping methods. The partition of the real line into
equiprobable intervals is not an optimal grouping method, as a rule. It has been
shown that asymptotically optimal grouping, for which the loss of the Fisher
information from grouping is minimized, enables to maximize the power of the
Pearson test against close competing hypotheses. In order to find the asymp-
totically optimal boundary points, it is possible to maximize some functional
(the determinant, the trace or the minimum eigenvalue) of the Fisher information
matrix for grouped data. The versions of asymptotically optimal grouping
method maximize the test power relative to a set of close competing hypotheses,
but they do not insure the largest power against some given competing
hypothesis. For the given competing hypothesis H1, it is possible to construct
the chi-squared test, which has the largest power for testing hypothesis H0

against H1. For example, in the case of the Pearson chi-squared test, it is pos-
sible to maximize the non-centrality parameter for the given number of intervals.
So, the purpose of this paper is to give the methods for the choice of optimal
grouping intervals for chi-squared goodness-of-fit tests.

Keywords: Chi-squared goodness-of-fit tests � Optimal grouping � Fisher
information � Test power

1 Introduction

The v2 Pearson goodness-of-fit test is very popular in various applications, including the
investigation of distributions of measurement error in problems of metrological support.

The correct usage of the Pearson v2 test for composite hypotheses (including testing
normality) provides estimation of unknown parameters by the grouped data, as in the
case of calculating parameter estimates by the original non-grouped sample the test
statistic distribution differs from the v2 – distribution significantly [1, 2]. By this reason,
a series of modified v2 tests has been offered, the most famous of which is the
Nikulin-Rao-Robson test [3–5]. Moreover, it is necessary to take into account, that the
power of Pearson test depends on the number of grouping intervals [6] and the
grouping method used [7].
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2 The Pearson v2 Test of Goodness-of-Fit

The procedure for hypothesis testing using v2 type tests assumes grouping an original
sample X1, X2, …, Xn of size n. The domain of definition of the random variable is
divided into k non-overlapping intervals bounded by the points:

x0\x1\. . .\xk�1\xk;

where x0, xk are the lower and upper boundaries of the random variable domain. The
number of observations ni, in the i-th interval is counted in accordance with this
partition, and the probability of falling into this interval,

PiðhÞ ¼
Zxi
xi�1

f ðx; hÞdx;

corresponds to the theoretical distribution law with the density function f(x, h), where

n ¼
Xk
i¼1

ni;
Xk
i¼1

PiðhÞ ¼ 1:

Measurements of the deviations ni/n on Pi(h) form the basis of the statistics used in
v2 type goodness-of-fit tests.

The statistic of Pearson v2 test is calculated using the formula

X2
n ¼ n

Xk
i¼1

ðni=n� PiðhÞÞ2
PiðhÞ : ð1Þ

When a simple hypothesis H0 is true (i.e., all the parameters of the theoretical law
are known), this statistic obeys the v2r distribution with r = k – 1 degrees of freedom
with n ! ∞. The v2r distribution has the density function

gðsÞ ¼ 1
2r=2Cðr=2Þ s

r=2�1e�S=2;

where C(�) is the Euler gamma function.
The test hypothesis H0 is not rejected if the achieved significance level (p-value)

exceeds a specified level of significance a, i.e., if the following inequality holds:

P X2
n [X2�

n

� � ¼ 1
2r=2Cðr=2Þ

Z1
X2�
n

sr=2�1e�s=2ds[ a;

where X2�
n is the statistic calculated in (1).
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When testing a composite hypothesis and estimating parameters by minimizing the
statistic X2

n basing on the same sample, this statistic asymptotically obeys the v2r dis-
tribution with r = k – m – 1 degrees of freedom, where m is the number of parameters
estimated.

The statistic X2
n has the same distribution if parameter estimate is obtained by the

maximum likelihood method from grouped data by maximizing the likelihood function
with respect to h:

LðhÞ ¼ c
Yk
i¼1

Pni
i ðhÞ; ð2Þ

where c is a constant and

PiðhÞ ¼
Zxi
xi�1

f ðx; hÞdx

is the probability that an observation falls into i-th interval. This result remains for any
estimation technique based on grouped data leading to asymptotically effective
estimates.

If unknown parameters are estimated by the maximum likelihood method basing on
non-grouped data, then the Pearson statistic is distributed as the sum of independent

terms [1] v2k�m�1 þ
Pm
j¼1

kjn
2
j ; where n1, …, nm are standard normal random quantities

that are independent from each other and from v2k�m�1; k1; . . .; km are numbers
between 0 and 1, representing the roots of the equation

ð1� kÞJðhÞ � JgðhÞ
�� �� ¼ 0:

Here J(h) is the Fisher information matrix with respect to the non-grouped
observations with elements

Jðhl; hjÞ ¼
Z

@f ðx; hÞ
@hl

@f ðx; hÞ
@hj

� �
f ðx; hÞdx;

Jg(h) is the Fisher information matrix with respect to the grouped observations with
elements

JgðhÞ ¼
Xk
i¼1

rPiðhÞrsPiðhÞ
PiðhÞ :

In other words, the distribution of statistic (1), based on maximum likelihood
estimates (MLE) calculated by non-grouped data, is unknown and depends, in par-
ticular, on the grouping method [2].
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3 The Choice of Grouping Intervals

When using chi-squared goodness-of-fit tests, the problem of choosing boundary points
and the number of grouping intervals is always important, as the power of these tests
considerably depends on the grouping method used. In the case of complete samples
(without censored observations), this problem was investigated in [7–10]. In particular,
in [11], the investigation of the power of the Pearson and NRR tests for complete samples
has been carried out for various numbers of intervals and groupingmethods. The partition
of the real line into equiprobable intervals (EPG) is not an optimal grouping method, as a
rule. In [12], it was shown for the first time that asymptotically optimal grouping, for
which the loss of the Fisher information from grouping is minimized, enables us to
maximize the power of the Pearson test against close competing hypotheses. For
example, it is possible to maximize the determinant of the Fisher information matrix for
grouped data Jg(h), i.e. to solve the problem of D-optimal grouping

max
x0\x1\...\xk�1\xk

det ðJgðhÞÞ: ð3Þ

In the case of the A-optimality criterion, the trace of the information matrix Jg(h) is
maximized by the boundary points

max
x0\x1\...\xk�1\xk

TrðJgðhÞÞ; ð4Þ

and the E-optimality criterion maximizes the minimum eigenvalue of the information
matrix:

max
x0\x1\...\xk�1\xk

min
i¼1;2

kiðJgðhÞÞ: ð5Þ

The problem of asymptotically optimal grouping by the A- and E-optimality criteria
has been solved for certain distribution families, and the tables of A-optimal grouping
are given in [13]. The versions of asymptotically optimal grouping maximize the test
power relative to a set of close competing hypotheses, but they do not ensure the
highest power against some given competing hypothesis. For the given competing
hypothesis H1, it is possible to construct the v2 test, which has the highest power for
testing hypothesis H0 against H1. For example, in the case of v2 Pearson test, it is
possible to maximize the non-centrality parameter for the given number of intervals k:

max
x0\x1\...\xk�1\xk

n
Xk
j¼1

p1j ðh1Þ � p0j ðh0Þ
� �2

p0j ðh0Þ
; ð6Þ

where p0j ðh0Þ ¼
Rxj
xj�1

f0ðu; h0Þdu, p1j ðh1Þ ¼
Rxj
xj�1

f1ðu; h1Þdu are the probabilities to fall

into j-th interval according to the hypotheses H0 and H1, respectively. Let us refer this
grouping method to as optimal grouping.
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Asymptotically optimal boundary points, corresponding to different optimality
criteria, as well as the optimal points, corresponding to (6), are considerably different
from each other.

For example, the boundary points maximizing criteria (3)–(6) for the following pair
of competing hypotheses are given in Table 1. The null hypothesis H0 is the normal
distribution with density function

f ðxÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp �ðx� lÞ2
2r2

( )
; ð7Þ

and parameters l = 0, r = 1 and the competing hypothesis H1 is the logistic distri-
bution with density function

f ðxÞ ¼ p

h1
ffiffiffi
3

p exp � pðx� h0Þ
h1

ffiffiffi
3

p

 �

= 1þ exp � pðx� h0Þ
h1

ffiffiffi
3

p

 �� 2

; ð8Þ

and parameters h0 = 0, h1 = 1.

Moreover, in the case of the given competing hypothesis, we can use the so-called
Neyman-Pearson classes [14], for which the random variable domain is partitioned into
intervals of two types, according to the inequalities f0(t) < f1(t) and f0(t) > f1(t), where
f0(t) and f1(t) are the density functions, corresponding to the competing hypotheses. For
H0 and H1 from our example, we have the first-type intervals

ð�1; 2:3747�; ð0:6828; 0:6828�; ð2:3747;1Þ;

and the second-type intervals

ð2:3747; 0:6828�; ð0:6828; 2:3747�:

Figures 1 and 2 illustrate the power of the Pearson v2 test for the hypotheses H0 and
H1 of our example in the case of different grouping methods, depending on the number
of intervals (a = 0.1, n = 500). The powers of the well-known nonparametric
Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling goodness-of-fit tests
are given for the comparison.

Table 1. Optimal boundary points for k = 9

Optimality criterion x1 x2 x3 x4 x5 x6 x7 x8
A-optimum 2.3758 1.6915 1.1047 0.4667 0.4667 1.1047 1.6915 2.3758
D-optimum 2.3188 1.6218 1.0223 0.3828 0.3828 1.0223 1.6218 2.3188
E-optimum 1.8638 1.1965 0.6805 0.2216 0.2216 0.6805 1.1965 1.8638
Optimal grouping 3.1616 2.0856 1.2676 0.4601 0.4601 1.2676 2.0856 3.1616
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Fig. 1. The power of the v2 Pearson test for simple hypothesis

Fig. 2. The power of the v2 Pearson test for composite hypothesis
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4 The Pearson v2 Test When Checking Normality

The asymptotically D-optimal groupings (AOG) given in Tables 2 and 3 can be used
for testing normality using MLE estimates of the parameters l and r. Here, the losses
in the Fisher information associated with grouping are minimized [13] and the Pearson
v2 test has maximal power relative to the very close competing hypotheses [13].

Table 2. Optimal boundary points of group intervals for testing of simple and composite
hypotheses based on v2 – Type Tests (for evaluating l and r) and the corresponding values of the
relative asymptotic information A

k t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 A

3 1.11 1.11 – – – – – – – – – – – – 0.41
4 1.38 0 1.38 – – – – – – – – – – – 0.55
5 1.7 0.69 0.69 1.7 – – – – – – – – – – 0.68
6 1.88 1 0 1 1.88 – – – – – – – – – 0.76
7 2.06 1.27 0.49 0.49 1.27 2.06 – – – – – – – – 0.81
8 2.2 1.46 0.79 0 0.79 1.46 2.2 – – – – – – – 0.85
9 2.32 1.62 1.02 0.38 0.38 1.02 1.62 2.32 – – – – – – 0.88
10 2.42 1.76 1.21 0.65 0 0.65 1.21 1.76 2.42 – – – – – 0.90
11 2.52 1.88 1.36 0.86 0.31 0.31 0.86 1.36 1.88 2.52 – – – – 0.91
12 2.6 1.9 1.49 1.03 0.53 0 0.53 1.03 1.49 1.9 2.6 – – – 0.93
13 2.68 2.08 1.61 1.18 0.75 0.27 0.27 0.75 1.18 1.61 2.08 2.68 – – 0.94
14 2.74 2.16 1.71 1.3 0.91 0.48 0 0.48 0.91 1.3 1.71 2.16 2.74 – 0.943
15 2.81 2.24 1.8 1.42 1.04 0.66 0.23 0.23 0.66 1.04 1.42 1.8 2.24 2.81 0.95

Table 3. Optimal probabilities (frequencies) for testing of simple and composite hypotheses
based on v2 – type tests (for evaluating l and r) and the corresponding values of the relative
asymptotic information A

k P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 A

3 0.13 0.73 0.13 – – – – – – – – – – – – 0.41

4 0.08 0.42 0.42 0.08 – – – – – – – – – – – 0.55

5 0.05 0.20 0.51 0.20 0.05 – – – – – – – – – – 0.68

6 0.03 0.13 0.34 0.34 0.13 0.03 – – – – – – – – – 0.76

7 0.02 0.08 0.21 0.38 0.21 0.08 0.02 – – – – – – – – 0.81

8 0.01 0.06 0.14 0.28 0.28 0.14 0.06 0.01 – – – – – – – 0.85

9 0.01 0.04 0.10 0.20 0.30 0.20 0.10 0.04 0.01 – – – – – – 0.88

10 0.01 0.03 0.08 0.14 0.24 0.24 0.14 0.08 0.03 0.01 – – – – – 0.90

11 0.01 0.02 0.06 0.11 0.18 0.25 0.18 0.11 0.06 0.02 0.01 – – – – 0.91

12 0.01 0.02 0.04 0.08 0.14 0.21 0.21 0.14 0.08 0.04 0.02 0.01 – – – 0.93

13 0.004 0.02 0.04 0.07 0.11 0.17 0.21 0.17 0.11 0.07 0.04 0.02 0.004 – – 0.94

14 0.003 0.01 0.03 0.05 0.09 0.13 0.19 0.19 0.13 0.09 0.05 0.03 0.01 0.003 – 0.94

15 0.003 0.01 0.02 0.04 0.07 0.11 0.15 0.18 0.15 0.11 0.07 0.04 0.02 0.01 0.003 0.95
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In Table 2, the boundary points ti, i = 1, …, k – 1 are listed in a form that is
invariant with respect to the parameters l and r for a normal distribution. For calcu-
lating the statistic (1), the boundaries xi separating the intervals for specified k are found
using the values of ti taken from the corresponding row of the table: xi ¼ r̂ti þ l̂i,
where l̂ and r̂ are the MLE of the parameters derived from the given sample. Then, the
number of observations ni within each interval are used. The probabilities of falling into
a given interval for evaluating the statistic (1) are taken from the corresponding row of
Table 3.

When AOG is used in the Pearson v2 test, the resulting percentage points ~v2k;a of the
distributions of the statistic (1) and the models of limiting distributions constructed in
this paper are shown in Table 4, where bIII(h0, h1, h2, h3, h4) is the type III beta
distribution with these parameters and the density

f ðxÞ ¼ hh02
h3bðh0; h1Þ

ðx� h4Þ=h3½ �h0�1 1� ðx� h4Þ=h3½ �h1�1

1þðh2 � 1Þðx� h4Þ=h3½ �h0 þ h1
:

To make a decision regarding testing the hypothesis H0, the value of the statistic
X2�
n is compared with the critical value ~v2k;a from the corresponding row of Table 4, or

the attained level of significance P X2
n [X2�

n

� �
, determined using the limiting distri-

bution model in the same row of the table, is compared with a specified level of
significance a.

The difference between the real distributions GðX2
n H0Þj of statistic (1) and the

corresponding v2k�m�1 distributions, when hypothesis H0 is true, is shown in Fig. 3.

Table 4. Percentage points ~v2k;a for the Pearson test statistic when evaluating the parameters l
and r

k p ¼ 1� a Limiting distribution model
0.85 0.9 0.95 0.975 0.99

4 2.74 3.37 4.48 5.66 7.26 BIII (1:2463; 3:8690; 4:6352; 19:20; 0:005)
5 4.18 5 6.39 7.77 9.59 BIII (1:7377; 3:8338; 5:5721; 26:00; 0:005)
6 5.61 6.54 8.09 9.61 11.62 BIII (2:1007; 4:1518; 4:1369; 26:00; 0:005)
7 6.95 7.98 9.67 11.31 13.43 BIII (2:5019; 4:6186; 3:4966; 28:00; 0:005)
8 8.28 9.4 11.21 12.95 15.22 BIII (2:9487; 5:8348; 3:1706; 34:50; 0:005)
9 9.56 10.76 12.69 14.53 16.87 BIII (3:5145; 6:3582; 3:2450; 39:00; 0:005)
10 10.84 12.11 14.16 16.12 18.58 BIII (3:9756; 6:7972; 3:0692; 41:50; 0:005)
11 12.08 13.42 15.55 17.59 20.19 BIII (4:4971; 6:9597; 3:0145; 43:00; 0:005)
12 13.34 14.74 16.98 19.1 21.77 BIII (5:1055; 7:0049; 3:1130; 45:00; 0:005)
13 14.56 16.01 18.34 20.53 23.3 BIII (5:7809; 7:0217; 3:2658; 47:00; 0:005)
14 15.78 17.29 19.68 21.96 24.81 BIII (6:6673; 6:9116; 3:5932; 49:00; 0:005)
15 16.98 18.54 21.04 23.4 26.37 BIII (7:0919; 7:2961; 3:4314:51:50; 0:005)

Chi-Squared Goodness-of-Fit Tests 767



Tables 2 and 3 give Fisher asymptotic information:

A ¼ det JC = det J:

For tests of normality with calculations of an MLE based on the non-grouped
sample, only the parameters l or r, the required AOG tables, percentage points, and the
limiting distribution models can be found in [15].

For AOG relative to the parameter vector and k = 15 intervals in the grouped
sample, about 95 % of the information is preserved. Further increases in the number
k of intervals are insignificant; it should be chosen based on the following consider-
ations. For an optimal grouping, the probabilities of falling into an interval are not
generally equal (usually these probabilities are minimal for the outermost intervals), so
that k should be chosen on the basis of the condition nPi(h) � 5… 10 for any interval.
At least, in choosing k the recommendation

min
i

nPiðhÞ i ¼ 1; k
��� �

[ 1

should be followed. When this condition holds, in the case where the tested hypothesis
H0 is valid, a discrete distribution of the statistic in (1) differs insignificantly from the
corresponding asymptotic limiting distribution. If this condition is violated, then the
difference between the true distribution of the statistic and the limiting distribution will
lead to an increase in the probability of a type I error relative to the specified

Fig. 3. Distributions of statistic (1) for maximum likelihood estimates of the parameters of a
normal distribution based on non-grouped data together with the corresponding v2k�m�1
distributions
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significance level a. It should also be noted that for small sample sizes, n = 10–20,
discrete distributions of the statistics differ substantially from the asymptotic distri-
butions. This condition on the choice of k sets an upper bound estimate on the number
of intervals (k � kmax). The number of grouping intervals affects the power of the
Pearson v2 test [6]. It is absolutely unnecessary that its power against a competing
distribution (hypothesis) should be maximal for k = kmax.

In order to compare the power of the Pearson v2 test for checking normality with
the power of special normality tests and nonparametric goodness-of-fit tests, the power
has been estimated relative to the same competing distributions (hypotheses) as in [15].

The test hypothesis H0 is taken to be that the observed sample obeys the normal
distribution (7).

As competing hypotheses for studying the power of the v2 test, we have considered
adherence of the analyzed sample to the following distributions: competing hypothesis
H1 corresponds to a generalized normal distribution (family of distributions) with the
density

f ðxÞ ¼ h2
2h1Cð1=h2Þ exp � x� h0j j

h1

� �h2
( )

and a shape parameter h2 = 4; hypothesis H2 is the Laplace distribution with the
density

f ðxÞ ¼ 1
2h1

exp � x� h0j j
h1


 �
;

and hypothesis H3 is the logistic distribution with the density (8), which is very close
to a normal distribution. Figure 4 shows the densities of the distributions corresponding
to hypotheses H1, H2 and H3 with scale parameters such that they are the closest to the

Fig. 4. Probability density functions corresponding to the considered hypotheses Hi
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standard normal law. This choice of hypotheses has a certain justification. Hypothesis
H2, corresponding to a Laplace distribution, is the most distant from H0. Distinguishing
them usually presents no problem. The logistic distribution (hypothesis H3) is very
close to normal and it is generally difficult to distinguish them by goodness-of-fit tests.

The competing hypothesis H1, which corresponds to a generalized normal distri-
bution with a shape factor h2 = 4, is a “litmus test” for detection of hidden deficiencies
in some tests [15–17]. It turned out that for small sample sizes n and small specified

Table 5. Power of the Pearson v2 test with respect to hypotheses H1, H2 and H3

n kmax kopt a

0.15 0.1 0.05 0.025 0.01

H1

10 4 4 0.235 0.146 0.043 0.032 0.002
20 4 5 0.262 0.177 0.1 0.058 0.021
30 5 5 0.312 0.216 0.136 0.079 0.043
40 6 5 0.336 0.267 0.168 0.111 0.061
50 6 5 0.401 0.311 0.204 0.129 0.068
100 9 5 0.558 0.479 0.352 0.254 0.158
150 10 7 0.722 0.634 0.486 0.353 0.217
200 11 9 0.783 0.695 0.548 0.417 0.279
300 13 11 0.907 0.858 0.756 0.646 0.492
H2

10 4 4 0,267 0,206 0,074 0,058 0,01
20 4 4 0,264 0,177 0,104 0,067 0,037

5 0,247 0,189 0,116 0,061 0,024
30 5 5 0,312 0,261 0,153 0,103 0,044
40 6 7 0,443 0,358 0,25 0,167 0,101
50 6 7 0,5 0,423 0,312 0,225 0,138
100 9 9 0,77 0,708 0,596 0,494 0,379
150 10 9 0,899 0,86 0,785 0,705 0,596
200 11 11 0,964 0,946 0,908 0,88 0,786
300 13 13 0,996 0,993 0,985 0,974 0,95
H3

10 4 4 0.221 0.15 0.046 0.034 0.003
20 4 5 0.194 0.125 0.059 0.038 0.016
30 5 6 0.169 0.125 0.062 0.034 0.012
40 6 7 0.204 0.143 0.082 0.045 0.02
50 6 7 0.214 0.155 0.088 0.05 0.023
100 9 10 0.303 0.231 0.146 0.09 0.047
150 10 10 0.359 0.284 0.191 0.124 0.072
200 11 11 0.432 0.355 0.25 0.175 0.105
300 13 13 0.566 0.486 0.373 0.28 0.19
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probabilities a of type I error, a number of tests employed for testing goodness-of-fit to
normal are not able to distinguish close distributions from normal. In these cases, the
power 1 – b with respect to hypothesis H1, where b is the probability of a type II error,
is smaller than a. This means that the distribution corresponding to H1 is “more
normal” than the normal law and indicates that the tests are biased.

The power of the Pearson v2 test was studied with different number of intervals
k � kmax for specified sample sizes n. Table 5 lists the maximum powers of the v2 test
relative to the competing hypotheses H1, H2 and H3, and corresponding to the optimal
number kopt of grouping intervals. To a certain extent, it is possible to orient oneself in
choosing k on the basis of the values of kopt as a function of n listed in Table 5.

5 The Nikulin-Rao-Robson Goodness-of-Fit Test

A modification of the standard statistic X2
n was proposed [3–5] in which the limiting

distribution of the modified statistic is a v2k�1 distribution (the number of degrees of
freedom is independent of the number of parameters to be estimated). The unknown
parameters of the distribution F(x, h) have, in this case, must be estimated on the basis of
the non-grouped data by a maximum likelihood method. Here the vector P = (P1, …,
Pk)

s is assumed to be specified, while the boundary points of the intervals are defined
using the relations xi(h) = F−1(P1 +… + Pi), i = 1, …, k – 1. The proposed statistic has
the form [4]:

Y2
n ðhÞ ¼ X2

n þ n�1asðhÞkðhÞaðhÞ; ð9Þ

where X2
n is calculated using (1). For distribution laws that are determined only by shift

and scale parameters,

kðhÞ ¼ JðhÞ � JgðhÞ
� ��1

:

In the case of the normal distribution with parameter vector hs = (l, r), the Fisher
information matrix has the form:

JðhÞ ¼ 1=r2 0
0 2=r2

� 
;

with the elements of the information matrix based on grouped data Jg(h) given by

Jgðl; lÞ ¼
Pk
i¼1

1
r2PiðhÞ f ðti�1Þ � f ðtiÞð Þ2;

Jgðr; rÞ ¼
Pk
i¼1

1
r2PiðhÞ ti�1f ðti�1Þ � tif ðtiÞð Þ2;

Jgðl; rÞ ¼ Jcðr; lÞ ¼
Pk
i¼1

1
r2PiðhÞ f ðti�1Þ � f ðtiÞð Þ ti�1f ðti�1Þ � tif ðtiÞð Þ;
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where

ti ¼ ðxi � lÞ=r; t0 ¼ �1; tk ¼ 1; f ðtÞ ¼ 1ffiffiffiffiffiffi
2p

p e�t2=2

is the standard normal distribution. The elements of the vector asðhÞ ¼ aðlÞ; aðrÞ½ � are
given by

Table 6. Power of the Nikulin-Rao-Robson set with respect to hypotheses H1, H2 and H3

n kmax kopt a

0.15 0.1 0.05 0.025 0.01

H1

10 4 4 0.348 0.1 0.029 0.009 0.006
20 4 5 0.234 0.143 0.074 0.041 0.016
30 5 5 0.256 0.197 0.102 0.053 0.023
40 6 5 0.293 0.221 0.123 0.079 0.035
50 6 5 0.326 0.240 0.148 0.083 0.040
100 9 5 0.485 0.395 0.271 0.179 0.102
150 10 6 0.619 0.530 0.397 0.284 0.179

7 0.641 0.539 0.383 0.261 0.148
200 11 9 0.713 0.616 0.464 0.339 0.214
300 13 11 0.872 0.810 0.695 0.573 0.420
H2

10 4 4 0.368 0.103 0.055 0.031 0.007
20 4 5 0.250 0.210 0.126 0.065 0.039
30 5 5 0.349 0.265 0.185 0.127 0.078
40 6 5 0.474 0.403 0.297 0.218 0.149
50 6 5 0.548 0.473 0.365 0.281 0.190
100 9 5 0.807 0.755 0.667 0.583 0.482
150 10 7 0.919 0.889 0.834 0.774 0.691
200 11 9 0.973 0.961 0.933 0.900 0.849
300 13 11 0.997 0.995 0.990 0.983 0.968

13 0.997 0.995 0.990 0.983 0.968
H3

10 4 4 0.321 0.083 0.034 0.014 0.005
20 4 5 0.166 0.120 0.065 0.030 0.014
30 5 6 0.198 0.138 0.080 0.047 0.024
40 6 7 0.232 0.173 0.104 0.063 0.034
50 6 7 0.251 0.188 0.117 0.074 0.040
100 9 10 0.360 0.290 0.202 0.141 0.091
150 10 10 0.432 0.358 0.263 0.195 0.131
200 11 11 0.509 0.436 0.337 0.259 0.183
300 13 13 0.641 0.572 0.469 0.381 0.288
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aðlÞ ¼ Pk
i¼1

ni f ðti�1Þ�f ðtiÞð Þ
rPiðhÞ ;

aðrÞ ¼ Pk
i¼1

ni
rPiðhÞ ti�1f ðti�1Þ � tif ðtiÞð Þ:

As in the case of the Pearson test, when testing for normality with MLE estimation
of the parameters l and r based on the non-grouped data, Tables 2 and 3 can be used.

For calculating statistic (9), the boundaries separating the intervals for given k are
found from the values of ti in the corresponding row of Table 2 using the formula
xi ¼ r̂ti þ l̂, where l̂ and r̂ are the MLE parameters found from the sample data. Then
the number of observations ni in each interval is counted. The probabilities Pi(h) of
falling into an interval when calculating statistic (9) are taken from the corresponding
line of Table 3. The elements of the vector a(h) and matrix K(h) are calculated using
the tabulated data for ti, Pi and the resulting estimates of r̂.

To decide on the test results for hypothesis H0, the value of the statistic Y2�
n is

compared with the corresponding critical v2k�1;a or the achieved level of significance (p-

value) P Y2
n [ Y2�

n

� �
is found from the corresponding v2k�1 distribution.

To test for normality with MLE calculation of the parameters l or r separately on
the basis of non-grouped samples, the required tables of AOG can be found in [15].

Estimates of the power of the Nikulin-Rao-Robson test for the competing
hypotheses H1, H2 and H3 for kopt are given in Table 6. This test is generally more
powerful than the Pearson test (for example, see its powers relative to the competing
hypotheses H2 and H3). Here we often have kopt = kmax for

min
i

nPiðhÞf g[ 1;

However, this is not always so. In terms of its power relative to the “tricky”
hypothesis H1 it is inferior to the Pearson test, and kopt in this case is considerably
smaller than kmax with AOG.

6 Conclusion

The power of the Pearson v2 test and Nikulin-Rao-Robson test can be maximized by
the optimal selection of the number of intervals and interval boundary points.

Combining the obtained results of the power analysis for the Pearson v2 test and
Nikulin-Rao-Robson test with the results presented in [15–17], we can see that in
regard to the competing hypothesis H1, the Pearson v2 test shows very good results,
yielding in power only to some special normality tests.

At the same time, in regard to competing hypotheses H2 and H3, the Pearson v2 test
and Nikulin-Rao-Robson test inferior in power to most special normality tests and to
nonparametric goodness-of-fit tests (Anderson-Darling, Cramer-Mises-Smirnov,
Watson, Kuiper, Zhang, Kolmogorov tests).

This work is supported by the Russian Ministry of Education and Science (project
2.541.2014 K).
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