A Programmable Logic Controller (PLC);
Programming Language Structural Analysis

Yulia Kovalenko®™®
National Aviation University, Kiev, Ukraine
yleejulee22@gmail. com

Abstract. Application of Programmable Logic Controller in the sphere of
industrial automation substantially simplified technological processes control.
New data exchange systems and new algorithms are being developed. It leads to
enormous variety of comptrollers. We consider a programmable logic controller
(PLC), a device that performs control of the physical processes of the algorithm
written in it, oriented to work with devices developed through the input sensor
signals and output signals to the actuators. PLCs are designed to work in
real-time systems. Note that one of the advantages of the PLC system is mod-
ular. That is, the ability to combine and mix of types of input and output devices
in a manner that best suits the application. Each of them differs by specific set of
functions, unique construction and certain control language. In this article we
describe classification of PLC, that can help to choose one, and also present the
structural analysis of PLC programming languages.

Keywords: A programmable logic controller (PLC) - Programming languages -
Real-time system - Diagram type language SFC

1 Introduction

Controllers may vary in several aspects, namely the manufacturing country, capacity
and scope of use. The first factor lost its relevance some time ago, since the quality of
controllers is increasing rapidly worldwide. In terms of capacity, PLCs are subdivided
into nanocontrollers, small, medium, large and extra-large controllers. They differ by
the number of I/O, network interfaces, memory, word length and main CPU speed.
However, the most important factor to consider when selecting a programmable con-

troller is, generally, the scope of its application:

specialized controller with built-in functions. They feature a low capacity. These
controllers already have an action program embedded, and you can only change its
settings. This type of controllers is often able to implement various functions, and
this determines a set of I/O modules. These PLC are commonly used in a small
mechanical installation or a small gear;
a controller to implement logical dependencies. This type of controllers is also
called smart relay, and even the language of controlling such devices is similar to
the relay circuits in many respects. It contains a large library of ready logic func-
tions. It is also engaged in blocking of standard actuators. It is used mainly in the

© Springer International Publishing AG 2017

R. Szewczyk and M. Kaliczynska (eds.), Recent Advances in Systems, Control and Information Technology,

Advances in Intelligent Systems and Computing 543, DOI 10.1007/978-3-319-48923-0_29

A Programmable Logic Controller (PLC) 235

engineering and tank construction. A set of I/O modules is designed for digital
channels;

— acontroller for implementation of computing and logical functions. It is used almost
everywhere thanks to a special generic nature. CPU can handle both logical and
computational problems. Typically, such devices are not limited to a single control
language, and another coprocessor is added for a better computational efficiency;

— crash protection controller. They are remarkable for fault tolerance, high availability
and reliability, which is achieved by different methods of diagnostics and
redundancy;

— telemechanical automation system controller. These controllers are generic too, but
the scope of their application is quite narrow, namely supervisory systems of
monitoring the objects distributed about the terrain. Here the most important thing is
components for information data transmission at a distance via a wireless network.

Thus, we consider a programmable logic controller (PLC), a device controlling the
physical processes according to an algorithm recorded therein, oriented to work with
devices through a branched input of sensor signals and signal outputs to the actuators
[1]. PLCs are designed to work in real-time systems. Let’s note that one of the PLC
advantages is modularity, i.e. an ability to combine the types of input and output
devices in a way, which best suits the application [2, 3].

PLC structure can be subdivided into four parts, i.e. input-output modules, CPU,
memory and terminal (Fig. 1).

Terminal
]
Power CPU Memory |
supply |
Input Output |
PLC module module |
| Input Output
| device device
L process

Fig. 1. Programmable logic controller (PLC) structure

2 Materials and Methods

Focusing on IEC 61131-3 [4-6], we determine the syntax and, for a smaller part,
semantics of four programming languages for PLCs, as well as an aid for application
structuring (SFC diagram-type language).

236 Y. Kovalenko

The first four languages include the LD ladder diagram language, FBD functional
diagram language, ST textual high-level language and IL textual low-level language.
LD, based on the ladder diagram, allows describing the logic functions. In FBD lan-
guage, the functionality is presented as graphic blocks. ST textual language is close to
the Pascal language, and operates the procedural, conditional and cycle operators. IL is
a device-independent assembler-like language. While ST and IL are textual languages,
and LD and FBD are graphic ones, SFC, in addition to its own syntax, can be used in
conjunction with any textual or graphic language (Fig. 2).

Textual Graphic

ST LD
1f Speed1 > 100.0 then

Fbw_Rate: = 5.0 + Offset Al;
Else
Flow_Rate: = 100.0; Steam: = ON
End If;

1L D RI
MPC RESET

LD PRESS_|

ST MAX _PRESS
RESET LD 0

ST A _X43

Fig. 2. Overview of IEC 61131-3 languages

SFC was created in order to structure the internal organization of PLC applications
or function blocks. This graphical language called SFC (sequential function charts) is a
generalized terminal machine containing the primitives describe serial, parallel and
alternative lines of conduct. It allows dividing the PLC application (or function blocks)
by the sets of interrelated steps and statuses. Each step corresponds to a set of actions,
and each status is related to the status transfer condition.

Let’s single out the principles of IEC 61131-3 languages:

— the entire application is subdivided into a set of functional elements, Program
Organization Units (POU). These elements may be implemented using standard
languages and consist of three categories [7]:

e POU functions while running return only one value, defined by one of the
standard types, function result and an arbitrary set of additional output data.
These functional elements do not have a certain status (do not contain any
information about the status), i.e. a function call with the same arguments always
produces the same result;

A Programmable Logic Controller (PLC) 237

e POU functional units return one or more values as the result. The functional unit
status is maintained run after run. It features a probabilistic aftereffect, so the call
with the same arguments can return different results;

e POU applications can be defined as a “logical connection of all elements and
structures of the programming language required to process the selected signal
to control the mechanism or process via a programmable controller” (IEC,
2003). Their definition and use is equivalent to functional units. They also can
use the previous two POU categories as additional items.

— standard requires strict data typing. Specifying the data types can detect most errors
in the application prior to its running;

— there are means to run various program fragments at different times, at different
rates, and in parallel. For example, one program fragment can scan the terminal
sensor 100 times per second, while the second fragment will scan the sensor with a
rate of once every 10 s;

— to perform operations in a specific sequence triggered by time or events, a special
Sequential Function Chart (SFC) language is used;

— the standard supports structures for description of heterogeneous data. For example,
the pump bearing temperature, pressure and the “on-off” status can be described by
a single “Pomp” structure, which can be transfer within the application as a single
data element;

— standard provides for sharing of all five languages, so the most convenient language
can be selected for each piece of the problem;

— the application written for a single controller can be transferred to any controller
compliant with IEC 61131-3 [6].

So, let’s analyze five languages of the IEC 61131-3 standard for PLCs. The use of
each language in the PLC application involves two steps [8]:

— define the IEC 61131-3-based semantics;

— define the transition systems representing the language elements, and define the
general rules of element layout in the application for ST and LD languages. This
leads to definition of operational semantics.

The operational semantics consists of a transition system modeling the PLC run-
ning PLC cycle, plus one transition system for each language, representing the
behavioral rules of the selected language, and several transition systems modeling the
application elements. Modelling of behavioral rules depends on the chosen language.

SFC language structure is converted in the transition system calculating the
application change algorithm. The approach of LD and ST languages is more suc-
cessful when compiling the application in the transition system.

IL (Instruction List) is a textual low-level language. It is generic and often used as a
common intermediate language into which other languages are translated. IL is a
linearly-oriented language, its main advantage is the ease of study. IL can be pro-
grammed using any text editor. It is commonly used to solve small problems with a
small number of branches and to write the most critical places in the application, as it
allows creating the highly efficient and optimized functions.

238 Y. Kovalenko

At the moment, the third edition of IEC 61131-3 [9] declared the IL obsolete and
undesirable for use.

The ST language uses a different approach. ST (Structured Text) is a high-level
language, comprising a plurality of designs to assign the values to variables, call the
functions and function blocks, write the expressions, conditional branches, choose the
operators, and construct the iterative processes. This language is mainly intended to
perform complex mathematical calculations, describe the complex functions, function
blocks and applications. Its advantages over IL is a very concise formulation of pro-
gramming tasks, clear program structure in the blocks of operators and major structures
to control the running progress. ST algorithm is subdivided into several steps (oper-
ators) used to calculate and assign the values in order to control the run, call or exit
from POU. In contrast to IL, ST can be defined by several lines or several operators,
which may be written in one line.

LD (Ladder Diagram) language is based or the ladder flowcharts with horizontal
links between the vertical power rails, executed sequentially. This programming lan-
guage is developed mainly to process the Boolean signals (true/false). The buses link
the LD network on the left and on the right. From the left bus, the current, controlled by
“1” signal status, reaches all connected elements. Depending on their status, the ele-
ments either allow the current to proceed to the following elements, or interrupt the
flow.

LD-network is described by the vertical and horizontal lines, as well as intersection
points. The contact performs a logical operation based on the value from the incoming
line and the required variable value. The logical operation type depends on the contact
type. The value derived from the right connected line is the desired result.

However, it is hard to use the LD to implement complex algorithms, since it does
not support routines, functions, encapsulation and other application structuring agents
to improve the programming quality. These shortcomings make it difficult to reuse the
software components, making the application long and complicated for maintenance.
Another downside is that only a small part of the application fits the computer screen or
operator panel during programming.

Despite these shortcomings, the LD language is one of the most common in the
world [3], although it is used to program simple tasks only (Fig. 3).

FBD (Functional Block Diagram) is a graphical programming language using the
functional block diagrams to submit an application to the PLC. It is based on the basic

IN1 IN2 OUT1
|‘/1 | | (\
[[| \/
IINI3 I}\I4

|1 l/1l

Fig. 3. Example of application in the Ladder Diagram language

A Programmable Logic Controller (PLC) 239

block diagrams caused by a graphical representation of electrical circuits and basic
language elements, i.e. blocks. Block is a subroutine, a function, or a function block.
The functional blocks encapsulate the data and methods, like the object-oriented pro-
gramming languages, but do not support inheritance and polymorphism. Another block
feature is parameterization of inputs and outputs, which can be represented by various
types. For example, the ADD block function may have from two to any admissible
number of inputs, and a summation of all inputs will be fed to the output.

FBD borrows the symbols of Boolean algebra and, as Boolean symbols have inputs
and outputs, which can be connected to each other, FBD is more efficient to represent
the structural information than the ladder diagram language. Also, in addition to the
basic elements of graphic languages, FBD has some unique elements (Fig. 4).

IN1

AND

IN1

OuT|
IN2 SR
IN2 — s

AND

Ql ouT

——qINI ouT

Input3 ——IN2

IN3 Input3 %

Fig. 4. Example of an application in the Functional Block Diagram language

The diagram-type SFC (Sequential Function Chart) language allows representing a
POU application or a PLC functional block using the graphical and textual notation
system. SFC is essentially an aid to structure the applications by breaking the main
control application branch into smaller components and monitoring of their imple-
mentation. Its basis is the mathematical formalism of Petri nets (PNs), which allows
describing the processes in the form of bipartite directed graphs [10] (Fig. 5). The
graphical representation allows clearly defining the application running progress, and
allows the design of serial and parallel application processes.

The operation of any Tj transition within the marked network leads to a change in
the marking. Running of the smaller program components (e.g., processes or branches)
depends both on conditions determined by the application, and on behavior of the input
and output data. The components are programmed directly in one of the other IEC
61131-3 languages. The processes with a stepper behavior are particularly suitable for
programming in SFC.

The first level of structuring in SFC is a network made up of elements called steps
and statuses. Step can be active or inactive. When it is active, the required commands
are run until the step becomes inactive. The step status substitution is determined by the

240 Y. Kovalenko

Pl Tl pp T2 p3 M(P2)=1 T3
O Tl
P2
M(P1)= ™
P4 M(P4)=1
pi G 3 P3
T4
M(P3)=1
a) b)

Fig. 5. Process presentation in the form of bipartite graphs. Where: P; is positions, T; is
transitions, M(P;) - markings

transition status, which is a logical expression. If the transition condition becomes true,
the next step becomes active and the previous step is deactivated. With the transition
change, the “active” property moves from an active step to its successor or successors;
such movement forms a network. This property may be divided when the parallel
branches are run, and then restored after completion of the branch run.

IEC-actions in steps have special classifiers determining how they are run within
the step: cyclic running (N), a one-time running (P), etc. There is a total of nine
qualifiers, including the classifiers with saving (S), delayed (D) and time-limited
(L) actions (Fig. 6).

Start

Step 1

Step 2.1 Step 2.2

Stop

Fig. 6. A set of Sequential Functional Chart network steps combined by transitions

A Programmable Logic Controller (PLC) 241

3 Results and Discussion

After analysis of the programming languages, we conclude that the controlling systems
operating in real-time logic processes can be programmed on SFC. LD, FBD and IL are
the programming languages suitable for formulation of the main action and for oper-
ating systems, which can be described by simple logical operations or logic signals. ST
language can be used mainly to create the software modules with a mathematical
context, for example, to describe the control algorithms. Perhaps, the most powerful
and versatile tool from the IEC 61131-3 languages is a SFC + ST combination. SFC
language graphics facilitates the language learning. The presence of common roots with
Petri nets partially eliminated the synchronization and parallelism issues. Programming
of operations with analog and logic variables is comfortable enough due to the use of
the textual Pascal-like ST language. The command flow control does not cause
problems. A significant advantage of the approach is event-based nature, naturally
supported through a “step-transition” mechanism. The application debugging can be
facilitated by visual tracing of the control flow. The weaknesses of SFC language (like
Petri nets) is an abstraction and structuring [11], which, as in previous cases, adversely
affects the difficulties of programmable algorithms and their quality (reliability and
maintainability). SFC + ST approach is inferior to FBD and LD in terms of convenient
programming of the algorithm parallelism and thus is more suitable to program the
linear algorithmic sequences.

4 Conclusions

A typical example of use is combined algorithms of the logic and analog control. The
programming experts combining the knowledge of programming languages and
algorithmic peculiarities of the automated process are proposed to be the users [9].

Where the PLC or PLC software permits, all created applications or application
parts have to be simulated before launch. This allows detecting and eliminating the
errors at an early stage, which would then reduce the complexity and cost of such
applications.

References

1. Korobiichuk, I.: Mathematical model of precision sensor for an automatic weapons stabilizer
system. Measurement 89, 151-158 (2016)

2. Korobiichuk, I., Podchashinskiy, Y., Shapovalova, O., Shadura, V., Nowicki, M., Szewczyk,
R.: Precision increase in automated digital image measurement systems of geometric values.
In: Jablonski, R., Brezina, T. (eds.) Advanced Mechatronics Solutions. AISC, vol. 393,
pp- 335-340. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23923-1_51

3. Korobiichuk, I., Shostachuk, A., Shostachuk, D., Shadura, V., Nowicki, M., Szewczyk, R.:
Development of the operation algorithm for a automated system assessing the high-rise
building. Solid State Phenomena 251, 230-236

http://dx.doi.org/10.1007/978-3-319-23923-1_51

242

11.

Y. Kovalenko

. Bonfatti, F., Monari, P.D., Sampieri, U.: [EC 1131-3 programming methodology. Software

engineering methods for industrial automated systems. CJ International Editions (1997).
ISBN 2-9511585-0-5

. Ohman, M., Johansson, S., Arzén, K.E.: Implementation aspects of the PLC standard IEC

1131-3. IFAC Control Engineering Practice 123 6(4), 547-555 (1998)

. Lewis, R.-W.: Programming industrial control systems using IEC 113-3 Revised edition, 329

p. The Institution of Electrical Engineers, London, UK (1998)

. Barbosa, H., Déharbe, D.: Formal verification of PLC programs using the B method. In:

Proceedings of the Third International Conference on Abstract State Machines, Alloy, B,
VDM, and Z, pp. 353-356 (2012)

. De Smet, O., Couffin, S., Rossi, O., Canet, G., Lesage, J.-J., Schnoebelen, Ph., Papini, H.:

Safe Programming of PLC Using Formal Verification Methods. Ecole Normale Suprieure,
Chaire De Fabrications, France (2000)

. IEC 61131-3:2013 Programmable controllers - Part 3: Programming languages
. Anisimov, N.A., Golenkov, E.A., Kharitonov, D.I.: Composition approach to development

of parallel and distributed systems based on Petri nets. Programming (6) (2001)
Ziubin, V.E.: PLC programming: IEC 61131-3 languages and possible alternatives. Ind.
ACSs Control. (11), 31-35 (2005)

	A Programmable Logic Controller (PLC); Programming Language Structural Analysis
	Abstract
	1 Introduction
	2 Materials and Methods
	3 Results and Discussion
	4 Conclusions
	References

