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Abstract. In video encoder, the soft-decision quantization (SDQ) achieves
superior coding performance however suffering from deadly sequential
processing dependency. Comparatively, deadzone hard-decision quantization
(HDQ) is dependency-free and suitable for hardwired parallel processing,
however suffering from non-negligible coding performance degradation. In this
paper, a content-adaptive HDQ algorithm is proposed by employing an adaptive
deadzone offset. The contributions of this paper are characterized as follows. On
one hand, this work applies offline statistic analysis, Bayes method, to explore
the distribution characteristics of the desired deadzone offsets obtained from huge
amounts of samples by fully simulating the behaviour of SDQ, and then derives
adaptive deadzone offset model by maximizing the probability of right judgment
of offset-induced rounding in HDQ. On the other hand, the deadzone offset model
is constructed heuristically as functions of quantization step size, the distribution
parameter of DCT coefficients and the number of possible significant coefficients
prior to the current coefficient in the block. Simulation results verify that the
proposed adaptive HDQ algorithm, in comparison with fixed-offset HDQ,
achieves 0.08836 dB PSNR increment and 3.097 % bit rate saving with almost
negligible complexity increase. In addition, this work, in comparison with the
SDQ, achieves less than 0.03921 dB PSNR loss and 1.51 % bit rate increment.
The proposed HDQ is well-suited for hardware encoder design.

Keywords: Video coding · Soft Decision Quantization · Hard Decision
Quantization

1 Introduction

In MPEG-like hybrid video encoders, quantization plays an overwhelmingly important
role in coding rate-distortion (RD) performance. It not only determines the quantization
distortion, but also has prominent impacts on the consumed coding rate. Since video
coding standards only define the inverse quantization, many research works have
explored how to efficiently quantize discrete cosine transform (DCT) coefficients while
remaining compliant with respective video coding standards [1].

In early video codecs, DCT coefficients were quantized generally using a uniform
scalar quantizer (USQ). Later on, a USQ with deadzone (USQ + DZ) was adopted in
MPEG-4 and early H.264/AVC reference codes [1]. In USQ + DZ, fixed rounding offsets
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are usually employed and determined in a heuristic and empirical way. Coefficient-inde‐
pendent rounding based quantization in USQ and USQ + DZ is the so-called hard-deci‐
sion quantization (HDQ), in which correlation among adjacent coefficients and their
effects on quantization are not considered. The coefficient-wise processing in HDQ makes
it friendly to hardwired video coder with parallel implementation. However, HDQ even
deadzone HDQ both suffer from non-negligible rate distortion performance loss.

Soft decision quantization (SDQ) is a better alternative achieving superior RD
performance contributed by full utilization of inter-coefficient correlation. A popular
SDQ implementation is Viterbi trellis search [3], which was implemented for H.263+ 
[2] and for H.264/AVC [3]. However, running dynamic programming over the full trellis
graph is computationally expensive. To get around this, in H.264/AVC and HEVC
reference softwares JM and HM, a simplified suboptimal SDQ, called rate distortion
optimized quantization (RDOQ) [4], was adopted. RDOQ is a simplified version of
SDQ, implemented by employing dynamic programming in a similar way. SDQ
achieves superior coding RD performance, approximately 6 ~ 8% bit rate saving as
opposed to HDQ. In SDQ and RDOQ, multiple candidate results of quantization are
competed and chosen using rate distortion optimization. As a result, heavy computation
burden is one major challenge for SDQ and RDOQ. Moreover, dynamic programming
based path search in SDQ results in severe sequential dependency, and serial processing
in CABAC aggravates the data dependency in CABAC based SDQ [5].

Accounting for this issue, some literatures had made meaningful explorations to
alleviate the computation burden of the SDQ [5–7]. These works decrease the compu‐
tation of SDQ by decreasing the candidates of quantized results [5], employing fast
computation for rate distortion of candidate coefficient levels [6, 7], and using fast bit
rate evaluation [7]. These methods alleviate the computation burden in SDQ to certain
extent, however they still suffer from some sequential dependency, or mainly designed
for soft-targeted video coder optimization. In comparison, data dependency does not
appear in the HDQ, such as the prevalent deadzone based HDQ. Coefficient level parallel
processing can be achieved in coefficient-wise HDQ with obviously increased
throughput by employing hardwired pipelining. As a result, HDQ is well-suited for
hardwired video coder in terms of satisfactory throughput efficiency. Unfortunately,
there is a nontrivial rate distortion performance gap between HDQ and SDQ.

In summary, it is meaningful to further improve the RD performance of HDQ for
hardwired video coder, taking the inter-coefficient correlation into account by simulating
the behavior pattern of SDQ. On one hand, the distribution characteristics of DCT
coefficients have great influence on quantization results, and thus DCT distribution
parameter and quantization parameter are taken as consideration factor from the view‐
point of macro level. On the other hand, context modelling is used in CABAC and the
number of possible significant coefficients plays important role in determining the quan‐
tization results. From the viewpoint of micro level manipulation, the deadzone offset is
supposed to be tuned taking inter-coefficient influence into consideration according to
the number of the possible significant coefficients in the block.

According to the above analysis, this paper aims to optimize rounding offset model
for deadzone HDQ to improve the coding RD performance. Bayes classification method
is used to derive the coefficient-wise deadzone offset model which is described as
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functions of these three parameters, i.e. the quantization parameter, the parameter of
component-wise DCT coefficients, and the number of possible significant coefficients
prior to the current coefficient. In addition, the behaviour pattern of SDQ is analyzed
and used as guidance for offset modelling to improve the RD performance of the
proposed offset model based HDQ. This algorithm that proposed in this paper is well-
suited for hardware coder design and achieves superior RD performance compared with
deadzone HDQ thanks to considering the inter-coefficient correlation by
offline methods to analyze the number of significant coefficients in the block.

The rest of this paper is organized as follows. Problem formulation is given in
Sect. 2. The proposed HDQ algorithm is given in Sect. 3. Section 4 gives the experi‐
mental results. Finally, Sect. 5 concludes the paper.

2 Background and Problem Formulation

2.1 Difference Between Deadzone HDQ and SDQ

In CABAC-based SDQ, the output level of one coefficient not only depends on the levels
of the anterior coefficients, i.e. backward dependency, but has influence on the following
coefficients, i.e. forward influence. Intrinsically, dynamic programming such as Viterbi
search is desired to track the inter-coefficient dependency in SDQ [5]. There are multiple
sequentially scanned coefficients in one block, and each coefficient is described as a
trellis stage in the graph [5]. There are multiple candidate quantized levels to be checked
at each stage in SDQ, and they are described as candidate context states. The sequential
coefficients and their candidate quantized levels form a trellis graph, and so the SDQ is
actually a problem of searching for a path in the graph with minimum coding cost. The
optimal path is composed by multiple adjacent branches, one survivor branch at one
stage. The SDQ algorithm achieves superior coding performance, approximately 6 ~ 8 %
bit rate saving, at the cost of high dependency caused by Viterbi algorithm and CABAC.

The HDQ algorithm is coefficient-wise based on memoryless source assumption, i.e.
there is no dependency among adjacent coefficients. As a result, HDQ is well-suited for
parallelism implementation. Compared with USQ, the USQ + DZ achieves considerable
RD performance improvement by employing the statistical characteristics of entropy
coding [1]. However, fixed offsets, 1/3 and 1/6 for intra and inter modes, are used in
deadzone HDQ in H.264 JM and HEVC HM codecs [8]. Memoryless source assumption
does not hold for the context based entropy coding, such as CABAC. It means that the
fixed-offset HDQ is not fully optimized compared with optimal SDQ in terms of rate
distortion optimization.

It is meaningful to excavate the inner characteristics of SDQ as guidance to propose
adaptive offset model for new deadzone HDQ. The goal is to approach the RD perform‐
ance of the SDQ and maintain the advantage of coefficient-wise processing in HDQ.
The source distribution parameter and inter-coefficient influence will be taken into
consideration.
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2.2 Challenge in Adaptive Coefficient-wise HDQ

A deadzone offset δ is employed to adjust the quantization result φ in deadzone HDQ,
and that can be described as follows.

𝜙 = floor(
|u|
q

+ 𝛿) (1)

Here, q is the quantization step size determined by the quantization parameter Qp. In H.
264/AVC and HEVC, q is equal to pow(2,(Qp-4)/6). floor is the rounding operator. u is
the DCT coefficients to be quantized. | | is the absolute value of the operation. There are
several factors that should be considered in designing optimal coefficient-wise deadzone
HDQ.

Firstly, the deadzone offset δ in HDQ is supposed to be determined in a coefficient-
wise way. In general, Laplacian distribution is used to model the DCT coefficient, and
the probability density function is described as follows.

fi =
1

2Λi

e
−

|ui|
Λi and Λi =

𝜎i√
2
=

1
n

n∑
j=1

|uij| (2)

Ʌi and 𝜎i are the model parameter and the standard deviation of the ith frequency
component. uij is the DCT coefficient and uij is the jth DCT coefficient of the ith frequency
component. Based on Laplacian DCT distribution model, the deadzone offset δ of HDQ
is typically determined as follows using rate distortion optimization [1].

𝛿 =
q

2
−

𝜆

2 ln 2 × Λ
(3)

Here, λ is Lagrange multiplier and equals to ln2(power(q-δ,2)-power(δ,2))/q in [1].
However, there is an egg-and-chicken problem because the parameters λ and δ are
dependent with each other. The coefficient-wise model in (3) is built in a macroscopic
way based on statistical analysis. However, the SDQ algorithm manipulates the quan‐
tization result in a microscopic way, specifically according to the probabilities of the
contexts in CABAC. Moreover, based on λ equals to ln2(power(q-δ,2)-power(δ,2))/q,
coefficient level solutions are theoretically desired for Eq. (3), which is not easy to be
solved.

Thirdly, the adaptive deadzone offset in Eq. (3), derived from coefficient-level
models without considering inter-coefficient influence, will unavoidably suffer from RD
performance degradation. In CABAC, coding bit of a quantization coefficient is deter‐
mined by the probability state of the context, which is modelled according to the numbers
of coefficients with intensity equal to 1 and larger than 1, i.e. Numeq1 and NumLg1,
prior to the current coefficient. Under the criterion of rate distortion optimization, SDQ
considers the inter-coefficient correlation and adjusts the quantization coefficient level.
The code rate of the quantization coefficient is related to the number of nonzero (signif‐
icant) quantization coefficients which are in current block and in the adjacent block.
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Therefore, this paper take this factor into consideration in a micro way, i.e.
employing the number of significant coefficients in one block in determining the dead‐
zone offset and quantization results. However, the number of significant coefficient of
a certain coefficient is not available before the SDQ algorithm finish the trellis search.
Thus, it is not possible to measure the accurate number of significant coefficient in
deadzone HDQ. By striking a compromise, we define the number of possible significant
coefficients for the i-th coefficient ηi according to the HDQ quantization results as
follows.

𝜂i =

N∑
j=i+1

𝜛(|ui|−q

2
) and 𝜛(x) = {

1 ; x>0
0 ; x≤0 (4)

When the amplitude of the DCT coefficient is larger than q/2, the coefficient is considered
as a possible significant coefficient. ηi is the number of possible significant coefficients
prior the current i-th coefficient. For all coefficients on one block, their ηi can be esti‐
mated in parallel due to the coefficient-wise processing in HDQ as shown in (4). Suppose
N is the number of the last DCT coefficient in the adjacent block, so ηi is an integer
ranging from 0 to N-i.

Here we first quantitatively evaluate the degree of which ηi affect the quantization
result of the current i-th coefficient. We use φHDQ(u) and φSDQ(u) to distinguish the quan‐
tization amplitude of u in HDQ and SDQ respectively. There are two possible situations
according to the condition whether φHDQ(u) is equal with φSDQ(u) or not, i.e. φHDQ = φSDQ
and φHDQ ≠ φSDQ. Taking 4 × 4 transform block as an example, the statistical distribution
of ηi of sequences in the Table 1 is counted respectively. Figure 1 shows these sequences’
average results of the statistical distribution of ηi in the case of two cases. We can make
comparison between the ηi results of two cases, i.e. φHDQ = φSDQ and φHDQ ≠ φSDQ, as
shown and in Fig. 1. The result shows that the distribution of ηi is more dispersed when

Table 1. The BD-PSNR loss of the deadzone HDQ algorithms using fixed-offset and the
proposed adaptive offset compared with optimal SDQ

Sequences
BD-PSNR (dB) BD-RATE (%)

Sequences
BD-PSNR (dB) BD-RATE (%)

fixed-offset Proposed fixed-offset Proposed fixed-offset Proposed fixed-offset Proposed

        City -0.1123 -0.0809 2.7651 2.0926 SlideShow -0.2011 -0.0951 3.1697 1.5151

Harbour
-0.1505 -0.1145 3.2987 2.4996 720p

Average
-0.1146 -0.0429 2.9833 1.1345

Crew
-0.1396 -0.0442 1.3462 0.7649 Proposed vs

fixed-offset 0.0717 -1.8488

ICE -0.0711 -0.0350 1.9779 0.9418 Kimono1 -0.1675 -0.0186 6.1667 0.8812

Soccer -0.1675 -0.0807 3.7417 1.7785 ParkScene -0.0647 -0.0468 2.0155 1.4357

D1            
Average

-0.1282 -0.0710 2.6259 1.6155
riverbed -0.1542 -0.0093 3.1231 0.2450

Proposed vs 
fixed-offset 0.0572 -1.2968 Basketball -0.0881 -0.0542 4.1461 2.6046

Cyclists -0.0627 -0.0353 2.3778 1.3271 Cactus -0.0892 -0.0189 4.4226 0.3890

Harbour -0.1013 -0.0308 2.4938 0.9619 sunflower -0.2016 -0.0874 7.76895 3.5057

Optis -0.0759 -0.0079 2.6692 0.3354 1080p 
Average

-0.1275 -0.0392 4.6072 1.5102

Raven -0.132 -0.0455 4.2062 1.5328 Proposed vs 
fixed-offset 0.08836 -3.0969
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φHDQ = φSDQ, while ηi are mainly concentrated in the vicinity of zero comparatively in
the case of φHDQ ≠ φSDQ. This statistical differences of ηi in two opposite cases give us
the insight that ηi can be employed to aid in deriving deadzone offset model in terms of
simulating SDQ. This work will adjust the deadzone offset δ according to the actual
distribution of ηi to simulate the SDQ decision mechanism as far as possible.

Fig. 1. The histogram results of ηi in the case of φHDQ = φSDQ and φHDQ ≠ φSDQ

3 Improved HDQ with the Proposed Adaptive Deadzone Offset

3.1 Heuristic Deadzone Offset Modelling

As analyzed above, deadzone offset modelling is supposed to be built adaptively for
deadzone HDQ. Instead of RD model based derivation method shown in Eq. (3), this
work attempts to estimate optimal deadzone offset model by simulating the behavior of
SDQ and construct an adaptive deadzone offset model based on statistical analysis
method.

As shown in Fig. 2, statistical analysis and heuristic method for model derivation is
employed. We use the classification method in II-C to distinguish two kinds of situations.
The “inlier” and “outlier” which represent DCT coefficients samples of two categories
respectively, are collected for offline deadzone offset modeling. The “inlier” samples
are the DCT coefficients in the case of φHDQ = φSDQ; the “outlier” samples are the DCT
coefficients in the case of φHDQ ≠ φSDQ. Taking the inter-coefficient correlation into
consideration as analyzed in (3), the deadzone offset δ is related with the quantization
parameter Qp, the Laplacian distribution parameter Ʌ and the number of possible
significant coefficients prior to the current coefficient, i.e. ηi. As a result, the parameter
(Qp, Ʌ, η) combination samples of the “inlier” and “outlier” coefficients are collected
for statistical analysis. In addition, the “inlier” offset range (δmin1, δmax1) and the “outlier”
offset range (δmin2, δmax2), in which the resulting results of HDQ are equal to those of
SDQ of two kinds of samples, are also recorded simultaneously. These statistic samples
will be used for off-line offset modeling.
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“ inlier” and
“outlier”
samples

Off-line analysis and
Statistical modeling

δi =(Qp, i ,ηi )

Qp, i ,ηiδmin1, δmax1

δmin2, δmax2

Comparison between 
HDQ  and SDQ

Samples collection

Fig. 2. Heuristic deadzone offset model derivation.

3.2 Analysis on Optimal Offset Distribution

When the HDQ fails to track the optimality of SDQ, the quantizaton results of HDQ
will be different from those of SDQ, i.e. φHDQ ≠ φSDQ. In these samples, we find that the
probability of φHDQ(u) = φSDQ(u) + 1 is very close to 1, and this phenomenon can be
explained that smaller quantization level in SDQ, with changed level intensity equal to
1, will result in predominate rate saving, which is larger than the increased distortion.
The algorithm design of adaptive deadzone HDQ is just to find adaptive deadzone offset
(δbest) which is suitable for both of two kinds of samples.

The method of deriving the ranges of the possibly reasonable offsets is analyzed as
follows. A well-designed offset δ for deadzone HDQ may achieve right classification
with result identical with SDQ, or wrong classification with result differing from SDQ.
δbest will be determined from a great amount of samples using statistical analysis method,
i.e. Bayes method. Intuitively, we estimate appropriate deadzone offset range that can
make HDQ achieving the identical result as SDQ. The suitable deadzone offset ranges
of two cases are estimated respectively, and their upper and lower bounds of offset ranges
of two kinds of simples, i.e. (δmin1, δmax1,) and (δmin2, δmax2), are estimated as follows.

(𝛿min1, 𝛿max1) = arg
𝛿best

(floor(
|u|
q

+ 𝛿best) = 𝜙HDQ(u))

(𝛿min2, 𝛿max2) = arg
𝛿best

(floor(
|u|
q

+ 𝛿best) = 𝜙HDQ(u) − 1)
(5)

Here, φHDQ(u) = floor(|u|/q + 0.5) is HDQ quantization intensity. As for the “inlier”
samples, we get the possible range of the optimal δ under the constraint that floor(|u|/
q + δbest) is equal to φHDQ(u). As for the “outlier” samples, we get the possible range of
the optimal δ under the constraint that floor(|u|/q + δbest) is equal to φHDQ(u)-1. In a
word, we estimate the possible ranges of the optimal δ under the constraint of
φHDQ(u) = φSDQ(u) for both kinds of samples.

Offline statistic analysis is carried out using a great amount of two kinds of samples
and their offset ranges. Histogram based non-parametric analysis is employed to estimate
these two probability density function curves. The maximal possible solution range for
(δmin, δmax), i.e. (0,1), is partitioned into N segments, and the actual range (δmin, δmax) of
all samples are compared for grouping and classification respectively. Then, ranges
(δmin, δmax) of all samples are compared for classification respectively. If one segment
is within range (δmin, δmax), its histogram count θy(k) is increased by ζ(k). θy(k) is
expressed as follows.
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𝜃y(k) = 𝜃y(k) + 𝜁(k); if (
k − 1

N
, k

N
) ∈ (𝛿miny

, 𝛿maxy)

𝜃y(k) = 𝜃y(k); otherwise y = 1 or 2
(6)

In this work, different weight is used for histogram estimation accounting for statistical
characteristics. That is, different weight ζ(k) is sued for different each subsection for
δbest histogram statistical analysis. Gaussian function is used for modeling the weight of
each sub section (ζ(k)). Gaussian function based ζ(k) is employed and expressed as
follows.

𝜁(k) = 1
𝜎1 ×

√
2 × 𝜋

× e

(−

(k − 𝜇1)
2

2 × 𝜎2
1

)

and 𝜇1 =
𝛿max + 𝛿min

2
, 𝜎1 =

𝛿max − 𝛿min
𝛼

(7)

Here, α is equal to 6. The segment-wise histogram results of δbest, cnty(Qp,Ʌ) are
obtained independently in the case of different Qp and Ʌ. y = 1 and y = 2 correspond
to the “inlier” and “outlier” samples. It is well-known that Ʌ is related with the coefficient
position index (i). One example of cnty(Qp,Ʌ(i)) of different coefficients with two kinds
of samples is shown in Fig. 3.

Fig. 3. The histogram results of possible δbest cnt1(Qp,Ʌ) and cnt2(Qp,Ʌ)

3.3 The Adaptive Deadzone Offset Model

According to the statistical samples, we build an adaptive model δi = (Qp, Ʌi) using
heuristic method for deadzone offset. The model is constructed by maximizing the posi‐
tive judgment probability and minimizing the probability of wrong judgment. In fact,
θ1(k) and θ2(k) actually reflect the right classification probabilities of the “inlier” and
“outlier” coefficients. We perform normalization for the histogram results, θy(k), to
derive the condition probability py, i.e. p1(δ) and p2(δ) respectively. Therefore, δbest can
be determined by taking the peak value of the weighted histogram as shown in Eq. (8).
The schematic diagram and the actual statistics results are shown respectively in Fig. 4.

𝛿i = arg
𝛿i(Λi ,Qp)

max{p1(𝛿i) + p2(𝛿i)} (8)
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prob

δ

p1(δ) p2(δ)

Fig. 4. The sketch map of δbest and the statistical results of δbest

On the basis of the above model, we built a factor ϕ(ηi) which can adjust the deadzone
offset according to the number of possible significant coefficients in the adjacent block.
Here, i is the coefficient position index and the factor ϕ(ηi) is expressed as follows.

𝜑(𝜂i) = 𝛽 × arctan(𝜂i −
𝜂imax
𝛾

) and 𝜂imax = N − i (9)

Here, N is the number of the last DCT coefficient in the adjacent block. ηimax is equal to
N-i. We had evaluated the RD performance in the cases of different combinations
between (β, γ). The simulation results indicate that superior RD performance appear
when β is equal to -0.03 and γ is equal to 3, as shown in Fig. 5. Therefore, the adaptive
deadzone offset model with ηi is expressed as flowers.

𝛿
,
i = arg

𝛿i(Λi ,Qp)

max{p1(𝛿i) + p2(𝛿i)} + 𝜑(𝜂i) (10)

Fig. 5. The RD performance of different
combinations between β and γ

Fig. 6. The surf results of δbest

According to the method of modeling above, in the case of η1 = 10, one example of the
surf results of δ1, in the case of different combinations between Qp and Ʌ1, is shown in
Fig. 6.
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4 Experimental Results

The proposed adaptive offset model for deadzone HDQ is verified in H.264 and H.265
standards. The fixed-offset HDQ algorithm and the optimal SDQ are taken as the
performance comparision anchor. These quantization algorithms are applied in both the
final mode coding and the rate distortion optimized mode decision loop. Standard D1,
720p, and 1080p format video sequences are used for simulation. Rate control is turned
off, and the quantization parameters 22, 27, 32 and 37 are used for simulation, covering
low, medium and high bit rate applications. IPBBPBB GOP structure is used, and 100
frames are tested for all resolution video sequences. The PSNR degradation (BD-PSNR)
and rate increment percentage (BD-RATE) are used for performance comparison [8].

The rate distortion curves of the 1080p BasketballDrive sequence are taken as example
shown in Fig. 7. The anchor optimal SDQ, the fixed-offset deadzone HDQ, and the
proposed algorithm are compared. In addition, Table 1 gives the detailed BD-PSNR and
BD-RATE results [8]. Relatively, larger RD performance improvement is observed in
higher resolution video sequences. Intensive results show that the proposed algorithm only
has 0.03921 dB BD-PSNR loss on average, with 1.51 % average BD-RATE increment, in
comparison with the SDQ algorithm in the case of 1080p sequences. In addition, the
proposed algorithm achieves 0.08836 dB BD-PSNR improvement on average, with
3.097 % average rate saving (BD-RATE), in comparison with the fixed-offset deadzone
HDQ algorithm. The proposed adaptive offset HDQ algorithm is considerably superior than
the fixed-offset HDQ, and has close performance with the optimal SDQ algorithm.
Compared to the SDQ algorithm, the proposed algorithm has much smaller complexity and
is well-suited for hardwired video coder in terms of satisfactory throughput efficiency.

Fig. 7. The RD performance of three kinds of quantization algorithms.

As for complexity, the additional computation of the proposed algorithm, in compar‐
ison with the fixed-offset HDQ algorithm, is just simple function call as shown in
Eq. (10) or tabulation shown in Fig. 6, so it is almost ignorable.
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5 Conclusions

Sequential processing hinders soft-decision quantization (SDQ) from effective hardware
implementations, while hard-decision quantization (HDQ) suffers from obvious coding
performance loss compared with SDQ. Based on statistics analysis and heuristic model‐
ling, this paper proposes a content-adaptive deadzone quantizer to minimize the rate
distortion performance difference between the deadzone HDQ and SDQ. An adaptive
deadzone offset model is built according to the quantization parameter, the coefficient-
wise DCT distribution parameter, and the number of possible significant coefficients in
the block. Simulation results verify that the proposed adaptive HDQ algorithm, in
comparison with fixed-offset HDQ, achieves 0.08836 dB PSNR increment and 3.097 %
bit rate saving in 1080p sequences with almost negligible complexity increase. In addi‐
tion, this work, in comparison with the SDQ, achieves less than 0.03921 dB PSNR loss
and 1.51 % bit rate increment.
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