
Prototyping Methodology with Motion
Estimation Algorithm

Jinglin Zhang1, Jian Shang1, and Cong Bai2(B)

1 School of Atmospheric Science,
Nanjing University of Information Science and Technology, Nanjing, China

jinglin.zhang@nuist.edu.cn
2 The College of Computer Science, Zhejiang University of Technology,

Hangzhou, China
congbai@zjut.edu.cn

Abstract. With CPU, GPU and other hardware accelerators, heteroge-
neous systems can increase the computing performance in many domains
of general purpose computing. Open Computing Language (OpenCL) is
the first open and free standard for heterogeneous computing on multi
hardware platforms. In this paper, a parallelized Full Search Motion Esti-
mation (FSME) approach exploits the parallelism available in OpenCL-
supported devices and algorithm. Different from existing GPU-based ME
approach, the proposed approach is implemented on the heterogeneous
computing system which contains CPU and GPU. In the meantime,
we propose the prototyping framework directly generates the executable
code for target hardware from the high level description of applications,
and balances the workload distribution in the heterogeneous system. It
greatly reduces the development period of parallel programming and eas-
ily access the parallel computing without concentrating on the complex
kernel code.

1 Introduction

General-Purpose computing on Graphics Processing Units (GPGPU) is the tech-
nique of using a GPU, which typically handles computation only for computer
graphics, to perform computation across a variety of applications traditionally
handled by the CPU. Compute Unified Device Architecture (CUDA) is a paral-
lel computing platform and programming model created by NVIDIA and imple-
mented by the GPUs that they produce. Open Computing Language (OpenCL)
is a framework executing programs on heterogeneous platforms consisting of
CPUs, GPUs and other dedicated processors. It is also a good candidate in com-
parison with the CUDA approach specifically developed for GPU platforms of
NVIDIA.

Generally speaking, programming with GPU is one complex, error-prone and
time-consuming procedure comparing with sequential dataflow and program-
ming. For computer vision algorithms, there are various programming environ-
ments and languages of different platforms. So it is very hard to make one rapid
c© Springer International Publishing AG 2016
E. Chen et al. (Eds.): PCM 2016, Part I, LNCS 9916, pp. 338–344, 2016.
DOI: 10.1007/978-3-319-48890-5 33



Prototyping Methodology with Motion Estimation Algorithm 339

RVC-
CAL

DPN

Orcc

HMPP Preesm

PiSDF CC with HMPP 
directives

Compiler

OpenMP OpenCL
CUDA

Embedded
Runtime

Embedded 
C

High level
programming 

model

Intermediate level
programming 

model

Code executable
on hardware

image and video 
applications

Compiler

Prototyping 
tool

Target architecture

Fig. 1. The flowchart of proposed prototyping framework

development on various hardware accelerators like GPU. In general, there are
two ways to perform the code porting from sequential code to the code executable
on GPU. One is to manually write the kernel code of CUDA or OpenCL, which
redesigns and compiles the kernel code with the specified compiler. Another way
is to automatically generate code executable for hardware accelerators from the
high-level description of application with the aid of the prototyping framework.
Proposed prototyping framework consists of such three tools: Open Reconfig-
urable Video Coding Compiler (Orcc) [1], Parallel and Real-time Embedded
Executives Scheduling Method (Preesm) [2], and Hybrid Multicore Parallel Pro-
gramming (HMPP) [3] as shown in Fig. 1. As the high level programming model,
Orcc contains an Reconfigurable Video Coding(RVC)-CAL textual editor, a com-
pilation infrastructure, a simulator and a debugger which is proposed by IETR
of INSA-Rennes. Lots of works have been proposed with Orcc and many back-
ends are supported in Orcc like C, C++,VHDL, HMPP and so on [6–8,11].
As the intermediate level programming model, Preesm offers a fast prototyping
tool for parallel implementations used in many applications like LTE RACH-PD
algorithm. HMPP directive-based programming model is such a tool that offers
a powerful syntax to efficiently offload computations on hardware accelerators
and keeps the original C/C++ or Fortran codes [3–5,9,10].

In this paper, we evaluate the prototyping framework with the previous
Full Search ME method. We not only implement the ME method on the



340 J. Zhang et al.

heterogeneous system with one CPU and one GPU, but also find the balance to
distribute the workload in heterogeneous computing system. With the prototyp-
ing framework, we can generate code automatically and evaluate the performance
rapidly.

2 Full Search Motion Estimation Algorithm

Full Search motion estimation is to search the best candidate of macroblock
(MB) in the reference frame for the original macroblock in the current frame.
The detailed illustration is introduced in our previous research work [4]. The
following two subsection with Pseudo code: Algorithms 1 and 2 simply summarize
the procedure of the proposed ME algorithm, which is divided into two OpenCL
kernels. One is SADs computation; the other is SADs comparison for the best
SAD candidate.

SAD Computation. When an OpenCL program invokes a kernel, N work-
groups are enumerated and distributed as thread blocks to the multiprocessors
with available Compute Units of CPU and GPU. In kernel compute, all pixels of
current MB are transferred into local memory (local[256]) by the 256 work-items
in one work-group. One novelty of this paper is as follows. Until all these work-
items in the same work-group reach the synchronous point using barrier() func-
tion, all the 256 work-items continue transferring the 2304 pixels of search region
concerned of reference image into local memory (local ref [2304]). This differen-
tiates our approach from previous approaches of [12,13] and obtains better time
efficiency (speed-up). In their work, current MB is stored in local memory, but
the search region of reference frame still locates in the global memory, which
results in inevitable re-fetching from global memory with performance loss. At
the end, we adopt Full Search strategies to calculate the 1024 SAD candidates in
local memory, in order to avoid re-fetching from the global memory as presented
in Algorithm 1. All these 1024 SAD candidates are transferred back to global
memory (cost[1024]) for SAD comparison.

SAD Comparison. In kernel compare, we search the best candidate with the
minimum SAD from cost[1024] using 256 work-items as presented in Algorithm 2.
First, we transfer the cost[1024] into the local memory. Then, each work-item
compares 4 candidates with a stride to find the minimum value. We employ the
parallel reduction method [14] which adopts x times iterations (2x = 256, x = 8)
to find the candidate with the minimum SAD value from the remaining 256
candidates, also to obtain the final MV.

2.1 Experiments Discussion

We evaluate the performance of the proposed ME algorithm with manual
OpenCL kernels in such hardware HASEE environment: Intel I7 2630qm



Prototyping Methodology with Motion Estimation Algorithm 341

Algorithm 1. kernel compute()
input : Current and reference frames
output: SAD costs candidates with offset in the x and y axis

1 Initialize the local memory space for macroblocks and search window;
2 for n = 0;n <number of macroblocks/number of CUs;n + + do
3 for m = 0;m < 4;m + + do
4 256 work-items in one work-group calculate 256 SAD candidates

simultaneously;

5 end

6 end
7 return (SAD, MV)

Algorithm 2. kernel compare()
input : SAD costs candidates with offset in the x and y axis
output: motion vector with the minimum SAD cost

1 Initialize the local memory for 1024 costs candidates of each blocks;
2 Each work-items compares 4 SAD candidates and return the minimum;
3 for n = 0;n < log2 256;n + + do
4 Parallel reduction for the minimum SAD, half number of work-items

compare the adjacent data and return the minimum data to next iteration;

5 end
6 return MV with the minimum SAD

(2.8 GHz), NVIDIA GT540m. We compare the performance of GPU-based
FSME implementation and available state-of-the-art fast ME algorithms. To
the best of our knowledge, there are two criterions of evaluation: time efficiency,
and matching accuracy. Our experimental results mainly focus on PSNR.

The PSNR is defined as:

psnr = 10 · log10(width× height× 255 × 255/sse) (1)

sse =

sum∑

n=0

blocksize∑

i=0

blocksize∑

j=0

(currentframe(i, j) − refframe(i + dx, j + dy))2 (2)

where sse is the error sum of square, sum is the total number of macroblocks in
one frame, and (dx, dy) is the calculated motion vector. Proposed approach has
faster speed and better accuracy than the state-of-the-art fast ME methods.

3 Heterogeneous Parallel Computing with OpenCL

Besides of manually writing the kernel code of OpenCL, we target to paral-
lel computing with the aid of prototyping framework. Based on our previous
research on motion estimation, we describe the proposed motion estimation app-
roach with one high level description (RVC-CAL). There are two branches in our



342 J. Zhang et al.

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00

FS OCL
opt

4SS CDHS ARPS

CIF1 (Forman) 29.13 27.33 27.15 27.60
4CIF(CITY) 24.44 23.21 23.03 23.11
720P(TER) 37.70 33.46 33.57 33.59

db

PSNR

Fig. 2. PSNR comparison of specified state-of-the-art fast ME algorithms

Algorithm 3. HMPP Transformation()
1 #pragma hmpp motion estimation codelet, target=CUDA;
2 Definition of function motion estimation();
3 ...;
4 Main(argc, argv);
5 #pragma hmpp motion estimation callsite;
6 Function call of motion estimation();

rapid prototyping framework, one branch is RV C−CAL → Orcc → HMPP →
GPU(OpenCL/CUDA), and another one is RV C−CAL → Orcc → Preesm →
DSP/ARM(EmbeddedC) as shown in Fig. 1: rapid prototyping framework. In
this paper, we choose the first branch to generate and verify C/OpenCL/CUDA
implementation on heterogeneous platforms such as multi-core CPU and GPU
platforms respectively. With the HMPP-backend of Orcc, we obtain the C code
with HMPP directives from the high level description. Then the HMPP compiler
will automatically generate the OpenCL/CUDA kernel code. Our prototyping
methodology framework can greatly simplify the procedure of implementation
target to hardware devices (Fig. 2).

In the aforementioned discussion, there are paired directives of HMPP:
Codelet and Callsite. Algorithm 3 presents the pseudo-code of default HMPP
Transformation. Using simple paired directives, HMPP can replace the complex
procedure of manually writing the CUDA/OpenCL kernel code. As shown in
the above sample code, the codelet is the routine implementation for hardware
accelerator and the callsite is the routine invocation of ME function on hard-
ware. When we compile the sample code with HMPP, we can obtain the .cu
or .cl kernel of proposed method which targets to GPUs. Instead of manually
designing the CUDA/OpenCL kernel, HMPP greatly reduces the development
period with GPU and CPU device.

The Reconfigurable Video Coding (RVC) [15] defines a set of standard coding
techniques called Functional Units (FUs). A FU is described with a portable,



Prototyping Methodology with Motion Estimation Algorithm 343

mm
Fig. 3. The dataflow diagram of proposed ME approach

platform-independent language called RVC-CAL. It is one high level language of
description which is designed to describe the reconfigure video coding standard.
Now RVC-CAL is not only used in video coding, but also in some image and
video processing algorithms, like motion estimation and stereo matching [4]. RVC
defines a XML-based format called FU Network Language (FNL) that is used
for the description of networks, also named the XML Dataflow Format (XDF).
The Model of Computation defines the behavior of Full Search ME as a dataflow
graph shown in Fig. 3.

In the block diagram of the motion estimation, the block “source” indicates the
function of load frame, a FU that loads video frames; the block “ExtractYRef”
and “ExtactY” indicate the function of extractY, a FU that extracts Y chan-
nel from the current and reference frames of YUV format video sequence; the
block “Search FS” indicates the function of fullSearchME, a FU that does the Full
Search motion estimation; the block “ShowVector” indicates the function of dis-
play, a FU that shows the calculated motion vectors. With the high level descrip-
tion of applications, the prototyping framework can directly and rapidly gener-
ate the target code like OpenCL/CUDA for heterogeneous systems, which greatly
reduces the development period of parallel programming and easily accesses the
parallel computing without concentrating on the complex kernel code.

4 Conclusion

We introduce one prototyping framework to implement the proposed ME
method, and evaluate the prototyping methodology. Experimental results show
that, our implementation has better performance than other GPU-based FSME
implementations. One basic method is introduced to find the balance of workload
on the heterogeneous parallel system with OpenCL. Additionally, we have found
the accurate method to distribute the workload in video applications based on
the heterogeneous system. It is also the first prototyping methodology gener-
ating target code for OpenCL-supported device from the high level description
(different with other code generator like OpenACC), which greatly reduces the
development period of parallel programming and easily accesses the parallel
computing without concentrating on the complex kernel code.



344 J. Zhang et al.

Acknowledgements. This work was carried out with the Scientific Research Founda-
tion (s8113055001) of Nanjing University of Information Science & Technology, Scien-
tific Research Foundation (BK20150931) of JiangSu Province and Special Program for
Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the sec-
ond phase). The work of Cong Bai is funded by Natural Science Foundation of China
under Grant No. 61502424, 61402415, U1509207 and 61325019, Zhejiang Provincial
Natural Science Foundation of China under Grant No. LY15F020028, LY15F030014,
LY16F020033 and Zhejiang University of Technology under Grant No. 2014XZ006. The
authors would like to thank the anonymous reviewers and the associate editor.

References

1. IETR, Orcc. http://orcc.sourceforge.net/
2. IETR, Preesm. http://preesm.sourceforge.net/website/
3. CAPS, Hybrid multicore parallel programming (HMPP). http://www.

caps-entreprise.com/technology/hmpp/
4. Zhang, J., Nezan, J.-F., Cousin, J.-G.: Implementation of stereo matching using a

high level compiler for parallel computing acceleration. In: 27th Image and Vision
Computing New Zealand, pp. 279–283 (2012)

5. Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning
a high-level language targeted to GPU codes. In: Proceedings of Innovative Parallel
Computing, pp. 1–10 (2012)

6. Gorin, J., Wipliez, M., Prêteux, F., Raulet, M.: LLVM-based and scalable MPEG-
RVC decoder. J. Real-Time Image Process 6(1), 59–70 (2011)

7. Gu, R., Janneck, J.W., Bhattacharyya, S.S., Raulet, M., Wipliez, M., Plishker, W.:
Exploring the concurrency of an MPEG RVC decoder based on dataflow program
analysis. IEEE Trans. Circuits Syst. Video Technol. 19(11), 1646–1657 (2009)

8. Zhang, J., Bai, C., Nezan, J.F.: Joint motion model for local stereo video-matching
method. Opt. Eng. 54(12), 123108.1–123108.10 (2015)

9. Wang, M., Hong, R., Yuan, X.-T., Yan, S., Chua, T.-S.: Movie2Comics: towards a
lively video content presentation. IEEE Trans. Multimedia 14(3), 858–870 (2012)

10. Wang, M., Hong, R., Li, G., Zha, Z.-J., Yan, S., Chua, T.-S.: Event driven web
video summarization by tag localization and key-shot identification. IEEE Trans.
Multimedia 14(4), 975–985 (2012)

11. Janneck, J.W., Miller, I.D., Parlour, D.B., Roquier, G., Wipliez, M., Raulet, M.:
Synthesizing hardware from dataflow programs. J. Signal Process. Syst. 63(2),
241–249 (2011)

12. Lee, C.-Y.: Multi-pass, frame parallel algorithms of motion estimation in
H.264/AVC for generic GPU. In: IEEE International Conference on Multimedia
and Expo, pp. 1603–1606 (2007)

13. Chen, W.-N.: H.264/AVC motion estimation implementation on compute unified
device architecture (CUDA). In: IEEE International Conference on Multimedia
and Expo, pp. 697–700 (2008)

14. NVIDIA, OpenCL Programming for the CUDA Architecture, v2.3
15. Mattavelli, M., Amer, I., Raulet, M.: The reconfigurable video coding standard

[standards in a nutshell]. IEEE Signal Process. Mag. 27(3), 159–167 (2010)

http://orcc.sourceforge.net/
http://preesm.sourceforge.net/website/
http://www.caps-entreprise.com/technology/hmpp/
http://www.caps-entreprise.com/technology/hmpp/

	Prototyping Methodology with Motion Estimation Algorithm
	1 Introduction
	2 Full Search Motion Estimation Algorithm
	2.1 Experiments Discussion

	3 Heterogeneous Parallel Computing with OpenCL
	4 Conclusion
	References


