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Abstract. Facial landmark localization is a very challenging research
task. The localization accuracy of landmarks on separate facial parts
differ greatly due to texture and shape, however most existing methods
fail to consider the part location of landmarks. To solve this problem,
we propose a novel end-to-end regression framework using deep con-
volutional neural network (CNN). Our deep architecture first encodes
the image into feature maps shared by all the landmarks. Then, these
features are sent into two independent sub-network modules to regress
contour landmarks and inner landmarks, respectively. Extensive evalua-
tions conducted on 300-W benchmark dataset demonstrate the proposed
deep framework achieves state-of-the-art results.
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1 Introduction

Facial landmark localization is to automatically localize the facial key points
including eyes, mouth, nose and other points on the face cheek. Due to its rel-
evance to many facial analysis tasks like face recognition, face attribute analy-
sis [10], 3D face modeling and etc., facial landmark localization has attracted
increasing interests in the past years.

However, in an uncontrolled setting, face is likely to have large out-of-plane
tilting, occlusion, illumination and expression variations. Facial landmark local-
ization remains a challenging problem.

In general, existing methods to locate the facial landmarks can be divided into
three categories: the first category is the ASM [6] and AAM [5] based methods,
which fit a generative model by global facial appearance. However, these methods
require expensive iterative steps and rely on good initializations. The mean shape
is often used as the initialization, which may be far from the target position and
hence inaccurate.

The second category is cascade regression based methods. The cascade regres-
sion framework has been proposed in recent works [17], which tries to estimate
the facial landmark positions by a sequence of regression models. These methods
obtain the coarse location first, and the following steps are to refine the initial
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estimate, yielding more accurate results. Sun [13] proposed three-level cascaded
deep convolutional networks. Zhou [19] designed a four-level coarse-to-fine net-
work cascade to spread the network complexity and training burden of tradi-
tional convolutional networks. However these methods need to train individual
systems for each group of the landmarks, the computational burden grows pro-
portional to the group numbers and cascade levels. For example, this cascaded
CNN method [13] needs to train 23 individual CNN networks.

Recently, a new framework based on multi-tasking has been proposed. The
multi-task framework leverages other prior facial information like pose to assist
landmark localization. Zhang [18] showed that learning the facial landmark local-
ization task together with some correlated tasks, e.g., smile estimation would be
beneficial. Yang [16] showed prior 3D head pose information will improve facial
landmark localization accuracy. However these methods require auxiliary labels
beyond landmarks and ignore the fact that landmarks on different facial parts
have unbalanced localization difficulties. For instance, the detection of a mouth
corner would be easy because there is abundant local information to capture. In
contrast, the exact position of a landmark on the cheek is difficult to decide. As
a consequence, it would be hard to optimize all the landmarks just in a single
stage.

In this paper, we propose a novel end-to-end regression structure using deep
convolutional neural network (CNN). Contrary to others, our method does not
involve multiple individual models or require auxiliary labels. More importantly,
the framework treats landmarks on different facial part differently which helps
to learn discriminative features.

Our deep architecture first encodes the image into the feature maps shared by
all the landmarks. Then, these shared features are sent into two individual sub-
network modules to regress contour part landmarks and inner part landmarks
respectively. The proposed method is called Part-Aware Convolutional Neural
Network (PA-CNN).

To sum up, our main contributions are four-fold:
(1) We propose a novel end-to-end regression CNN model for facial landmark

localization by incorporating a contour landmark sub-network and an inner land-
mark sub-network into a unified architecture.

(2) We clarify that all the landmarks sharing low level convolutional fea-
tures and being independent in the latter layers can improve the accuracy and
robustness.

(3) We demonstrate what the sub-network learns by visualizing intermediate
layer activations.

(4) Finally, we show that the proposed network achieves state-of-the-art
result on the 300-W [12] benchmark.

2 The Proposed Method

We will demonstrate our method in this section, describe the method in detail
in Sect. 2.1 and analyze how to optimize our method in Sect. 2.2.
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2.1 Architecture of PA-CNN

The proposed Part-Aware CNN (PA-CNN) framework integrates a contour land-
mark sub-network and an inner landmark sub-network, which handles the land-
marks on different facial parts. Figure 1 illustrates the architecture of PA-CNN
in detail. We divide the total 68 landmarks into 2 categories because of the dif-
ference in texture and shape. The inner landmark denotes the 51 landmarks for
eyebrows, eyes, nose and mouth. The contour landmark is other 17 landmarks
on the face contour.

Fig. 1. PA-CNN network structure. This network structure uses cropped face detection
color image as input. After four shared convolutional layers, the network branches
into two sub-networks to localize contour landmarks and inner landmarks respectively.
Those sub-networks contain one convolutional layer and three fully connected layers.

The PA-CNN uses cropped face color image as input, then following 4 convo-
lutional layers and 2 pooling layers extract feature maps. In these stages, all the
landmarks share the same weights. We have two concerns in designing bottom
sharing convolutional layers. First, all the landmarks can incorporate general
characteristics. By sharing input image and several convolutional layers, the
context over the face can be utilized to locate each landmark. At the same time,
all landmarks are implicitly encoded the geometric constraints. Second, sharing
bottom layers makes our model time efficiency. In the early stage of the network,
each layer extracts low level features. These features can be shared all across the
face. If we use individual models, one for predicting 17 contour landmarks and
another for predicting 51 inner landmarks, similar convolution modules need to
densely convolve the entire image twice, it would be very time consuming.

After shared layers, the proposed network branches into two sub-networks.
Each of the sub-networks takes the feature maps of the last shared convolutional
layer as input, then through one convolutional layer and two 4096 dimension
fully connected layers. For the contour landmark sub-network, the dimension of
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the last fully connected layer is 34 because contour sub-network produces 17
landmarks and each landmark has x, y coordinates. The dimension of inner sub-
network’s last layer is calculated in the same way. The main concern of designing
sub-networks is to impose our model to be specialized for specific landmarks. As
inner landmarks and contour landmarks have unbalanced localization difficulties,
learning to detect contour landmarks and inner landmarks respectively makes
our model concentrate on the corresponding parts on the face. The integration
of two sub-networks enables our PA-CNN to capture unique characteristics of
landmarks. Later experiments in Sect. 3.3 will show this independence and share
strategy is superior to optimal all landmarks in a single network stage. Finally,
the outputs from the two sub-networks are combined to obtain the final result
for each face.

2.2 Optimization

Let xi, yi ∈ R be the x, y-coordinates of the i th facial landmark in an image
I. Then the vector [x1, y1, ..., xN , yN ]T denotes the coordinates of all the N
facial landmarks in I, we take the vector P as the estimated landmarks and G
as the ground truth landmarks. We define the landmark localization error as:
E = ||P − G||2. The predicted landmarks can be defined as

P = f(I;w) (1)

f represents no-linear function, I donates the input image and w is the
network weights. P can be calculated by network forward propagation. Finally,
in a training batch, the network error can be represented as

E = argmin
w

1
2

N∑

i=1

||f(Ii;w) − Gi||2 (2)

N donates the batch size, we set 70 in the training stage. The goal is to
learn the optimal parameter w to minimize the loss function E by the training
samples. According to the classical back propagate algorithm. For the exclusive
layers like conv5, fc1, fc2, the weights are updated by the partial derivatives of
loss with respect to weights Δw = −r ∂E

∂w , r is the learning rate which controls the
weight updating scale. For instance, the contour sub-network’s conv5 layer can
be updated by Δwconv5 = −r ∂Econ

∂wconv5
, Econ is the loss of contour sub-network.

The parameters in sub-network layers are only related to the sub-network loss.
For the sharing layers like conv1, ..., conv4, the contour sub-network loss and the
inner sub-network loss are back propagate together, can be represented as

Δw = −r
∂Econ

∂w
− λ ∗ r

∂Einn

∂w
(3)

where Econ is the loss of contour sub-network, Einn is the loss of inner sub-
network, λ is the weight parameter to balance contour sub-network loss and
inner sub-network loss, we choose 2 for our experiments.
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3 Experiments

We conduct experiments on the 300-W dataset [12]. We will introduce this
dataset in Sect. 3.1, describe the training detail in Sect. 3.2, and analyze the
experiment results in Sects. 3.3, 3.4, 3.5 and 3.6.

3.1 Datasets

300-W is short for 300 Faces in-the-Wild [12]. It’s a commonly used benchmark
for facial landmark localization problem. It is created from existing datasets,
including LFPW [1], AFW [20], Helen [9] and a new dataset called IBUG. Each
image has been densely annotated with 68 landmarks. Our training set consists
of AFW, the training sets of LFPW and the training sets of Helen, with 3148
images in total. Our testing set consists of IBUG, the testing sets of LFPW and
the testing set of Helen, with 689 images in total. IBUG subset is extremely
challenging because its images have large variations in face pose, expression
and illumination. The IBUG is called Challenging, testing sets of LFPW and
the testing set of Helen are called Common, and all the 689 images are called
Fullset.

Data augmentation. We train our models only using the data from the train-
ing data without external sources. We employ two distinct forms of data aug-
mentation to enlarge the dataset. The first form of data augmentation is image
rotations. We do random rotation on images with angles range in (−5◦, 5◦),
(−10◦, 10◦), (−15◦, 15◦). The second form of data augmentation is random
translation to right, left, up, down ranging in (-0.05, 0.05), which is a proportion
of bounding box height or width. Finally, we enlarge the training data to 39561
images.

Evaluation. We evaluate the alignment accuracy by the popular mean error.
The mean error is measured by the distances between the predicted landmarks
and the ground truths, normalized by the inter-pupil distance, which can be
represented as

err =
1
N

N∑

i=1

1
M

∑M
j=1 |pi,j − gi,j |2
|li − ri|2 (4)

where N is the total test image number, M is the landmark number, p is the
predicted landmark position, g is the ground truth landmark position. li, ri are
the left eye position and right eye position of i th image.

3.2 Implementation Detail

We implement the proposed method based on the open source Caffe [7] frame-
work. We first crop the image using the bounding box with 0.05 W padding on
all sides (top, bottom, left, right), where W is the width of the bounding box.
Then we resize the cropped image to 224 × 224.



Facial Landmark Localization by Part-Aware Deep Convolutional Network 27

We use the pre-trained VGG-S [4] model to initialize our network. The first
four convolutional layers of the VGG-S network are used to initialize four shared
convolutional layers. These shared layers are designed to produce feature maps
from the entire input image. The rest layers of the VGG-S network are used to
initialize both the contour sub-network and the inner sub-network. Our frame-
work is learnt in an end-to-end way. We set min-batch size 70, the weight decay
parameter 0.0001 and training learning rate 0.0001. We train our models by sto-
chastic gradient descent with 0.9 momentum. Training continues until converge.

3.3 Performance Analysis

We compare our PA-CNN with two distinct network structures. One outputs all
the landmarks in the last layer, named as One-CNN. Another uses individual
network for contour and inner landmarks, named as Two-CNN. Figure 2 shows
the network detailed structures.

Accuracy. Table 1 shows the localization error of contour landmarks and inner
landmarks. PA-CNN has performance improvements on both two kinds of land-
marks comparing to One-CNN, which shows sub-network helps to learn discrim-
inative features. PA-CNN is also comparable to Two-CNN, which demonstrates
sharing several convolutional layers will not hurt accuracy but help to capture
general features.

Efficiency. Table 2 lists the testing time of each method. By sharing several
convolution layers, PA-CNN is faster than Two-CNN.

Figure 3 shows the error curve of PA-CNN. Our PA-CNN which concentrates
on different parts of the facial landmarks and does not involve multiple individual
networks is both accurate and efficient.

(a) (b)

Fig. 2. Other two network structures. (a). Left is One-CNN structure. (b). Right is
Two-CNN structure.

Table 1. Error of Landmarks on Fullset.

Methods Contour Error(×10−2) Inner Error(×10−2)

One-CNN 9.02 5.04

Two-CNN 8.95 4.81

PA-CNN 8.85 4.79
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Fig. 3. Error Curve. Comparison of PA-CNN and One-CNN on FullSet test images.
We can draw the conclusion that PA-CNN is superior to One-CNN on FullSet due to
two sub-networks offering different concentrates on two kinds of facial landmarks.

Table 2. Comparison of testing time on Tesla K20 gpu.

Methods One-CNN Two-CNN PA-CNN

Time(s/image) 0.0180 0.0359 0.0300

3.4 Intermediate Feature Visualization

We gain intuition about what our network learns by visualization intermediate
features. We plot the feature map of conv5 layer at Fig. 4. Contour sub-network
and inner sub-network have own conv5 layer. The first column is the input
image. The second column is the activation of contour sub-network. The third
column is the activation of inner sub-network. We can see that in contour sub-
network’s feature map, the high activations are always near the image contour,
which indicates that contour sub-network concentrates on contour parts. In the
inner sub-network, the high activation parts are corresponding to the eyes and
nose parts, which reveal inner sub-network pays more attention on the inner
facial parts. This result demonstrates that two sub-networks explore the different
characteristics of landmarks on various parts dramatically and help to learn the
discriminative features.

3.5 Comparison with State-of-the-Arts

In all previous analysis, we use VGG-S to pre-train our framework, and draw
a conclusion that PA-CNN which shares the low-level convolutional features
and uses two sub-network to localize different type of landmarks is superior to
network in Fig. 2. We also compare the result of PA-CNN with the existing public
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Fig. 4. The activation of sub-network. The first column is the input image. The second
column is the activation of contour sub-network conv5 layer, high activation parts are
around corner. The third column is the activation of inner sub-network conv5 layer,
high activations are corresponding to the eyes and nose parts. (Best view in electronic
form.)

methods, including PCRR [2], GN-DPM [14], CFAN [17], ESR [3], SDM [15],
ERT [8], LBF [11]. The overall experimental results are reported in Table 3. We
improve the performance on the 300-W dataset, especially on Challenging test
set.

Table 3. The evaluation on 300-W dataset

Methods Common(×10−2) Challenging(×10−2) Fullset(×10−2)

PCRR [2] 6.18 17.26 8.35

GN-DPM [14] 5.78 - -

CFAN [17] 5.50 16.78 7.69

ESR [3] 5.28 17.00 7.58

SDM [15] 5.57 15.4 7.5

ERT [8] - - 6.4

LBF [11] 4.95 11.98 6.32

PA-CNN 4.82 9.80 5.79

3.6 Localization Results

Figure 5 shows the result of our localization method on the 300-W test images.
Even the testing images have large head poses or occlusions, our method is
accurate and robust.
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Fig. 5. Facial landmark localization result on test images.

4 Conclusions

In this paper, we propose a novel end-to-end regression structure using convo-
lutional neural network to deal with different facial landmarks. Our deep archi-
tecture first encodes the image into feature maps shared by all the landmarks.
Then, these features are sent into two individual sub-network modules to regress
contour landmarks and inner landmarks respectively. Experimental results on
challenging 300-W dataset demonstrate our approach achieves state-of-the-art
result. In future, we will extend the proposed PA-CNN to more facial parts.

Acknowledgments. This work was supported in part by two STCSM’s Programs.
(No. 15511104402 & 15JC1400103)

References

1. Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of
faces using a consensus of exemplars. IEEE Trans. Pattern Anal. Mach. Intell.
35(12), 2930–2940 (2013)

2. Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation
under occlusion. In: 2013 IEEE International Conference on Computer Vision
(ICCV), pp. 1513–1520. IEEE (2013)

3. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression.
Int. J. Comput. Vis. 107(2), 177–190 (2014)

4. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in
the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531
(2014)

5. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In:
Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498.
Springer, Heidelberg (1998). doi:10.1007/BFb0054760

http://arxiv.org/abs/1405.3531
http://dx.doi.org/10.1007/BFb0054760


Facial Landmark Localization by Part-Aware Deep Convolutional Network 31

6. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their
training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

7. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093 (2014)

8. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regres-
sion trees. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1867–1874. IEEE (2014)

9. Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature
localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C.
(eds.) ECCV 2012. LNCS, vol. 7578, pp. 679–692. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33712-3 49

10. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild.
In: Proceedings of the IEEE International Conference on Computer Vision, pp.
3730–3738 (2015)

11. Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 fps via regressing
local binary features. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1685–1692. IEEE (2014)

12. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild
challenge: the first facial landmark localization challenge. In: 2013 IEEE Interna-
tional Conference on Computer Vision Workshops (ICCVW), pp. 397–403. IEEE
(2013)

13. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point
detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3476–3483. IEEE (2013)

14. Tzimiropoulos, G., Pantic, M.: Gauss-newton deformable part models for face
alignment in-the-wild. In: 2014 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 1851–1858. IEEE (2014)

15. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face
alignment. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 532–539. IEEE (2013)

16. Yang, H., Mou, W., Zhang, Y., Patras, I., Gunes, H., Robinson, P.: Face alignment
assisted by head pose estimation. arXiv preprint arXiv:1507.03148 (2015)

17. Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks
(CFAN) for real-time face alignment. In: Fleet, D., Pajdla, T., Schiele, B.,
Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 1–16. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-10605-2 1

18. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-
task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8693, pp. 94–108. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10599-4 7

19. Zhou, E., Fan, H., Cao, Z., Jiang, Y., Yin, Q.: Extensive facial landmark localiza-
tion with coarse-to-fine convolutional network cascade. In: 2013 IEEE International
Conference on Computer Vision Workshops (ICCVW), pp. 386–391. IEEE (2013)

20. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization
in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 2879–2886. IEEE (2012)

http://arxiv.org/abs/1408.5093
http://dx.doi.org/10.1007/978-3-642-33712-3_49
http://arxiv.org/abs/1507.03148
http://dx.doi.org/10.1007/978-3-319-10605-2_1
http://dx.doi.org/10.1007/978-3-319-10599-4_7
http://dx.doi.org/10.1007/978-3-319-10599-4_7

	Facial Landmark Localization by Part-Aware Deep Convolutional Network
	1 Introduction
	2 The Proposed Method
	2.1 Architecture of PA-CNN
	2.2 Optimization

	3 Experiments
	3.1 Datasets
	3.2 Implementation Detail
	3.3 Performance Analysis
	3.4 Intermediate Feature Visualization
	3.5 Comparison with State-of-the-Arts
	3.6 Localization Results

	4 Conclusions
	References


