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Abstract. In this paper, we present an efficient patch-based multi-view stereo
reconstruction approach, which is designed to reconstruct accurate, dense 3D
models on high-resolution image sets. Wide-baseline matching becomes more
challenging due to large perspective distortions, increased occluded areas and
high curvature regions that are inevitable in MVS. Correlation window measure‐
ments, which are mainly used as photometric discrepancy function, are not appro‐
priate for wide-baseline matching. We introduce DAISY descriptor for photo-
consistency optimization of each new patch, which makes our algorithm robust
on distortion, occlusion and edge regions against many other photometric
constraints. Another key to the performance of Patch-based MVS is the estimation
of patch normal. We estimate the initial normal of every seed patch via fitting
quadrics with scaled-neighbourhood patches to handle the reconstruction of high
local curvature regions. It demonstrates that our approach performs dramatically
well on large-scale scene both in terms of accuracy and completeness.
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1 Introduction

Multi-view stereopsis (MVS) is an algorithm can be described as: given a collection of
images taken from an object or a scene, estimate the most likely 3D model that explains
those images. It is a classic computer vision problem that occupied researchers for more
than 30 years. Nowadays, more and more applications range from 3D mapping, 3D
printing, virtual reality that enter our field of vision. It has seen a surge of interest that
how to exploit diverse images collection ever assembled to reconstruct the 3D model
about a scene [1].

We focus on the patch-based MVS algorithm and find that correlation window
photometric measurements, such as NCC used in PMVS [3], are not appropriate for
wide-baseline matching in MVS. Because they are not robust to perspective distortions
and partial occlusions. We propose to replace NCC with DAISY descriptor [2], which
let us take advantage of optimization to refine every generated patch. Another contri‐
bution is the estimation of patch normal via fitting quadrics with scaled-neighbourhood
patches. It helps our approach reconstruct a scene despite the presence of occlusion or
edge region. The improvement is shown on various datasets, including objects with fine
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surface details, inclined planes, deep concavities, and thin structures, outdoor scenes
observed from a restricted set of viewpoints.

The rest of this paper is organized as follows: we will first review related work
(Sect. 2), and provide a more detailed overview of our method (Sect. 3). We then present
the individual stages of our method, including a briefly description of DAISY descriptor
(Sect. 4.1), DAISY-based photometric discrepancy function (Sect. 4.2) and the estima‐
tion of patch normal (Sect. 5). Experimental results and discussions are given in Sect. 6.
We conclude with results in Sect. 7.

2 Related Work

Over the last decade, the MVS problem has achieved a great development, yielding a
variety of reconstruction algorithms [6]. According to the taxonomy of Seitz et al. [4],
MVS algorithms can be divided into four categories: (1) 3D volumetric approaches [5]
extract the surface from a 3D volume by computing a cost function. These methods
usually transform 3D modelling into finding the minimum graph cut algorithm; (2)
surface evolution techniques [7] include algorithm based on voxels, level sets, and
surface meshes. They always demand some initialization for further optimization
process, which limits their applicability; (3) algorithms that compute and merge depth
maps [8, 9] perform more flexible, however, the depth maps tend to be noisy and redun‐
dant that they need steps to clean up and merge the depth maps [9]; (4) techniques that
grow regions or surfaces starting from a set of extracted features [3, 11]. Furukawa [3]
presented a classic algorithm, PMVS, based on patch which generates a sparse set of
patches corresponding to the salient image features, and then spreads the initial matches
to nearby pixels and filters incorrect matches to maintain completeness and accuracy.

In Bleyer’s [12] approach, a 3D scene is represented as a collection of visually
distinct and spatially coherent objects. Inspired by Markov Random Field models of
image segmentation, they employed object-level color models as a soft constraint, which
can improve depth estimation in powerful ways. Hoang-Hiep [13] introduced a
minimum s-t cut optimization over an adaptive domain that robustly and efficiently filters
a quasi-dense point cloud from outliers and reconstructs an initial surface by integrating
visibility constraints, followed by a mesh-based variational refinement that captures
small details, smartly handling photo-consistency, regularization, and adaptive resolu‐
tion. Qi Shan [14] leveraged occluding contours to improve the performance of multi-
view stereo methods. This proposed approach outperforms state of the art MVS tech‐
niques for challenging Internet datasets, yielding dramatic quality improvements both
around object contours and in surface detail.

3 Algorithm Overview

Ours patch-based multi-view stereo algorithm starts from a set of calibrated images.
Methods about sparse multi-view stereo and how to obtain the camera poses and intrinsic
parameters please refer to VisualSFM [10].
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As shown in Fig. 1, similar to the framework of PMVS, the input images are detected
corner features by Difference-of-Gaussian (DoG) and Harris operators. Features are first
matched across multiple images, yielding a sparse set of patches associated with salient
image regions. A patch is essentially a local tangent plane approximation of a surface.
Its geometry is fully determined by its center c(p), unit normal vector n(p) orient toward
the cameras observing it, and a reference image R(p) in which p is visible.
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Fig. 1. Algorithm overview

Given a pair of features constrained to lie the corresponding epipolar lines across
two images, a candidate patch p is triangulated with its center c(p), normal vector n(p),
and reference image R(p). Every new generated patch has its geometric parameters, c(p)
and n(p), which are optimized by minimizing the discrepancy function score computed
by DAISY descriptors. The patch center c(p) is constrained to lie on a ray such that its
image projection in one of the visible images. n(p) is parameterized by Euler angles,
yaw and pitch, yielding an optimization problem within three parameters only, which
is solved by a conjugate-gradient method.

In the following step, we fuse neighbourhood information to initially estimate the
patch normal. Multi-scale quadrics are fitted according to neighbourhood patches for
acquiring their normals. Check if normal angles meet the threshold to determine the
initial estimation of the patch normal. Expansion procedure is to spread the initial
matches to nearby pixels and obtain a dense set of patches. The goal of the expansion
step is to reconstruct at least one patch in every image cell. The final filter step eliminates
incorrect matches and obstacles using visibility constrains. These three steps are
repeated times to acquire a dense and smooth 3D point clouds.

4 Photometric Discrepancy Function

4.1 Brief Description of DAISY Descriptor

DAISY [2] is a local descriptor, inspired from SIFT and GLOH. It’s combined
convolved orientation maps and an isotropic Gaussian kernel that can be computed much
faster. For an input image, Η number of orientation maps is computed, Gi, 1 ≤ i ≤ Η,
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where Go(u, v) equals the image gradient norm at location (u, v) for direction o. Orien‐

tation maps are written as Go =
(
𝜕I
𝜕o

)+
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𝜕I
𝜕o

, 0), where I is the input image, o is
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∑
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∑
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.

Let h∑(u, v) represent the vector made of the values at location (u, v) in the orientation
maps after convolution by a Gaussian kernel of standard deviation ∑.

h∑(u, v) =
[
G

∑
1 (u, v),… , G

∑
H (u, v)

]T
(1)

The full DAISY descriptor D(u0, v0) for location (u0, v0) is defined Eq. (2), where
Ij(u, v, R) is the location with distance R from (u, v) in the direction given by j when the
directions are quantized into T value.
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DAISY is parameterized with its radius R, number of rings Q, number of histograms
in a ring T, and the number of bins in each histogram H. The total size of the descriptor
vector is (Q × T + 1) × H.

4.2 DAISY-Based Photometric Discrepancy Function

Normalized cross correlation (NCC) is one of the most common photometric agreement
measurements used in multi-view stereo algorithm. Considering it cannot work stably
and robustly on the distortion, occlusion and edge region, we propose to utilize DAISY
descriptor. Actually, in a worst-case scenario, DAISY will not perform any worse than
a standard region-based metric like NCC. The photometric discrepancy function may
not work well in the presence of specular highlights or obstacles, and we have so far
assumed that the surface of a scene is nearly Lambertian as in most MVS algorithms.

Firstly, we need to determine the orientation of DAISY descriptor (Fig. 2). Given a
feature, the orientation of its DAISY descriptor is defined as the vertical directions of
corresponding epipolar line. It can be calculated easily. For the pair of features (fi, fj),
the corresponding epipolar line on image i is li = FT ∗ fj, where F is the fundamental

matrix. The direction vector of epipolar line 𝐞 = [u, v]T, rotation matrix 𝛉 =

[
0 −1
1 0

]
,

the main direction of the DAISY descriptor can be computed as

o =

{
arccos(⟨𝛉 ⋅ 𝐞⟩∕ ||𝐞||), if 𝛉 ⋅ 𝐞 ⋅ 𝐯 ≥ 0
arccos(⟨𝛉 ⋅ 𝐞⟩∕ ||𝐞||) + 𝜋, else (3)
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where 𝐯 is a unit vector of the positive direction of vertical axis of the image.

Fig. 2. Patch optimization

Now, we can get the DAISY descriptor vector D(u, v, o) at the location (u, v) with
the direction o. We define the dissimilarity function d(p, Ii, Ij) as

d(p, Ii, Ij) =
1
S

S∑
k=1

‖‖‖Dk

i
(p) − Dk

j
(p)

‖‖‖ (4)

where Di(p) and Dj(p) are the descriptors at locations obtained by projecting the patch
p projected onto its visible image Ii and Ij. Dk

i
(p) is the kth histogram in Di(p), and S is

the number of histograms used in the descriptor.
Let V(p) denote a set of images in which p is visible. The photometric discrepancy

function for the candidate patch p is defined as

c(p) =
1

|V(p)∖R(p)|
∑

I∈V(p)∖R(p)

d(p, I, R(p)) (5)

We advocate replacing correlation window measurements with local region DAISY
descriptor. In more complicated scenes, where images have varying resolutions and their
location is non-uniformly, it becomes critical to adjust the size of the domain.

To improve the robustness of our approach, only images whose pairwise photometric
discrepancy score with the reference image R(p) is below a certain threshold α are used
for further estimation. And we replace V(p) in the photometric discrepancy function (5)
with V*(p) to obtain the new formula (7). If the number of visible images of the candidate
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patch |V*(p)| is smaller than the threshold γ, it is failed and retry the next candidate patch
(α = 0.6, γ = 3). Otherwise, a new seed patch is generated successfully.

V ∗ (p) = {I|I ∈ V(p), d(p, I, R(p)) ≤ 𝛼} (6)

c ∗ (p) =
1

|V ∗ (p)∖R(p)|
∑

I∈V∗(p)∖R(p)

d(p, I, R(p)) (7)

5 Normal Estimation

It is difficult to reconstruct a 3D model with PMVS where the local curvature is too high,
including deep concavities and high convexities, because each new patch is constrained
to lie on a ray for optimization such that its image projection in one of the visible images.
From Fig. 3, the dashed lines are the initial estimation of candidate patch normal in
PMVS. It can be assumed almost true when the reconstructed surface exactly faces
towards cameras, while some high curvature regions are unavoidable. We propose to
fuse the multi-scale neighbourhood information around the candidate patch to acquire
a more accurate initial estimation of normal.

Fig. 3. Cameras and the surface of a scene

We search σ × K neighbourhood patches to fit a quadric and search λσ × K neigh‐
bourhood patches to fit another quadric in a lower scale (K ∈[30,60], σ = 2, λ = 0.6 in
our experiment). Then we get two normals n1, n2. When the two normals satisfy the
formula (8), the normals are regarded as the same direction, and the normal computed
in higher scale is set to be the initial estimation of the new patch. Otherwise, λ2σ × K
neighbourhood patches are searched to compute the normal n3, checking whether n2 and
n3 meet the threshold β (β = π/9). And repeat the above process. If the two normals still
have comparatively large deviation, the normal computed in smaller scale is used to as
the initial estimation of the new patch. With multi-scale neighbourhood information, the
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generated patch normal can be adjusted more effectively no matter on the plain regions
or high curvature regions.

Right now the new seed patch already has a relatively accurate initial normal, and
its geometric parameters, c(p) and n(p), can be refined by the further optimization of
our DAISY-based photometric discrepancy function.

cos−1(normal1, normal2) < 𝛽 (8)

6 Results

Our algorithm is implemented by VC++ with the CGAL library. All experiments are
conducted on a Windows PC with Intel i5 CPU @3.3 GHz, RAM 16 GB.

We compare and analyze our 3D reconstruction results with that of PMVS [3]
method on four datasets. The datasets are acquired from the real-world scenes. We have
one dataset taken from a sculpture by ourselves, and other three are the open datasets
from Stecha et al. [15]. When we reconstruct a scene or an object, it is firstly captured
form various viewpoints, then the structure-from-motion software [10] is used to recon‐
struct the pose of each camera and obtain the projection matrix for per visible image.
We take images and their corresponding projection matrix as the input of the further
patch-based multi-view stereopsis approaches.

The first dataset “Typography-P9”, its image resolution and number of images are
listed in Table 1, followed by the parameters of DAISY descriptor and K-neighbourhood
numbers. This dataset has its surface composed of many inclined planes, and parts of
them have characters carved with fine details. From the comparison of 3D models
(Fig. 4), our DAISY-based method performs obviously better than PMVS on the
completeness. The regions with red circles appear large holes because these areas are
inclined and close to the edge region. Our DAISY descriptor photometric discrepancy

Table 1. Information of datasets and parameters set in experiments

Datasets Resolution Images R Q H T K
Typography-P9 3264 × 2448 9 5 3 8 8 40
Castle-P10 3072 × 2048 10 5 3 8 8 50
Fountain-P11 3072 × 2048 11 5 3 8 8 50
Herz-Jesu-P8 3072 × 2048 8 5 3 8 8 50

Table 2. Experimental data

Method Typography-P9 Castle-P10 Fountain-P11 Herz-Jesu-P8
PMVS 355142 1572701 1348187 1236046
DAISY-based 481073 1724573 1621941 1438512
Final method 486249 1849036 1644479 1537345
Percent 36.92 % 17.57 % 21.98 % 24.38 %

266 F. Wang and N. An



function performs robust against NCC used in PMVS. Table 2 gives the comparison of
numbers of patches. And the denseness of our reconstructions improve a lot.

Fig. 4. Typography-P9. Top row: images from the dataset, the seed patches. Bottom row: from
left to right, the 3D models reconstructed by PMVS, our DAISY-based and final method (Our
MVS method with DAISY-based measurement and normal estimation).

On the datasets from Stecha et al. [15], our DAISY-based method and final method
are proved to reconstruct more smooth 3D models (Fig. 5). Castle-P10 has an obvious
character of bending building wall, which is more apparently showed the limitation of
PMVS. It is almost impossible to rebuild by PMVS on the region of bending building

Fig. 5. Datasets from Strecha et al. [15]. From top to bottom row, they are Castle-P10,
Fountain-P11, Herz-Jesu-P8. And from left to right column, they are 3D models reconstructed
by PMVS, our DAISY-based method and our final method.
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wall, whereas our method has an estimation of patch normal fusing scale-neighbourhood
information which helps perform well. There are building walls and some deep concav‐
ities, and thin structures on the dataset Fountain-P11. And our method produces more
dense patches than that of PMVS with fine surface details (more clearly shown in
Fig. 6). Herz-Jesu-P8 has a large plain region, which leads to the fish-like scale of the
3D model reconstructed by PMVS with small correlation window. However, large size
may lead to holes on the thin structure regions because unique local regions are weakly
supported. It is necessary to replace correlation window measurements with stable local
region descriptor for it’s critical to adjust the size of the window.

Fig. 6. Details of 3D models reconstructed by PMVS, our DAISY-based and final method.

Some details are given in Fig. 6, and it is obviously showed that our methods can
produce better reconstructed results on the surface details, edge regions, deep concavi‐
ties, occlusion areas, and thin structures. To measure quantitative evaluations of the
reconstructed 3D models, we have two 3D point clouds comparing with their ground
truths in Fig. 7. The correct rate is measured by changing the deviation of 3D point
clouds from their corresponding actual depth value after 3D point clouds are aligned
with their ground truth by iterative closest point (ICP).

Fig. 7. Quantitative evaluation
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7 Conclusion

In this paper, we introduced DAISY descriptor into patch-based MVS to be as photo‐
metric discrepancy function for wide-baseline matching, which performs robust than
correlation window measurements. Especially on areas of different depths, edge regions
or partial occlusions, PMVS cannot reconstruct for perspective distortions. Our estima‐
tion of patch normal via fusing scaled-neighbourhood information enhances the sensi‐
bility to the region of high curvature. It contributes to handle the areas of deep concavities
and high convexities. The experiments are proved that the method proposed by us has
a better performance on the high curvature regions, slanted surfaces and thin structures.
In comparison to PMVS, the 3D models reconstructed by our algorithm have a great
improvement on the accuracy and completeness.
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