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Abstract. Hyperspectral image (HSI), which is widely known that contains
much richer information in spectral domain, has attracted increasing attention in
various fields. In practice, however, since a hyperspectral image itself contains
large amount of redundant information in both spatial domain and spectral
domain, the accuracy and efficiency of data analysis is often decreased. Various
attempts have been made to solve this problem by image compression method.
Many conventional compression methods can effectively remove the spatial
redundancy but ignore the great amount of redundancy exist in spectral domain.
In this paper, we propose a novel compression algorithm via patch-based
low-rank tensor decomposition (PLTD). In this framework, the HSI is divided
into local third-order tensor patches. Then, similar tensor patches are grouped
together and to construct a fourth-order tensor. And each cluster can be
decomposed into smaller coefficient tensor and dictionary matrices by low-rank
decomposition. In this way, the redundancy in both the spatial and spectral
domains can be effectively removed. Extensive experimental results on various
public HSI datasets demonstrate that the proposed method outperforms the
traditional image compression approaches.
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1 Introduction

Hyperspectral imaging systems record per-pixel reflectance spectroscopy in a number
of narrow wavelength bands over a wide range of the electromagnetic spectrum,
thereby providing a much higher spectral resolution than the typical gray-level and
RGB images, and are thus able to better capture material-specific information. More
recently, thanks to the development and decreasing cost of the latest hyperspectral
cameras, they have become affordable and popular in many computer vision and
multimedia applications [1] such as face recognition, iris recognition, and medical
diagnosis [2–4], etc.

However, the provided numerous spectral bands have led to some problems [5].
Compared to the conventional gray-level and RGB images, despite possessing much
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more information, HSIs are trapped in increased computational and time cost owning to
the large number of spectral bands. Thus it’s quite important to find a way to efficiently
process and analyze these HSIs which have hundreds of thousands of contiguous
spectral bands. As an ideal solution, image compression algorithms played a great role
in solving this problem.

There are many conventional and classical image compression methods that can
solve aforementioned problems. Pixel coding-based methods such as JPEG [6], SPIHT
[7] and EZW [8] are most widely applied compression methods. Du [9] proposed to
deploy PCA [10, 11] in JPEG 2000 for gray-level image processing. 3D coding based
algorithms such as the 3D reversible integer lapped transform [12] and the DWT cou-
pled with tucker decomposition [13] are proved to be effective for both spectral and
spatial information. However, these methods do not consider the internal characteristics
of the HSI, which might result in a loss of the important information in the subsequent
image analysis (e.g., classification and recognition). To address this issue, tensor [14]
was applied in image compression method to preserve both neighborhood relationship
across the spatial dimension as well as global correlation among the spectral dimension.
Typical examples are multilinear principal component analysis [15] (MPCA) general-
ized by PCA, concurrent subspace analysis [16], tensor canonical correlation analysis
[17], and some other tensor based HSI compression methods [18, 19]. Although, at first
glance, these methods may appear suitable for HSI compression, they were actually
designed for a group of tensor objects, and they may not be effective for single tensor
data based image compression.

Conventional compression methods usually process the HSI by spectral channel or
by pixel, while it is quite different in our framework. To fully exploit the advantages of
HSI, we propose a novel patch-based low-rank tensor decomposition (PLTD) method,
combining patch-based tensor representation and the tensor extension of dictionary
learning [20]. Firstly, HSI is blocked into local tensor patches. Then, by exploring the
nonlocal similarity over the spatial domain [21, 22], similar tensor patches are grouped
together by clustering method, and a fourth-order tensor are constituted for each
cluster. Since the tensor data is assumed to be redundant, each big tensor can be finally
low-rank decomposed into low-dimensional coefficient tensor and dictionary matrices.
In this way, both spatial and spectral redundancy are optimally removed by our pro-
posed framework.

The remainder of this paper is organized as follows. Section 2 presents the detailed
PLTD algorithm for HSI compression and reconstruction. Experiments and analysis are
provided in Sect. 4. The last section is a conclusion.

2 Patch-Based Low-Rank Tensor Decomposition (PLTD)
for HSI Compression

The compression process of the PLTD framework can be summarized as blocking,
clustering, tensor dictionary learning and low-rank decomposition. It can realize
simultaneous compression of both the spatial and spectral modes. The reconstructed HSI
can be simply obtained by combining the recovered patches which are the tensor product
of coefficient tensor and dictionaries per cluster. The overall process is illustrated in the
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flow chart in Fig. 1. The detailed theory of the framework are given in the following
sections, in which notations and multilinear algebras can refer to paper [23].

2.1 Patch-Based Tensor Representation

Given a third-order tensor HSI I 2 RLW�LH�LS , we divide it by block size lW � lH

(lW\LW , lH\LH) and consider there is no overlap between patches. We can then
construct a group of 3D patches fPi;jg1� i� nW ;1� j� nH � RlW�lH�lS , where nW ¼ LW=lW

and nH ¼ LH=lH , and the patch number n is equal to n ¼ nWnH . Each patch is a cube
preserving all the spectral information of the original HSI.

To make full use of the local information in the spatial and spectral domain and to
simplify the deduction of the algorithm, we divide the patches into several clusters
according to nonlocal similarity. After that, each cluster is reformed as a fourth-order
tensor and can be resolved individually.

2.2 Tensor Dictionary Learning

Dictionary learning was originally used for image restoration. The objective function of
the dictionary learning model can be given as:

min
D;Z

k A� DZ k; s:t:OðziÞ� s ð1Þ

where D ¼ ½d1; . . .; dm� 2 Rd�m;m[ d is a redundant dictionary; and A ¼
½a1; . . .; an� 2 Rd�n is a collection of n sample images, each image is originally 2D and
is vectorized to a long vector ai. Z ¼ ½z1; . . .; zn� 2 Rm�n is the coefficient matrix. Oð�Þ
denotes a sparsity controlling operator such as the l0 or l1 norm.

Fig. 1. Flow chart of the PLTD algorithm.
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The tensor form of dictionary learning can be written as:

min
DW ;DH ;DS;Zi

XK

k¼1
k P kð Þ � Zi �1 DW �2 DH �3 DS k; s:t:OðZ iÞ� s ð2Þ

In this function, DW 2 RlW�dW , DH 2 RlH�dH , DS 2 RLS�dS , and (lW\dW ; lH\dH ;
LS\dS). When applied to HSI compression problem, Pi is the original data and Zi,
DW , DH and DS are the compressed data.

Describing clustering by algebraic representation, the clusters after dividing are
denoted as Pk;j

� �nk
j¼1ðk ¼ 1; . . .;KÞ, where K is the cluster number and nk is the number

of patches of cluster k. We reform cluster k to be a fourth-order tensor
PðkÞ 2 RlW�lH�LS�nk . Similarly, we define the corresponding coefficient tensors of cluster
k as Zk;j

� �nk
j¼1ðk ¼ 1; . . .;KÞ and its fourth-order tensor as ZðkÞ 2 RdW�dH�dS�nk .

In addition, it is verified that for an nth-order tensor T there is a smallest subset
I1; . . .; InðIiji¼1;...;n 2 RmiÞ satisfying that the tensor value t i1; . . .; inð Þ ¼ 0 for all

i1; . . .; i3ð Þ 62 ½I1; I2; . . .; In�1�. On this condition, the tensor T is sparse [24, 25]. We
can denote idtðT Þ as an intrinsic dense tensor of T composing of all the nonzero entries
from T . According to this analysis, the objective function can then be reformed as
follows:

min
DW ;DH ;DS;ZðkÞ

PK
k¼1 k P kð Þ � Z kð Þ �1 DW �2 DH �3 DS k

s:t:OtðZk;jjj¼1;...;nk ;k¼1;...;KÞ � ðmW
k ;m

H
k ;m

S
kÞ

ð3Þ

The constraint means that the number of nonzero elements of first three modes are
less than mW

k ;m
H
k , and mS

k , respectively, while the fourth-order is unchanged. Thus
constraining the tensor Z kð Þ to be sparse in the spatial and spectral domains.

2.3 Low-Rank Tensor Decomposition

Each patch is linearly combined by a rather small number of dictionary atoms, leading
to high redundancy of the three dictionaries. Considering this fact, we split the dic-
tionaries so that each sub-dictionary consists of only those atoms that are utilized by a
single cluster. For example, the dictionaries of cluster k can be reformulated as:
DW

k 2 RlW�mW
k ;DH

k 2 RlH�mH
k ;DS

k 2 RLS�mS
k , where mw

k ;m
H
k and mS

k represent the number
of atoms that are utilized in cluster k along the width, height, and spectral modes,
respectively. In the same time, we can replace the coefficient tensor with its intrinsic
dense tensor. As a result, the objective function can be reformulated like:

min
DW

k ;DH
k ;D

S
k ;idtðZ

ðkÞÞ

XK

k¼1
k P kð Þ � idtðZ kð ÞÞ �1 DW

k �2 DH
k �3 DS

k k ð4Þ
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The size of coefficient tensor and dictionaries in each cluster are much smaller than
the original ones, and the coefficient tensor is dense now so there is no longer any need
to impose the sparsity constraint on the values. After replacing idtðZðkÞÞ with SðkÞ for
simplification, the objective function is equivalent to the following:

min
DW

k ;DH
k ;D

S
k ;S

ðkÞ

XK

k¼1
k P kð Þ � SðkÞ �1 DW

k �2 DH
k �3 DS

k k ð5Þ

This problem is much easier since it has no constraints. Considering that there are
only three dictionaries for the fourth-order core tensor, this function can be approxi-
mated as a low-rank tensor decomposition problem by adding a matrix:

min
Uð1Þ

k ;Uð2Þ
k ;Uð3Þ

k ;Uð4Þ
k ;GðkÞ

XK

k¼1
k X kð Þ � GðkÞ �1 U

ð1Þ
k �2 U

ð2Þ
k �3 U

ð3Þ
k �4 U

ð4Þ
k k ð6Þ

Matrices Uð1Þ
k ;Uð2Þ

k and Uð3Þ
k are three dictionaries, and the result of GðkÞ �4 U4

k is

equal to coefficient tensor SðkÞ. Note that U3
k 2 RLS�mS

k and LS [mS
k , so the spectral

bands are compressed. Therefore, the redundant spectral information is removed. The
detailed steps are exhibited in the following Algorithm 1.
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3 Experiments and Analysis

In this section, we present the experiments undertaken on a natural scene hyperspectral
dataset and provide the experimental analysis.

3.1 Experimental Setup

We employed five image compression methods for comparison: MPCA [15], PCA
[10], JPEG [6], PCA+JPEG, and KSVD [26]. Among which, JPEG and KSVD are
originally proposed for gray-level image processing. When dealing with HSIs, JPEG
treats them as a group of gray-level images and compresses one by one. PCA treats all
the spectral values of one pixel as a sample, i.e., PCA compresses the band information
only. MPCA takes the gray-level image of each band as a sample and compress the
spatial redundancy only. For the PCA+JPEG method, this method involves succes-
sively compressing an image by PCA and JPEG.

The HSI has to be clipped so that the spatial dimension is divisible by the patch
size. For JPEG, the spatial dimension size has to be divisible by 8 × 8 since the DCT
translation splits the original gray-level image into 8 × 8 data blocks. Considering
these limitations, we adopt the clipping step in all the comparison methods. Further-
more, to alleviate the influence caused by data diversity, we normalized the hyper-
spectral data to keep all the values in the interval [0, 255].

We employed five indices for the image compression performance evaluation: the
peak signal-to-noise ratio (PSNR), the structural similarity (SSIM) index, the feature
similarity (FSIM) index, the erreur relative globale adimensionnelle de synthese
(ERGAS) [27], and the spectral angle mapper (SAM) [28]. For PSNR, SSIM, and
FSIM, the larger the values, the better the performance of the algorithm. The opposite
goes for ERGAS and SAM.

3.2 Performance on Natural Scene HSI

To begin with, we choose an image from a natural scene HSI database for compression,
the HSI is named scene 8 in this paper. The original dimension of scene 8 is
1018 × 1340 × 33. We clip it into the size of 512 × 512 × 33. Then, we normalize it
to keep its value be within the scope 0–255. The results and comparison are listed in
Table 1. The compression ratio is the ratio between the size of the original data and the
sum of the compressed data size. It is reasonable that the compression ratio of the six
methods could not be completely the same; however, we tried as far as possible to keep
them approximately equal.

Note that the above comparisons were carried out at only one compression ratio. So
what would the situation be with other compression ratios? Would the other methods
outperform the PLTD algorithm? To answer these questions, we varied the compres-
sion ratio and tested the compression results. We changed the ratio from 0 to 0.25,
which was adequate to test these methods. The comparisons are exhibited in Fig. 2.

146 M. Zhang et al.



According to Fig. 2, despite the certain interval within which the MPCA algorithm
or the PCA algorithm perform better than the PLTD algorithm, the PLTD algorithm
obtains the best performance in most cases. Exceptions occur because the PCA algo-
rithm only compresses the spectral information, and MPCA only compresses the spatial
information, while PLTD compresses both the spatial and spectral information.
Therefore, most of the time, the tensor-based PLTD algorithm performs better than the
other methods.

To sum up the experiments, we implemented enough experiments on the hyper-
spectral scene 8 image to confirm that the proposed method outperforms all the other
methods.

Table 1. Comparision of compression and reconstruction results on hyperspectral scene 8.

Proposed MPCA PCA JPEG PCA+JPEG

Rate 0.0441 0.0467 0.0445 0.0465 0.0467
PSNR 43.1343 39.1176 39.3904 37.5290 33.5215
SSIM 0.9836 0.9666 0.9637 0.9511 0.8984
FSIM 0.9980 0.9960 0.9909 0.9764 0.9526
ERGAS 24.7816 42.6079 37.5006 46.2918 81.4623
MSAM 0.0351 0.0498 0.0648 0.0465 0.1871
Time 10.56 14.58 128.72 1.06 235.90
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Fig. 2. Comparison of the compression and reconstruction results when the compression ratio
varies from 0 to 0.25.
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4 Conclusion

In this paper, a new compression method called patched-based low-rank tensor
decomposition (PLTD) have been proposed. The new method employs tensor patch
representation, nonlocal similarity, tensor dictionary learning together to solve the
problem of effectively compressing HSIs. According to the paper, by clustering, a big
data problem is decomposed into several small data problems which can be quickly
solved by low-rank decomposition algorithm. Since the decomposed data discard both
the spectral and spatial redundancy, and only retain the most discriminant information,
the data after compression can better improve the efficiency and accuracy for the
subsequent analysis. As far as we know, this is the first time that a patch-based tensor
structure has been proposed for HSI compression. And it is confirmed in the experi-
ments that the proposed method outperforms others and has a wide applicability in
various fields.
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