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Abstract. Rapid and accurate estimation of a person’s upper body
shape and real-time tracking of the pose in the presence of occlusions
is crucial for many future assistive technologies, health care applications
and telemedicine systems. We propose to tackle this challenging problem
by combining data-driven and generative methods for both body shape
and pose estimation. Our strategy comprises a subspace-based method
to predict body shape directly from a single depth map input, and a
random forest regression approach to obtain a sound initialization for
pose estimation of the upper body. We propose a model-fitting strat-
egy in order to refine the estimated body shape and to exploit body
shape information for improving pose accuracy. During tracking, we feed
refinement results back into the forest-based joint position regressor to
stabilize and accelerate pose estimation over time. Our tracking frame-
work is designed to cope with viewpoint limitations and occlusions due
to dynamic objects.

Keywords: Human pose estimation · Human body shape · Pose track-
ing · Model fitting · Real-time · Occlusion handling · Random forest ·
Subspace

1 Introduction

Automatic perception of human subjects will play a key role in assistive tech-
nology and medical applications. For instance, systems for medical imaging,
treatment planning, radiation therapy, interventional imaging and virtual real-
ity benefit from a precise recognition of the patient in his/her distinct pose [1]. In
general, potential advantages are more accurate interactions, compliant systems,
alleviation for users and reduced costs. Future applications of computer-assisted
surgery and telemedicine will provide even physical interaction with the patient
by means of teleoperation techniques, and therefore rely crucially on a good
localization and tracking of the subject.

Since the availability of low-cost depth sensors, real-time pose estimation
has advanced fast and is present in many commercial videogame consoles [2].
However, the requirements regarding body poses, occlusions, field of view, body
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shape fidelity and accuracy are quite different compared to professional and med-
ical applications. In our work we investigate depth-based sensors in the scenario
of tracking the torso of a person in lie-down poses. Our goal is to accurately esti-
mate the upper body pose and surface of the subject in the presence of severe
occlusions due to viewpoint limitations and potential occluding objects in front
of the sensor.

In particular, we are involved in the ReMeDi research project that aims
to develop a telediagnosis system: This will allow doctors to remotely perform
physical and ultrasonography examinations by teleoperating a multifunctional
robotic device at the patient side. Potential advantages are the provision of
sparsely populated areas, enhanced availability of expert knowledge, more bene-
ficial time schedules and reduced health care costs. In excess of teleconferencing,
haptic interfaces, force-feedback and multisensory data representing the remote
environment provide proactive support for the doctor. One goal of the project is
to mimic the real examination process for the doctor as close as possible. In order
to provide an intuitive and safe way of interaction with the patient, the robotic
device has to perform certain tasks autonomously. Computer Vision methods
serve the critical need of perceiving the patient in his/her distinct pose in order
to estimate the position of the end effector with respect to the body. A Kinect
sensor mounted on the robot’s head is providing real-time depth data during the
examination, while the patient is lying on a bed and the robot arm moving in
front of the sensor. Our focus therefore is to accurately estimate the surface of
the patient’s upper body in order to determine the position of the examination
probe relative to the torso. This knowledge can subsequently be used to map
probe measurements to a human body model, providing an intuitive way of stor-
ing, visualizing and comparing examination results. The efficiency and usability
of the teleoperation system directly depends on the speed and accuracy of this
estimation process.

In general, there are discriminative (fast, lower accuracy) and generative
(expensive, higher accuracy, but prone to local minima) approaches to both
body shape and pose estimation problems. While we extend well known random
forests for pose estimation [2–4], we propose to tackle prediction of body shape
parameters from a single depth image by means of a linear subspace represen-
tation. To improve tracking accuracy and exploit shape information on top of
our discriminative approach, we combine the two paradigms by subsequently
performing additional model-fitting based refinement iterations.

The remainder of the paper is organized as follows: We provide an overview of
the related work in Sect. 2. In Sect. 3, we present our framework for body shape
estimation and pose tracking. Then we report quantitative and qualitative results
of the proposed methods in Sect. 4, and conclude by discussing limitations and
future work in Sect. 5.

2 Related Work

In is this section we relate our method to body shape and pose estimation
approaches that have been proposed in the literature.
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Body Shape Estimation from Depth. Body shape estimation work is dom-
inated by generative model-fitting approaches. Fitting a human body model to
the observed depth data is very robust to noise. In this context, the SCAPE
model [5] is the most popular one, but other models [6–9] have been investi-
gated, or could potentially be used for this purpose. For instance, [10,11] follow
a procedure based on the Iterative Closest Point (ICP) algorithm to fit a SCAPE
model to observed point clouds. In [12,13], the SCAPE model is employed to
obtain the human body shape under the garments worn by the subject. Weiss
et al. [14] optimize the SCAPE parameters to jointly maximize the overlap of
the projected model with the RGB-silhouette and minimize the distance between
corresponding points on the model and on an input range image. Bogo et al. [15]
propose a coarse-to-fine model fitting strategy.

Among the model-free approaches, methods similar to KinectFusion [16,17]
perform 3D body reconstructions from RGB-D sequences or multiple views [11,
18–21].

By contrast, we obtain an initial estimate of low dimensional body shape
parameters (using a variant of the SCAPE body model) from a single frame.
To this end, we propose to exploit depth image subspace features by training a
regression forest to predict body shape parameters. Then we apply an ICP-based
model fitting algorithm to refine the estimation and improve accuracy.

Human Pose Estimation from Depth. In general, generative models
attempt to fit an articulated body model to the observed data by finding 3D-
contour- or silhouette-based correspondences with an ICP-like approach [14,22–
24]. Discriminative methods however try to directly infer pose information in a
data-driven manner. Depth difference features as introduced by [2] enable train-
ing of random forest models that are capable of real-time inference [3,4,25].
Many hybrid approaches were proposed to combine the benefits of both worlds
[10,26–28] by using database look-up to obtain a good initialization. In the same
sense, [29,30] employ random forests to predict dense correspondences for a sub-
sequent iterative model fitting procedure. Our work specializes the approach of
[3] by improving the accuracy of the joint position estimation for upper body
joints using a global forest refinement strategy. We further improve the upper
body localization by fitting the estimated body shape to the observed data. We
assume the torso shape to change rigidly with pose and therefore use an efficient
rigid ICP-based alignment. To improve stability and robustness over time, the
refined joint positions are fed back to the joint position estimation.

3 Method

We now introduce our framework for human body shape estimation and upper
body tracking. We first propose to make use of a subspace representation of
canonical depth maps to predict a set of human body shape parameters. Second,
we extend the random forest framework by Girshick et al. [3] to accurately
estimate upper body joint positions. We then compute a coarse alignment using
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Fig. 1. Pipeline overview: At the initialization stage (orange) we estimate the environ-
ment and the patient’s body shape. During the real-time phase (blue), we track the
patient using the previously estimated parameters. To this end, we perform discrimina-
tive body pose estimation in combination with a model fitting procedure and introduce
robustness and temporal consistency by a feedback loop. (Color figure online)

the predicted joint positions and initialize a model-fitting based refinement with
our estimated upper body shape model. The whole pipeline is illustrated in
Fig. 1.

3.1 Preprocessing

As a first step, we estimate the 3D environment of the scene. In our medical sce-
nario, we estimate the ground plane and the position and height of the patient’s
bed to define a volume of interest. This enables efficient pre-processing (planar
clipping) of the depth images during the real-time phase. During the initializa-
tion phase, we require the patient to lie on the bed and the scene to be free of
external objects.

3.2 Body Shape Estimation via Subspace Regression

The motivation for our approach is the observation that model-fitting procedures
require a good initialization in order to converge to the correct minimum. As
we show in our experiments, this is a serious disadvantage in terms of accuracy
and run time. Therefore we propose a method to obtain a sound data-driven
initialization to jump-start the model-fitting and to guide the algorithm towards
the correct solution.

Our approach to rapidly obtaining an estimate of the body shape from a
single frame is partly inspired by [27]. First, a normalized view of the subject
is created by means of discriminative pose estimation. Then we compute a lin-
ear subspace of all canonical depth images to reduce complexity. The subspace
coefficients ultimately serve as features for a random regression forest to predict
a set of body shape parameters.
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Body Shape Model. In particular, we employ the MPII Human Shape model
[7]. The shape parameters s of this statistical shape model represent a small
number of directions with high variance from the mean body shape (princi-
pal components). They have been estimated using principal component analysis
(PCA) on a varied dataset of aligned 3D scans of the human body. Figure 2
visualizes the variations captured by the first 5 shape parameters. For instance,
the first component captures variations due to body height, while the second
component s1 is dominantly influenced by the torso shape. This model allows to
compactly represent body shapes and to generate corresponding mesh models
for fitting purposes.

Fig. 2. Body shape variations captured by the first 5 PCA coefficients (from [7]). The
renderings depict the deviation from the mean body shape resulting from setting each
of the coefficients to ±3σ.

Canonical View. The goal of this step is to normalize the depth camera’s
point of view w.r.t. the subject. To this end, we predict the joint positions of the
subject using the method described in Sect. 3.3. We define a coordinate frame
by a subset of the upper body joints, and define a canonical viewpoint as a
rigid transformation originating from this frame. In particular, we choose to
center the hip in the image and set the viewpoint 2 m in front of it. Choosing
the distance is a trade-off between effective resolution, field-of-view size and
robustness towards misalignment. Then we project the point cloud onto a virtual
camera in this canonical pose. By contrast, the authors of [27] use the centroid
and the principal directions of the point cloud to perform normalization, which
is very problematic in the presence of (self-)occlusions.

We assume the point cloud data to be dense, and the range of rotation angles
to be limited to roughly frontal/side views. The transformation to the canonical
view can therefore be approximated with efficient point-wise rigid transforma-
tions and projections into the 2D virtual camera frame, without reconstructing
the 3D surface. After applying the normalization, we obtain a training set of
canonical depth images, showing different subjects in various poses from the
same viewpoint and distance.
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Learning. Intuitively, the appearance of the canonical depth images contains
information about the body shape. To reduce complexity and exploit correlations
between pixel locations, we compute a linear subspace using principal component
analysis. To efficiently handle a big set of image data with high dimensionality,
we use an approximation based on randomized projections.1 We keep the Nd

orthonormal directions (eigen-images) that contain the most variance in the data
(highest eigenvalues). This yields a low-dimensional subspace representation of
a depth image, denoted as a coefficient vector c. Figure 3 visualizes the variances
captured by the first three eigen-images. Note that variations are not only caused
by shape, but also pose and misalignment noise are captured by the subspace
coefficients. We therefore assume the relationship between the image subspace
and the shape parameters to be nonlinear in general. Learning a dictionary like
Ye et al. [27] resulted in bad generalization in our case. In order to learn which
combination of coefficients is correlated with body shape, we employ a random
forest model. We train an ensemble of regression forests to predict each of the
body shape parameters in s, using c as features. Note that we perform the
PCA on rendered canonical images (without normalization artifacts), whereas
normalized depth images are projected to the subspace (see next paragraph) and
serve as input to the forest training.

Fig. 3. Visualization of the mean canonical depth image and the first three eigen-
images obtained by PCA. Note that the first eigen-image is sensitive to the global
body size while the second dominantly captures variances in the lower body width.
The third principal direction however seems to be mostly related to pose differences.

Inference for a New Image. At test time, we first estimate the set of 3D
upper body joint positions (see Sect. 3.3) necessary to generate the canonical
view. The task now is to find the most plausible subspace coefficients c ∈ R

Nd

explaining the observed canonical depth image. Due to the presence of occlu-
sions and artifacts introduced by our normalization, considering all pixels would
deteriorate the results. Instead of projecting the canonical depth map by per-
forming the inner products with the eigen-images P ∈ R

Npixels×Nd , we propose
to minimize the squared reconstruction error only on visible points:

E(c|I) =
1
2
(Ivisible − Π(Pc))2 . (1)

1 RedSVD implementation. https://code.google.com/archive/p/redsvd/.

https://code.google.com/archive/p/redsvd/


Robust Upper Body Tracking Using a Depth Sensor 291

Ivisible ∈ R
Nv denotes the stacked intensity (depth) vector of all Nv visible pix-

els and c is the vector of subspace coefficients, while Π(·) selects and orders
the reconstructed pixels according to the order in Ivisible. We solve this convex
minimization by performing gradient descent.2 Using the optimal subspace coef-
ficients c as features, the body shape parameters are finally predicted by the
trained regression forest.

3.3 Joint Position Estimation

Our work on discriminative pose estimation is based on the efficient method by
Girshick et al. [3]. The idea is to directly regress votes for predicting 3D joint
positions from the depth map. First, a set of points is randomly sampled from
the image. Then a random forest is trained using local depth features around
each sample point. The regression target value is a 3D offset vector pointing
from a sample point to the position of the body joint. The employed depth-
difference features are invariant to translation and depth of the visible subject.
We account for different viewpoint angles and body shapes by using high variety
training data.

Girshick et al. [3] (re-)use the same forest structure (trained originally for
body part classification) by dropping down samples and computing leaf statistics
for the different joints using mean-shift. Similar to tree growing, this procedure
follows a rather greedy strategy and does not obey a global cost function.

Multipurpose Forest Refinement. We therefore extend the forest refinement
strategy by Ren et al. [31] to serve two goals: First, we aim to improve joint
prediction accuracy for upper body joints by redistributing the prediction errors
more favorably. Second, we exploit the refinement to make the forest structure
reusable for multiple joints.

In the following formulation, every dimension of the 3D output vector is
treated independently. Formally, let PI = {(xI

i , y
I
i )} represent the set of samples

belonging to image I, where yI
i denotes one dimension of the target 3D offset.

We model the refinement process as that of learning leaf weights w generating
a per-sample offset prediction of the form

ŷI
i (w|xI

i ) = wTφ(xI
i ) . (2)

By φ(xi) we denote the binary vector whose jth position φj(xi) has value 1 if the
local sample i has reached the corresponding leaf in the forest, and 0 otherwise3.
Our goal of learning the optimal prediction value of each leaf can be thought
of as a linear regression problem on the leaf weights w, using the leaf indices
corresponding to each sample as categorical features.

2 Note that solving for c in equation I(c) = Π(Pc) is overdetermined as long as there
are more than Nd visible points/pixels. If all pixels are taken into account, the result
of the optimization equals projecting the canonical depth map on the eigenimages.

3 Note that this vector concatenates the leaves of all the trees in the forest.
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However, we found that directly applying the method of [31] worsens the
overall results. This stems from the fact that the predictions are treated inde-
pendently for each sample: the optimization overfits to sets of samples from
images that are easy to predict, ignoring those samples which would improve
prediction on difficult images.

Hence we extend the approach of [31], and account for combined predictions
of the entire image, by defining an image-level prediction as the mean of all votes
for the absolute joint position:

ȳI(w) =
1

Ns

∑

{xI
i }

(
pIi + ŷI

i (w|xI
i )

)
, (3)

where Ns is the number of sample points i in image I, and pIi the position of
the sample point.

To account for the global image prediction in our refinement procedure, we
therefore introduce an energy of the form

E(w) =
1
2
‖w‖22 +

1
2

λ1

|I|
∑

I∈I
(yI − ȳI(w))2 +

1
2

λ2

|{xi}|
∑

{xi}
(yi − ŷi(w|xi))2 , (4)

where the first term regularizes the leaf weights, the second term optimizes for
the combined votes on a per image base and the third one further regularizes
the weights by minimizing the error of the offset predictions per sample point.
We solve this sparse linear regression problem using stochastic gradient descent
with momentum and a lazy update strategy for the L2 regularization. We report
the hyper-parameters in Table 1.

Inference for a New Image. Following [3], we evaluate our forest at randomly
sampled center pixels according to Eq. 2. Then we generate the votes for each of
the 3 dimensions by

vi = pIi + ŷI
i (w|xI

i ) , (5)

and propose a vote weight of the form

ui = vTφ(xI
i ) with vl = e−E2

l (6)

Each element vl of the leaf confidence vector v depends on the average error El

produced by the associated leaf l at training time.
Finally, we combine all 3D votes using a weighted mean-shift strategy. To

exploit temporal consistency, we add a 3D Gaussian prior on the joint position
of either the last time step or from the model fitting component feedback (see
Sect. 3.4) to the mean shift weights. This smooths the tracking and introduces
additional robustness towards occlusions.



Robust Upper Body Tracking Using a Depth Sensor 293

3.4 Model Fitting and Tracking

For many professional applications, the coarse accuracy of discriminative meth-
ods is a significant drawback. We propose to combine our data-driven shape and
pose estimation by means of a model-fitting strategy: by taking both the pre-
dicted body shape and the coarse alignment provided by the joint positions into
account, we improve the accuracy of shape and pose estimation.

Body Shape Refinement. Starting from our subspace-based estimates for the
body shape coefficients, we now add a refinement step to further improve the
torso shape and surface estimation accuracy. We propose a model fitting proce-
dure with two alternating ICP-based methods. One iteration starts by correcting
for the misalignment of the model with the observed data using standard rigid
registration. Then the body shape is adapted by performing gradient descent on
model parameters to fit corresponding points as closely as possible. This two-step
process is repeated until convergence. Note that we already have coarse initial-
izations for both the alignment and the shape parameters. We assume the upper
body pose to change rigidly with pose and therefore use rigid (non-articulated)
ICP on points associated with the upper body.

We then formulate the shape fitting as an energy minimization problem on
the body shape coefficients s:

E(s|C, s0) =
λ

2
‖s‖22 +

1
2
(s − s0)TΛ(s − s0) +

1
2

1
Np

‖(C − (M + V s))‖2 . (7)

Given the observed points C ∈ R
3Np corresponding to the Np model points, we

minimize the squared error to the model, which is computed as the mean shape
M ∈ R

3Np plus the shape variations V ∈ R
3Np×20 according to the current

shape coefficients s. The first term penalizes the distance from the mean shape
to avoid unlikely shapes. If prior information about the shape s0 is available, we
incorporate it using a diagonal regularization matrix Λ. In doing so, we are able
to control which parameters of s should be primarily refined by the process, given
that some parameters of the prior s0 are already estimated with high confidence
and should not be affected during optimization. Both regularizations effectively
serve as (anisotropic) Gaussian priors. This convex optimization problem can be
solved efficiently via gradient descent techniques.

Model-Based Surface Tracking and Feedback. Fitting the refined body
model to the observed data is a straight-forward and effective way to exploit body
shape information for tracking. In every new frame, we make use of our discrim-
inative 3D joint position estimates and initialize an ICP-based rigid alignment
to improve accuracy.

The refined joint positions are then fed back to serve as a prior for the mean-
shift procedure in Sect. 3.3. Only a few ICP iterations are enough to improve
accuracy, since the initialization can be assumed to already be reasonably good,
especially once the feedback loop is closed. This approach is very robust towards
dynamic occlusions and enables efficient model-based tracking of the upper body
surface.
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Table 1. Hyperparameters for our 3D body joint estimation algorithm

4 Experiments

4.1 Dataset

To evaluate our methods on a large set of different body shapes and poses, we
use the HumanVP dataset created from synthetically generated mesh data. The
motivation behind this is that it allows us to easily annotate the ground-truth
shape parameters and joint positions, and carefully evaluate the behavior of
our methods under different conditions, such as different body shapes, different
poses, and different levels of occlusions.

In particular, we employed the MPII Human Shape Model [7]. This rigged
statistical shape model was created from the CAESAR dataset [32], which con-
tains a wide variety of body shapes represented as 3D meshes. These meshes are
in vertex correspondence, and annotations for body parts and joint positions are
provided. The depth data was obtained by sampling from the 4000 CAESAR-
fitted body meshes of [7]. We randomly assigned a pose combination chosen from
a set of 750 sub-poses of upper body (bending, torsion), arm (straight, angled,
supporting head, . . . ) and leg (straight, angled) to each one of these meshes.
Two example meshes are shown in Fig. 4a. We rendered depth images from 12
different viewpoints (random rotations around 2 rotation axes) using OpenGL.
To this end, we employed a virtual camera that mimics the projection properties

Fig. 4. Example posed body meshes from the MPII Human Shape Model [7] and
rendered synthetic depth images from our HumanVP dataset.
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(FoV angles, resolution, aspect ratio) of the Kinect sensor. We further used the
noise model of [33], which has been shown to yield synthetic depth maps that
are very similar to real ones. This resulted in a total of about 50 000 images.
Figure 4b shows some example images. In our experiments, we partitioned these
images into training and test sets based on the 4000 mesh models, and thus
divided the images created from the models accordingly. We used 70 % of the
models for training and 30 % for testing.

4.2 Body Shape Estimation from a Single Frame

We compare our subspace-based shape estimation method on the HumanVP
dataset with plain model-fitting and their combination. To this end, we report
estimation errors on the first 5 shape coefficients. Since these coefficients repre-
sent a body shape in a linear subspace of a high-dimensional statistical shape
model, the prediction errors can be seen as a proxy for the average per-vertex
error between the reconstructed body model and the ground truth model. The
second shape parameter s1 mainly captures the belly/upper body shape (see
Fig. 2) and is therefore the most interesting in this context. All methods are
provided with the same initial 3D joint positions. Our reported values are nor-
malized by the respective PCA standard deviation (see Sect. 3.2).

We learn Nd = 20 eigen-images for our subspace representation of the canon-
ical images (640×480 px) and train a forest of 16 trees to predict the body shape
coefficients using the MATLAB TreeBagger implementation. For the model fit-
ting (see Eq. 7), we chose λ = 0.1 and the maximum correspondence distance
for ICP to 0.1 m.

Subspace Regression vs. Model Fitting. To enable a fair comparison and
to avoid distortion of the results due to local minima during model fitting, we
take the following measures: We start from a set of initial shapes and select
the best fitting solution. Also, we reject unlikely shape results, if at least one
predicted shape parameter exceeds the ±3σ threshold. We therefore discarded
about 17 % of test images for the model fitting results.

Figure 5 shows the resulting RSME (b) and error standard deviation (c) for
the first 5 shape coefficients. Our subspace-based regression method consistently
provides lowest errors on all shape parameters and poses a very reasonable ini-
tialization. We can see that on the most important coefficient s1, the methods
perform on a similar level, model fitting however induces slightly less RSME and
less error deviation. Due to the fact that we only fit to the upper body, model
fitting alone is not able to recover shape parameters that are less related to
the torso shape. Also, the higher order coefficients capture smaller shape details
which tend to result in more noisy estimates. While the baseline needs about
12 s per frame, our subspace-based method runs significantly faster, demanding
less than 2 s on average.4

4 Evaluation hardware: Intel Core i7-4790K CPU 4.00 GHz, 16 Gb RAM.
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Combining Subspace Regression and Model Fitting. Following our par-
adigm of combining discriminative and generative methods, we investigated the
benefits of using our subspace-based method to initialize the model fitting pro-
cedure. We set Λi�=1 = diag(1), Λ1 = 10−3 to focus on refining the torso shape
while keeping the other coefficients close to the initial estimate (see Eq. 7). Our
results show that our refinement strategy significantly improves the accuracy
of the torso shape coefficient s1 compared to the initial shape provided by our
subspace regression method. As desired, prediction errors of other parameters
change only marginally. Due to the effective regularization, the refinement con-
verges after about 6 s on average.

Shape Estimation Efficiency. To gauge the dense surface accuracy of the
estimated upper body shape, we evaluated the 3D displacement error per model
vertex and the error standard deviation. Note that we consider the complete set
of vertices of the full upper body model. Since a significant portion of points is not
visible in a single image, this measure is a very interesting accuracy benchmark
and shows the strength of model-based approaches. Our combined approach
achieves an average error of approximately 9 mm (σ = 6mm) per model vertex,
compared to 12 mm (σ = 9mm) without model-fitting. Since the data-driven
subspace method does not consider the domain shift from synthetic data, it is
however safe to assume that this difference will increase when dealing with real
data. We can therefore conclude that our approach yields upper body shape
estimates of reasonable accuracy.
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Fig. 5. Body shape estimation: (a) normalized RSME and (b) standard deviation (SD)
of our subspace method, model-fitting, and their combination on HumanVP.

4.3 Joint Position Estimation from a Single Frame

To evaluate the accuracy of the predicted 3D salient point positions, we report
both the joint detection rate (true positive, if the prediction is within 3 cm from
the GT) and the RSME across 6 upper body joints/salient points. As our method
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extends the one proposed by Girshick et al. [3], it is a natural choice to compare
the two methods on our HumanVP dataset. We use the same hyper-parameters
for both methods and optimize the mean-shift procedure to the upper body
joints. In order to better handle occlusions, we reduced the range of probing
offsets to 50 px (see Table 1), without noticeable loss in prediction accuracy for
upper body joints. The results in Fig. 6 show that our forest refinement strategy
consistently improves prediction accuracy on all upper body joints but the belly
reference point. This could indicate an upper bound on the attainable accuracy
with this random forest model, since the belly point predictions are the most
accurate among all predicted points. Figure 7 depicts some qualitative results
on real Kinect data. Combining discriminative pose estimation with ICP-based
refinement using our estimated body model (Fig. 6b) significantly boosts local-
ization accuracy.
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Fig. 6. 3D Joint position estimation: Comparison of our methods with [3] on our
HumanVP dataset. (a) Detection rate (3 cm threshold) (b) Localization error

Fig. 7. Visualization of discriminative joint position estimates on real data, showing
different exemplary subjects and poses. They provide a sound initialization for subse-
quent model fitting.
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4.4 Robust Upper Body Tracking Framework

We now give a preliminary qualitative impression of our complete tracking frame-
work, combining shape and pose information with temporal feedback. We visu-
alize results on real data, since we do not have annotated depth sequences for
evaluations yet. Our data originates from a mobile robot platform that features
a 7 DoF robotic arm used for performing remote-controlled ultrasonography
examinations within the ReMeDi project. Our task is to localize the end-effector
w.r.t. the patient under severe occlusions due to viewpoint limitations and the
robot arm moving in front of the sensor. We implemented our method as three
processing nodes (shape estimation, pose estimation and model-fitting) within
the ROS5 framework. Without further optimization, the tracking update fre-
quency is about 10 Hz on a conventional laptop6. The Kinect coordinate frame
has been calibrated to the robot base frame to enable transformations between
the 3D data and the robot arm. Looking at the random forest estimates for the
joint position in Fig. 7 reveals that they pose a sound initialization for the sub-
sequent model fitting. Figure 8a visualizes the localization of the patient w.r.t.
to the robotic platform while the robotic arm is partly occluding the subject.

Hands-on experiments showed that for typically slow upper body motions of
the patient, our approach yields practical results for online mapping of probe
measurements to a position on the 3D body model during examination (see
Fig. 8b). In contrast, using only discriminative pose estimation produces quali-
tatively more unstable and inaccurate results on the body surface. This confirms
our results on the synthetic data (Fig. 6b). ICP-based refinement with an ade-
quate body model is able to correct for surface misalignment and introduces
significant robustness towards occlusions and missing body parts.

(a) Overlaying the estimated body model
with the synchronous Kinect RGB-D stream.

(b) Online probe mapping (red dot)
and tracking history (green)

Fig. 8. Visualization of the estimated localized patient w.r.t. the robot platform. (a)
During examination, the robotic arm is partly occluding the subject. Note that we only
fit to the torso of the patient. (b) Estimated probe position w.r.t to mannequin upper
body. Our approach remains robust towards occluded/missing body parts. (Color figure
online)

5 Robot Operating System (ROS). http://www.ros.org/.
6 Hardware: Intel Core i7-4510U 2.0 Ghz, 8 Gb RAM.

http://www.ros.org/
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5 Conclusion and Future Work

We have proposed a hybrid approach towards rapid shape estimation and real-
time pose tracking of the human upper body. We employ fast data-driven meth-
ods in combination with a model fitting-based refinement strategy to exploit
body shape for accurate torso tracking in real-time.

We introduced a subspace-based algorithm to estimate body shape parame-
ters directly from a single depth image and showed that it provides a sound
initialization for model fitting methods. Our second contribution is the develop-
ment of a suitable random forest refinement strategy for the well known body
joint position estimation framework by Girshick et al. [3]. Our experiments show
that the prediction error is distributed advantageously across training images
and the method therefore generalizes better on upper body joints.

Moreover, we provided our tracking framework with an ICP-based refinement
for both upper body shape and pose, and presented qualitative results on real
data. To encourage temporal consistency and induce robustness towards occlu-
sions due to dynamic objects in the scene, we proposed a feedback mechanism
that improves the interplay between data-driven and model-based torso tracking.

For future work, we plan to evaluate our tracking method on depth image
sequences in a more quantitative manner. We also intend to tackle the problem
of non-rigid shape changes induced by bending and torsion poses and aim to
investigate novel methods for predicting body shape directly from depth data.

Acknowledgment. This work is funded by the EU Framework Seven project ReMeDi
(grant 610902).
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