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Abstract. To help accelerate progress in multi-target, multi-camera
tracking systems, we present (i) a new pair of precision-recall measures
of performance that treats errors of all types uniformly and emphasizes
correct identification over sources of error; (ii) the largest fully-annotated
and calibrated data set to date with more than 2 million frames of 1080 p,
60 fps video taken by 8 cameras observing more than 2,700 identities over
85 min; and (iii) a reference software system as a comparison baseline.
We show that (i) our measures properly account for bottom-line identity
match performance in the multi-camera setting; (ii) our data set poses
realistic challenges to current trackers; and (iii) the performance of our
system is comparable to the state of the art.
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1 Introduction

Multi-Target, Multi-Camera (MTMC) tracking systems automatically track mul-
tiple people through a network of cameras. As MTMC methods solve larger and
larger problems, it becomes increasingly important (i) to agree on straightfor-
ward performance measures that consistently report bottom-line tracker per-
formance, both within and across cameras; (ii) to develop realistically large
benchmark data sets for performance evaluation; and (iii) to compare system
performance end-to-end. This paper contributes to these aspects.

Performance Measures. Multi-Target Tracking has been traditionally defined
as continuously following multiple objects of interest. Because of this, existing
performance measures such as CLEAR MOT report how often a tracker makes
what types of incorrect decisions. We argue that some system users may instead
be more interested in how well they can determine who is where at all times.
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To see this distinction, consider the scenario abstractly depicted in Fig. 1(a)
and (c). Airport security is following suspect A spotted in the airport lobby.
They need to choose between two trackers, Fig. 1(a) and (c). Both tag the sus-
pect as identity 1 and track him up to the security checkpoint. System Fig. 1(a)
makes a single mistake at the checkpoint and henceforth tags the suspect as
identity 2, so it loses the suspect at the checkpoint. After the checkpoint, sys-
tem Fig. 1(c) repeatedly flips the tags for suspect A between 1 and 2, thereby
giving police the correct location of the suspect several times also between the
checkpoint and the gate, and for a greater overall fraction of the time. Even
though system Fig. 1(a) incurs only one ID switch, airport security is likely to
prefer system Fig. 1(c), which reports the suspect’s position longer—multiple ID
switches notwithstanding—and ultimately leads to his arrest at the gate.

We do not claim that one measure is better than the other, but rather that
different measures serve different purposes. Event-based measures like CLEAR
MOT help pinpoint the source of some errors, and are thereby informative for
the designer of certain system components. In the interest of users in applications
such as sports, security, or surveillance, where preserving identity is crucial, we
propose two identity-based measures (ID precision and ID recall) that evaluate
how well computed identities conform to true identities, while disregarding where
or why mistakes occur. Our measures apply both within and across cameras.

Data Set. We make available a new data set that has more than 2 million frames
and more than 2,700 identities. It consists of 8×85 min of 1080 p video recorded
at 60 fps from 8 static cameras deployed on the Duke University campus dur-
ing periods between lectures, when pedestrian traffic is heavy. Calibration data
determines homographies between images and the world ground plane. All tra-
jectories were manually annotated by five people over a year, using an interface
we developed to mark trajectory key points and associate identities across cam-
eras. The resulting nearly 100,000 key points were automatically interpolated
to single frames, so that every identity comes with single-frame bounding boxes
and ground-plane world coordinates across all cameras in which it appears. To
our knowledge this is the first dataset of its kind.

Reference System. We provide code for an MTMC tracker that extends a
single-camera system that has shown good performance [1] to the multi-camera
setting. We hope that the conceptual simplicity of our system will encourage
plug-and-play experimentation when new individual components are proposed.

We show that our system does well on a recently published data set [2] when
previously used measures are employed to compare our system to the state of
the art. This comparison is only circumstantial because most existing results on
MTMC tracking report performance using ground-truth person detections and
ground-truth single-camera trajectories as inputs, rather than using the results
from actual detectors and single-camera trackers. The literature typically justi-
fies this limitation with the desire to measure only what a multi-camera tracker
adds to a single-camera system. This justification is starting to wane as MTMC
tracking systems approach realistically useful performance levels. Accordingly,
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we evaluate our system end-to-end, and also provide our own measures as a
baseline for future research.

2 Related Work

We survey prior work on MTMC performance measures, data sets, and trackers.

Measures. We rephrase existing MTMC performance measures as follows.

– A fragmentation occurs in frame t if the tracker switches the identity of a
trajectory in that frame, but the corresponding ground-truth identity does
not change. The number of fragmentations at frame t is φt, and Φ =

∑
t φt.

– A merge is the reverse of a fragmentation: The tracker merges two different
ground truth identities into one between frames t′ and t. The number of merges
at frame t is γt, and Γ =

∑
t γt.

– A mismatch is either a fragmentation or a merge. We define μt = φt + γt and
M =

∑
t μt.

When relevant, each of these error counts is given a superscript w (for “within-
camera”) when the frames t′ and t in question come from the same camera, and
a superscript h (for “handover”) otherwise.

The number of false positives fpt is the number of times the tracker detects
a target in frame t where there is none in the ground truth, the number of false
negatives fnt is the number of true targets missed by the tracker in frame t, and
tpt is the number of true positive detections at time t. The capitalized versions
TP , FP , FN are the sums of tpt, fpt, and fnt over all frames (and cameras, if
more than one), and the superscripts w and h apply here as well if needed.

Precision and recall are the usual derived measures, P = TP/(TP + FP )
and R = TP/(TP + FN).

Single-camera, multi-object tracking performance is typically measured by
the Multiple Object Tracking Accuracy (MOTA):

MOTA = 1 − FN + FP + Φ

T
(1)

and related scores (MOTP, MT, ML, FRG) [3–5]. MOTA penalizes detection
errors (FN + FP ) and fragmentations (Φ) normalized by the total number T of
true detections. If extended to the multi-camera case, MOTA and its companions
under-report across-camera errors, because a trajectory that covers nf frames
from nc cameras has only about nc across-camera detection links between con-
secutive frames and about nf −nc within camera ones, and nc � nf . To address
this limitation handover errors [6] and multi-camera object tracking accuracy
(MCTA) [2,7] measures were introduced, which we describe next.

Handover errors focus only on errors across cameras, and distinguish between
fragmentations Φh and merges Γh. Fragmentations and merges are divided fur-
ther into crossing (Φh

X and Γh
X) and returning (Φh

R and Γh
R) errors. These more
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detailed handover error scores help understand different types of tracker failures,
and within-camera errors are quantified separately by standard measures.

MCTA condenses all aspects of system performance into one measure:

MCTA =
2PR

P + R
︸ ︷︷ ︸

F1

(

1 − Mw

Tw

)

︸ ︷︷ ︸
within camera

(

1 − Mh

Th

)

︸ ︷︷ ︸
handover

. (2)

This measure multiplies the F1 detection score (harmonic mean of precision and
recall) by a term that penalizes within-camera identity mismatches (Mw) nor-
malized by true within-camera detections (Tw) and a term that penalizes wrong
identity handover mismatches (Mh) normalized by the total number of han-
dovers. Consistent with our notation, Th is the number of true detections (true
positives TPh plus false negatives FNh) that occur when consecutive frames
come from different cameras.

Comparing to MOTA, MCTA multiplies within-camera and handover mis-
matches rather than adding them. In addition, false positives and false negatives,
accounted for in precision and recall, are also factored into MCTA through a
product. This separation brings the measure into the range [0, 1] rather than
[−∞, 1] as for MOTA. However, the reasons for using a product rather than
some other form of combination are unclear. In particular, each error in any of
the three terms is penalized inconsistently, in that its cost is multiplied by the
(variable) product of the other two terms.

Data Sets. Existing multi-camera data sets allow only for limited evaluation of
MTMC systems. Some have fully overlapping views and are restricted to short
time intervals and controlled conditions [8–10]. Some sports scenarios provide
quality video with many cameras [11,12], but their environments are severely
constrained and there are no blind spots between cameras. Data sets with disjoint
views come either with low resolution video [2,6,13], a small number of cameras
placed along a straight path [2,6], or scripted scenarios [2,8–10,13,14]. Most
importantly, all existing data sets only have a small number of identities. Table 1
summarizes the parameters of existing data sets. Ours is shown in the last row. It
contains more identities than all previous data sets combined, and was recorded
over the longest time period at the highest temporal resolution (60 fps).

Systems. MTMC trackers rely on pedestrian detection [15] and tracking [16]
or assume single-camera trajectories to be given [6,13,17–26]. Spatial relations
between cameras are either explicitly mapped in 3D [13,19], learned by tracking
known identities [25,27,28], or obtained by comparing entry/exit rates across
pairs of cameras [6,18,26]. Pre-processing methods may fuse data from partially
overlapping views [29], while some systems rely on completely overlapping and
unobstructed views [9,17,30–32]. People entry and exit points may be explicitly
modeled on the ground [6,18,19,26] or image plane [24,27]. Travel time is also
modeled, either parametrically [13,27] or not [6,19,24–26].

Appearance is captured by color [6,13,18–21,23–25,27,29] and texture
descriptors [6,13,18,20,22,29]. Lighting variations are addressed through color
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Table 1. Summary of existing data sets for MTMC tracking. Ours is in the last row.

Dataset IDs Duration Cams Actors Overlap Blind Spots Calib. Resolution FPS Scene Year
Laboratory [8] 3 2.5 min 4 Yes Yes No Yes 320x240 25 Indoor 2008
Campus [8] 4 5.5 min 3 Yes Yes No Yes 320x240 25 Outdoor 2008
Terrace [8] 7 3.5 min 4 Yes Yes No Yes 320x240 25 Outdoor 2008
Passageway [9] 4 20 min 4 Yes Yes No Yes 320x240 25 Mixed 2011
Issia Soccer [11] 25 2 min 6 No Yes No Yes 1920x1080 25 Outdoor 2009
Apidis Basket. [12] 12 1 min 7 No Yes No Yes 1600x1200 22 Indoor 2008
PETS2009 [10] 30 1 min 8 Yes Yes No Yes 768x576 7 Outdoor 2009
NLPR MCT 1 [2] 235 20 min 3 No No Yes No 320x240 20 Mixed 2015
NLPR MCT 2 [2] 255 20 min 3 No No Yes No 320x240 20 Mixed 2015
NLPR MCT 3 [2] 14 4 min 4 Yes Yes Yes No 320x240 25 Indoor 2015
NLPR MCT 4 [2] 49 25min 5 Yes Yes Yes No 320x240 25 Mixed 2015
Dana36 [14] 24 N/A 36 Yes Yes Yes No 2048x1536 N/A Mixed 2012
USC Campus [6] 146 25 min 3 No No Yes No 852x480 30 Outdoor 2010
CamNeT [13] 50 30 min 8 Yes Yes Yes No 640x480 25 Mixed 2015
DukeMTMC (ours) 2834 85 min 8 No Yes Yes Yes 1920x1080 60 Outdoor 2016

normalization [18], exemplar based approaches [20], or brightness transfer func-
tions learned with [23,25] or without supervision [13,19,24,29]. Discriminative
power is improved by saliency information [33,34] or learning features specific to
body parts [6,18,20–23,27], either in the image [35–37] or back-projected onto
an articulated [38,39] or monolithic [40] 3D body model.

All MTMC trackers employ optimization to maximize the coherence of obser-
vations for predicted identities. They first summarize spatial, temporal, and
appearance information into a graph of weights wij that express the affinity of
node observations i and j, and then partition the nodes into identities either
greedily through bipartite matching or, more generally, by finding either paths
or cliques with maximal internal weights. Some contributions are as follows
(Table 2):

Table 2. Optimization techniques employed by MTMC systems.

Single-camera Cross-camera Both

Bipartite [41–43] [6,18,20,22] —

Path [9,44–46] [25,27] [2,29]

Clique [1,47–55] [23] Ours

In this paper, we extend a previous clique method [1] to formulate within-
and across-camera tracking in a unified framework, similarly to previous MTMC
flow methods [2,29]. In contrast with [23], we handle identities reappearing in
the same camera and differently from [8,9] we handle co-occuring observations
in overlapping views naturally, with no need for separate data fusion methods.

3 Performance Measures

Current event-based MTMC tracking performance measures count mismatches
between ground truth and system output through changes of identity over time.
The next two Sections show that this can be problematic both within and across
cameras. The Section thereafter introduces our proposed measures.
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3.1 Within-Camera Issues

With event-based measures, a truly-unique trajectory that switches between two
computed identities over n frames can incur penalties that are anywhere between
1, when there is exactly one switch, and n−1, in the extreme case of one identity
switch per frame. This can yield inconsistencies if correct identities are crucial.
For example, in all cases in Fig. 1, the tracker covers a true identity A with
computed identities 1 and 2. Current measures would make cases (b) and (c)
equally bad, and (a) much better than the other two.

And yet the key mistake made by the tracker is to see two identities where
there is one. To quantify the extent of the mistake, we need to decide which of the
two computed identities we should match with A for the purpose of performance
evaluation. Once that choice is made, every frame in which A is assigned to the
wrong computed identity is a frame in which the tracker is in error.

Since the evaluator—and not the tracker—makes this choice, we suggest that
it should favor the tracker to the extent possible. If this is done for each tracker
under evaluation, the choice is fair. In all cases in Fig. 1, the most favorable
choice is to tie A to 1, because this choice explains the largest fraction of A.

Once this choice is made, we measure the number of frames over which the
tracker is wrong—in the example, the number of frames of A that are not matched
to 1. In Fig. 1, this measure makes (a) and (b) equally good, and (c) better than
either. This penalty is consistent because it reflects precisely what the choice
made above maximizes, namely, the number of frames over which the tracker is
correct about who is where. In (a) and (b), the tracker matches ground truth
67 % of the time, and in (c) it matches it 83 % of the time.

Figure 1 is about fragmentation errors. It can be reinterpreted in terms of
merge errors by exchanging the role of thick and thin lines. In this new interpre-
tation, choosing the longest ground-truth trajectory as the correct match for a
given computed trajectory explains as much of the tracker’s output as possible,
rather than as much of the ground truth. In both directions, our truth-to-result
matching criterion is to let ground truth and tracker output explain as much of
each other’s data as possible, in a way that will be made quantitative later on.

A
1
2

A
1
2

A
1
2

)c()b()a(

Fig. 1. Where there is one true identity A (thick line, with time in the horizontal direc-
tion), a tracker may mistakenly compute identities 1 and 2 (thin lines) broken into two
fragments (a) or into eight (b, c). Identity 1 covers 67 % of the true identity’s trajectory
in (a) and (b), and 83 % of it in (c). Current measures charge one fragmentation error
to (a) and 7 to each of (b) and (c). Our proposed measure charges 33 % of the length
of A to each of (a) and (b), and 17 % to (c).
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3.2 Handover Issues

Event-based measures often evaluate handover errors separately from within-
camera errors: Whether a mismatch is within-camera or handover depends on
the identities associated to the very last frame in which a trajectory is seen in
one camera, and on the very first frame in which it is seen in the next—a rather
brittle proposition. In contrast, our measure counts the number of incorrectly
matched frames, regardless of other considerations: If only one frame is wrong,
the penalty is small. For instance, in the cases shown in Fig. 2, current measures
either charge a handover penalty when the handover is essentially correct (a) or
fail to charge a handover penalty when the handover is essentially incorrect (b).
Our measure charges a one-frame penalty in case (a) and a penalty nearly equal
to the trajectory length in camera II in case (b), as appropriate. These cases
are not just theoretical. In Sect. 6, we show that 74 % of the 5,549 handovers
computed by our tracker in our data set show similar phenomena.

A
1
2

camera I camera II

A
1
2

camera I camera II

(a) (b)

Fig. 2. (a) Ground-truth trajectory A is handed over correctly between cameras,
because it is given the same computed identity 1 throughout, except that a short
fragment in camera I is mistakenly given identity 2 (red). This counts as a handover
error with existing measures. (b) A is handed over incorrectly, but a short fragment in
camera II mistakenly given identity 1 (red) makes existing measures not count it as
a handover error. Existing measures would charge a within-camera fragmentation and
an across-camera fragmentation to (a) and one within-camera fragmentation to (b),
even if assignment (a) is much better than (b) in terms of target identification. (Color
figure online)

These issues are exacerbated in measures, such as MCTA, that combine mea-
sures of within-camera mismatches and handover mismatches into a single value
by a product (Eq. 2). If one of the anomalies discussed above changes a within-
camera error into a handover error or vice versa, the corresponding contribu-
tion to the performance measure can change drastically, because the penalty
moves from one term of the product to another: If the product has the form wh
(“within” and “handover”), then a unit contribution to w has value h in the
product, and changing that contribution from w to h changes its value to w.

3.3 The Truth-To-Result Match

To address these issues, we propose to measure performance not by how often
mismatches occur, but by how long the tracker correctly identifies targets. To this
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end, ground-truth identities are first matched to computed ones. More specif-
ically, a bipartite match associates one ground-truth trajectory to exactly one
computed trajectory by minimizing the number of mismatched frames over all
the available data—true and computed. Standard measures such as precision,
recall, and F1-score are built on top of this truth-to-result match. These scores
then measure the number of mismatched or unmatched detection-frames, regard-
less of where the discrepancies start or end or which cameras are involved.

To compute the optimal truth-to-result match, we construct a bipartite graph
G = (VT , VC , E) as follows. Vertex set VT has one “regular” node τ for each true
trajectory and one “false positive” node f+

γ for each computed trajectory γ.
Vertex set VC has one “regular” node γ for each computed trajectory and one
“false negative” node f−

τ , for each true trajectory τ . Two regular nodes are con-
nected with an edge e ∈ E if their trajectories overlap in time. Every regular true
node τ is also connected to its corresponding f−

τ , and every regular computed
node γ is also connected to its corresponding f+

γ .
The cost on an edge (τ, γ) ∈ E tallies the number of false negative and false

positive frames that would be incurred if that match were chosen. Specifically,
let τ(t) be the sequence of detections for true trajectory τ , one detection for each
frame t in the set Tτ over which τ extends, and define γ(t) for t ∈ Tγ similarly
for computed trajectories. The two simultaneous detections τ(t) and γ(t) are a
miss if they do not overlap in space, and we write

m(τ, γ, t,Δ) = 1 . (3)

More specifically, when both τ and γ are regular nodes, spatial overlap
between two detections can be measured either in the image plane or on the
reference ground plane in the world. In the first case, we declare a miss when the
area of the intersection of the two detection boxes is less than Δ (with 0 < Δ < 1)
times the area of the union of the two boxes. On the ground plane, we declare a
miss when the positions of the two detections are more than Δ = 1 meter apart.
If there is no miss, we write m(τ, γ, t,Δ) = 0. When either τ or γ is an irregular
node (f−

τ or f+
γ ), any detections in the other trajectory are misses. When both

τ and γ are irregular, m is undefined. We define costs in terms of binary misses,
rather than, say, Euclidean distances, so that a miss between regular positions
has the same cost as a miss between a regular position and an irregular one.
Matching two irregular trajectories incurs zero cost because they are empty.

With this definition, the cost on edge (τ, γ) ∈ E is defined as follows:

c(τ, γ,Δ) =
∑

t∈Tτ

m(τ, γ, t,Δ)

︸ ︷︷ ︸
False Negatives

+
∑

t∈Tγ

m(τ, γ, t,Δ)

︸ ︷︷ ︸
False Positives

. (4)

A minimum-cost solution to this bipartite matching problem determines a
one-to-one matching that minimizes the cumulative false positive and false neg-
ative errors, and the overall cost is the number of mis-assigned detections for all
types of errors. Every (τ, γ) match is a True Positive ID (IDTP ). Every (f+

γ , γ)



Performance Measures and a Data Set for MTMC Tracking 25

match is a False Positive ID (IDFP ). Every (τ, f−
τ ) match is a False Negative

ID (IDFN). Every (f+
γ , f−

τ ) match is a True Negative ID (IDTN).
The matches (τ, γ) in IDTP imply a truth-to-result match, in that they

reveal which computed identity matches which ground-truth identity. In general
not every trajectory is matched. The sets

MT = {τ | (τ, γ) ∈ IDTP} and MC = {γ | (τ, γ) ∈ IDTP} (5)

contain the matched ground-truth trajectories and matched computed trajectories,
respectively. The pairs in IDTP can be viewed as a bijection between MT and
MC. In other words, the bipartite match implies functions γ = γm(τ) from MT
to MC and τ = τm(γ) from MC to MT .

3.4 Identification Precision, Identification Recall, and F1 Score

We use the IDFN , IDFP , IDTP counts to compute identification precision
(IDP ), identification recall (IDR), and the corresponding F1 score IDF1. More
specifically,

IDFN =
∑

τ∈AT

∑

t∈Tτ

m(τ, γm(τ), t,Δ) (6)

IDFP =
∑

γ∈AC

∑

t∈Tγ

m(τm(γ), γ, t,Δ) (7)

IDTP =
∑

τ∈AT

len(τ) − IDFN =
∑

γ∈AC

len(γ) − IDFP (8)

where AT and AC are all true and computed identities in MT and MC.

IDP =
IDTP

IDTP + IDFP
(9)

IDR =
IDTP

IDTP + IDFN
(10)

IDF1 =
2 IDTP

2 IDTP + IDFP + IDFN
(11)

Identification precision (recall) is the fraction of computed (ground truth)
detections that are correctly identified. IDF1 is the ratio of correctly identified
detections over the average number of ground-truth and computed detections.
ID precision and ID recall shed light on tracking trade-offs, while the IDF1 score
allows ranking all trackers on a single scale that balances identification precision
and recall through their harmonic mean.

Our performance evaluation approach based on the truth-to-result match
addresses all the weaknesses mentioned earlier in a simple and uniform way, and
enjoys the following desirable properties: (1) Bijectivity: A correct match (with
no fragmentation or merge) between true identities and computed identities is
one-to-one. (2) Optimality: The truth-to-result matching is the most favorable
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to the tracker. (3) Consistency: Errors of any type are penalized in the same
currency, namely, the number of misassigned or unassigned frames. Our approach
also handles overlapping and disjoint fields of view in exactly the same way—a
feature absent in all previous measures.

3.5 Additional Comparative Remarks

Measures of Handover Difficulty. Handover errors in current measures are
meant to account for the additional difficulty of tracking individuals across cam-
eras, compared to tracking them within a single camera’s field of view. If a
system designer were interested in this aspect of performance, a similar mea-
sure could be based on the difference between the total number of errors for the
multi-camera solution and the sum of the numbers of single-camera errors:

EM − ES where EM = IDFPM + IDFNM and ES = IDFPS + IDFNS .
(12)

The two errors can be computed by computing the truth-to-result mapping
twice: Once for all the data and once for each camera separately (and then
adding the single-camera errors together). The difference above is nonnegative,
because the multi-camera solution must account for the additional constraint
of consistency across cameras. Similarly, simple manipulation shows that ID
precision, ID recall, and IDF1 score are sorted the other way:

IDPS − IDPM ≥ 0 , IDRS − IDRM ≥ 0 , F1S − F1M ≥ 0

and these differences measure how well the overall system can associate across
cameras, given within-camera associations.

Comparison with CLEAR MOT. The first step in performance evaluation
matches true and computed identities. In CLEAR MOT the event-based match-
ing defines the best mapping sequentially at each frame. It minimizes Euclidean
distances (within a threshold Δ) between unmatched detections (true and com-
puted) while matched detections from frame t−1 that are still within Δ in t are
preserved. Although the per-frame identity mapping is 1-to-1, the mapping for
the entire sequence is generally many-to-many.

In our identity-based measures, we define the best mapping as the one which
minimizes the total number of mismatched frames between true and computed
IDs for the entire sequence. Similar to CLEAR MOT, a match at each frame is
enforced by a threshold Δ. In contrast, our reasoning is not frame-by-frame and
results in an ID-to-ID mapping that is 1-to-1 for the entire sequence.

The second step evaluates the goodness of the match through a scoring func-
tion. This is usually done by aggregating mistakes. MOTA aggregates FP, FN
and Φ while we aggregate IDFP and IDFN counts. The notion of fragmenta-
tion is not present in our evaluation because the mapping is strictly 1-to-1. In
other words our evaluation only checks whether every detection of an identity
is explained or not, consistently with our definition of tracking. Also, our aggre-
gated mistakes are binary mismatch counts instead of, say, Euclidean distances.
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This is because we want all errors to be penalized in the same currency. If we
were to combine the binary IDFP and IDFN counts with Euclidean distances
instead of IDTP, the unit of error would be ambiguous: We won’t be able to tell
whether the tracker under evaluation is good at explaining identities longer or
following their trajectories closer.

Comparison with Identity-Aware Tracking. Performance scores similar to
ours were recently introduced for this specific task [56]. The problem is defined as
computing trajectories for a known set of true identities from a database. This
implies that the truth-to-result match is determined during tracking and not
evaluation. Instead, our evaluation applies to the more general MTMC setting
where the tracker is agnostic to the true identities.

4 Data Set

Another contribution of this work is a new, manually annotated, calibrated,
multi-camera data set recorded outdoors on the Duke University campus with 8
synchronized cameras (Fig. 3)1. We recorded 6,791 trajectories for 2,834 different
identities (distinct persons) over 1 h and 25min for each camera, for a total of
more than 10 video hours and more than 2 million frames. There are on average
2.5 single-camera trajectories per identity, and up to 7 in some cases.

Fig. 3. Images and annotations of our DukeMTMC data set for frame 30890.

The cumulative trajectory time is more than 30 h. Individual camera density
varies from 0 to 54 people per frame, depending on the camera. There are 4,159
hand-overs and up to 50 people traverse blind spots at the same time. More
than 1,800 self-occlusion events happen (with 50 % or more overlap), lasting
60 frames on average. Our videos are recorded at 1080 p resolution and 60 fps
to capture spatial and temporal detail. Two camera pairs (2–8 and 3–5) have
small overlapping areas, through which about 100 people transit, while the other
cameras are disjoint. Full annotations are provided in the form of trajectories of
each person’s foot contact point with the ground. Image bounding boxes are also
available and have been semi-automatically generated. The first 5 min of video

1 http://vision.cs.duke.edu/DukeMTMC.

http://vision.cs.duke.edu/DukeMTMC
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from all the cameras are set aside for validation or training, and the remaining
80 min per camera are for testing.

Unlike many multi-camera data sets, ours is not scripted and cameras have a
wider field of view. Unlike single-camera benchmarks where a tracker is tested on
very short videos of different challenging scenarios, our data set is recorded in a
fixed environment, and the main challenge is persistent tracking under occlusions
and blind spots.

People often carry bags, backpacks, umbrellas, or bicycles. Some people stop
for long periods of time in blind spots and the environment rarely constrains
their paths. So transition times through blind spots are often but not always
informative. 891 people walk in front of only one camera—a challenge for trackers
that are prone to false-positive matches across cameras.

Working with this data set requires efficient trackers because of the amount
of data to process. To illustrate, it took 6 days on a single computer to generate
all the foreground masks with a standard algorithm [57] and 7 days to generate
all detections on a cluster of 192 cores using the DPM detector [58]. Comput-
ing appearance features for all cameras on a single machine took half a day;
computing all tracklets, trajectories, and identities together also took half a day
with the proposed system (Sect. 5). People detections and foreground masks are
released along with the videos.

Limitations. Our data set covers a single outdoor scene from fixed cameras. Soft
lighting from overcast weather could make tracking easier. Views are mostly
disjoint, which disadvantages methods that exploit data from overlapping views.

5 Reference System

We provide a reference MTMC tracker that extends to multiple cameras a system
that was previously proposed for single camera multi-target tracking [1]. Our
system takes target detections from any detection system, aggregates them into
tracklets that are short enough to rely on a simple motion model, then aggregates
tracklets into single camera trajectories, and finally connects these into multi-
camera trajectories which we call identities.

In each of these layers, a graph G = (V,E) has observations (detections,
tracklets, or trajectories) for nodes in V , and edges in E connect any pairs of
nodes i, j for which correlations wij are provided. These are real values in [−1, 1]
that measure evidence for or against i and j having the same identity. Values
of ±∞ are also allowed to represent hard evidence. A Binary Integer Program
(BIP) solves the correlation clustering problem [59] on G: Partition V so as to
maximize the sum of the correlations wij assigned to edges that connect co-
identical observations and the penalties −wij assigned to edges that straddle
identities. Sets of the resulting partition are taken to be the desired aggregates.

Solving this BIP is NP-hard and the problem is also hard to approximate [60],
hence the need for our multi-layered solution to keep the problems small. To
account for unbounded observation times, solutions are found at all levels over
a sliding temporal window, with solutions from previous overlapping windows



Performance Measures and a Data Set for MTMC Tracking 29

incorporated into the proper BIP as “extended observations”. For additional
efficiency, observations in all layers are grouped heuristically into a number of
subgroups with roughly consistent appearance and space-time locations.

Our implementation includes default algorithms for the computation of
appearance descriptors and correlations in all layers. For appearance, we use
the methods from the previous paper [1] in the first layers and simple striped
color histograms [61] for the last layer. Correlations are computed from both
appearance features and simple temporal reasoning.

6 Experiments

This Section shows that (i) traditional event based measures are not good prox-
ies for a tracker’s ID precision or ID recall, defined in Sect. 3; (ii) handover
errors, as customarily defined, cause frequent problems in practice; and (iii) the
performance of our reference system, when evaluated with existing measures, is
comparable to that of other recent MTMC trackers. We also give detailed per-
formance numbers for our system on our data under a variety of performance
measures, including ours, to establish a baseline for future comparisons.

ID Recall, ID Precision and Mismatches. Figure 4 shows that fragmenta-
tions and merges correlate poorly with ID recall and ID precision, confirming that
event- and identity-based measures quantify different aspects of performance.

Fig. 4. Scatter plots of ground-truth trajectory ID recall (a, b) and ID precision (c, d)
versus the number of trajectory fragmentations (a, c) and merges (b, d). Correlation
coefficients are –0.24, –0.05, –0.38 and –0.41. This confirms that event- and identity-
based measures quantify different aspects of tracker performance.

Truth-to-Result Mapping. Section 3 and Fig. 2 describe situations in which
traditional, event-based performance measures handle handover errors differently
from ours. Figure 5 shows that these discrepancies are frequent in our results.

Traditional System Performance Analysis. Table 3 (top) compares our ref-
erence method to existing ones on the NLPR MCT data sets [2] and evaluates
performance using the existing MCTA measure. The results are obtained under
the commonly used experimental setup where all systems start with the same
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1
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(a) 1692 (30.5%) (b) 738 (13.3%) (c) 70 (1.3%)

B
A
1

camera I camera II

C
B
A
1

camera I camera II

C
B
A
1

camera I camera II

C

(d) 1065 (19.2%) (e) 496 (8.9%) (f) 58 (1.0%)

Fig. 5. [See Fig. 2 for the interpretation of these diagrams.] In about 74 % (4,119 out
of 5,549) of the handovers output by our reference system on our data set, a short
trajectory close to the handover causes a marked discrepancy between event-based,
traditional performance measures and our identity-based measures. A handover frag-
mentation error (a, b) or merge error (d, e) is declared where the handover is essentially
correct. A handover fragmentation error (c) or merge error (f) is not declared where
the handover is essentially incorrect. Each caption shows the number of occurrences
and the percentage of the total number of computed handovers.

Table 3. Top Table: MCTA score comparison on the existing NLPR data sets, start-
ing from ground truth single camera trajectories. The last column contains the aver-
age dataset ranks. Bottom Table: Single-camera (white background) and multi-camera
(grey background) results on our DukeMTMC data set. For each separate camera we
report both standard multi-target tracking measures as well as our new measures.

Systems NLPR 1 NLPR 2 NLPR 3 NLPR 4 Avg. Rank

USC [18] 0.9152 0.9132 0.5163 0.7052 2.25
Ours 0.7967 0.7336 0.6543 0.7616 2.5
GE [2] 0.8353 0.7034 0.7417 0.3845 2.75
hfutdspmct [7] 0.7425 0.6544 0.7368 0.3945 3.5
CRIPAC-MCT [62] 0.6617 0.5907 0.7105 0.5703 4
Adb-Team [7] 0.3204 0.3456 0.1382 0.1563 6

CLEAR MOT Measures Our Measures
Cam FP↓ FN↓ IDS↓ FRG↓ MOTA↑ MOTP↑ GT MT↑ ML↓ IDP↑ IDR↑ IDF1↑

1 9.70 52.90 178 366 37.36 67.57 1175 105 128 79.17 44.97 57.36

2 21.48 29.19 866 1929 49.17 61.70 1106 416 50 69.11 63.78 66.34

3 7.04 39.39 134 336 53.50 63.57 501 229 42 81.46 55.11 65.74

4 10.61 33.42 107 403 55.92 66.51 390 128 21 79.23 61.16 69.03

5 3.48 23.38 162 292 73.09 70.52 644 396 33 84.86 67.97 75.48

6 38.62 48.21 1426 3370 12.94 48.62 1043 207 91 48.35 43.71 45.91

7 8.28 29.57 296 675 62.03 60.73 678 373 53 85.23 67.08 75.07

8 1.29 61.69 270 365 36.98 69.07 1254 369 236 90.54 35.86 51.37

1-8 Upper bound 72.25 50.96 59.77

1-8 Baseline 52.35 36.46 42.98
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input of ground-truth single-camera trajectories. On average, our baseline sys-
tem ranks second out of six by using our simple default appearance features.
The highest ranked method [18] uses features based on discriminative learning.

System Performance Details. Table 3 (bottom) shows both traditional and
new measures of performance, both single-camera and multi-camera, for our
reference system when run on our data set. This table is meant as a baseline
against which new methods may be compared.

From the table we see that our IDF1 score and MOTA do not agree on how
they rank the sequence difficulty of cameras 2 and 3. This is primarily because
they measure different aspects of the tracker. Also, they are different in the
relative value differences. For example, camera 6 appears much more difficult
than 7 based on MOTA, but the difference is not as dramatic when results are
inspected visually or when IDF1 differences are considered.

7 Conclusion

We define new measures of MTMC tracking performance that emphasize cor-
rect identities over sources of error. We introduce the largest annotated and
calibrated data set to date for the comparison of MTMC trackers. We provide a
reference tracker that performs comparably to the state of the art by standard
measures, and we establish a baseline of performance measures, both traditional
and new, for future comparisons. We hope in this way to contribute to acceler-
ating advances in this important and exciting field.

References

1. Ristani, E., Tomasi, C.: Tracking multiple people online and in real time. In:
Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007,
pp. 444–459. Springer, Heidelberg (2015)

2. Cao, L., Chen, W., Chen, X., Zheng, S., Huang, K.: An equalised global graphical
model-based approach for multi-camera object tracking [cs]. arXiv:11502.03532,
February 2015

3. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance:
the CLEAR MOT metrics. EURASIP J. Image Video Process. 246309, 1–10
(2008)

4. Wu, B., Nevatia, R.: Tracking of multiple, partially occluded humans based on sta-
tic body part detection. In: 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 1, pp. 951–958. IEEE (2006)

5. Milan, A., Schindler, K., Roth, S.: Challenges of ground truth evaluation of multi-
target tracking. In: 2013 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pp. 735–742. IEEE (2013)

6. Kuo, C.-H., Huang, C., Nevatia, R.: Inter-camera association of multi-target tracks
by on-line learned appearance affinity models. In: Daniilidis, K., Maragos, P.,
Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 383–396. Springer,
Heidelberg (2010)

http://arxiv.org/abs/11502.03532


32 E. Ristani et al.

7. Multi-camera Object Tracking Challenge: ECCV Workshop on Visual Surveillance
and Re-Identification (2014). http://mct.idealtest.org

8. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multi-camera people tracking with
a probabilistic occupancy map. IEEE Trans. Pattern Anal. Mach. Intell. 30(2),
267–282 (2008)
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