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Abstract In recent years, substantial efforts related to the applications of Particle
Swarm Optimization (PSO) to various areas in engineering problems have been
carried out. This chapter briefly gives the details of PSO development and its
applications to reliability optimization.
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1 Recent Works and Advances of PSO

Presently, we have many variants of Particle Swarm Optimization (PSO) and are
expected to grow further rapidly. Figure 1 describes the basic variants and modi-
fications in PSO over the years. Various modifications to the original PSO has been
proposed so far [43]. Also, novel ideas from other disciplines such as evolutionary
algorithms have been imported to the framework of PSO. PSO algorithms can be
divided into the global version (gbest model) and the local version (lbest model)
types, with the ability of the lbest model to prevent a solution being trapped in local
minima. The gbest model, on the other hand, has more chance to get trapped into a
local optimum. However, the global version is superior to the local version in terms
of the speed of convergence to the optimum solution and the computation time.

To reduce the possibility of particles flying out of the problem space, Eberhart
et al. [42] put forward a clamping scheme that limited the speed of each particle to a
range [−Vmax, Vmax]. To assist with the balance between exploration and
exploitation a modified PSO, incorporating an inertia weight, w was introduced
[128]. The initial experiments suggested that a value between 0.8 and 1.2 provided
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good results, although in later work Eberhart and Shi [40] indicated that the value is
typically set to 0.9 (reducing the stepwise movement of each particle, allowing
greater initial exploration) reducing linearly to 0.4 (speeding convergence to the
global optimum) during an optimization run. A summary of various existing inertia
weight strategies is given in Table 1 [94]. Constriction is an alternative method for
controlling the behaviour of particles in the swarm. Rather than applying inertia to
the velocity memory, Clerc and Kennedy (developed 1999, published [20]) applied
a constriction factor to the new velocity. Eberhart and Shi [40] showed that with
judicious parameter settings, the two approaches were algebraically equivalent and
improved performance could be achieved across a wide range of problems.

PSO has also been successfully applied to solve the constrained optimization
problems. A variety of approaches [4, 15, 56, 103, 134, 137] have been developed
to work with constrained optimization methods.

Although the basic PSO was developed to find single solutions to optimization
problems, but later it is observed that PSO has an inherent ability to find multiple
solutions. Niching is an important technique for multimodal optimization. PSO can
be used as an effective niching method for maintaining stable subpopulations (or
niches) [44, 76, 95, 135, 144].

PSO was originally developed and applied to static problems where the objective
function does not change. Later, It is realized that PSO be adapted to solve dynamic
problems as well. Several simple modifications [39, 41, 54, 57, 80, 105, 157] have
been applied to improve its performance in dynamic environment. One of the first

Fig. 1 Basic variants of PSO
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Table 1 Description of different inertia weight strategies

Label Inertia weight strategy Adaption
mechanism

Feedback
parameter

References

W1 w ¼ c Constant w – Shi and
Eberhart
[128, 132]

W2 w ¼ 0:5þ rand ðÞ
2

Random w – Eberhart and
Shi [41]

W3 wðiterÞ ¼ wmin þ maxiter�iter
maxiter wmax � wminð Þ Linear

time
varying

– Eberhart and
Shi [41], Shi
and Eberhart
[129, 130]

W4 w iterð Þ ¼ wmin þ maxiter�iter
maxiter

� �n
wmax � wminð Þ Nonlinear

time
varying

– Chatterjee
and Siarry
[17]

W5 w iterð Þ ¼ winitial � Uiter Nonlinear
time
varying

– Jiao et al.
[60]

W6 wðiterÞ ¼ wmin � Zþ maxiter�iter
maxiter wmax � wminð Þ Linear

time
varying
with
random
changes

– Feng et al.
[46, 47]

W7
wðiterÞ ¼ wmin þ

1� iter
maxiter

� �

1�s iter
maxiter

� � wmax � wminð Þ
Nonlinear
time
varying

– Lei et al.
[72]

W8
wðiterÞ ¼ 2

iter

� �0:3 Nonlinear
time
varying

– Fan and
Chiu [45]

W9 wðiterÞ ¼ wmax þ maxiter�iter
maxiter wmin � wmaxð Þ Linear

time
varying

– Zheng et al.
[158, 159]

W10 Fuzzy rules Adaptive Best
fitness

Saber et al.
[122], Shi
and Eberhart
[131]

W11 wt
i ¼ winitial � a 1� hti

� �þ bs Adaptive Fitnees of
the current
and
previous
iterations

Yang et al.
[151]

W12 w ¼ 1:1þ gbest
ðpbestiÞaverage

Adaptive Global
best and
average
local best
fitness

Arumugam
and Rao [6]

(continued)
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studies in the application of PSO to dynamic environment came from Carlisle and
Dozier [16], where the efficiency of different velocity models has been evaluated.
Coelho et al. [22] successfully applied the split adaptive PSO design proportional
integral (PI) controllers for nonlinear time-varying process in discrete time domain.

As far as the main body of PSO development work is concerned it concentrated
on optimization in continuous search spaces, although some research has also been
conducted into the application of the algorithm to discrete problems. Kennedy and
Eberhart [61] developed the first discrete version of PSO for binary problems. Later,
Al-kazemi and Mohan [3] compared this with an alternative velocity update tech-
nique called Multiphase Discrete PSO (M-DiPSO). Laskari et al. [71] presented an
implementation of PSO that initially operated in continuous space but truncated the
real number values to integers. Afshinmanesh et al. [1] have developed a hybrid
approach, combining PSO and Artificial Immune Systems (AIS), for the opti-
mization of binary problems.

For more developments in PSO one can refer the review papers by Parsopoulos
and Vrahatis [104], Banks et al. [10, 11], Dian et al. [38].

A number of approaches have been proposed to extend the PSO for multiple
objective problems. One of the earliest proposals for progression of PSO strategy
for solving MOOP was made by Moore and Chapman [91] in an unpublished
manuscript from 1999. Since then there have been several recent attempts to use
PSO for multi-objective optimization problems only. Some of these concepts have
been surveyed briefly in this section.

Dynamic Neighbourhood PSO Hu and Eberhart [55] proposed this method in
which, in each generation, after calculating distances to every other particles, each

Table 1 (continued)

Label Inertia weight strategy Adaption
mechanism

Feedback
parameter

References

W13 wi ¼ wmin þ wmax � wminð Þ Ranki

total population
Adaptive Particle

rank
Panigrahi
et al. [99]

W14 w ¼ 1� a 1
1þ eISAij

� �
; ISAij ¼ xij�Pijj j

pij�pgij jþ e

Adaptive Distance
to particle
and global
best
positions

Qin et al.
[110]

W15
w ¼ winitial þ 1� disti

max dist

� �
;

disti ¼
XD

d¼1
ðgbestd � xi;dÞ2

� �1=2

Adaptive Distance
to global
best
position

Suresh et al.
[138]
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particle finds its new neighbourhood. Among the new neighbours each particle
finds the local best particle.

The Multi-objective Particle Swarm Optimizer (MOPSO) Coello and Lechuga
[24] found PSO particularly suitable for MOOP mainly because of the high speed of
convergence that the PSO presents for single objective optimization problem and
proposed multi-objective particle swarm optimization (MOPSO). MOPSO used two
archives, one for storing globally non-dominated solutions found so far by search
process, while the other for storing the individual best solutions attained by each
particle. They used method inspired by Knowles and Corne [65], for maintaining
diversity. An adaptive grid feature used in this method, based upon objective
functions values of archive members is applied to the archive, with the goal of
producing well distributed Pareto optimal front. In this method first hyperspace is
divided into small hypercube and each cube is assigned weight which is inversely
proportional to the number of non-dominated solutions inside the cube. Then
roulette wheel selection is used to select one of the hypercubes from which the
gbest will be picked.

The Multi-objective Particle Swarm Optimizer (MOPSO) Coello et al. [25]
improved the aforementioned MOPSO by incorporating a genetic operator as
mutation operator. The mutation operator boosts the exploration capability of
MOPSO presented in Coello and Lechuga [24].

The Swarm Metaphor Ray and Liew [117] proposed the Pareto dominance and
combining concepts of evolutionary techniques with the PSO. All non-dominated
individuals which are performing better and having less constraint violations are
highly ranked based on Pareto ranking and saved as a set of leaders (SOL). The
selection of a group leader as gbest from the SOL is based on roulette wheel
selection which ensures SOL members with a large crowding radius have a higher
probability of being selected as a leader.

The Approach of Mostaghim and Teich [92] proposed the sigma method for
finding the suitable gbest for each particle, they also used turbulence factor to
enhance the exploration capability.

The Algorithm of Fieldsend and Singh [48] suggested an approach in which they
used an unconstrained elite archive (in which a special data structure called dom-
inated tree is adopted) to store the non-dominated individuals found along the
search process. The concept of the turbulence was also incorporated by them.

Bartz-Beielstein et al. [12] proposed an idea of using elitism (through the use of
external archive) into PSO. They analysed different methods of selecting and
deleting particles from the archive to generate a satisfactory approximation of the
Pareto optimal front.

The Non-dominated Sorting PSO Li [77] developed Non-dominated sorting
particle swarm optimization (NSPSO) which incorporated the main mechanism of
Non-dominated sorting genetic algorithm (NSGA-II) [34]. In his algorithm,
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the population of particles was combined with the personal best position and the
best was selected from the new population to compose the next population.

Another Multi-objective Particle Swarm Optimization (AMOPSO) Pulido and
Coello [109] further improved the performance of PSO, and proposed an MOPSO
algorithm, which is called AMOPSO. Their algorithm implements the subdivision
of the decision space into multiple sub-swarms via clustering techniques. Their goal
was to improve the diversity of solutions on the Pareto optimal front. At some point
during the search process, different sub-swarms exchange information, as each
sub-swarm chooses a different leader other than its own to preserve diversity.

The Algorithm of Parsopoulos et al. [106] developed parallel vector evaluated
particle swarm optimization (VEPSO), is a multi-swarm variant of PSO, which is
inspired by the vector evaluated genetic algorithm (VEGA). In VEPSO, each
swarm is evaluated using only one of the objective functions of the problem under
consideration and the information it possesses for this objective function is com-
municated to other swarms through the exchange of their best experience.

The Algorithm of Sierra and Coello [133] suggested a new MOPSO, which is
also known as OMOPSO. In their design, the population is divided into three
sub-swarms of equal size. Each sub-swarm adapted to a different mutation operator.
In doing so, the ability of exploration and exploitation was enhanced during the
search process.

Multi-Objective Particle Swarm Optimization with Crowding Distance
(MOPSO-CD) Raquel and Naval [112] developed another PSO based approach
called MOPSO-CD, which incorporated the crowding distance into PSO and the
distribution of non-dominated solutions was improved on the Pareto optimal front.
The crowding distance mechanism together with a mutation operator maintains the
diversity of non-dominated solutions in the external archive. Raquel and Naval
[112] also showed that MOPSO-CD is highly competitive in converging towards
the Pareto optimal front and generated a well-distributed set of non-dominated
solutions. We discuss this approach in detail in the next chapter.

A Hybrid PSO Liu et al. [79] proposed a hybrid PSO, which combined the global
search ability of PSO with a synchronous local fine-tuning and used fuzzy global
best to handle the premature convergence.

Time Variant MOPSO (TV-MOPSO) Tripathi et al. [141] adapted the vital
parameters in PSO, namely the inertia weight and the acceleration coefficients
during the iterations.

Elitist Mutated (EM)-MOPSO Reddy and Kumar [118] proposed (EM)-MOPSO,
which incorporates an efficient mutation strategy called elitist mutation to enhance
exploration and exploitation in the search space.

Dynamic Population Multiple Swarm MOPSO (DMOPSO) Most recently
Leong and Yen [73] proposed an algorithm DMOPSO, inspired by Pulido and
Coello [109] and incorporates the following four proposed strategies: (1) cell-based
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rank density estimation scheme to keep track of the rank and density values of the
particles; (2) population growing strategy to increase the population size to promote
exploration capability; (3) population declining strategy to prevent the population
size from growing excessively; and (4) adaptive local archives designed to improve
the distributed solutions along the sections of the Pareto optimal front that associate
with each sub-swarm.

Other than aforementioned methods several other methods [2, 13, 14, 33, 50] for
MOPSO have been proposed till date. For more survey on various PSO proposals
reader can refer to Reyes-Sierra and Coello [121], Fieldsend [49], Padhye et al.
[97].

2 Reliability Optimization (An Overview)

Almost every one of us is acquainted with the term reliability in day-to-day life.
When we assign attribute ‘reliable’ to a component or a system (a system may be
consist of collection of several components) we precisely mean to say that the same
will render service for a good or at least reasonable period of time. In the modern
age of sciences, a high degree of reliability is being demanded from all kinds of
users whether it is in general, public sectors, industries, defense and space research
programmes. There is too much at stake in terms of cost, human life, and national
security to take any risks with equipments which might not function properly when
required. Moreover, the present day weapons used for military purposes consist of
thousands of small parts, each interwoven into a complex web which constitutes the
weapons. The failure of any one of these could adversely affect the operation of the
weapon. Therefore, it becomes more important that each part of the complex
equipment must be highly reliable so the equipment as a whole must be reliable.
The concept of high reliability is equally important outside the Military field.
Computers which are complex as well as expensive play a major role in industrial
and scientific activities. If a Computer does not operate even for a single day even
due to any software failure, it not only spells inconvenience but also cause financial
loss, i.e. the software reliability testing is very important.

So the needs of obtaining highly reliable systems and components have acquired
special importance with the development of the present day technology.

The theory of reliability is not very old; usually world war second in 1939 is
regarded as the starting point of reliability discipline. Before world war second, in
the first quarter of twentieth century a team of workers in ‘Bell Telephone
Laboratories’ developed statistical methods for solving there quality control prob-
lems which is strongly linked with quality control. They provided the basis for
development of statistical quality control. The American Society for Testing and
Materials, The American Standard Association and The American Society for
Mechanical Engineers also worked for the quality control techniques. But these
technique were widely used till world war second 1939. Complexity and automa-
tion of equipments used in the war resulted in severe problems of maintenance and
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repairs. The equipment/component failed beyond the expectation. During this war
army and navy in USA set up a joint committee known as Vacuum Tube
Development Committee for the study of failure in vacuum tube which is consid-
ered to be one of the root causes of the trouble. The major committee on reliability
was set up by U.S Defense Department in 1950. This was latter called the Advisory
Group on Reliability of Electronic Equipment (AGREE). During 1950s Germany,
Japan, and Britain also took interest in such type of study. The last 20 years have
seen remarkable progress in the application of reliability in industries and in other
departments of all the developed and developing countries.

The theory of reliability is the new scientific discipline that studies the general
regularity that must be maintained under design, experimentation, manufacture,
acceptance, and use of units/components in order to maximal effectiveness from
their use. The need of obtaining highly reliable systems and components has
acquired Special importance with the development in the present day technology.

The problem of increasing reliability of equipments/components becomes more
important and urgent in connection with the complex mechanization, modern
sophistication, and automation of industrial process in many fields of industry,
transportation, communication, space technology, etc. The complex system,
equipments, machines, etc., are not of much use if they cannot perform the work
adequately for which they are intended.

A system is a combination of elements forming a planetary whole, i.e. there is a
functional relationship between its components. The properties and behavior of
each component ultimately affects the properties of the system. Any system has a
hierarchy of components that pass through the different stages of operations which
can be operational, failure, degraded or in repair. Failure does not mean that it will
always be complete; it can be partial as well. But both these types affect the
performance of system and hence the reliability. Majority of the systems in the
industries are repairable. The performance of these systems can influence the
quality of product, the cost of business, the service to the customers, and thereby the
profit of enterprises directly. Modern repairable systems tend to be highly complex
due to increase in convolution and automation of systems. During the last 45 years
reliability concepts have been applied in various manufacturing and technological
fields. Earlier researcher discussed reliability and steady state analysis of some
realistic engineering systems by using different approaches. Reliability techniques
have also been applied to a number of industrial and transportation problems
including automobile industry. Here the study is focused on the engine assembly
process of automobiles.

A high degree of reliability is also desirable from the economic point of view so
as to reduce the overall costs. Sometimes the annual maintaining cost of some
system in operable state is much higher than its original cost. Insufficient reliability
of units engenders great loss in servicing, partial stoppage of equipment, and there
may be accidents with considerable damage to the equipment and even the cost may
be more serious in term of human life, national prestige and security. All these
factors and many more, demanded high reliability in the design and operations of
components/systems/equipments in various reliability models of practical utility,
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we often across with the situations of maximizing the profit. The profit earned out
by an operable system besides other parameters depends upon the cost incurred
against the repairmen needed to repair the failure stages of the system.

The present day theory of reliability has been developed during the last two
decades by engineers and mathematicians of various countries.

Every science is based on some fundamental concepts and definitions, same is
true for theory of reliability also. Some of the basic concepts on which the theory of
reliability is formulated are given below.

System A system is an arbitrary device consisting of different parts components or
units.

Time It is the period during which one can expect the satisfactory performance of a
system.

Adequate It indicates the criteria for operations of the device to satisfactory.

Failure Mode It is the effect by which a failure is observed.

Failure Rate It is the incremental change in the number of failures per associated
incremental change in time. Or the expected rate of occurrence of failure or the
number of failures in a specified time period. Failure rate is typically expressed in
failures per million or billion hours. For example, if your television has a failure rate
of five failures per million hours, you can watch one million hour-long television
shows and likely experience a failure during only five shows.

Uptime It is total time during which the system is in the acceptable operating
conditions.

Downtime The total time during which the system is not in the acceptable oper-
ating conditions.

The definition of reliability of a system is usually stated in straightforward terms
as “the probability that the system will not fail during delivery of service [119], or
alternatively, that the overall system performance figure of merit will not enter
failure mode between the time a service is requested and when that service is
delivered [136]. A system can be designed for optimal reliability either by adding
redundant components or by increasing the reliability of components [68].

There are several ways for improving the system’s reliability. One way of
improving reliability is either to duplex some of the unit or the whole system. Other
way is to provide repair and maintenance to the system at the time of need. Some
important technique of reliability improvements are as under.

Redundancy In a redundant system, some additional paths are created for the
proper functioning of the system. Even though one component is sufficient for
successful operation of the system, we deliberately use some more components to
increase probability of success, thus causing the system to become redundant. There
are three types of redundancies.
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Active Redundancy An active redundant system with n-units is one which
operates with every one unit. Here failure of system occurs only when all the units
are fails.

Standby Redundancy A standby redundant system is one in which one unit
operates on line followed by a number of spare unit called standbys. On failure of
the operating unit, a standby unit, if operable, is switched on to the line by perfect
or imperfect switching device. Standby can be classifies as hot, warm and cold
depending on how they are loaded in the standby state. Hot standbys are those
which are loaded in exactly the same way as the operating unit. Warm standbys are
those which are diminished load. And cold standbys are completely unloaded and
never lose their operational ability and can not fail in standby state.

Partial Redundancy The redundancy where in two or more redundant items are
required to perform function k-out-of: m system. The system which is good iff at
least k of it m items are good.

Maintenance All recoverable systems which are used for continuous or intermit-
tent service for some period of time are subjected to maintenance. Maintenance
action can be classified in several categories, e.g. preventive, corrective, and pri-
ority maintenance.

Preventive Maintenance Preventive maintenance is such type of check which
keeps the system in a condition consistent with its built in level of performance,
reliability and safety.

Corrective Maintenance It deals with the system performance when the system
gives wrong results. Repair/maintenance is concerned with increasing with system
availability. In order to increase the system availability, failed unit are repaired to
put them into operation.

Priority Maintenance A redundant system which consist of n � 2 units in which
one of the units is called the priority unit (P-unit) and others are termed as
non-priority units (O-units). The P-unit is the “preferred unit” for operating on line
and is never used in the status of a standby. The O-units are allowed to operate on
the line only when the P-unit is under failure.

Pre-emptive Priority The repair of the O-unit is interrupted and its repair is
continued as soon as the repair of the P-unit is completed. The resumed repair of the
O-unit can follow any one of the following rules.

Pre-emptive Resume The repair of the O-unit is continued from the point where it
was left earlier.

Pre-emptive Repeat The repair of the O-unit is started as a fresh; this implies that
the time for the O-unit in the repair facility before it was left from service has no
influence on its service time now.
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Non Pre-emptive Priority The repair of the O-unit is continued and the repair of
the P-unit is entertained only when the repair of the O-unit is completed. It is also
called the Head-of-line repair police.

Inspection A system requires its inspection at random epochs in order to trace out
the fault in redundant, particularly in deteriorating standby system.

The reliability optimization problems can be categorized in two ways: Single
objective reliability optimization problems and Multi-objective reliability opti-
mization problems.

• Single Objective Reliability Optimization Problems

Let us consider a reliability optimization problem as follows:
Max f0 r1; r2; . . .; rn; x1; x2; xnð Þ
subject to

f ci r1; r2; . . .; rn; x1; x2; xnð Þ� bi; for i ¼ 1; 2; . . .;m
lj � xj � uj; xj 2 Z þ ; for j ¼ 1; 2; . . .; n
rj 2 0; 1ð Þ � R; for j ¼ 1; 2; . . .; n

where n is the number of components with m constraints. Component reliability of
jth component is denoted by rj. xj is the number of identical redundant components,
i.e. the number of redundancies, at the jth component; fi is the ith constraint
function; bi is the maximum allowable amount of the ith resource; f0 is an objective
function of the problem; Z þ is the set of non-negative integers while R denote the
set of real numbers. The objective of the reliability optimization problem is to find
the components reliability in such a way that it maximize the overall system reli-
ability under the given resources constraints, or minimizes the total cost under
minimum system reliability and other resource limitations.

• Muti-Objective Reliability Optimization Problems

Max F ¼ ðf1 r1; r2; . . .; rn; x1; x2; . . .; xnð Þ; f2 r1; r2; . . .; rn; x1; x2; . . .; xnð Þ; . . .;
fK r1; r2; . . .; rn; x1; x2; . . .; xnð ÞÞ

subject to

f ci r1; r2; . . .; rn; x1; x2; xnð Þ� bi; for i ¼ 1; 2; . . .;m
lj � xj � uj; xj 2 Z þ ; for j ¼ 1; 2; . . .; n
rj 2 0; 1ð Þ � R; for j ¼ 1; 2; . . .; n

fk; 8k ¼ 1; 2; . . .;K is one of the objective functions of the problem, K is total
number of objective functions. In most practical situations involving reliability
optimization, there are several mutually conflicting goals such as maximizing
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system reliability and minimizing cost, weight, volume and constraints required to
be addressed simultaneously. Some main objectives can be expressed as.

Objective 1: The most important objective is the maximization of system reliability
ðRsÞ. It enables the system to function satisfactorily throughout its intended service
period

Max Rs

As in our approach we are considering all minimization problems. Hence, the
above objective is equivalent to minimization of system unreliability
ðQs ¼ 1� RsÞ, can be expressed as follows:

Min QS

Objective 2: The addition of the redundant components increases not only the
system reliability but also its overall cost ðCSÞ. A manufacturer has to balance these
conflicting objectives, keeping in view the importance of reducing the overall cost

Min CS

Objective 3: As with cost, every added redundant component increases the weight
of the system. Usually, the overall weight of a system needs to be minimized along
with its cost even as reliability is maximized (or unreliability is minimized)

Min WS

Reliability optimization problems can be categorized as redundancy allocation,
reliability allocation and reliability–redundancy allocation problems in accordance
to the type of their decision variables. If the number of redundancies, xj’s for all j,
are the only variables, the problem is called redundancy allocation problem. If
component reliabilities, rj’s for all j, are the only variables, the problem is termed as
reliability allocation and if the decision variables of the problem include both the
component reliabilities and redundancies, the problem is called a reliability–re-
dundancy allocation problem. From the mathematical programming point of view,
redundancy allocation is a pure integer nonlinear programming problem (INLP)
while reliability allocation problems can be viewed as a continuous nonlinear
programming problem (NLP) and reliability–redundancy allocation can be termed
as a mixed integer nonlinear programming problem (MINLP).

The suitability of a metaheuristics varies problem to problem. In other words, a
metaheuristic which is giving promising results on a particular set of problem may
show poor performance on different problems. Optimization of reliability of com-
plex systems is an extremely important issue in the field of reliability engineering.
Over the past three decades, reliability optimization problems have been formulated
as nonlinear programming problems within either single objective or multi-
objective environment.
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As discussed above, reliability optimization problems are categorized into three
typical problems according to the types of their decision variables: reliability
allocation, redundancy allocation and reliability–redundancy allocation. A number
of algorithms—also categorized as approximate, exact, or heuristic/metaheuristic
have been used to find optimal solutions to these problems. Algorithms such as the
surrogate worth trade-off, the Lagrange multiplier, and geometric programming
methods and their variants, which are efficient for the exact solution of continuous
problems of the type posed by reliability allocation optimization, can only
approximate the solution in the case of redundancy or redundancy–reliability
allocation optimization [93, 153]. The approximation techniques involve the use of
trial and error approaches to obtain integer solutions [148, 153]. The approximation
techniques were popular when exact solution algorithms were not well developed.
The advent of the exact algorithms, such as integer programming (IP), branch and
bound, and dynamic programming (DP) [78] have made the approximation tech-
niques less popular for solving redundancy allocation problems. The approximation
and exact algorithms, though efficient with small-to-moderate sized problems
having desirable properties such as convexity or monotonicity, are deficient with
complex large scale ones, such as real-life network reliability and redundancy
allocation optimization problems [7, 8]. Although the heuristic/metaheuristic
approaches (example GA, SA, ACO, PSO and TS) yield solutions which are not
exact, they do have the ability to efficiently handle complexity [5] and thus become
increasingly popular in the reliability optimization field. The redundancy and the
redundancy–reliability allocation optimization problems are generally more difficult
to solve than the reliability allocation ones. This is because the former belongs to
the class of NP-hard problems (this phenomenon was demonstrated by Chern [19],
Coit et al. [32], Coit and Konak [27]) which involve non-convex and combinatorial
search spaces and require a considerable amount of computational effort to find
exact optimal solutions [62]. The reliability allocation problems on the other hand
involve continuous optimization with a number of classical solution algorithms
based on gradient and direct search methods at their disposal. They are thus rela-
tively easier to solve. Examples of the solution algorithms which were applied in
the context of the three optimization problem types are presented in Tables 2 and 3
[142].

Tillman et al. [140] has extensively reviewed the several optimization techniques
for system reliability design. However, they reviewed the application of only
derivative-based optimization techniques, as metaheuristics were not applied to the
reliability optimization problems by that time. Mohan and Shanker [90] applied
random search technique to optimize complex system. Luus [81] optimized such
problems by nonlinear integer programming procedure. Over the last decade,
metaheuristics have also been applied to solve the reliability optimization problems.
To list a few of them Coit and Smith [30, 31], were the first to employ a GA to
solve reliability optimization problems. Ravi et al. [114] developed an improved
version of nonequilibrium simulated annealing called INESA and applied it to solve
a variety of reliability optimization problems. Further, Ravi et al. [115, 116] first
formulated various complex system reliability optimization problems with single
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Table 2 Different optimization techniques used in reliability optimization of SOOP category

Model type Solution
techniques

Algorithm description Sources

Redundancy
allocation

Approximate Interval arithmetic optimization Munoz and Pierre
[93]

Exact Lagrange relaxation algorithm in
conjunction with dynamic
programming (DP)

Ashrafi and Berman
[7]

Integer programming
(IP) algorithm

Coit and Liu [28]

Lexicographic order (P&K-Ag) Prasad and Kuo
[108]

Improved surrogate constraint
(ISC) algorithm

Onishi et al. [96]

IP (due to Misra) Misra and Sharma
[87]

Heuristic–
metaheuristic

Simulated annealing (SA) Atiqullah and Rao
[8]

DETMAX algorithm Kim and Yum [62]

Genetic algorithm (GA) Deeter and Smith
[36]

Heuristic algorithm Bala and Aggarwal
[9]

GA Coit and Smith [29]

SA Wattanapongsakorn
and Levitan [146]

Heuristic algorithm You and Chen [153]

Approximate linear programming
heuristic

Prasad and
Raghavachari [107]

Tabu search (TS) Kulturel-Konak
et al. [66]

Variable neighbourhood search
algorithm

Liang and Chen [78]

SA Wattanapongsakorn
and Levitan [145]

GA Coit and Smith [31]

GA Coit and Smith [30]

Reliability
allocation

Exact Cutting plane algorithm Majety et al. [84]

Heuristic–
metaheuristic

Random search algorithm Mohan and Shanker
[90]

PSO Pant et al. [101]

CSA Kumar et al. [67]

Redundancy–
reliability
allocation

Exact Surrogate dual problem under DP
algorithm

Hikita et al. [52]

Surrogate constraint algorithm Hikita et al. [51]

DP Yalaoui et al. [149]

Mixed integer programming
(MIP) algorithm

Misra and Sharma
[87]
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Table 3 Different optimization techniques used in reliability optimization of MOOP category

Model type Solution techniques Algorithm
description

MOA
type

Sources

Redundancy
allocation

Approximate Surrogate worth
trade-off
(SWT) method under
dual decomposition
algorithm

Scaler Sakawa [124]

Direct search by
Min–Max algorithm

Misra and Sharma
[88]

Exact IP due to Misra Misra and Sharma
[87]

The weighting
method in
conjunction with a
heuristic and an IP
algorithm

Coit and Konak
[27]

Weighting method
under an IP software
package

Coit et al. [32]

Heuristic–
metaheuristic

GA and Monte Carlo
simulation

Marseguerra et al.
[85]

Multi-objective GA Coit and
Baheranwala [26]

Elitist non-dominated
sorting GA 2 (NSGA
2)

Pareto Wattanapongskorn
and Coit [147]

GA Taboada and Coit
[139]

NSGA Zhao et al. [156]

Multi-objective ant
colony

Zafiropoulos and
Dialynas [154]

Simulated annealing
(SA)

Yamachi et al.
[150]

Multi-objective GA Li and Haimes [75]

Reliability
allocation

Exact Three levels
decomposition
approach and the
Khun Tucker
multiplier method

Scaler Salazar et al. [126]

Heuristic–
metaheuristic

NSGA 2 Pareto Salazar et al. [126]

(continued)
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and multi-objectives as fuzzy global optimization problems. They also developed
and applied the non-combinatorial version of another metaheuristic, viz., threshold
accepting to solve these problems. Recently, Shelokar et al. [127] applied the ant
colony optimization (ACO) algorithm to these problems and obtained comparable
results to those reported by Ravi et al. [114]. Vinod et al. [143] applied GAs to Risk
Informed In-Service Inspection (RI-ISI) which aims at prioritizing the components
for inspection within the permissible risk level thereby avoiding unnecessary
inspections. A new fuzzy MOO method is introduced and it is used for the opti-
mization decision-making of the series and complex system reliability with two
objectives is presented by Mahapatra and Roy [82]. Mahapatra [83] considered a
series-parallel system to find out optimum system reliability with an additional
entropy objective function. Marseguerra et al. [86] applied GA to solve the relia-
bility problem. Salazar et al. [125, 126] solved the system reliability optimization
problem by using several EAs and MOEAs. Ravi [113] developed an extended
version of the great deluge algorithm and demonstrated its effectiveness in solving
the reliability optimization problems. Deep and Deepti [35] applied self-organizing
migrating genetic algorithm (C-SOMGA) to optimize such type of problems.
Furthermore Kuo and Prasad [70], Kuo and Wan [69] reviewed different reliability
optimization and allocation techniques. More recently, Pant et al. [100, 102],
Kumar et al. [67] applied PSO and cuckoos search algorithm (CSA) to solve
reliability optimization problems.

Table 3 (continued)

Model type Solution techniques Algorithm
description

MOA
type

Sources

NSGA2 Kishor et al. [63,
64]

Ant colony (AC) Shelokar et al.
[127]

PSO Pant et al. [100,
102]

Redundancy–
reliability
allocation

Approximate SWT Scaler Sakawa [123]

Direct search
technique combined
with the Min–Max
method

Misra and Sharma
[89]

Goal programming
(GP) and goal
attainment methods
(GAT)

Dhingra [37]

Evolutionary
algorithm (EA)

Pareto Ramírez-Rosado
and Bernal-Agustín
[111]

Heuristic/metaheuristic

GA Huang et al. [59]
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3 Why Particle Swarm Approach to Reliability
Optimization?

Reliability optimization problem are NP-hard in nature so it is quite difficult to
achieve optimal reliability design [19]. The solution of such NP-hard optimization
problems, however, is more difficult using heuristics or exact algorithms. This is
because these optimization problems generate a very large search space, and
searching for optimal solutions using exact methods or heuristics will necessarily be
extremely time consuming. Such methods are particularly advantageous when the
problem is not large. Therefore, metaheuristic algorithms, particularly cuckoos
search algorithm (CSA), grey wolf optimization algorithm (GWO), ant colony
optimization (ACO), genetic algorithm (GA), differential evolution (DE), particle
swarm optimization (PSO), etc., are suitable for solving reliability optimization
problems. The main concept of PSO is based on the food searching behavior of
birds flocking or fish schooling. When PSO is adopted to solve problems, each
particle has its own location and velocity, which determine the flying direction and
distance, respectively. Comparing with other evolutionary approaches PSO has the
following advantages [21, 53, 58, 120]:

(i) It has less parameters.
(ii) It is easy in implementation.
(iii) It has fast convergence.

These advantages are good for solving the reliability optimization problems
because a population of particles in PSO can operate simultaneously so that the
possibility of paralysis in the whole process can be reduced. Different PSO methods
have been already successfully applied by Zavala et al. [155], Chen [18], Pandey
et al. [98], Levitin et al. [74], Yeh [152], Coelho [23], Zou et al. [160], Pant and
Singh [101] Pant et al. [100,102], etc., in reliability optimization problems.

References

1. Afshinmanesh, F., Marandi, A., and Rahimi-Kian, A., A novel binary particle swarm
optimization method using artificial immune system, in IEEE International Conference on
Computer as a Tool, 2005, 217-220.

2. Alatas, B. and Akin, E., Multi-objective rule mining using a chaotic particle swarm
optimization algorithm, Knowledge-Based Systems, 22, 2009, 455-460.

3. Al-kazemi, B. and Mohan, C. K., Multi-phase discrete particle swarm optimization, in
Fourth International Workshop on Frontiers in Evolutionary Algorithms, 2002.

4. AlRashidi, M. R. and El-Hawary, M. E., Emission-economic dispatch using a novel
constraint handling particle swarm optimization strategy, in Canadian Conference on
Electrical and Computer Engineering, 2006, 664-669.

5. Altiparmak, F., Dengiz, B., and Smith, A. E., Reliability optimization of computer
communication networks using genetic algorithms, in IEEE International Conference on
Systems, Man, and Cybernetics,1998, 4676-4681.

Reliability Optimization: A Particle Swarm Approach 179



6. Arumugam, M. S and Rao, M. V. C., On the improved performances of the particle swarm
optimization algorithms with adaptive parameters, cross-over operators and root mean
square (RMS) variants for computing optimal control of a class of hybrid systems, Applied
Soft Computing, 8, 2008, 324-336.

7. Ashrafi, N. and Berman, O., Optimization models for selection of programs, considering
cost and reliability, IEEE Transactions on Reliability, 41, 1992, 281-287.

8. Atiqullah, M. M. and Rao, S. S., Reliability optimization of communication networks
using simulated annealing, Microelectronics Reliability, 33,1993, 1303-1319.

9. Bala, R. and Aggarwal, K. K., A simple method for optimal redundancy allocation for
complex networks, Microelectronics Reliability, 27, 1987, 835-837.

10. Banks, A., Vincent, J., and Anyakoha, C., A review of particle swarm optimization. Part I:
Background and Development, Natural Computing, 6, 2007, 467-484.

11. Banks, A., Vincent, J., and Anyakoha, C., A review of particle swarm optimization. Part
II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative
applications, Natural Computing, 7, 2008, 109-124.

12. Bartz-Beielstein, T., Limbourg, P., Mehnen, J., Schmitt, K., Parsopoulos, K. E., and
Vrahatis, M. N., Particle swarm optimizers for Pareto optimization with enhanced archiving
techniques, in Congress on Evolutionary Computation, 2003, 1780-1787.

13. Briza, A. C. and Naval Jr, P. C, Stock trading system based on the multi-objective particle
swarm optimization of technical indicators on end-of-day market data, Applied Soft
Computing, 11, 2011, 1191-1201.

14. Cai, J., Ma, X., Li, Q., Li, L., and Peng, H., A multi-objective chaotic particle swarm
optimization for environmental/economic dispatch, Energy Conversion and Management,
50, 2009, 1318-1325.

15. Cao, C. H., Li, W. H., Zhang, Y. J., and Yi, R. Q., The geometric constraint solving based
on memory particle swarm algorithm, in International Conference on Machine Learning and
Cybernetics, 2004, 2134-2139.

16. Carlisle, A. and Dozier, G., Adapting particle swarm optimization to dynamic environ-
ments, in International Conference on Artificial Intelligence, 2000, 429-434.

17. Chatterjee, A. and Siarry, P., Nonlinear inertia weight variation for dynamic adaptation in
particle swarm optimization, Computers & Operations Research, 33, 2006, 859-871.

18. Chen, T. C., Penalty guided PSO for reliability design problems, in PRICAI 2006: Trends in
Artificial Intelligence, 2006, 777-786.

19. Chern, M. S., On the computational complexity of reliability redundancy allocation in a
series system, Operations Research Letters, 11, 1992, 309-315.

20. Clerc, M. and Kennedy, J., The particle swarm-explosion, stability, and convergence in a
multidimensional complex space, IEEE Transactions on Evolutionary Computation, 6,
2002, 58-73.

21. Clow, B. and White, T. An evolutionary race: A comparison of genetic algorithms and
particle swarm optimization used for training neural networks, in International Conference
on Artificial Intelligence, 2004, 582-588.

22. Coelho, J. P., Oliviera, P. M., and Cunha, J. B., Non-linear concentration control system
design using a new adaptive PSO, in 5th Portugese Conference on Automatic Control, 2002.

23. Coelho, L. S., An efficient particle swarm approach for mixed-integer programming in
reliability-redundancy optimization applications, Reliability Engineering & System Safety,
94, 2009, 830-837.

24. Coello, C. A.C. and Lechuga, M. S, MOPSO: A proposal for multiple objective particle
swarm optimization, in Congress on Evolutionary Computation, 2002, 1051-1056.

25. Coello, C. A.C., Pulido, G. T., and Lechuga, M. S., Handling multiple objectives with
particle swarm optimization, IEEE Transactions on Evolutionary Computation, 8, 2004,
256-279.

26. Coit, D. W. and Baheranwala, F., Solution of stochastic multi-objective system reliability
design problems using genetic algorithms, in European Safety and Reliability Conference,
2005, 391-398.

180 S. Pant et al.



27. Coit, D. W. and Konak, A., Multiple weighted objectives heuristic for the redundancy
allocation problem, IEEE Transactions on Reliability, 55, 2006, 551-558.

28. Coit, D. W. and Liu, J. C., System reliability optimization with k-out-of-n subsystems,
International Journal of Reliability Quality and Safety Engineering, 7, 2000, 129-142.

29. Coit, D. W. and Smith, A. E., Considering risk profiles in design optimization for
series-parallel systems, in Annual Reliability and Maintainability Symposium,1997, 271-277.

30. Coit, D. W. and Smith, A. E., Reliability optimization of series-parallel systems using a
genetic algorithm, IEEE Transactions on Reliability, 45, 1996a, 254-260.

31. Coit, D. W. and Smith, A. E., Penalty guided genetic search for reliability design
optimization, Computers & Industrial Engineering, 30, 1996b, 895-904.

32. Coit, D. W., T. Jin, T., and Wattanapongsakorn, N., System optimization with
component reliability estimation uncertainty: A multi-criteria approach, IEEE Transactions
on Reliability, 53, 2004, 369-380.

33. De Carvalho, A. B., Pozo, A., and Vergilio, S. R., A symbolic fault-prediction model
based on multiobjective particle swarm optimization, Journal of Systems and Software, 83,
2010, 868-882.

34. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6, 2002,
182-197.

35. Deep K. and Deepti, Reliability Optimization of Complex Systems through C-SOMGA,
Journal of Information and Computing Science, 4, 2009, 163-172.

36. Deeter, D. L. and Smith, A. E., Heuristic optimization of network design considering
all-terminal reliability, in Annual Reliability and Maintainability Symposium, 1997, 194-199.

37. Dhingra, A. K., Optimal apportionment of reliability and redundancy in series systems
under multiple objectives, IEEE Transactions on Reliability, 41, 1992, 576-582.

38. Dian, P. R, Siti, M. S., and Siti, S. Y., Particle Swarm Optimization: Technique, System
and Challenges, International Journal of Computer Applications, 14, 2011, 19-27.

39. Du, W. and Li, B., Multi-strategy ensemble particle swarm optimization for dynamic
optimization, Information sciences, 178, 2008, 3096-3109.

40. Eberhart, R. and Shi, Y., Comparing inertia weights and constriction factors in particle
swarm optimization, in IEEE Congress on Evolutionary Computation, 2000, 84-88.

41. Eberhart, R. and Shi, Y., Tracking and optimizing dynamic systems with particle swarms,
in IEEE Congress on Evolutionary Computation, 2001, 94-100.

42. Eberhart, R., Simpson, P., and Dobbins, R., Computational intelligence PC tools.
Academic Press Professional, Inc., USA, 1996.

43. Engelbrecht, A. P. Fundamentals of computational swarm intelligence, Jhon Wiley & Sons
Ltd., 2005.

44. Engelbrecht, A. P. and van Loggerenberg, Enhancing the NichePSO, in IEEE Congress
on Evolutionary Computation, 2007, 2297-2302.

45. Fan, S. and Chiu, Y., A decreasing inertia weight particle swarm optimizer, Engineering
Optimization, 39, 2007, 203-228.

46. Feng, Y., Teng, G. F., Wang, A. X., and Yao, Y. M., Chaotic inertia weight in particle
swarm optimization, in International Conference on Innovative Computing, Information and
Control, 2007, 475-475.

47. Feng, Y., Yao, Y. M., and Wang, A. X., Comparing with chaotic inertia weights in particle
swarm optimization, in Conference on Machine Learning and Cybernetics, International,
2007, 329-333.

48. Fieldsend, J. E. and Singh, S., A Multi-objective algorithm based upon particle swarm
optimisation, an efficient data structure and turbulence., Workshop on Computational
Intelligence, Birmingham, UK, 2002, 37–44,

49. Fieldsend, J. E., Multi-objective particle swarm optimization methods, Department of
Computer Science, University of Exeter, 2004.

Reliability Optimization: A Particle Swarm Approach 181



50. Goh, C. K., Tan, K. C., Liu, D. S., and Chiam, S. C., A competitive and cooperative
co-evolutionary approach to multi-objective particle swarm optimization algorithm design,
European Journal of Operational Research, 202, 2010, 42-54.

51. Hikita, M., Nakagawa, Y., Nakashima, K., and Narihisa, H., Reliability optimization of
systems by a surrogate-constraints algorithm, IEEE Transactions on Reliability, 41, 1992,
473-480.

52. Hikita, M., Nakagawa, Y., Nakashima, K., and Yamato, K., Application of the surrogate
constraints algorithm to optimal reliability design of systems, Microelectronics and
reliability, 26, 1986, 35-38.

53. Hodgson, R. J. W. Particle swarm optimization applied to the atomic cluster optimization
problem, in Genetic and evolutionary computation conference, 2002, 68–73.

54. Hu, X. and Eberhart, R., Adaptive particle swarm optimization: Detection and response to
dynamic systems, in Congress on Evolutionary Computation, 2002a, 1666-1670.

55. Hu, X. and Eberhart, R.,Multiobjective optimization using dynamic neighborhood particle
swarm optimization, in Congress on Evolutionary Computation, 2002b, 1677-1681.

56. Hu, X. and Eberhart, R., Solving constrained nonlinear optimization problems with
particle swarm optimization, in World Multiconference on Systemics, Cybernetics and
Informatics, 2002c, 203–206.

57. Hu, X. and Eberhart, R., Tracking dynamic systems with PSO: Where’s the cheese, in the
Workshop on Particle Swarm Optimization, Indianapolis, 2001, 80–83.

58. Hu, X., Y. Shi, and R. Eberhart, Recent advances in particle swarm, in IEEE Congress on
Evolutionary Computation, 2004, 90-97.

59. Huang, H. Z., Qu, J., and Zuo, M. J., A new method of system reliability multi-objective
optimization using genetic algorithms, in Annual Reliability and Maintainability Symposium,
2006, 278-283.

60. Jiao, B., Lian, Z., and Gu, X., A dynamic inertia weight particle swarm optimization
algorithm, Chaos, Solitons & Fractals, 37, 2008, 698-705.

61. Kennedy, J. and Eberhart, R., A discrete binary version of the particle swarm algorithm, in
IEEE International Conference on Systems, Man, and Cybernetics, Computational
Cybernetics and Simulation., 5, 1997, 4104-4108.

62. Kim, J. H. and Yum, B. J., A heuristic method for solving redundancy optimization
problems in complex systems, IEEE Transactions on Reliability, 42, 1993, 572-578.

63. Kishor, A., Yadav, S. P., and Kumar, S., A Multi-objective Genetic Algorithm for
Reliability Optimization Problem, International Journal of Performability Engineering, 5,
2009, 227–234.

64. Kishor, A., Yadav, S. P., and Kumar, S., Application of a Multi-objective Genetic
Algorithm to solve Reliability Optimization Problem, in International Conference on
Computational Intelligence and Multimedia Applications, 2007, 458-462.

65. Knowles, J. D. and Corne, D. W., Approximating the nondominated front using the Pareto
archived evolution strategy, Evolutionary computation, 8, 2000, 149-172.

66. Kulturel-Konak, S., Smith, A. E., and Coit, D. W., Efficiently solving the redundancy
allocation problem using tabu search, IIE transactions, 35, 2003, 515-526.

67. Kumar, A., Pant, S., and Singh, S.B., Reliability Optimization of Complex System by
Using Cuckoos Search algorithm , Mathematical Concepts and Applications in
Mechanical Engineering and Mechatronics, IGI Global, 2016, 95-112.

68. Kumar, A. & Singh, S.B. (2008). Reliability analysis of an n-unit parallel standby system
under imperfect switching using copula, Computer Modelling and New Technologies, 12(1),
2008, 47-55.

69. Kuo, W. and Wan, R., Recent advances in optimal reliability allocation, IEEE Transactions
on Systems, Man, and Cybernetics, Part A: Systems and Humans, 37, 2007, 1-36.

70. Kuo,W. and Prasad,V. R., An annotated overview of system-reliability optimization, IEEE
Transactions on Reliability, 49, 2000, 176-187.

71. Laskari, E. C., Parsopoulos, K. E., and Vrahatis, M. N., Particle swarm optimization for
integer programming, in IEEE Congress on Evolutionary Computation, 2002, 1582-1587.

182 S. Pant et al.



72. Lei, K., Qiu, Y., and He, Y., A new adaptive well-chosen inertia weight strategy to
automatically harmonize global and local search ability in particle swarm optimization, in
International Symposium on Systems and Control in Aerospace and Astronautics, 2006,
977-980.

73. Leong, W. F. and Yen, G. G., PSO-based multiobjective optimization with dynamic
population size and adaptive local archives, IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 38, 2008, 1270-1293.

74. Levitin, G., Hu, X., and Dai, Y. S., Particle Swarm Optimization in Reliability
Engineering, Intelligence in Reliability Engineering, 2007, 83-112.

75. Li, D. and Haimes, Y. Y., A decomposition method for optimization of large-system
reliability, IEEE Transactions on Reliability, 41, 1992, 183-188.

76. Li, X. and Deb, K., Comparing lbest PSO niching algorithms using different position update
rules, in IEEE Congress on Evolutionary Computation ,2010, 1-8.

77. Li, X., A non-dominated sorting particle swarm optimizer for multiobjective optimization, in
Genetic and Evolutionary Computation, 2003, 198-198.

78. Liang, Y. C. and Chen, Y. C., Redundancy allocation of series-parallel systems using a
variable neighborhood search algorithm, Reliability Engineering & System Safety, 92, 2007,
323-331.

79. Liu, D., Tan, K. C., Goh, C. K., and Ho, W. K., A multiobjective memetic algorithm
based on particle swarm optimization, IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 37, 2007, 42-50.

80. Liu, X., Liu, H., and Duan, H., Particle swarm optimization based on dynamic niche
technology with applications to conceptual design, Advances in Engineering Software, 38,
2007, 668-676.

81. Luus, R., Optimization of system reliability by a new nonlinear integer programming
procedure, IEEE Transactions on Reliability, 24, 1975, 14-16.

82. Mahapatra, G. S. and Roy, T. K., Fuzzy multi-objective mathematical programming on
reliability optimization model, Applied mathematics and computation, 174, 2006, 643-659.

83. Mahapatra, G.S., Reliability optimization of entropy based series-parallel system using
global criterion method, Intelligent Information Management, 1, 2009, 145-149.

84. Majety, S. R.V., Dawande, M., and Rajgopal, J., Optimal reliability allocation with
discrete cost-reliability data for components, Operations Research, 47, 1999, 899-906.

85. Marseguerra, M., E. Zio, E., Podofillini, L., and Coit, D. W, Optimal design of reliable
network systems in presence of uncertainty, IEEE Transactions on Reliability,, 54, 2005,
243-253.

86. Marseguerra, M., Zio, E., and Bosi, F., Direct Monte Carlo availability assessment of a
nuclear safety system with time-dependent failure characteristics, International Conference
on Mathematical Methods in Reliability, 2002, 429-432.

87. Misra, K. B. and Sharma, U., An efficient algorithm to solve integer-programming
problems arising in system-reliability design, IEEE Transactions on Reliability, 40, 1991a,
81-91.

88. Misra, K. B. and Sharma, U., An efficient approach for multiple criteria redundancy
optimization problems, Microelectronics Reliability, 31, 1991b, 303-321.

89. Misra, K. B. and Sharma, U., Multicriteria optimization for combined reliability and
redundancy allocation in systems employing mixed redundancies, Microelectronics
Reliability, 31, 1991c, 323-335.

90. Mohan, C. and Shanker, K., Reliability optimization of complex systems using random
search technique, Microelectronics Reliability, 28, 1987, 513-518.

91. Moore, J. and Chapman, R., Application of Particle Swarm to Multi-Objective
Optimization: Department of Comput. Sci. Software Eng., Auburn University, 1999.

92. Mostaghim, S. and Teich, J., Strategies for finding good local guides in multi-objective
particle swarm optimization (MOPSO), in IEEE Swarm Intelligence Symposium, 2003,
26-33.

Reliability Optimization: A Particle Swarm Approach 183



93. Munoz, H. and Pierre, E., Interval arithmetic optimization technique for system reliability
with redundancy, in International Conference on Probabilistic Methods Applied to Power
Systems, 2004, 227-231.

94. Nickabadi, A., Ebadzadeh, M. M., and Safabakhsh, R., A novel particle swarm
optimization algorithm with adaptive inertia weight, Applied Soft Computing, 11, 2011,
3658-3670.

95. Nickabadi, A., Ebadzadeh, M. M., and Safabakhsh, R., DNPSO: A dynamic niching
particle swarm optimizer for multi-modal optimization, in. IEEE Congress on Evolutionary
Computation, 2008, 26-32.

96. Onishi, J., Kimura, S., James, R. J.W., and Nakagawa, Y., Solving the redundancy
allocation problem with a mix of components using the improved surrogate constraint
method, IEEE Transactions on Reliability, 56, 2007, 94-101.

97. Padhye, N., Branke, J., and Mostaghim, S., Empirical comparison of MOPSO
methods-guide selection and diversity preservation, in IEEE Congress on Evolutionary
Computation, , 2009, 2516-2523.

98. Pandey, M. K., Tiwari, M. K., and Zuo, M. J., Interactive enhanced particle swarm
optimization: A multi-objective reliability application, in Proceedings of the Institution of
Mechanical Engineers, Part O: Journal of Risk and Reliability, 221, 177-191, 2007.

99. Panigrahi, B. K., Ravikumar Pandi, V., and Das, S., Adaptive particle swarm
optimization approach for static and dynamic economic load dispatch, Energy conversion
and management, 49, 2008, 1407-1415.

100. Pant, S., Anand, D., Kishor, A., & Singh, S. B., A Particle Swarm Algorithm for
Optimization of Complex System Reliability, International Journal of Performability
Engineering, 11(1), 2015, 33-42.

101. Pant, S., Singh, S. B., Particle Swarm Optimization to Reliability Optimization in Complex
System, In the proceeding of IEEE Int. Conf. on Quality and Reliability, Bangkok, Thailand,
2011, 211-215.

102. Pant, S., Kumar, A., Kishor, A., Anand, D., and Singh, S.B., Application of a
Multi-Objective Particle Swarm optimization Technique to Solve Reliability Optimization
Problem, In the proceeding of IEEE Int. Conf. on Next generation Computing Technologies,
2015, 1004-1007.

103. Parsopoulos, K. E. and Vrahatis, M. N., Particle swarm optimization method for
constrained optimization problems, Intelligent technologies–theory and application: New
trends in intelligent technologies, 2002a, 214–220.

104. Parsopoulos, K. E. and Vrahatis, M. N., Recent approaches to global optimization
problems through particle swarm optimization, Natural computing, 1, 2002b, 235-306.

105. Parsopoulos, K. E. and Vrahatis, M. N., Unified particle swarm optimization for tackling
operations research problems, in IEEE Swarm Intelligence Symposium, 2005, 53-59.

106. Parsopoulos, K. E., Tasoulis, D. K., and Vrahatis, M. N., Multiobjective optimization
using parallel vector evaluated particle swarm optimization, in International conference on
artificial intelligence and applications, 2004, 2, 823-828.

107. Prasad, R. and Raghavachari, M., Optimal allocation of interchangeable components in a
series-parallel system, IEEE Transactions on Reliability, 47,1998, 255-260.

108. Prasad,V. R. and Kuo, W., Reliability optimization of coherent systems, IEEE
Transactions on Reliability, 49, 2000, 323-330.

109. Pulido, G. T. and Coello C.A.C., Using clustering techniques to improve the performance
of a multi-objective particle swarm optimizer, in Genetic and Evolutionary Computation
Conference , 2004, 225-237.

110. Qin, Z., Yu, F., Shi, Z., and Wang, Y., Adaptive inertia weight particle swarm
optimization, in International conference on Artificial Intelligence and Soft Computing,
2006, 450-459.

111. Ramírez-Rosado, I. J. and Bernal-Agustín, J. L., Reliability and costs optimization for
distribution networks expansion using an evolutionary algorithm, IEEE Transactions on
Power Systems, 16, 2001, 111-118.

184 S. Pant et al.



112. Raquel, C. R. and Naval Jr, P. C., An effective use of crowding distance in multiobjective
particle swarm optimization, in Genetic and evolutionary computation conference, 2005,
257-264.

113. Ravi, V., Modified great deluge algorithm versus other metaheuristics in reliability
optimization, Computational Intelligence in Reliability Engineering, 40, 2007, 21-36.

114. Ravi, V., Murty, B. S. N., and J. Reddy, Nonequilibrium simulated-annealing algorithm
applied to reliability optimization of complex systems, IEEE Transactions on Reliability, 46,
1997, 233-239.

115. Ravi, V., Optimization of complex system reliability by a modified great deluge algorithm,
Asia-Pacific Journal of Operational Research, 21, 2004, 487–497.

116. Ravi, V., Reddy, P. J., and Zimmermann, H. J., Fuzzy global optimization of complex
system reliability, IEEE Transactions on Fuzzy Systems, 8, 2000, 241-248.

117. Ray, T. and Liew, K. M., A swarm metaphor for multiobjective design optimization,
Engineering Optimization, 34, 2002, 141-153.

118. Reddy, M. J. and Kumar, D. N., An efficient multi-objective optimization algorithm based
on swarm intelligence for engineering design, Engineering Optimization, 39, 2007, 49-68.

119. Reibman, A. L. and Veeraraghavan, M., Reliability modeling: An overview for system
designers, Computer, 24, 1991, 49-57.

120. Reklaitis, G. V., Ravindran, A. and Ragsdell, K. M., Engineering optimization, methods
and applications. John Wiley & Sons, 1983.

121. Reyes-Sierra, M. and Coello, C. A.C.,Multi-objective particle swarm optimizers: A survey
of the state-of-the-art, International Journal of Computational Intelligence Research, 2,
2006, 287-308.

122. Saber, A. Y., Senjyu, T., Yona, A., and Funabashi, T., Unit commitment computation by
fuzzy adaptive particle swarm optimisation, Generation, Transmission & Distribution, IET,
1, 2007, 456-465.

123. Sakawa, M., Multiobjective reliability and redundancy optimization of a series-parallel
system by the Surrogate Worth Trade-off method, Microelectronics and Reliability, 17,
1978, 465-467.

124. Sakawa, M., Optimal reliability-design of a series-parallel system by a large-scale
multiobjective optimization method, IEEE Transactions on Reliability, 30, 1981, 173-174.

125. Salazar, D, E., Rocco, S., and Claudio, M., Solving advanced multi-objective robust
designs by means of multiple objective evolutionary algorithms (MOEA): A reliability
application, Reliability Engineering & System Safety, 92, 2007, 697-706.

126. Salazar, D., Rocco, C. M., and Galván, B. J., Optimization of constrained
multiple-objective reliability problems using evolutionary algorithms, Reliability
Engineering & System Safety, 91, 2006, 1057-1070.

127. Shelokar, P. S., Jayaraman, V. K., and Kulkarni, B. D., Ant algorithm for single and
multiobjective reliability optimization problems, Quality and Reliability Engineering
International, 18, 2002, 497-514.

128. Shi, Y. and Eberhart, R., A modified particle swarm optimizer, in IEEE World Congress
on Evolutionary Computational, 1998, 69-73.

129. Shi, Y. and Eberhart, R., Empirical study of particle swarm optimization, in Congress on
Evolutionary Computation, 3, 1999a, 1945- 1950.

130. Shi, Y. and Eberhart, R., Experimental study of particle swarm optimization, in World
Multiconf. Systematica, Cybernatics and Informatics, 2000.

131. Shi, Y. and Eberhart, R., Fuzzy adaptive particle swarm optimization, in Congress on
Evolutionary Computation, 2001, 101-106.

132. Shi, Y. and Eberhart, R., Parameter selection in particle swarm optimization, in Annual
Conference on Evolutionary Programming, 1998b, 25-27.

133. Sierra, M. R. and Coello, C. A.C., Improving PSO-based multi-objective optimization
using crowding, mutation and e-dominance, in International Conference on Evolutionary
Multi-Criterion Optimization, 2005, 505-519.

Reliability Optimization: A Particle Swarm Approach 185



134. Sivasubramani, S. and Swarup, K., Multiagent based particle swarm optimization
approach to economic dispatch with security constraints, in International Conference on
Power Systems, 2009, 1-6.

135. Sun, C., Liang, H., Li, L., and Liu, D., Clustering with a Weighted Sum Validity Function
Using a Niching PSO Algorithm, in IEEE International Conference on, Networking, Sensing
and Control, 2007, 368-373.

136. Sun, H., Han, J. J. and Levendel, H., A generic availability model for clustered computing
systems, in Pacific Rim International Symposium on Dependable Computing, 2001,
241-248.

137. Sun, L. and Gao, X., Improved chaos-particle swarm optimization algorithm for geometric
constraint solving, in International Conference on Computer Science and Software
Engineering, 2008, 992-995.

138. Suresh, K., Ghosh, S., Kundu, D., Sen, A., Das, S., and Abraham, A., Inertia-adaptive
particle swarm optimizer for improved global search, in International Conference on
Intelligent Systems Design and Applications, 2008, 253-258.

139. Taboada, H. and Coit, D. W., Data clustering of solutions for multiple objective system
reliability optimization problems, Quality Technology & Quantitative Management Journal,
4, 2007, 35-54.

140. Tillman, F. A., Hwang, C. L., and Kuo,W., Optimization of systems reliability, Marcel
Dekker Inc., 1980.

141. Tripathi, P. K., Bandyopadhyay, S., and Pal, S. K., Multi-objective particle swarm
optimization with time variant inertia and acceleration coefficients, Information Sciences,
177, , 2007, 5033-5049.

142. Twum, S. B., Multicriteria optimisation in design for reliability, Ph.D. Thesis, University of
Birmingham, 2009.

143. Vinod, G., Kushwaha, H. S., Verma, A. K., and Srividya, A., Optimisation of ISI interval
using genetic algorithms for risk informed in-service inspection, Reliability Engineering &
System Safety, 86, 2004, 307-316.

144. Wang, J., Liu, D., and Shang, H., Hill valley function based niching particle swarm
optimization for multimodal functions, in International Conference on Artificial Intelligence
and Computational Intelligence, 2009, 139-144.

145. Wattanapongsakorn, N. and Levitan, S. P., Reliability optimization models for embedded
systems with multiple applications, IEEE Transactions on Reliability, 53, 2004, 406-416.

146. Wattanapongsakorn, N. and Levitan, S., Reliability optimization models for fault-tolerant
distributed systems, in Reliability and Maintainability Symposium, 2001,193-199.

147. Wattanapongskorn, N. and Coit, D. W, Fault-tolerant embedded system design and
optimization considering reliability estimation uncertainty, Reliability Engineering & System
Safety, 92, 2007, 395-407.

148. Xu, Z., Kuo, W., and Lin, H. H., Optimization limits in improving system reliability, IEEE
Transactions on Reliability, 39, 1990, 51-60.

149. Yalaoui, A., Châtelet, E., and Chu, C., A new dynamic programming method for
reliability & redundancy allocation in a parallel-series system, IEEE Transactions on
Reliability, 54, 2005, 254-261.

150. Yamachi, H., Tsujimura, Y., Kambayashi, Y., and Yamamoto, H., Multi-objective
genetic algorithm for solving N-version program design problem, Reliability Engineering &
System Safety, 91, 2006, 1083-1094.

151. Yang, X., Yuan, J., Yuan, J., and Mao, H., A modified particle swarm optimizer with
dynamic adaptation, Applied Mathematics and Computation, 189, 2007, 1205-1213.

152. Yeh, W. C., A two-stage discrete particle swarm optimization for the problem of multiple
multi-level redundancy allocation in series systems, Expert Systems with Applications, 36,
2009, 9192-9200.

153. You, P. S. and Chen, T. C., An efficient heuristic for series-parallel redundant reliability
problems, Computers & Operations research, 32, 2005, 2117-2127.

186 S. Pant et al.



154. Zafiropoulos, E. P. and Dialynas, E. N.,Methodology for the optimal component selection
of electronic devices under reliability and cost constraints, Quality and Reliability
Engineering International, 23, 2007, 885-897.

155. Zavala, A. E.M., Diharce, E. R.V., and Aguirre, A. H., Particle evolutionary swarm for
design reliability optimization, in Evolutionary multi-criterion optimization. Third interna-
tional conference, EMO 2005. Lecture notes in computer science, Coello Coello CA,
Aguirre AH, Zitzler E (eds) , Springer, Guanajuato, Mexico, 3410, 2005, 856-869.

156. Zhao, J. H., Liu, Z., and Dao, M. T., Reliability optimization using multiobjective ant
colony system approaches, Reliability Engineering & System Safety, 92, 2007, 109-120.

157. Zhao, S. Z., Liang, J. J., Suganthan, P. N., and Tasgetiren, M. F., Dynamic multi-swarm
particle swarm optimizer with local search for large scale global optimization, in IEEE
Congress on Evolutionary Computation, 2008, 3845-3852.

158. Zheng, Y., Ma, L., Zhang, L. and Qian, J., On the convergence analysis and parameter
selection in particle swarm optimization, in International Conference on Machine Learning
and Cybernetics, 2003b, 1802-1807.

159. Zheng, Y., Ma, L., Zhang, L., and Qian, J., Empirical study of particle swarm optimizer
with an increasing inertia weight, in IEEE Congress on Evolutionary Computation, 2003a,
221-226.

160. Zou, D., Wu, J., Gao, L., and Wang, X., A modified particle swarm optimization algorithm
for reliability problems, in IEEE Fifth International Conference on Bio-Inspired Computing:
Theories and Applications (BIC-TA), 2010, 1098-1105.

Reliability Optimization: A Particle Swarm Approach 187


	7 Reliability Optimization: A Particle Swarm Approach
	Abstract
	1 Recent Works and Advances of PSO
	2 Reliability Optimization (An Overview)
	3 Why Particle Swarm Approach to Reliability Optimization?
	References


