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Abstract This chapter deals with the paradigm of handling system reliability
analysis in the Boolean domain as a supplement to (rather than a replacement to)
analysis in the probability domain. This paradigm is well-established within the
academic circles of reliability theory and engineering, albeit virtually unknown
outside these circles. The chapter lists and explains arguments in favor of this
paradigm for systems described by verbal statements, fault trees, block diagrams,
and network graphs. This is followed by a detailed exposition of the pertinent
concept of the Real or Probability Transform of a switching (two-valued Boolean)
function, and that of a Probability-Ready Expression (PRE). Some of the important
rules used in generating a PRE are presented, occasionally along with succinct
proofs. These include rules to achieve disjointness (orthogonality) of ORed for-
mulas, and to preserve statistical independence, as much as possible, among
ANDed formulas. Recursive relations in the Boolean domain are also discussed,
with an application to the four versions of the AR algorithm for evaluating the
reliability and unreliability of the k-out-of-n:G and the k-out-of-n:F systems. These
four versions of the algorithm are explained in terms of signal flow graphs that are
compact, regular, and acyclic, in addition to being isomorphic to the Reduced
Ordered Binary Decision Diagram (ROBDD). An appendix explains some
important properties of the concept of Boolean quotient, whose expectation in
Boolean-based probability is the counterpart of conditional probability in
event-based probability.
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1 Introduction

This chapter deals with the paradigm of handling system reliability analysis in the
Boolean domain as a supplement to (rather than a replacement to) analysis in the
probability domain. This paradigm is called switching-algebraic analysis of relia-
bility or (two-valued) Boolean analysis of reliability. It is also termed Logical
Probabilistic Analysis (LPA) by Ryabinin [1], who traced it back to great pioneers
such as Boole, Poretskii, and Bernstein. Ryabinin also rebutted dubious criticism
cast against LPA, and lamented that LPA is missing in prominent publications on
probability theory, including those by celebrated scholars such as Markov and
Kolmogorov. A modern revival of LPA was started in 1963 by Merekin [2] and
Premo [3] and later in 1973 by Fratta and Montanari [4]. After that, applications of
LPA in system reliability analysis were covered by literally hundreds of publica-
tions in prestigious journals (see, e.g., [5–62]). It is therefore astonishing that LPA
has so far not found its way to popular texts on probability (see, e.g., [63–72]), and
is still virtually unknown outside the circles of reliability theorists and engineers.
This state of affairs is possibly an obstacle hindering fruitful interplay between
system reliability and many of its potential fields of application. This chapter is,
therefore, an attempt to review reliability applications of LPA and enhance
awareness of the scientific community about it. It is also an invitation to explore its
utility in other parts of probability theory that deal with generalized Bernoulli trials.

System reliability analysis deals with expressing the reliability of a system in
terms of the reliabilities of its constituent components. Hence, this analysis entails
advanced applications of probability theory, and is consequently “based on the
algebra of events (a version of set algebra), which is isomorphic to the bivalent or
2-valued Boolean algebra (switching algebra)” [56]. Besides using the algebra of
events in what is termed probabilistic or arithmetic analysis [73, 74], modern
system reliability analysis also utilizes Boolean algebra by employing the indicator
variables for probabilistic events instead of the events themselves. Subsequently,
expectations of these indicator variables are used to represent probabilities of the
corresponding events. In particular, expectations of system success and failure
replace system reliability and unreliability, respectively.

An approach bearing certain similarities to the paradigm exposed herein (without
going to the Boolean domain) studies probability via expectations [65]. It is based
on an axiomatization of probability theory using expectations instead of probabil-
ities (i.e., using linear operators instead of measures). A related approach is sug-
gested by Feller [63, p. 219] who states that “The reduction of probability theory to
random variables is a short-cut to the use of analysis and simplifies the theory in
many ways. However, it also has the drawback of obscuring the probability
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background.” The paradigm exposed herein handles probability in terms of indi-
cator random Bernoulli variables, but it does not obscure the probability back-
ground, since it stresses that the random variables are indicators for events, and it
keeps two parallel schemes of event-based probability and Boolean-based proba-
bility. These schemes are compared in Table 1 which cites well-known results from
elementary probability theory. The first scheme utilizes the concepts of probabilities
of events, union and intersection operators, and conditional probability, while the
second scheme replaces these by expectations of event indicators, logical “OR” and
“AND” operators, and Boolean quotient (see Appendix A). Table 1 shows how
probability formulas involving the union and intersection operators become simpler
when the pertinent events are mutually exclusive or statistically independent,
respectively. As indicated in Table 2, the indicator variable IA is a Bernoulli vari-
able of two values 0 and 1, such that

IA ¼ 0 iff the eventA does not occur; ð1aÞ

IA ¼ 1 iff the eventA occurs: ð1bÞ

Table 2 also indicates definitions of the Bernoulli variables IA; IA _ IB; IA ^ IB;
so that the following expectations are obtained

EfIAg ¼ PrfAg; ð2aÞ

E IA
� � ¼ Prf�Ag; ð2bÞ

E IA _ IBf g ¼ Prf�A\BgþPrfA\ �BgþPrfA\Bg ¼ PrfA[Bg; ð2cÞ

EfIA ^ IBg ¼ PrfA\Bg: ð2dÞ

In the sequel, we will use the symbols S and �S to denote system success and
failure, respectively, with their expectations R ¼ EfSg and U ¼ Ef�Sg representing
system reliability and unreliability, respectively. Subscripts of obvious meanings
will be added to distinguish systems of particular types. The corresponding symbols
Xi; �Xi, pi ¼ EfXig; and qi ¼ Ef�Xig will denote the success, failure, reliability, and
unreliability, respectively, for component of number i; 1� i� n: Unless otherwise
stated, component successes are assumed statistically independent all throughout
this chapter. A Boolean expression for the indicator of system success will be
presented as a function of the indicators of component successes. Transition from
the Boolean domain to the probability domain is achieved via the Real Transform
[75–82] which can be viewed as an expression of system reliability (unreliability)
as a function of component reliabilities (unreliabilities).

The organization of the rest of this chapter is as follows. Section 2 lists argu-
ments for handling system reliability in the Boolean domain before going to the
probability domain. Section 3 reviews the basic concepts of the Real or Probability
Transform of a switching function. Section 4 presents the definition of a
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Probability-Ready Expression (PRE) and lists some of the rules used in generating a
PRE. Section 5 discusses recursive relations in the Boolean domain. Section 6
concludes the chapter (Table 3).

2 Advantages of Working in the Switching (Boolean)
Domain

There is a large potpourri of ways for describing a reliability system, including
verbal statements, fault trees, block diagrams, and network graphs. Generally,
reliability analysis of a system conducted in the probabilistic (arithmetic) domain is
lengthy and error-prone [73, 74]. We will now discuss other arguments for working
in the switching (Boolean) domain for each specific type of system description:

• For systems described by verbal statements, work in the Boolean domain allows
a separation and distinction between the mathematical formalization of a reli-
ability problem, and the algorithmic derivation of its formal solution. Table 4
shows the verbal description versus the Boolean specification of some common
reliability systems, mostly of the k-out-of-n or related types. For lack of space,
we omitted more sophisticated systems including some dual, multidimensional,
multi-valued extensions of the reported systems. It is clear that the word
statement and the mathematical description of each reported system are
immediately and obviously equivalent. There is no mental strain or conceptual
difficulty in going from the somewhat vague realm of language to the exactly
precise arena of mathematics. The primary Boolean description is in terms of

Table 2 Indicator variable for set complementation

A �A IA IA
Does not occur Occurs 0 1

Occurs Does not occur 1 0

Table 3 Indicator variables for set union and intersection

A B A[B A\B IA IB IA _ IB IA ^ IB
Does not
occur

Does not
occur

Does not
occur

Does not
occur

0 0 0 0

Does not
occur

Occurs Occurs Does not
occur

0 1 1 0

Occurs Does not
occur

Occurs Does not
occur

1 0 1 0

Occurs Occurs Occurs Occurs 1 1 1 1
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system success or failure, depending on the nature of the system, with the
complementary description delegated to a secondary role. Once in the Boolean
domain, one can solve the problem of reliability evaluation by utilizing an
extensive set of algorithmic tools and visual aids. For most of the systems in
Table 4, both probabilistic and Boolean solutions exist. For some of the sys-
tems, such as the k-out-of-n systems, Boolean solutions [27] were earlier to
develop. For other systems, such as the consecutive-k-out-of-n ones, Boolean
solutions [32, 33] arrived later, as an afterthought, to provide a more insightful
and easy-to-comprehend alternative.

• Formulation of a system reliability problem in the Boolean domain is the natural
strategy to use for systems described by fault trees [9, 10, 44, 49, 50, 58], which
are composed of logical AND–OR gates, and can similarly be utilized with
systems described by block diagrams [15]. Fault trees are used to relate prob-
abilistic events, with its inputs being basic events and its output being the top
event. However, it could be more convenient to apply Boolean-based proba-
bility to fault trees by using indicators for events rather the events themselves
[57, 62, 78, 92].

• Formulation in the Boolean domain is the method of choice with systems
described by network graphs when these systems are handled through the
enumeration of minimal pathsets and minimal cutsets [12, 23, 26, 48], rather
than other graph techniques.

Work in the Boolean domain might allow the treatment of certain types of
statistical dependencies among component successes. For example, in the case of
total positive dependency (Xi ¼ Xj) idempotency leads to (Xi _ Xj ¼ Xi) and
(Xi ^ Xj ¼ Xi), while in the case of total negative dependency (Xi ¼ �Xj) orthogo-
nality leads to (Xi _ Xj ¼ 1) and (Xi ^ Xj ¼ 0). Cases of partial dependencies might
be handled via expectations of Boolean quotients.

Work in the Boolean domain also provides the insight necessary to avoid traps
and pitfalls, as well as to detect anomalies, inconsistencies, and errors of the third
kind (errors of solving the wrong problem). A case in point is that of the so-called
strict consecutive-k-out-of-n:G(F) system [93–96], which lacks a definition that
avoids ambiguity, inconsistency, or self-contradiction. Unfortunately, many capable
and great mathematicians wasted their precious time producing elegant solutions for
what they mistakenly assumed to be this system. Insight of the Boolean domain
allowed a critical review of literature that partially prevented the publication of
more such irrelevant work.

Without resort to the Boolean domain, one might be obliged to use the notorious
Inclusion–Exclusion (IE) Principle to compute the probability of the union of
n events [63, 67], where n might be large. Use of the IE Principle in system
reliability analysis is undesirable, since “(a) it produces an exponential number of
terms that have to be reduced subsequently via addition and cancellation, and (b) it
involves too many subtractions, making it highly sensitive to round-off errors, and
possibly leading to catastrophic cancellations” [52, 54, 56].
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3 The Real Transform of a Switching Function

Various forms of the Real Transform (also called the Probability or Arithmetic
transform) are discussed in [75–82]. The definition given in [79, 82] states that the
real transform RðpÞ ¼ Rðp1; p2; . . .; pnÞ of a switching function f(X) possesses the
following two properties:

(a) R(p) is a multiaffine continuous real function of continuous real variables
p ¼ ½p1 p2. . .pn�T; i.e., R(p) is a first-degree polynomial in each of its argu-
ments pi:

(b) R(p) has the same “truth table” as f(X), i.e.

R p ¼ tj
� � ¼ f ðX ¼ tjÞ; for j ¼ 0; 1; . . .; 2n � 1ð Þ; ð3Þ

where tj is the jth input line of the truth table; tj is an n-vector of binary
components such that

Xn

i¼1

2n�itji ¼ j; for j ¼ 0; 1; . . .; 2n � 1ð Þ: ð4Þ

We stress that property (b) above does not suffice to produce a unique RðpÞ and
it must be supplemented by the requirement that RðpÞ be multiaffine to define RðpÞ
uniquely [77, 79]. We also note that if the Real Transform R and its arguments p are
restricted to discrete binary values (i.e., if R : 0; 1f gn! f0; 1g) then R becomes the
multilinear form of a switching function [11, 97]. This form is typically referred to
as the structure function [98, 99] in system reliability, and is a way to mimic
Boolean algebra in terms of arithmetic operators rather than Boolean ones.

The definition above for RðpÞ implies that it is a function from the n-dimensional
real space to the real line ðRðpÞ : Rn ! RÞ: Though both R and p could be free real
values, they have very interesting interpretations as probabilities, i.e., when
restricted to the [0.0, 1.0] and [0.0, 1.0]n real intervals. An important property of the
Real Transform R(p) is that if its vector argument or input p is restricted to the
domain within the n-dimensional interval [0.0, 1.0 ]n, i.e., if 0.0 ≤ pi ≤ 1.0 for
1 ≤ i ≤ n, then the image of R(p) will be restricted to the unit real interval [0.0,
1.0].

The Real Transform is a bijective (one-to-one and onto) mapping from the set of
switching functions to the subset of multiaffine functions such that if the function’s
domain is the power binary set f0; 1gn then its image belongs to the binary set
{0, 1}. Evidently, an R(p) restricted to binary values whenever its arguments are
restricted to binary values can produce the “truth table” that completely specifies its
inverse image f(X) via (3). On the other hand, a multiaffine function of n variables is
completely specified by 2n independent conditions [77, 79], e.g., the ones in (3).

The transform RðpÞ is related to the original function f ðXÞ via the truth table in
(3), which consists of 2n lines. Therefore, the complexity of implementing the Real
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Transform, i.e., of going from f ðXÞ to RðpÞ is exponential, and the problem of
implementing the Real Transform is generally intractable. However, if f ðXÞ is cast
in PRE form, then it can be converted trivially (at no cost) to R pð Þ: In this case, the
burden of achieving the Real Transform is shifted to the Boolean domain where the
initial formula for f ðXÞ is to be converted (at a potentially reduced cost) to a PRE.

4 Probability-Ready Expressions

A Reliability-Ready Expression (RRE) is an expression in the switching (Boolean)
domain that can be directly transformed, on a one-to-one basis, to its Real or
Probability Transform by replacing switching (Boolean) indicators by their statis-
tical expectations, and also replacing logical multiplication and addition (ANDing
and ORing) by their arithmetic counterparts [25, 42, 49, 50, 54, 56]. We now
present some useful rules that might be required in the conversion of an arbitrary
switching (Boolean) expression to an equivalent compact PRE:

1. A switching expression is a PRE expression if

(a) all ORed terms are orthogonal (disjoint), and
(b) all ANDed sums are statistically independent.

The conversion is achieved by replacing Boolean variables by their expecta-
tions, AND operations by arithmetic multiplications, and OR operations by
arithmetic additions. While there are literally hundreds of methods to introduce
characteristic (a) of orthogonality (disjointness) into a Boolean expression (see,
e.g., Bennetts [9, 15], Abrahams [13], Dotson and Gobien [14], and Rushdi [17,
20]) there is no way to induce characteristic (b) of statistical independence. The
best that one can do is to observe statistical independence when it exists, and
then take care to preserve it and take advantage of it [25, 42, 62].

2. As an analog to series-parallel reduction, any set of ANDed or ORed variables
that do not appear elsewhere in a formula should be combined into a single
variable. This might considerably reduce the number of variables involved, and
helps in producing a more compact expression.

3. Two terms are disjoint if they have at least a single opposition, i.e., if there is at
least one variable that appears complemented in one term and appears
un-complemented in the other, e.g., the two terms A�BC and BC are disjoint since
the complemented literal �B appears in A�BC while the un-complemented literal
B appears in BC.

4. If neither of the two terms A and B in the sum ðA _ BÞ subsumes the other
(A _ B 6¼ A and A _ B 6¼ B) and the two terms are not disjoint (A ^ B 6¼ 0), then
B can be disjointed with A by the relation
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A _ B ¼ A _ B y1y2. . .yeð Þ
¼ A _ B y1 _ y1y2 _ . . . _ y1y2. . .ye�1yeð Þ; ð5Þ

where {y1; y2; . . .; ye} is the set of literals that appear in the term A and do not
appear in the term B. Note that the term B is replaced by e (≥1) terms that are
disjoint with one another besides being disjoint with the term A [9, 15, 54, 56].
Formula (5) might be seen as an immediate extension of the familiar Reflection
Law [100–105].

a _ b ¼ a _ ðb ^ �aÞ: ð5aÞ

A formal proof of (5) is possible via perfect induction over a much reduced truth
table that consists of the (eþ 1) orthonormal cases fy1 ¼ 0g; fy1 ¼ 1; y2 ¼ 0g;
fy1 ¼ y2 ¼ 1; y3 ¼ 0g; . . .; fy1 ¼ y2 ¼ � � � ¼ ye�1 ¼ 1; ye ¼ 0g; and fy1 ¼ y2 ¼
� � � ¼ ye�1 ¼ ye ¼ 1g. For the first e cases, the L.H.S. = the R.H.S = B. For the last
case, the L.H.S. = A=y1y2 � � � ye _ B, while the R.H.S. = A=y1y2 � � � ye: The two
sides are equal since B subsumes A=y1y2 � � � ye; and hence is absorbed in it. The
term ðA=y1y2 � � � yeÞ is the Boolean quotient obtained by restricting A through
the assignment fy1 ¼ y2 ¼ � � � ye ¼ 1g (See Appendix A). In passing, we note that
the roles of A and B can be reversed in (5), and that (5) does not guarantee
minimality of the resulting disjointed expression [51]. Disjointness typically results
in an (often dramatic) increase in the number of terms in sum-of-products
(sop) switching expressions. However, there are more sophisticated disjointness
techniques that achieve “shellability”, i.e., they obtain a disjoint sop expression that
retains the same number of terms as the original sop expression [34, 46, 55, 105].
Notable examples of shellable expressions include those of the success or failure of
a k-out-of-n:G or a k-out-of-n:F system [39], and that of the success of a coherent
threshold system [55].

5. Given a term P and two sums of products A and B where A has no variables in
common with P, while B shares some variables with P, then the logical product
A ^ Bð Þ is disjointed with P by disjointing B and P and keeping A unchanged
[42].

6. The complements of a sum and a product are given by a product and a disjoint
sum, namely, PRE versions of De Morgan’s Laws [102]

_n
i¼1Ai ¼ ^n

i¼1
�Ai; ð6Þ

^n
i¼1Ai ¼ A1 _ A1A2 _ � � � _ A1A2 � � �An�1An: ð7Þ

A formal proof of (6) is achieved by considering just two exhaustive cases,
namely: (a) the case of all Ai’s being 0, for which the L.H.S. = the R.H.S = 1, and
(b) the case when at least one Ai is 1, for which the L.H.S. = the R.H.S. = 0.
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Likewise, a formal proof of (7) is obtained via perfect induction over the (nþ 1)
orthonormal cases fA1 ¼ 0g; fA1 ¼ 1;A2 ¼ 0g; fA1 ¼ A2 ¼ 1;A3 ¼ 0g; . . .;
fA1 ¼ A2 ¼ . . . ¼ An�1 ¼ 1;An ¼ 0g; and fA1 ¼ A2 ¼ . . . ¼ An�1 ¼ An ¼ 1g:
For the first n cases, the L.H.S. = the R.H.S = 1. For the last case, the L.H.S. = the
R.H.S. = 0.

7. The most effective way for converting a Boolean formula into a PRE form is the
Boole–Shannon Expansion

f ðXÞ ¼ ð�Xi ^ f Xj0iÞð Þ _ ðXi ^ f Xj1ið ÞÞ; ð8Þ

which expresses a (two-valued) Boolean function f ðXÞ in terms of its two sub-
functions f Xj0ið Þ and f Xj1ið Þ: These subfunctions are equal to the Boolean quo-
tients f ðXÞ=�Xi and f Xð Þ=Xi; and hence are obtained by restricting Xi in the
expression f ðXÞ to 0 and 1, respectively. If f ðXÞ is a sop expression of n-variables,
the two subfunctions f Xj0ið Þ and f Xj1ið Þ are functions of at most (n − 1) variables.
A formal proof of (8) is achieved by considering just two exhaustive cases, namely:
(a) the case {Xi ¼ 0}, for which the L.H.S. = the R.H.S = f Xj0ið Þ; and (b) the case
{Xi ¼ 1}, for which the L.H.S. = the R.H.S. = f Xj1ið Þ. The expansion (8) serves
our purpose very well. Once the subfunctions in (8) are expressed by PRE
expressions, f ðXÞ will be also in PRE form, thanks to the facts that (a) The R.H.S.
of (8) has two disjoint parts, with the first part containing the complemented literal
�Xi and the second part containing the un-complemented literal Xi; and (b) Each of
these two parts is a product of two statistically-independent entities. The Boole–
Shannon Expansion in the Boolean domain is equivalent to the Total Probability
Theorem [67] in the probability domain and to the Factoring Theorem [56] in the
“Graph Domain”. A visual aid or tool to implement this expansion is provided by
the Variable-Entered Karnaugh Map (VEKM) [17].

8. Let a success formula be written in the form

S ¼ N1M1 _ N2M2; ð9Þ

where the set of formulas {N1;N2} is statistically independent of the set of formulas
{M1;M2}. Expression (9) might result due to path enumeration via network
decomposition [22, 106–109]. A PRE formula of S (that preserves the original
statistical independence as much as possible) is [22]

SPRE ¼ N1ðPREÞM1ðPREÞ _ ðN1N2ÞðPREÞM2ðPREÞ _ ðN1N2ÞðPREÞðM1M2ÞðPREÞ: ð10Þ

A formal proof of (10) is possible via perfect induction over a much reduced
truth table that consists of only the three orthonormal cases fN1 ¼ 0g; fN1 ¼ 1;
M1 ¼ 0g; and fN1 ¼ M1 ¼ 1g: For the first two cases, the L.H.S. = the
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R.H.S. = N2ðPREÞM2ðPREÞ: For the third case, the L.H.S. = the R.H.S = 1. Note that
this proof entails a partitioning of the higher-level space of N1 and M1 rather than a
partitioning of the space of the underlying arguments X.

9. Products might be kept compact by utilizing the following rules of disjoint
intelligent multiplication

ða _ xÞða _ yÞ ¼ a _ �axy; ð11Þ

ða _ xÞ �a _ yð Þ ¼ �ax _ ay: ð12Þ

Formula (11) results due to the absorption of the terms ax and ay in their
subsumed term a; and then using the Reflection Law (5a). The term xy that would
have appeared in formula (12) is deleted since it is the consensus of �ax and ay; and
hence it is covered by their disjunction �ax _ ay: A corollary of (11) is

ab ^ ac ^ ad ¼ �a _ a�b�c�d: ð13Þ

The complemented form of (13) is a ANDed with the complement of �b�c�d: This
complemented form allows separating the common factor a in the formula without
introducing the OR (_) operator in it, and hence leads to full utilization of statistical
independence [25].

10. When one has a partially-factored expression of system success or failure such
as the following one [56]

S ¼ X3 _ X7 _ X5 _ X8ð Þ X4 _ X2X9ð Þ _ ðX1 _ X6ÞðX2 _ X4X9Þ; ð14Þ

then it should be converted into PRE form via (10) without spoiling or expanding
the factored form, so as to preserve statistical independence [22, 25, 42, 56]

SPRE ¼ X3 _ X3 X7 _ X7 X5 _ X5X8
� �

X4 _ X4X2X9
� ���

_ X1 _ X1X6
� �

X5X8 X2 _ X2X4X9
� � _ X5 _ X5X8

� �
X2X4X9

� ���
:

ð15Þ

This transforms on a one-to-one basis to the reliability expression [56]

R ¼ p3 þ q3 p7 þ q7 p5 þ q5p8ð Þ p4 þ q4p2p9ð Þðð
þ p1 þ q1p6ð Þ q5q8 p2 þ q2p4p9ð Þþ p5 þ q5p8ð Þp2q4q9ð ÞÞÞ: ð16Þ
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5 Recursive Relations in the Boolean Domain

This Section provides a novel discussion about the utility of the Boolean domain in
deriving recursive relations for the two versions of the k-out-of-n system. The
reader is referred to [32, 33] for Boolean-domain derivations of recursive relations
for consecutive systems. The success SGðk; j;XjÞ of a k-out-of-j:G system is a
symmetric monotonically nondecreasing switching function, and hence satisfies
recursive relations obeyed by such a function [27]. Equivalently, it is given by its
Boole–Shannon expansion about its last argument Xj (namely, Eq. (5.40a) of
Rushdi [39]):

SGðk; j;XjÞ ¼ XjSGðk; j� 1;Xj�1Þ _ XjSGðk � 1; j� 1;Xj�1Þ; 1� k� j� n; ð17aÞ

where Xj ¼ X1;X2; . . .;Xj
� �T is the vector of the first j component successes. The

R.H.S. of Eq. (17a) involves two subfunctions SGðk; j� 1;Xj�1Þ and SGðk � 1;
j� 1;Xj�1Þ of the original success function. The region of validity of (17a) in the
kj-plane is bordered by two straight lines on which the following two boundary
conditions hold

SG k; j;Xj
� � ¼ 1; k ¼ 0; j� 1; ð17bÞ

SG k; j;Xj
� � ¼ 0; k ¼ jþ 1; j� 1; ð17cÞ

Equations (17) are in PRE form, with Probability Transforms

RGðk; j; pjÞ ¼ qjRGðk; j� 1; pj�1Þþ pjRGðk � 1; j� 1; pj�1Þ; 1� k� j� n;

ð18aÞ

RG k; j; pj
� � ¼ 1; k ¼ 0; j� 1; ð18bÞ

RG k; j; pj
� � ¼ 0; k ¼ jþ 1; j� 1; ð18cÞ

which govern the reliability of the k-out-of-j:G system. Based on the recursive
relation (18a) together with the boundary conditions (18b and 18c), a quadratic-time
iterative algorithm was developed by Rushdi [27], and later named the AR algo-
rithm [37, 39]. The AR algorithm has the beautiful characteristic of having the same
form (and hence same complexity) for computing both the reliability and unrelia-
bility of either the k-out-of-n:G system or its dual the k-out-of-n:F system. Table 5
illustrates this point by listing various recursive relations together with boundary
conditions for the two dual types of k-out-of-n systems in the Boolean and prob-
abilistic domains. Entries in the lower two rows of Table 5 are Probability
Transforms of the corresponding entries of the upper two rows, which happen to be
in PRE form. Entries in the left column of Table 5 are inversions of the
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corresponding entries of the right column. Power of working in the Boolean domain
is manifested in the complementation and dualization operations that transform
SGðk; j;XjÞ in (17) to �SGðk; j;XjÞ and SFðk; j;XjÞ, respectively. First, we note that
both complementation and dualization change a boundary condition of 1 to 0 and a
boundary condition of 0 to 1. We next consider the recursive domain 1� k� j� n:
Inverting SGðk; j;XjÞ to produce �SGðk; j;XjÞ is straightforward since SGðk; j;XjÞ
When one has a partially-factored expression of system success or failure such as
the following one [56] basis f�Xj;Xjg with coefficients SGðk; j� 1;Xj�1Þ and
SGðk � 1; j� 1;Xj�1Þ, respectively, and hence �SGðk; j;XjÞ is expressed in terms of
the same orthonormal basis, but with inverted coefficients �SG k; j� 1;Xj�1

� �
and

Table 5 Various recursive relations together with boundary conditions for the two dual types of
k-out-of-n systems in the Boolean and probabilistic domains

k-out-of-n:G
system

�SGðk; j;XjÞ ¼
Xj �SG k; j� 1;Xj�1

� �_
Xj �SGðk � 1; j� 1;Xj�1Þ, 1� k �
j � n,
�SG k; j;Xj

� � ¼ 0;
k ¼ 0; j� 1;
�SG k; j;Xj

� � ¼ 1;
k ¼ jþ 1; j� 1;

SGðk; j;XjÞ =
Xj SG k; j� 1;Xj�1

� � _
Xj SGðk � 1; j� 1;Xj�1Þ, 1� k �
j � n,
SG k; j;Xj

� � ¼ 1;
k ¼ 0; j� 1;
SG k; j;Xj

� � ¼ 0;
k ¼ jþ 1; j� 1;

k-out-of-n:F
system

SFðk; j;XjÞ =
Xj SF k; j� 1;Xj�1

� � _
Xj SFðk � 1; j� 1;Xj�1Þ, 1� k �
j � n,
SF k; j;Xj

� � ¼ 0;
k ¼ 0; j� 1;
SF k; j;Xj

� � ¼ 1;
k ¼ jþ 1; j� 1;

�SFðk; j;XjÞ =
Xj �SF k; j� 1;Xj�1

� � _
Xj �SFðk � 1; j� 1;Xj�1Þ, 1� k �
j � n,
�SF k; j;Xj

� � ¼ 1;
k ¼ 0; j� 1;
�SF k; j;Xj

� � ¼ 0;
k ¼ jþ 1; j� 1;

k-out-of-n:G
system

UGðk; j; pjÞ =
qj UG k; j� 1; pj�1

� � þ
pj UGðk � 1; j� 1; pj�1Þ, 1� k �
j � n,
UG k; j; pj

� � ¼ 0;
k ¼ 0; j� 1;
UG k; j; pj

� � ¼ 1;
k ¼ jþ 1; j� 1;

RGðk; j; pjÞ =
qj RG k; j� 1; pj�1

� � þ
pj RGðk � 1; j� 1; pj�1Þ, 1� k �
j � n,
RG k; j; pj

� � ¼ 1;
k ¼ 0; j� 1;
RG k; j; pj

� � ¼ 0;
k ¼ jþ 1; j� 1;

k-out-of-n:F
system

RFðk; j; pjÞ =
pj RF k; j� 1; pj�1

� � þ
qj RFðk � 1; j� 1; pj�1Þ, 1� k � j
� n,
RF k; j; pj

� � ¼ 0;
k ¼ 0; j� 1;
RF k; j; pj

� � ¼ 1;
k ¼ jþ 1; j� 1;

UFðk; j; pjÞ =
pj UF k; j� 1; pj�1

� � þ
qj UFðk � 1; j� 1; pj�1Þ, 1� k �
j � n,
UF k; j; pj

� � ¼ 1;
k ¼ 0; j� 1;
UF k; j; pj

� � ¼ 0;
k ¼ jþ 1; j� 1;
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�SGðk � 1; j� 1;Xj�1Þ. Since SFðk; j;XjÞ is the dual function of SGðk; j;XjÞ, it is
obtained from it by inverting both its output SG and inputs (arguments) Xj; namely
SFðk; j;XjÞ ¼ �SG k; j; �Xj

� �
, and hence it is given by the complement of (17a) with

inputs inverted, i.e., it is given by the complement of

XjSGðk; j� 1; �Xj�1Þ _ XjSGðk � 1; j� 1; �Xj�1Þ:

This complement is given by

Xj�SGðk; j� 1; �Xj�1Þ _ Xj�SGðk � 1; j� 1; �Xj�1Þ
¼ XjSFðk; j� 1;Xj�1Þ _ XjSFðk � 1; j� 1;Xj�1Þ:

Rushdi [52] noted that the AR algorithm is, in fact, an implementation of the
Reduced Ordered Binary Decision Diagram (ROBDD) strategy when this strategy
is adapted for computing the k-out-n-reliability. The ROBDD strategy was pro-
posed by Bryant [110] as an extension of the BDD methodology of Akers [111].
The ROBDD deals with general switching (two-valued Boolean) functions, and is
now considered the state-of-the-art data structure for handling such functions, with
extensive applications in reliability [112–122]. As stated earlier, the AR algorithm
has a domain of applicability that is narrower than that of the ROBDD algorithm, as
it is restricted to switching functions that are both monotonically nondecreasing and
totally symmetric. Apart from this, the AR algorithm has exactly the same features
as the ROBDD algorithm, namely:

1. Both the AR and ROBDD algorithms are based on the Boole–Shannon
expansion in the Boolean domain.

2. Both algorithms visit the variables in a certain order, typically monotonically
ascending or monotonically descending.

3. Both algorithms reduce the resulting expansion tree (which is exponential in
size) to a rooted acyclic graph that is both canonical and hopefully compact or
sub-exponential. The reduction rules [122] require 3(a) merging isomorphic
subtrees, and 3(b) deletion of useless nodes whose outgoing edges point to the
same child node.

Figure 1 translates the lower two rows of Table 5 into a quad of Mason Signal
Flow Graph (SFGs) for computing the reliability and unreliability of the k1-out-of-
(k1 þ k2):G system and the k1-out-of-(k1 þ k2):F system for k1 � 0 and k2 � � 1:
Figure 1 is drawn over a rectangular grid of coordinates k1 ¼ k; k2 ¼ n� k1: The
graphs in Fig. 1 are the essence of the four versions of the iterative AR algorithm.
Striking similarities (and trivial, albeit subtle differences) of these graphs with
ROBDDs are discussed in Rushdi and Alturki [61].

Though the recursive relation (17a) was discovered initially in the Boolean
domain [27], it can be derived, as an afterthought, in the probability domain. For
this purpose, we employ the Total Probability Theorem with the two mutually
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exclusive and exhaustive events {component j is failed} and {component j is
good}, for 1� k� j� n; as follows

RGðk; j; pjÞ ¼ Prfat least k components out of j are goodg
¼ Prfat least k components out of j are goodjcomponent j is failedg
Prfcomponent j is failedg

þPrfat least k components out of j are goodjcomponent j is goodg
Prfcomponent j is goodg
¼ Prfat least k components out of ðj� 1Þ are goodgqj
þPrfat least ðk � 1Þ components out of ðj� 1Þare goodgpj

¼ qjRGðk; j� 1; pj�1Þþ pjRGðk � 1; j� 1; pj�1Þ:

The derivation above should not be viewed as a defeat of purpose of the para-
digm presented herein. Simple as it may be, this derivation was arrived at only after
(18a) became known, as a transform of the Boolean result (17a).

Fig. 1 Translation of the lower two rows of Table 5 into a quad of Mason signal flow graph
(SFGs)
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6 Conclusions

This chapter gives a detailed overview of the current practice of solving system
reliability problems by first formulating and manipulating them in the Boolean
domain, and subsequently going to the probability domain. This practice is a
supplementary alternative of the more dominant practice of working solely in the
probability domain all throughout the solution process. The equivalence between
event-based probability (which uses probabilities of events) and Boolean-based
probability (which employs expectations of indicator variables of such events) is
demonstrated. In particular, the expectation of a Boolean quotient is identified as a
conditional probability, and the Boole–Shannon expansion is recognized as a
Boolean-domain counterpart of the Total Probability Theorem.

Formulation of a system reliability problem in the Boolean domain is concep-
tually very simple for systems described by verbal statements. It is the natural
strategy to use for systems described by fault trees, which are composed of logical
AND–OR gates, and can similarly be utilized with systems described by block
diagrams. It is the method of choice with systems described by network graphs,
when these systems are handled through the enumeration of minimal pathsets and
minimal cutsets, rather than via other graph techniques. Manipulations in the
Boolean domain are facilitated for small problems by the existence of insightful
manual tools such as the Karnaugh map or the variable-entered Karnaugh map, and
for large problems due to the availability of many scalable efficient algorithms such
as those utilizing the ROBDD. Transfer from the Boolean domain to the probability
domain is achieved via the Real or Probability Transform of a switching
(two-valued Boolean) function, which is generally an intractable process of expo-
nential complexity. However, computational burden can be shifted to the Boolean
domain, with a potential decrease in complexity, if the pertinent Boolean function is
first cast into the form of a PRE. Some of the important rules used in generating a
PRE are presented, occasionally along with succinct proofs. These include rules to
achieve disjointness (orthogonality) of ORed formulas, and to preserve statistical
independence as much as possible among ANDed formulas.

The chapter reports a special case of Boolean-domain success by discussing
recursive relations governing the reliability and unreliability of the k-out-of-n:G and
the k-out-of-n:F systems. The complementation (inversion) and dualization oper-
ations in the Boolean domain are utilized to interrelate these four entities, and to
evaluate them via four versions of the same algorithm. These four versions of the
algorithm are explained in terms of signal flow graphs that are compact, regular,
and acyclic, in addition to being isomorphic to the ROBDD, which is reputed to be
the most efficient technique for manipulating Boolean functions.

From a pedagogical point of view, the paradigm and concepts discussed herein
might be too involved to be of utility in elementary probability education. However,
a somewhat bold suggestion is to employ the present paradigm and concepts in
areas constituting advanced applications of probability (beside that of system
reliability) such as telecommunications, genetics, and finance.
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Appendix A: Boolean Quotient

Let us define a literal to be a letter or its complement, where a letter is a constant or
a variable. A Boolean term or product is a conjunction or ANDing of m literals in
which no letter appears more than once. For m = 1, a term is a single literal and for
m = 0, a term is the constant 1. Note that, according to this definition the constant 0
is not a term. Given a Boolean function and a term t, the Boolean quotient of
with respect to t, denoted by ( ), is defined to be the function formed from by
imposing the constraint {t = 1} explicitly [103], i.e.,

ð19Þ

The Boolean quotient is also known as a ratio, a subfunction, or a restriction.
Brown [103] lists and proves several useful properties of Boolean quotients, of
which we reproduce the following ones:

ð20Þ
ð21Þ

{for n-variable functions and g and an m-variable term t with m ≤ n},

ð22Þ
ð23Þ
ð24Þ

ð25Þ

In this Appendix, we followed Brown [103] in denoting a Boolean quotient by
an inclined slash . However, it is possible to denote it by a vertical bar to stress
the equivalent meaning (borrowed from conditional probability) of conditioned
by t or given t.
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