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Summary

Nitric oxide (NO) is emerging as a signaling

molecule in plants. Its metabolism, site and

mode of action in chloroplasts are still not

clear. Chloroplasts are emerging as an alter-

native site for NO synthesis in plants. How-

ever, exogenous NO donors show direct

evidence on the action of this molecule on

chloroplasts under stress as well non-stress

conditions. Nitric oxide is also implicated in

the development and senescence of the organ-

elle. The effects of NO on chloroplasts, par-

ticularly on photosynthetic and antioxidative

processes are described. The target sites and

probable sites of action are enumerated.
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Abbreviations

PSI photosystem I

PSII photosystem II

LHCII light-harvesting chlorophyll a/b

complex of PSII

GSNO S-nitrosoglutathione

GSSG glutathione disulphide

NO nitric oxide

qL coefficient of photochemical fluores-

cence quenching assuming

interconnected PSII antennae

qP coefficient of photochemical fluores-

cence quenching assuming

non-interconnected PSII antennae

NPQ non-photochemical quenching

Rubisco ribulose-1,5-bisphosphate

carboxylase

PTIO 2-phenyl-4,4,5,5-tetramentyl-

imidazoline-1-oxyl-3-oxide

NOS nitric oxide synthase

L-NNA Nω-nitro-L-arginine
SNP sodium nitropruside

OEC oxygen-evolving complex

CPTIO 2-(4-carboxyphenyl)-4,4,5,5-

tetramethylimidazoline-l-oxyl-3-

oxide

14.1 Introduction

Nitric oxide (NO) is a gaseous molecule with a

signaling role in plant growth, development and

responses to environmental changes (Neill et al.

2008; Palavan-Unsal and Arisan 2009; Misra

et al. 2010a, b, 2011, 2012). The effects of NO

in plants can be direct or through intermediate

effector molecules regulating cellular metabo-

lism (Krasylenko et al. 2010). Nitric oxide action

is achieved also by modifying the redox state of

the cell and can modulate the activity of proteins,

through reversible reactions with functional

groups such as thiols and heme. It is well

known that iron is a necessary element for

synthesis and development of chloroplast and

NO plays an important role in the distribution

of iron in the chloroplasts in plant leaves (Sun

et al. 2007). Nitric oxide, a highly unstable free

radical, has been described both as a cytotoxin

and a cytoprotectant in plants, as well (Beligni

and Lamattina 1999a, 2001a). This signal mole-

cule appears to take part in the regulation of

cellular redox homeostasis, acting either as an

oxidant or as an antioxidant (Stamler et al.

1992). However, at lower concentrations, NO

promotes normal plant growth and development

(Beligni and Lamattina 2001b). Nitric oxide

stimulates leaf expansion, prevents etiolation,

retards leaf senescence and induces stomatal clo-

sure (Leshem et al. 1998; Beligni and Lamattina

2000; Garcı́a-Mata and Lamattina 2001). When

applied at relatively high doses to plants, NO

clearly perturbs normal metabolism and reduces

the net photosynthesis in leaves of oats and

alfalfa (Hill and Bennett 1970). Nitric oxide in

concentrations above optimal (above 10�6 M)

inhibits the expansion of leaf lamina, increases

the viscosity of simulated thylakoid lipid

monolayers and potentially impairs photosyn-

thetic electron transport (Leshem et al. 1998;

Leterrier et al. 2012).

Chloroplasts are highly specialized semiau-

tonomous photosynthesizing organelles found

in green plants. There is wide diversity in chloro-

plast structure, function and adaptation. The

chloroplasts encode a large number of their own

RNAs and proteins, in addition to that

synthesized by the nuclear genes, economizing

the cellular energy demand for its structural orga-

nization. Chloroplast develops from a progenitor

known as proplastid accompanied with the coor-

dinated regulation of plastid and nuclear-

encoded genes (Baumgartner et al. 1989;

Dilnawaz et al. 2001; Joshi et al. 2013). The

chloroplasts are the only organelle that supports

autotrophy in plants through its role in photosyn-

thesis and also sustains life on earth. The process

involves coordination between the primary pho-

tochemical processes in the thylakoid membrane

and reduction of CO2 in the stroma of

chloroplasts. The photochemical process

includes solar energy trapping, photolysis of

water, electron transfer and generation of
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reductants for the reduction of CO2 to

carbohydrates in the stroma – the soluble fraction

of chloroplasts. The thylakoid membrane has

four main multi-subunit protein complexes: pho-

tosystem II (PSII), photosystem I (PSI), cyto-

chrome b6f and ATPase (Nelson and Yocum

2006).

Studies on the effect of NO on chloroplasts

are crucial for understanding its role in green

plants. In addition, chloroplasts are reported to

be one of the several cellular sites for the synthe-

sis of endogenous nitric oxide (Guo and

Crawford 2005; Jasid et al. 2006; Galatro et al.

2013; Tewari et al. 2013). However, till date

there is a lack of a precise report on the effect

of the NO on the regulation of different physio-

logical, biochemical and molecular processes in

chloroplasts. In this review, we consolidate the

up-to-date studies on the effect of NO on

chloroplasts. An emphasis will be given in this

chapter for the effect of NO on the photochemi-

cal efficiency in chloroplasts under physiological

conditions and abiotic stress.

14.2 Sources of Nitric Oxide
in Plants

The nitric oxide production in plant cells is

compartmentalized and is mediated through sev-

eral different pathways (Gupta et al. 2011). It has

been shown to produce NO from nitrite (Desikan

et al. 2002), from L – arginine by NOS like

activity (Guo et al. 2003) and from

S-nitrosoglutathione decomposition (Jasid et al.

2006) in chloroplasts. Non-enzymatic production

of NO from nitrite involving plastid pigments

such as carotenoids has also been reported

(Cooney et al. 1994). Interestingly, NO synthesis

in response to iron, elicitors, high temperatures,

salinity or osmotic stress is first detected in

chloroplasts using NO-sensitive

diaminofluorescein probes (Foissner et al. 2000;

Gould et al. 2003; Arnaud et al. 2006). In spite of

several ifs and buts, these results corroborate the

hypothesis that plastids are key players in the

control of NO levels in plant cells. Nitric oxide

originates in chloroplasts through the reduction

of nitrite to NO and/or through nitric-oxide

synthases (NOS) like activities (NOA) mediated

NO biosynthetic pathway using arginine as a

precursor molecule.

14.3 Effect of Nitric Oxide
on Photosynthetic Pigment
Dynamics

Nitric oxide improves the accumulation of

chlorophylls (Chls) and even imitates red light

responses in greening leaves (Beligni and

Lamattina 2000). It is well known that the photo-

synthetic pigments, Chls in particular, are visible

markers for chloroplast development and senes-

cence in leaves (Misra and Biswal 1980, 1982;

Misra and Misra 1986, 1987; Biswal et al. 2001;

Dilnawaz et al. 2001). The synthesis of Chls and

plastid proteins is intricately connected and is

essential for the stability of Chl-protein

complexes in vivo (Dilnawaz et al. 2001; Neill

et al. 2003; Joshi et al. 2013). Seedlings grown in

darkness develop etioplasts from proplastids,

which ultimately transform into well organized

chloroplasts in light (Misra and Misra 1987;

Joshi et al. 2013). But, genes for nuclear-encoded

Chl a/b – binding antennae and plastid-encoded

Chl a – binding polypeptides are obligatorily

dependent on incidence of light only. These

photo-regulatory processes have several light

receptors such as phytochrome and

cryptochrome (Pogson and Albrecht 2011;

Lepist€o and Rintamäki 2012).

Nitric oxide donor sodium nitropruside (SNP)

enhanced Chl synthesis and accumulation of

light-harvesting chlorophyll a/b complex of

PSII (LHCII) and PSIA/B, primary photochem-

istry of PSII and effective quantum yield of PSII

of the developing chloroplasts in greening of

barley leaves (Zhang et al. 2006). Nitric oxide

scavenger PTIO (2-phenyl-4,4,5,5-tetramentyli-

midazoline-1-oxyl-3-oxide) or NOS inhibitor

L-NNA (nitro-nitro-L-arginine) retarded the

greening process. Moreover, sodium ferrocya-

nide, an analog of SNP, nitrite and nitrate etc.

do not have any effect on the greening process,

suggesting a positive role of NO in the greening

process (Zhang et al. 2006). The endogenous NO

content of greening leaves also increased in
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parallel with the greening (measured by Chl

accumulation) of leaves indicating a direct role

of plastid NO in leaf greening (Zhang et al.

2006). Leaf senescence is associated with the

symptoms of Chl degradation through various

enzymatic and oxidative processes in the green

cells (Biswal et al. 2001; Misra et al. 2006).

Endogenous and exogenous NO at lower

concentrations delayed leaf senescence, but at

higher concentrations accelerated leaf senes-

cence (Leshem et al. 1997; Guo and Crawford

2005; Mishina et al. 2007; Selcukcam and

Cevahir 2008; Prochazkova and Wilhelmova

2011).

14.4 Interaction of Nitric Oxide
with Oxygen Evolving Complex

Photosystem II is one of the sites of action for

NO in chloroplasts (Wodala et al. 2008). At the

electron donor side of PSII it acts at the oxygen-

evolving complex (OEC). This complex is a part

of the PSII, which is a multi-subunit chlorophyll-

protein complex that uses light energy to oxidize

water and form molecular oxygen, with a con-

comitant reduction of plastoquinone to

plastoquinol (Debus 1992; Britt 1996). The func-

tional conformation of the Mn cluster is expected

to be maintained by a 33 kDa hydrophilic protein

subunit of OEC attached to the luminal side of

the D1/D2 heterodimer. During the oxidation of

two water molecules to one oxygen molecule and

protons, the OEC cycles through five intermedi-

ate redox states termed S0–S4 (Fig. 14.1). Dark

adapted photosynthetic apparatus contains S0 and

S1 states. The most reduced state is S0, while S1,

S2 and S3 represent higher oxidation states and

molecular oxygen being evolved during the tran-

sition from S4 to S0 states (Haumann et al. 2005;

Penner-Hahn and Yocum 2005).

It is suggested that NO interacts with Mn

cluster of PSII and leads to rapid destabilization

of the excited states of OEC (Schansker and

Petrouleas 1998). Studies with PSII and the

di-manganese catalase have shown a similar

mode of interaction of NO with the different

oxidation states of the Mn clusters (Ioannidis

et al. 2000). It is also suggested by Ioannidis

et al. (2000) that one-electron reduction of the

cluster occurs followed by release of NO2
─ as

described below:

Mnn þ NO ! Mnn�1þNOþ;
NOþþOH- ! NO2

�þHþ

Schansker et al. (2002) studied the oxygen

oscillation patterns of PSII-enriched membranes

and observed shift of the maximum flash-induced

oxygen yield from flash 3 to flash 6/7 in the

NO-treated samples. Considering these

observations, the authors suggested the reduction

of Mn cluster to the S�2 state by NO, which is

assigned to the formation of Mn(II)-Mn(III)

dimer. During catalysis the enzyme appears to

cycle between the states Mn(II)-Mn(II) and Mn

(III)-Mn(III) (Khangulov et al. 1990; Waldo and

Penner-Hahn 1995).

Ioannidis et al. (2000) proposed a rapid inter-

action of NO with S3 state of the OEC. This is

explained by a metallo-radical characteristic of

the S3 state. A probable role of Tyr YD in

oxidizing of Mn complex to the lower oxidizing

state S0 than the S1 state was proposed by Styring

and Rutherford (1987). Sanakis et al. (1997) pro-

posed the formation of a Tyr-NO species which

can act as an electron donor to PSII. An iminoxyl

S1 S2

S0

O2

S-n
[S4]

S3

hv

hv

hv

hv

Fig. 14.1 Schematic presentation of the Kok’s model of

oxygen evolution, consisting of four stabile states (S0–S3)

and one transient state (S4). The possible sites of action of

NO on the cycle are shown by asterisks. The back reduc-

tion of S-states by NO and possible over-reduction to S-n
states are shown by dashed arrows
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radical is formed upon light-induced oxidation of

this species, which is the first example of a

chemical modification of one of the tyrosines of

PSII to produce a photochemically active spe-

cies. Our recent in vitro study demonstrated that

the exogenous NO donor SNP (above 5 μM) has

a clearly pronounced damaging effect on the

primary oxygen-evolving reactions at the elec-

tron donor side of photosynthetic apparatus

(Vladkova et al. 2011). In addition, our investi-

gation for influence of exogenous NO donor SNP

on isolated thylakoid membranes also revealed a

dramatic increase of PSII population in the most

reduced S0 state and an increase of the turnover

time of the oxygen-evolving centers, i.e. delayed

the process of the electron donor capturing or Si
states turnover (Vladkova et al. 2011).

14.5 Effect of Nitric Oxide
on Photosynthetic Electron
Transport

One of the important reactions of NO in biology

is interaction with metal complexes (Wink and

Mitchell 1998). Because NO possesses an

unpaired electron, it has high affinity to transition

metals to form metal-nitrosyl complexes (Wink

and Mitchell 1998). Due to this reason, proteins

containing transition metal ions in either heme or

non-heme complexes can be the potential targets

for NO (Wink and Mitchell 1998). Nitric oxide is

able to influence the photosynthetic electron

transport chain directly by binding to such

non-heme iron in the core complex of the PSII

(Wodala et al. 2008). The important binding sites

of NO in PSII are the non-heme iron between QA

and QB binding sites (Diner and Petrouleas 1990;

Petrouleas and Diner 1990) and YD, the Tyr

residue of D2 protein (Sanakis et al. 1997). Elec-

tron paramagnetic resonance (EPR) studies con-

firmed the NO binding to non-heme iron and that

NO competes with bicarbonate for its binding

(Diner and Petrouleas 1990). Formate, an anion

which also competes with bicarbonate, binds

simultaneously with NO (Diner and Petrouleas

1990) besides the other anions like fluoride

(Sanakis et al. 1999).

Experiments with isolated thylakoids

indicated that NO binding slows down the rate

of electron transfer between QA and QB

(Diner and Petrouleas 1990). Binding of NO to

the QAFe
2+QB complex is facilitated in the pres-

ence of reduced QA acceptor, as this reduction

weakens the bond between bicarbonate and iron

(Goussias et al. 2002). Nitric oxide binding to

PSII can also decrease the rate of electron trans-

port on the donor side as well, since in vitro

experiments have proven that NO interacts with

the YD• tyrosine residue and the OEC. The latter

is reduced to the S�2 state by NO, as shown by

oxygen electrode, fluorescence and EPR

measurements (Schansker et al. 2002).

Measurements in the presence of DCMU

demonstrated that NO induces inhibition of QA
� recombination with the S2 state of the OEC.

This donor side inhibition of electron transport

may sufficiently be accounted by the reduction of

either the OEC, or the YD• residue by NO. To the

contrary, our recent results showed that the NO

donor SNP is probably the only NO donor which

stimulates the electron transport through PSII at

sub-μmolar concentrations (Vladkova et al.

2011). Nitric oxide interacts with the tyrosine

residue of the D2 protein (Sanakis et al. 1997)

and the resulting YD•–NO couple has a decreased

redox potential low enough to become a more

efficient electron donor in isolated thylakoid

membranes than the immediate redox-active

tyrosine residue (YZ) located on the D1 protein.

The probable binding sites and sites of action in

thylakoid membranes are summarized in

Fig. 14.2.

Chlorophyll fluorescence studies have

provided contradictory effects of NO on

chloroplasts in vivo. However, these results

depend on the used NO donor. In the leaves,

NO derived from S-nitroso-N-acetylpenicil-

linamine (SNAP) showed no effect on the maxi-

mum quantum efficiency of photosynthesis, but

that from SNP and S-nitrosoglutathione (GSNO)

decreased this parameter (Takahashi and

Yamasaki 2002; Yang et al. 2004; Wodala

2006; Wodala et al. 2008). All the NO donors

induced a decrease in effective quantum effi-

ciency, which is related to photochemical
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quenching (qP). These studies indicated that NO

increases the proportion of closed PSII reaction

centers in intact leaves (Wodala 2006; Wodala

et al. 2008). However, all these results are not

uniform and unequivocal. Wodala et al. (2008)

suggested that the different chemical properties

of NO donors and the different experimental

conditions generate conflicting experimental

results in vivo. Fast Chl fluorescence induction

kinetics of GSNO-treated leaf disks confirmed

significant donor and acceptor side inhibition of

electron transport (Wodala et al. 2008).

It has been found that NO influences the non-

photochemical quenching (NPQ). Besides reduc-

ing steady-state NPQ values, NO changes the

amplitude and kinetics of an NPQ transient,

which resembles reaction-center NPQ described

by Finazzi et al. (2004). Reaction-center NPQ

arises upon the onset of illumination of dark-

adapted leaves and, at low light intensities, it is

relaxed rapidly after a few min of illumination.

On the basis of its fast relaxation and ΔpH-
dependency, Finazzi et al. (2004) showed that

reaction-center NPQ is caused by the rapid and

transient over acidification of the thylakoid

lumen, which is created by the immediate onset

of the photochemistry. In addition, they

suggested that the ΔpH may be further increased

by cyclic and pseudo-cyclic electron transport

(Mehler-reaction) and explain the relaxation of

this transient form of NPQ by the activation of

the carbon fixation apparatus, which decreases

ΔpH and redox pressure. Although a potential

effect of NO on Calvin cycle activation would

account for changes in this NPQ transient,

steady-state NPQ values below control values

indicate that NO does not decrease the maximum

rate of the Calvin cycle (Finazzi et al. 2004).

Photosynthetic studies on stomata of peeled

epidermal strips respond to exogenous NO by

instantly decreasing photochemical fluorescence

quenching coefficients (qP and qL), the operating

quantum efficiency of PSII, and NPQ to close to

zero. However, NO effect in vivo is reversible.

The reversible inhibition by NO of the electron

transport rate could be restored by bicarbonate, a

Fig. 14.2 Summary and schematic presentation of the

probable binding of NO to different components of PSII,

cytochrome b6f, PSI, ATPase complexes. The

nitrosylation of membrane lipids and of both thylakoid

and stromal polypeptides are shown as red colored circu-
lar asterisks. These binding and nitrosylation affect pho-

tosynthetic processes
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compound known to compete with NO for one of

the two coordination sites of the non-heme iron

(II) in the QAFe
2+QB complex (Ordog et al.

2013).

14.6 Effect of Nitric Oxide
on the Photophosphorylation
in Chloroplasts

Previous studies revealed that NO donor SNAP

inhibits the linear electron transport rate and

light-induced pH formation (ΔpH) across thyla-
koid membrane, and decreased the rate of ATP

synthesis (Takahashi and Yamasaki 2002). The

inhibitory effect of NO on the photophosphory-

lation can be prevented by a supplemental high

concentration of bicarbonate. It has been

reported that high concentrations of bicarbonate

enable the bound NO to liberate from the reac-

tion center and recover electron transport activity

(Diner and Petrouleas 1990). Thus, sensitivity of

photosynthesis against NO would depend on a

local concentration of bicarbonate within thyla-

koid membranes. It is plausible that the

decreased rate of electron transport, due to the

NO-induced dissociation of bicarbonate from the

specific sites of thylakoids, is involved in the

mechanism of the inhibitory effect of NO on

the photophosphorylation. The overall effect of

NO on the electron transport and the photophos-

phorylation as well its resultant effect on the

stromal enzymes is summarized and shown in

Fig. 14.2.

14.7 Ameliorating Effect of Nitric
Oxide on Photosynthetic Stress
Responses

Plants produce substantial amounts of NO in

their natural environments (Wilson et al. 2008).

In recent years, there has been increasing evi-

dence that NO is involved in regulating, if not

all, many key physiological processes in plants

under normal and stress conditions. NO is

reported to ameliorate several stress responses

in plants (Garcı́a-Mata and Lamattina 2001,

2002; Arasimowicz and Floryszak 2007;

Krasylenko et al. 2010; Misra et al. 2011). Abi-

otic stresses, such as drought, high and low tem-

perature, salinity, heavy metals, UV-B and

oxidative stress is reported to induce NO produc-

tion in plants (Shi et al. 2005; Arasimowicz and

Floryszak 2007; Qiao and Fan 2008; Misra et al.

2011). Stressors form free radicals and other

oxidants, resulting in increased level of reactive

oxygen species (ROS) in plant cells (Mittler

2002; Qiao and Fan 2008). NO eliminates the

superoxide radicals and as a signal molecule

interacts with plant hormones and ROS (Laxalt

et al. 1997; Zhao et al. 2004; Qiao and Fan 2008).

In addition to its signal roles, NO may also func-

tion as a regulator of gene expression (Kopyra

and Gwozdz 2004; Qiao and Fan 2008). A large

amount of NO may combine with O2� to form

peroxynitrite (ONOO¯), which has been reported

to damage lipids, proteins and nucleic acids

(Yamasaki et al. 1999).

14.7.1 Nitric Oxide Under Osmotic
Stress

Osmotic stress is one of the major abiotic factors

limiting crop productivity and natural status of

the environment, affecting functions of the plants

(Misra et al. 2001). Drought, high salinity and

freezing impose osmotic stress on plants. Plants

respond to this stress in part by modulating gene

expression, which eventually leads to the resto-

ration of cellular homeostasis, detoxification of

ROS and recovery of growth (Xiong and Zhu

2002). One of the most important responses of

the plants under osmotic stress is increased syn-

thesis of abscisic acid (ABA) (Neill et al. 2008).

Nitric oxide maintains leaf water content by

regulating ABA-induced stomatal closure during

osmotic stress. But the physiological role of

NO-induced ABA accumulation remains

unknown. Reactive oxygen species are one of

the main damaging compounds that are produced

during stress and osmotic stress in particular

(Beligni and Lamattina 1999a, b). The protective

action of NO against oxidative damage can be

explained by two mechanisms. Firstly, NO
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operates as a signaling molecule, which activates

cellular antioxidant enzymes (Huang et al. 2002;

Shi et al. 2005; Zhao et al. 2008). Secondly, NO

might detoxify ROS directly. Mutant analysis of

genetically modified Arabidopsis showed

evidences that NO is an endogenous regulator

of the tolerance of the plants to salt stress

(Martinez et al. 2000; Zhao et al. 2004, 2007).

These authors showed that Atnos 1 mutant with

decreased NO production due to a T-DNA inser-

tion in AtNOS gene was hypersensitive to oxida-

tive stress induced by NaCl (Martinez et al. 2000;

Zhao et al. 2004, 2007).

14.7.2 Nitric Oxide Under
Temperature Stress

Extreme temperatures either high or low (chill-

ing) are stressful to plants affecting photosynthe-

sis in plants (Misra and Misra 1986; Misra et al.

1997). Heat stress can also cause an overproduc-

tion of ROS, which could be involved in trigger-

ing defence responses against potentially

damaging temperatures (Suzuki and Mittler

2006; Volkov et al. 2006; Kotak et al. 2007;

Locato et al. 2008). A significant rise in NO

production under heat stress in alfalfa sprouts

(Leshem et al. 1998) and in tobacco leaf cells

(Gould et al. 2003) are reported. Conversely, pea

plants exposed at 38 �C for 4 h reduced the NO

content of leaves, but it was found that the

S-nitrosothiol (SNOs) content increases three-

fold and that the protein nitrosylation is enhanced

(Corpas et al. 2008a). Protein nitrosylation can

cause an inhibition of the activities of photosyn-

thetic enzymes such as carbonic anhydrase and

of ferredoxin-NADP reductase (Chaki et al.

2011). In Arabidopsis, several mutants have

been identified to have impairment in the

GSNOR1 gene, showing the involvement of this

gene in the mechanism of response against heat

stress. Thus, the mutant HOT5 (sensitive to hot

temperatures) showed that GSNOR modulates

the intracellular level of SNOs, enabling

thermo-tolerance, as well as the regulation of

plant growth and development (Lee et al. 2008).

In calluses of reed, the exogenous application of

SNP or ABA elevated thermo-tolerance by

alleviating ion leakage, lipid peroxidation and

growth suppression induced by heat stress

(45 �C for 2 h). On the other hand, exogenous

ABA notably activated NOS activity and

increased NO release, maintaining the heat toler-

ance (Song et al. 2008). Studies so far unequivo-

cally report an increase in NO content and

increase in thermo-tolerance of plants.

Chilling (below 4 �C) or cold (below 10 �C)
stress is also detrimental for plant systems (Misra

et al. 1997). A proteomic analysis showed that

the chilling stress induced S-nitrosylation of

Rubisco, which correlated with the inhibition of

photosynthesis (Abat and Deswal 2009). Pea

plants exposed to low temperature (8 �C for

48 h) showed an enhanced activity of

L-arginine NOS and GSNOR, and an increase

in the content of SNOs (Sharma et al. 2005).

Low temperature caused an imbalance of the

ROS and reactive nitrogen species metabolism

in leaves, triggering a rise in the lipid oxidation

and the protein tyrosine nitration, which

indicates an induction of oxidative and

nitrosative stress (Corpas et al. 2008b; Airaki

et al. 2012). Similar responses and an increase

in NO content have been reported in Arabidopsis
thaliana exposed to chilling (4 �C for 1–4 h)

stress or during cold acclimation (Zhao et al.

2009; Cantrel et al. 2011). It is most probable

that temperature stress induced increase in NO

and stress ameliorating effect of NO could be due

to the antioxidative action of NO (Desikan et al.

2002).

14.7.3 Nitric Oxide Under High Light
Stress and UV Radiation

High light causes photoinhibition of photosyn-

thesis and generates ROS in green plants (Misra

et al. 1997). Protective role of NO during

photoinhibition has been reported in higher

plants. Pronounced increases of NO production

are found in tall fescue leaves after exposure to

high-light stress (Xu et al. 2010). Nitric oxide

might act as a signaling molecule to enhance

antioxidant enzyme activities, further protecting
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against injuries caused by high light stress

(Xu et al. 2010). However, Chlamydomonas

reinhardtii cells under very high light conditions

induces 1O2 (singlet oxygen) accumulation due

to a decrease in the 1O2 scavenging capacity

caused by NO-mediated inhibition of carotenoid

synthesis and PSII electron transport, which in

turn leads to oxidative damage and cell death

(Chang et al. 2013).

The UV-B radiation (280–320 nm) clearly

affects plant growth and usually also induces

oxidative stress. Moreover, UV-B triggered a

rise in ROS widely distributed in chloroplasts

and mesophyll cells, causing cell damage. It has

been observed that apocynin reduces UV-B-

induced oxidative damage because it reduces

the Chl breakdown caused by H2O2, and this is

correlated with NO production mediated by an

enhanced NOS activity (Tossi et al. 2009). In the

case of maize leaves, the UV-B irradiation pro-

voked a simultaneous rise in the concentration of

ABA, H2O2 and NO in leaves. These authors also

reported that the accumulation of endogenous

NO is ABA-dependent and is responsible for

tolerance to high doses of UV-B radiation

(Tossi et al. 2012). Exogenous NO partially

alleviated the UV-B effect characterized by a

decrease in Chl contents and oxidative damage

to the thylakoid membrane in bean seedlings (Shi

et al. 2005). Zhang et al. (2009) suggested that

under UV-B stress, NO production is mediated

by H2O2 through the enhancement of NOS activ-

ity. It is well established that H2O2 induces NO

synthesis and accumulation and vice versa

(cf. Mazid et al. 2011).

The other possible explanation of the protec-

tive action of NO on the photosynthesis under

UV and temperature stress can be either due to

the modification of the OEC after interaction

with NO (for SNP treated thylakoid membranes),

which leads to a strong increase of the most

reduced S0 state in the dark or an increase of

PSII open centers (Vladkova et al. 2011). It is

well established that the most sensitive compo-

nent to UV and temperature stress in photosyn-

thetic membranes is LHCII-PSII supercomplex

(Ivanova et al. 2008; Dankov et al. 2009;

Apostolova and Dobrikova 2010; Dobrikova

et al. 2013). Apostolova et al. (2006) showed

that there is a relationship between the organiza-

tion of PSII complex and oxidation state of the

Mn clusters of the OEC. On the other hand, it has

been demonstrated that UV radiation causes

increase of PSII centers in the S0 state, as one

of the reasons for the UV-induced inhibition of

the oxygen evolution is the direct absorption of

UV light by Mn ions in Mn(III) and Mn

(IV) oxidation states (see in Ivanova et al. 2008;

Dobrikova et al. 2013). Therefore, it could be

assumed that modification of the oxido-reduction

states (i.e. more reduced states) of the Mn cluster

in OEC after NO interaction is also a possible

reason for protection of photosynthetic apparatus

under abiotic stress.

14.7.4 Nitric Oxide Under Heavy
Metals

The sensitivity of the photosynthetic processes to

heavy metals is studied extensively (Arellano

et al. 1995; Barón et al. 1995; Boucher and

Carpentier 1999; Prasad 2004; Rouillon et al.

2006). One of the primary sources of metal tox-

icity in chloroplasts is through the generation of

ROS, which affects chloroplast structure and

function, as in other abiotic stresses. Recently,

Saxena and Shekhawat (2013) reported the role

of NO in heavy metal tolerance in plants. As

reported for other abiotic stresses, NO has both

beneficial and harmful effects during heavy

metal stress, depending on the concentration

and location of NO in the plant cells. Nitric

oxide decreases the harmful effects of the ROS

generated by heavy metal stress, interacts with

other target molecules and regulates the expres-

sion of stress responsive genes (Saxena and

Shekhawat 2013).

Recently it has been shown that the metalloid

arsenic (As) also triggers the NO and

S-nitrosoglutathione (GSNO) metabolism in

Arabidopsis (Leterrier et al. 2012). Arsenic-

treated seedlings showed a significant decrease

in growth and an increase in lipid oxidation due

to an alteration in antioxidant enzymes with a

significant increase in NO content, protein
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tyrosine nitration and also the

S-nitrosoglutathione reductase (GSNOR) activ-

ity, which reduced the glutathione and

S-nitrosoglutathione content. Talukdar (2013)

reported that the exogenous addition of NO sig-

nificantly reversed the As-induced oxidative

stress in Phaseolus vulgaris seedlings,

maintaining H2O2 in a certain level through bal-

anced alterations of antioxidant enzyme

activities. The role of SNP donated NO in the

process of amelioration has ultimately been

manifested by significant decrease of the mem-

brane damage and improvement of growth per-

formance in plants grown on As + SNP medium.

Nitric oxide synthesis inhibitor PTIO accelerates

As-induced oxidative damage, which clearly

demonstrates the role of NO in ameliorating

metal stress in plants. Yu et al. (2013) studied

the effect of Cd-induced stress in cucumber

seedlings. Both leaf pigments and net photosyn-

thesis, and antioxidant activity decreased after

Cd treatment, which could be reversed by the

application of exogenous NO (100 μM SNP).

Similarly, Srivastava and Dubey (2012) showed

ameliorating effect of NO on the ROS scaveng-

ing machinery in Mn-induced oxidative stress in

rice seedlings.

14.7.5 Nitric Oxide Under Herbicides

The widespread use of herbicides in agriculture

has resulted in increasing pollution of soil and

water with these toxic compounds. Herbicides

are one of the major abiotic stressors as that of

salinity, drought, temperature extremes,

flooding, toxic metals, high light intensity and

UV-radiation. All of these are the major causes

of yield loss in cultivated crops worldwide and

pose major threats to agriculture and food secu-

rity (Rodrı́guez et al. 2005). The primary site of

action of many herbicides is chloroplast, besides

the mitochondria. As many other abiotic

stressors (Qiao and Fan 2008; Misra et al.

2010a, b, 2011), the herbicides also elicit the

production of NO (Klepper 1979; Mallick et al.

2000; Sakihama et al. 2002). Exogenous NO has

been shown to reduce herbicide toxicity by its

protective effects on chloroplast membrane and

by retarding herbicide induced loss of Chl

(Beligni and Lamattina 1999a, b; Hung et al.

2002).

One of the most widely used herbicides is

atrazine, which belongs to the triazine group of

chemicals. The primary site of atrazine action is

blocking the PSII electron transport via binding

to the QB-binding site on the D1 polypeptide of

PSII reaction center and inhibition of light-driven

electron transport from QA to QB in PSII (Trebst

1987; Draber et al. 1991). A high sensitivity of

the photosynthetic apparatus to atrazine is well

documented (Qian et al. 2009; Vladkova et al.

2009; Apostolova et al. 2011; Rashkov et al.

2012). Qian et al. (2009) have shown that in

unicellular green algae Chlorella vulgaris, atra-

zine (100 μg/L) or glufosinate (10 mg/L) with

low concentrations of NO donor SNP

(10–20 μM) significantly decreased herbicide

induced ROS generation and membrane peroxi-

dation and increased the chlorophyll content of

leaves.

Other widely used herbicide in agriculture is

paraquat (also known as methyl viologen), which

belongs to the bipyridinium herbicides. This her-

bicide exerts its toxic effects by catalyzing the

electron transfer from PSI to molecular oxygen,

producing oxygen radicals that cause lipid per-

oxidation and membrane damage (Cha et al.

1982). Hung et al. (2002) have evaluated the

protective effect of NO against paraquat toxicity

of rice leaves. They showed that NO-donors

(PBN, N-tert-butyl-α-phenylnitrone, SNP,

sodium nitropruside and SIN-1, 3-morpholino-

sydnonimine), as well as the ascorbic acid and

NaNO2 are effective in reducing paraquat toxic-

ity in rice leaves, most likely mediated through

an increase in antioxidant enzyme activities and

decrease in lipid peroxidation.

Recently, Sood et al. (2012) revealed the

effects of the exogenous NO (donor SNP) on

the paraquat treated Azolla microphylla. The

authors results suggested that SNP released NO
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can work both as cytoprotective and cytotoxic in

concentration dependent manner and involve-

ment of NO in protecting Azolla against paraquat
toxicity. Paraquat (8 μM) alone increased the

activities of antioxidant enzymes SOD, CAT,

GPX, APX and the amount of H2O2. The supple-

mentation of SNP (8–100 μM) suppressed the

activities of antioxidant enzymes and the amount

of H2O2 compared to paraquat alone. The addi-

tion of NO scavengers along with NO donor in

paraquat treated fronds neutralized the effect of

exogenously supplied NO, indicating that NO

can effectively protect Azolla against paraquat

toxicity by quenching ROS. Higher SNP concen-

tration (200 μM) is reported to reverse the effect

of NO.

Diquat, like as the paraquat is a bipyridinium

herbicide and serves as an artificial electron

acceptor of PSI (Beligni and Lamattina 1999a,

b), influencing also the level of NO in the plants.

Beligni and Lamattina (2002) reported that

diquat triggered lipid peroxidation, ribulose-1,5-

biphosphate carboxylase/oxygenase (Rubisco)

and D1 protein loss. Supplementation of

NO-donors SNP and S-nitroso-N-acetylpeni-

cillamine greatly reduced lipid peroxidation,

rapid protein turn-over and mRNA breakdown

caused by the application of a high dose of diquat

to potato leaf pieces or isolated chloroplasts.

Moreover, diquat caused an increase in the rate

of photosynthetic electron transport in isolated

chloroplasts and NO restored it back to the con-

trol levels (Beligni and Lamattina 2002).

Lactofen is a diphenylether herbicide, which

inhibits Chl biosynthesis by blocking the enzyme

protoporphyrinogen-IX oxidase activity, which

catalyses the oxidation of protoporphyrinogen-

IX to protoporphyrin-IX (proto-IX) (Matringe

et al. 1989). Accumulation of protoporphyrins

leads to ROS generation causing oxidative stress

in the plants. SNP donated NO was able to scav-

enge ROS generated by the lactofen action in

soybean plants, avoiding the photosynthetic pig-

ment breakdown, but the lipid peroxidation was

not completely prevented (Ferreira et al. 2010).

Later, Ferreira et al. (2011) demonstrated that the

lactofen-induced morphological and

physiological alterations in soybean leaves are

reduced with NO.

14.8 Conclusion

This review clearly shows NO effects on the

chloroplast structure and function under physio-

logical and stress conditions. Many

investigations revealed the role of the nitric

oxide as a key signal molecule in plants. It has

also been shown that NO participates under abi-

otic stress. Nitric oxide production increases in

the plants as a response to abiotic stress (Qiao

and Fan 2008). Under stress, NO enhances

activities of the antioxidant enzymes (Shi et al.

2005; Neill et al. 2008) and as a signal molecule

interacts with plant hormones, and affects physi-

ological processes (Laxalt et al. 1997; Zhao et al.

2004; Misra et al. 2006; Qiao and Fan 2008;

Misra et al. 2011). The other possibility of the

protection of NO on the photosynthesis under

abiotic stress can be due to the direct action on

the thylakoid membranes, which leads to an

increase of the open PSII centers and a modifica-

tion of the OEC (Vladkova et al. 2011). These

changes influence the structure of the LHCII-

PSII supercomplex in response to stress factors

(Ivanova et al. 2008; Dankov et al. 2009;

Apostolova and Dobrikova 2010). On the other

hand, it has been shown that there is relationship

between the organization of the PSII complex

and the oxidation state of the Mn cluster in the

OEC (Apostolova et al. 2006). It has been pro-

posed that the modification of the oxido-

reduction state of the Mn cluster after NO inter-

action is a possible reason for the protection of

the photosynthetic apparatus under abiotic stress.
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