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1.1	 �Introduction

Breast cancer (BC) is the most frequently diagnosed cancer 
in women worldwide, with 1.7 million new cases diagnosed 
in 2012 [1]. In the United States alone, 231,840 new cases 
and 40,290 related deaths are expected to be seen in 2015 
[2]. This heterogeneous disease is classified into several 
molecular subtypes, depending on the presence of specific 
cell surface receptors, including the estrogen receptor (ER), 
the progesterone receptor (PR), and the human epidermal 
growth factor 2 receptor (HER2) [3]. Luminal A BCs are 
ER+ and/or PR+ but HER2−. These are the most commonly 
seen BCs and have the best prognosis. Luminal B BCs are 
ER+ and/or PR+ and sometimes HER2+. These tumors have 
a higher proliferative index and are more aggressive. HER2+ 
BCs are ER− and PR− but HER2+. This subtype usually  
presents at a younger age with a poorer tumor grade and 
lymph node involvement, but the prognosis has improved 
dramatically since the clinical implementation of Herceptin, 
an anti-HER2 antibody. About 20% of BCs are triple nega-
tive (TNBC) or basal-like, that is, they are ER−, PR−, and 
HER2−. These tumors are often aggressive, have poorer 
prognosis, and lack any targeted therapies.

Research has focused extensively on the role of cell sur-
face receptors like HER2 in the pathobiology of BC. There 
are numerous families of cell surface receptors, like receptor 

tyrosine kinases (RTKs), one example being HER2, and G 
protein-coupled receptors, that sense extracellular cues and 
transmit them into intracellular messages that regulate cell 
growth, proliferation, survival, migration, and differentia-
tion. These receptors are often deregulated in BC and lead to 
tumor growth and metastasis. This chapter will focus on the 
identification of the receptors most often deregulated in BC, 
the common signaling pathways they activate, and the cross-
talk that links them to one another.

1.2	 �RTKs and Their Downstream 
Signaling Targets

RTKs are cell surface receptors found on a diversity of cell 
types. All RTKs comprise an N-terminal extracellular ligand-
binding domain, a single-pass transmembrane domain, and a 
C-terminal tyrosine kinase domain. Ligand binding induces 
a conformational change leading to the receptor homo- or 
heterodimerization and the consequent autophosphorylation 
of a series of tyrosine residues in the C-terminal tail. The 
phosphorylated tyrosines then act as docking sites for the 
SRC homology 2 (SH2) and phosphotyrosine-binding (PTB) 
domain-containing proteins, many of which are shared by 
the different RTKs. The RTK signaling program converges 
on the two major signaling pathways, namely, the phos-
phoinositide 3-kinase-protein kinase B/AKT (PI3K-PKB/
AKT) and the rat sarcoma-mitogen-activated protein kinase/
ERK (Ras-MAPK/ERK), that go on to regulate critical cel-
lular processes like cell growth, proliferation, differentiation, 
migration, and apoptosis (Fig. 1.1).

One of the SH2 domain-containing effectors of RTKs is 
the regulatory subunit of the class I PI3K (p85), which when 
bound to the activated RTK or one of its tyrosine phosphory-
lated adaptors relieves its inhibition of the p110 catalytic 
subunit of PI3K, thereby leading to its activation [4]. PI3K 
p110 then phosphorylates a resident membrane lipid, phos-
phatidylinositol 4,5-bisphosphate (PIP2), to generate phos-
phatidylinositol 3,4,5-trisphosphate (PIP3), a major lipid 
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second messenger [5]. The phosphatase and tensin homolog 
deleted on chromosome 10 (PTEN) counteracts the action of 
PI3K and converts PIP3 back to PIP2 [6, 7]. PIP3 recruits the 
pleckstrin homology (PH) domain-containing proteins to the 
membrane, of which there are more than 250 in the human 
genome, including AKT and the 3-phosphoinositide-depen-
dent protein kinase 1 (PDK1) [8]. AKT is phosphorylated by 
PDK1 on threonine 308 (T308) and consequently by the mam-
malian target of rapamycin complex 2 (mTORC2) on serine 
473 (S473), leading to its full activation [9, 10]. AKT then 
activates the mammalian target of rapamycin complex 1 
(mTORC1) through two distinct pathways. AKT phosphory-
lates and suppresses the GTPase-activating protein (GAP) 
activity of the tuberous sclerosis complex 2 (TSC2) toward 
the Ras homolog enriched in the brain (Rheb) [11–13]. On 
the other hand, AKT phosphorylates and inhibits proline-rich 
AKT substrate of 40 KDa (PRAS40), which is implicated in 
the regulation of mTORC1 [14, 15]. mTORC1 regulates cell 

growth by controlling mRNA translation, via direct phos-
phorylation of the S6 kinase (p70S6K) and the 4E binding 
proteins (4EBPs) [16, 17]. AKT also phosphorylates the fork-
head box O transcription factors (FOXOs), which results in 
their nuclear exclusion and proteasomal degradation, thus 
releasing cells from the FOXO-mediated cell cycle arrest [18–
20]. The deactivation of FOXO, along with another target of 
AKT, the B-cell lymphoma 2 (BCL2)-associated agonist of 
cell death (BAD), coordinately represses apoptosis [21]. 
Finally, the AKT-mediated inhibition of glycogen synthase 
kinase 3 (GSK3) inhibits nuclear export and proteasomal 
degradation of cyclin D1, thus leading to its nuclear accumu-
lation and induction of cell proliferation [22]. Thus, the PI3K-
AKT pathway mainly regulates the cellular growth, 
proliferation, and survival programs in cells. Other than RTK 
deregulation, activating mutations in PI3K or deletion of 
PTEN is often found in BCs and further drives the oncogenic 
program in cells [23].
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The Ras-ERK pathway is the other major signaling net-
work that is modulated by the RTKs. The Src homology 2 
domain-containing (SHC) and the growth factor receptor 
bound 2 (GRB2) are the main adaptor proteins that link the 
activated RTKs to the Ras-ERK pathway [24]. The RTKs 
interact with and activate SHC directly, which then recruits 
GRB2 to the cell membrane. Alternatively, GRB2 can also 
interact with RTKs directly or through another adaptor pro-
tein, like one of the insulin receptor substrates (IRSs) [25, 
26]. GRB2 associates with the son of sevenless (SOS), 
which then recruits and activates Ras, by acting as a gua-
nine nucleotide exchange factor (GEF), converting the 
GDP-bound Ras into the active GTP-bound form [27]. In a 
sequential manner, Ras activates Raf, which phosphory-
lates and activates MEK, which in turn phosphorylates and 
activates ERK [28, 29]. ERK is a serine-threonine kinase 
that has hundreds of cytoplasmic and nuclear targets. For 
example, ERK translocate to the nucleus and activates tran-
scription factors like Ets-like gene 1 (Elk1) and c-Myc [30, 
31]. In the nucleus, ERK also activates the mitogen- and 
stress-activated protein kinases (MSKs), which activate 
transcription factors like the cyclic AMP-responsive ele-
ment-binding protein (CREB) and the activating transcrip-
tion factor 1 (ATF1) [32]. In the cytoplasm, ERK 
phosphorylates the p90 ribosomal S6 kinases (RSKs), 
which inhibit apoptosis by phosphorylating BAD, but also 
translocate to the nucleus and activate transcription factors 
like CREB and c-Fos [33–36]. ERK-mediated phosphory-
lation of the MAPK-interacting kinases (MNKs) induces 
mRNA translation through phosphorylation of the eukary-
otic initiation factor 4E (eIF4E) [37, 38]. The Ras-ERK 
pathway thus controls diverse cellular processes including 
cell growth, proliferation, differentiation, migration, and 
apoptosis.

In addition to the parallel activation immediately down-
stream of the receptors, coordination between the PI3K-AKT 
and the Ras-ERK signaling pathways can also be achieved 
by the interaction of activated Ras with the PI3K p110 cata-
lytic subunit, independently of p85, leading to the PI3K-
AKT pathway activation (Fig. 1.2) [39]. Like AKT, ERK and 
RSK can also phosphorylate and inhibit TSC2, leading to 
mTORC1 activation [40, 41]. The two pathways are also 
subject to the multiple levels of feedback inhibition. MEK 
promotes the membrane localization of PTEN, which down-
regulates the PI3K-AKT signaling pathway, while AKT can 
phosphorylate and inhibit Raf [42–44]. Furthermore, 
mTORC1, S6K, and ERK can downregulate both pathways 
by phosphorylating RTK substrates, like IRS1, on multiple 
inhibitory serine residues [45–47]. Thus, multiple feedback 
loops and crosstalk between the PI3K-AKT and the Ras-
ERK pathways orchestrate the dynamic and intricate, con-
text-dependent effects of multiple growth factors through 
their cognate RTKs.

1.3	 �RTKs Often Deregulated in BC

The deregulation of RTK signaling plays an important role in 
the pathophysiology of many cancers, including BC [48]. 
Several mechanisms lead to the deregulation of RTK signal-
ing, including RTK gene amplifications, activating muta-
tions, protein overexpression, ligand overexpression or 
hyperactivation, and crosstalk with other cellular signaling 
components. Members of the ERBB family, MET, the insu-
lin receptor (INSR), and the insulin-like growth factor recep-
tor (IGF1R) are RTKs that are most often deregulated in BC.

1.3.1	 �HER2

The amplification of the HER2 gene, a member of the ERBB 
family of RTKs, is seen in approximately 20% of BCs, and 
HER2 overexpression correlates with a worse BC prognosis 
[49–51]. In these patients, HER2 overexpression correlates 
with tumor size, grade, proliferative index, aneuploidy, lack 
of steroid hormone receptors, and metastatic disease. HER2 
(also named ERBB2 or NEU), belongs to the ERBB family, 
with three additional members: the epidermal growth factor 
receptor (EGFR, also named ERBB1), ERBB3, and ERBB4, 
all of which have been shown to be overexpressed and/or 
hyperactivated in BC to varying degrees. For example, 
EGFR is often overexpressed in basal-like TNBC [52]. 
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There are 11 ligands that activate this family of RTKs, and 
they can be subdivided into three groups [53]. The first 
includes the epidermal growth factor (EGF), the transform-
ing growth factor α (TGFα), and amphiregulin, which bind 
specifically to EGFR.  The second includes betacellulin, 
heparin-binding EGF (HB-EGF), and epiregulin, which 
bind EGFR and ERBB4. Neuregulins (NRGs) make up the 
third group of ligands and are further subdivided into two 
subgroups, based on the ability to activate ERBB3 and 
ERBB4 (NRG1 and NRG2) or ERBB4 alone (NRG3 and 
NRG4). All ligands exist as membrane-anchored precur-
sors, often co-expressed and even overexpressed with the 
ERBBs in the same cancer cells. Metalloproteases, mainly 
of the a disintegrin and metalloprotease (ADAM) family, 
cleave the precursors, leading to ectodomain shedding and 
activation of ERBB signaling in an autocrine or paracrine 
fashion [54].

Like other prototypical RTKs, all ERBBs can form func-
tional homo- or heterodimers, with the exception of HER2, 
which does not appear to bind a ligand, and ERBB3, which 
is impaired in the intrinsic kinase activity and thus cannot 
form functional homodimers [55, 56]. Though HER2 is not 
self-autonomous, its extracellular domain conformation 
mimics that of the ligand-bound receptor, thus allowing 
HER2 to form functional heterodimers with other ERBBs 
[57]. HER2 is in fact the preferred binding partner of other 
ERBBs, and intriguingly the HER2-ERBB3 heterodimer is 
the most mitogenic and transforming of all the receptor com-
binations [58–61]. The C terminus of each of the ERBBs is 
unique (11–25% identity) and is able to bind to a diversity of 
intracellular targets. All of the ERBB members activate the 
Ras-ERK signaling pathway by directly interacting with the 
adaptor proteins SHC and GRB2 [62]. The regulatory sub-
unit of PI3K (p85) directly interacts with ERBB3 and 
ERBB4. ERBB3 has the most [6] binding sites for p85, 
while EGFR and HER2 lack them all together, thus the 
HER2-ERBB3 heterodimer is the most potent activator of 
the PI3K-AKT signaling pathway, promoting cell growth, 
proliferation, and survival [63, 64]. Alternatively, ERBBs 
can activate the PI3K pathway through Ras. Together with 
the multitude of ligands, the different combinations of recep-
tor dimers, and the unique C-terminal tails, this family of 
RTKs is capable of regulating diverse cellular processes 
implicated in cell growth, proliferation, differentiation, 
migration, and apoptosis.

1.3.2	 �MET

The hepatocyte growth factor receptor or MET is another 
RTK that is overexpressed in about 20% of BCs, particularly 
in the basal-like TNBCs [65]. Hepatocyte growth factor 
(HGF) is the only known ligand of MET, and it is often co-

expressed with its receptor in the same tumor cells, particu-
larly in the leading edge of the tumor [66, 67]. The expression 
of both, the receptor and the ligand, correlates with tumor 
grade, proliferative index, metastatic disease, and poor prog-
nosis [68–74]. The HGF-mediated activation of MET leads 
to activation of the Ras-ERK pathway through the direct 
interaction of SHC and GRB2 with the receptor or through 
the recruitment of an insulin-like substrate (IRS)-like adap-
tor, the GRB2-associated-binding protein 1 (GAB1). The 
p85 regulatory subunit of PI3K also interacts with MET 
directly or through GAB1 and leads to activation of the 
PI3K-AKT pathway [75].

1.3.3	 �INSR

The INSR is overexpressed in as many as 80% of BCs and is 
associated with poor survival [76, 77]. The INSR is encoded 
by a gene composed of 22 exons found on chromosome 19. 
From this single gene, two receptor isoforms, INSR-A and 
INSR-B, are expressed as a result of alternative splicing. 
These two isoforms differ in inclusion/exclusion of exon 11, 
a 36 bp region encoding a 12 amino acid peptide located at 
the C-terminal end of the INSR alpha subunit [78]. INSR-B 
represents the full-length isoform and is expressed in insulin-
responsive tissues including the liver, muscle, and adipose 
tissue. Conversely, INSR-A is expressed from the spliced 
transcript that lacks exon 11 and plays a significant role in 
fetal development by regulating cell growth and proliferation 
[79, 80]. The INSR-A and INSR-B isoforms display unique 
ligand specificity and downstream signaling potential. 
INSR-A exhibits an almost twofold higher affinity for insu-
lin as compared to INSR-B and has a much stronger affinity 
for the insulin-like growth factor II (IGFII) [81–83]. INSR-A 
is the prevailing isoform overexpressed in both BC cells in 
culture and patient tumors [77, 84]. Therefore, increased 
INSR-A expression may negatively impact BC development, 
particularly in the context of hyperinsulinemia, as in the 
cases of diabetes or obesity. Indeed, hyperinsulinemia is an 
adverse prognostic factor in BC that is associated with 
increased risk of recurrence or death [85]. INSR-A expres-
sion is also elevated beyond that of the related IGF1R in 
some BCs suggesting INSR-A plays a role in mediating the 
growth-promoting effects of IGF-II in breast tumorigenesis 
[84, 86].

On the cell surface, the INSR exists as a heterotetrameric 
protein comprised of two extracellular alpha subunits and 
two transmembrane beta subunits. The beta subunit of the 
receptor possesses tyrosine kinase activity, which is stimu-
lated upon binding of the ligand to the alpha subunit [87, 
88]. Upon activation, INSR phosphorylates a number of sub-
strates including IRS1–4, SHC, and GAB1 [89]. IRSs and 
GAB1 recruit the p85 regulatory subunit of PI3K, leading to 
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the PI3K-AKT pathway activation. The Ras-ERK pathway 
is activated by the recruitment of GRB2-SOS complex by 
SHC or IRSs [26, 90]. INSR-B regulates the metabolic 
effects of insulin mainly through the PI3K-AKT pathway, 
while INSR-A activates the mitogenic program through 
both, the Ras-ERK and the PI3K-AKT pathways [91, 92]. 
Consequently, inhibition of INSR-A is actively being 
explored as a therapeutic option in breast and other cancers 
with clinical trials focusing on testing small molecule inhibi-
tors and monoclonal antibodies directed against key compo-
nents of these signaling networks [93]. Systemic modification 
of receptor ligands represents another strategy for targeting 
INSR signaling in cancer. For example, reduction in circu-
lating insulin levels via administration of the antidiabetic 
drug metformin is being explored as a treatment option for 
cancers associated with obesity and hyperinsulinemia, espe-
cially BC.  Indeed, administration of metformin to early-
stage, nondiabetic BC patients led to reductions in circulating 
insulin and cancer cell proliferation, as well as suppressed 
INSR activity as indicated by reductions in AKT and ERK 
signaling [94].

1.3.4	 �IGF1R

Close to 50% of human breast tumors express the activated 
form of IGF1R, and gene expression signatures consistent 
with IGF1R activation are associated with poor outcome in 
BC patients [95, 96]. The IGF1R is homologous to the INSR 
but exhibits preferential binding to IGFI and IGFII over insu-
lin. It is also a heterotetrameric protein complex consisting 
of two extraceulluar alpha subunits and two transmembrane 
beta subunits but plays a more significant role in the regula-
tion of mitogenic signaling. The IGF1R shares numerous 
binding partners and effector proteins with the INSR, includ-
ing IRSs and SHC adaptors, and is known to stimulate cell 
growth and proliferation via activation of the PI3K-AKT and 
Ras-ERK signaling pathways [93, 97]. A second IGF recep-
tor, namely, IGF2R, is also commonly expressed by numer-
ous cells; however, it lacks catalytic activity and is not 
involved in intracellular signaling [98]. Instead, IGF2R 
exhibits a high affinity for IGFII and is thought to sequester 
the growth factor from stimulating IGF1R [97, 99]. As a 
result, IGF2R may exhibit tumor suppressor properties by 
decreasing the bioactivity of IGFII and indirectly modulating 
signaling by IGF1R.

Due to their homology and strong structural similarities, 
the INSR and IGF1R have the ability to form hybrid recep-
tors composed of one hemireceptor of each type. In addition, 
the two INSR isoforms can also combine to form hybrids, 
generating the potential for multiple insulin and IGF-
sensitive receptors (INSR-A, INSR-B, INSR-A/B, IGF1R, 

INSR/IGF1R) to be expressed by a single cell. Hybrid recep-
tors appear to bind IGFI with a higher affinity than insulin, 
and they exhibit different ligand specificities depending on 
the INSR isoform present. For example, INSR-A/IGF1R 
hybrids bind IGFI, IGFII, and insulin, while INSR-B/IGF1R 
hybrids typically bind IGF1 [91]. Since cancer cells fre-
quently express high levels of both INSR and IGF1R, it is 
not surprising that they also overexpress hybrid receptors. 
Indeed, human breast tumors express high levels of hybrid 
receptors, and most of the effects of IGF1 are believed to be 
mediated by INSR-A/IGF1R hybrids. Furthermore, BC cells 
are known to secrete IGFII, creating the potential for auto-
crine stimulation of tumor cell growth and proliferation via 
activation of INSR-A, IGF1R, and INSR/IGF1R hybrid 
receptors [84, 100]. Consequently, human BC cells are 
highly sensitive to the growth-promoting effects of insulin 
and IGFs, and INSR/IGF1R expression may be a key event 
in tumor development and growth.

1.4	 �GPCRs and Their Downstream 
Signaling Targets

The G protein-coupled receptors (GPCRs) are the largest 
group of cell surface receptors that regulate cell motility, 
growth, proliferation, differentiation, and survival. The dis-
covery of the Mas oncogene, a GPCR, in 1986 provided the 
first direct link between GPCRs and their role in cellular 
transformation [101]. Since then, many GPCRs where shown 
to be overexpressed or mutated in a diversity of cancers, 
including BC.

GPCRs are seven-pass transmembrane domain-containing 
receptors with an intracellular C-terminal tail that interacts 
with the heterotrimeric G proteins [102]. Upon ligand bind-
ing, the receptor undergoes a conformational change that 
allows it to act as a GEF, converting the GDP-bound G pro-
tein α subunit to the GTP-bound, active form. This causes the 
G protein α subunit to dissociate from the βγ subunits, initi-
ating a multitude of signaling cascades. There are numerous 
G protein subtypes, each with unique signaling abilities. For 
example, the Gα12/13 activates several Rho GEFs leading to 
activation of Rho, a small GTPase that regulates cytoskeletal 
dynamics and cell motility, largely implicated in cancer 
metastasis. Gαq/11 activates the phospholipase C beta (PLCβ), 
which initiates the calcium and diacylglycerol (DAG) signal-
ing cascades that regulate cell motility, proliferation, and 
gene expression. The GPCR signaling also crosstalks to the 
PI3K-AKT and the RAS-ERK pathways. The DAG-activated 
protein kinase C (PKC) phosphorylates and activates Raf, 
thereby leading to the activation of ERK [103]. The Gβγ sub-
units bind directly to PI3Kγ and activate the PI3K-AKT sig-
naling pathway [104].

1  Fundamental Pathways in Breast Cancer 1: Signaling from the Membrane
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1.5	 �GPCRs Often Deregulated in BC

1.5.1	 �PAR1

The protease activated receptor 1 (PAR1) is a GPCR that is 
overexpressed in TNBC and correlates with metastatic dis-
ease and poor prognosis [105, 106]. The zinc-dependent 
matrix metalloprotease 1 (MMP1), thrombin, and other pro-
teases cleave the extracellular domain of PAR1 exposing a 
new N terminus that binds to and activates the receptor [107, 
108]. PAR1 then couples to multiple G proteins (Gαq/11, 
Gαi/o, Gα12/13) to regulate cell migration and proliferation, in 
part through the activation of Rho and ERK, respectively. 
PAR1 has been shown to be required and sufficient for the 
regulation of growth and invasion of BC cells in a mouse 
xenograft model [107, 109].

1.5.2	 �GPR161

The GPR161 is another GPCR that is overexpressed in 
TNBC and correlates with cancer relapse [110]. 
Overexpression of GPR161  in mammary epithelial cells 
transforms them via a yet unidentified mTORC1-dependent 
signaling pathway [110].

1.5.3	 �Wnt

The Wnt signaling pathway is hyperactivated in basal-like 
BCs and correlates with poor survival [111, 112]. The 
canonical Wnt signaling pathway results in nuclear accu-
mulation of β-catenin, where it acts as a transcriptional 
coactivator for the T-cell factor/lymphoid enhancer factor 
(TCF/LEF) family of transcription factors [113]. In the 
absence of the Wnt signal, β-catenin is sequestered in the 
cytoplasm by a destruction complex, containing GSK3β, 
which targets β-catenin for proteasomal degradation. 
Frizzled (FZD) is the GPCR for the Wnt family of ligands. 
When FZD is activated by the Wnt ligand, it acts together 
with the co-receptors, the low-density lipoprotein receptor-
related protein 5 and 6 (LRP5/6), to disrupt the β-catenin 
destruction complex. This allows β-catenin to accumulate 
in the cytoplasm and translocate to the nucleus to activate 
its transcriptional program. The knockdown of FZD7  in 
TNBC cell lines reduces expression of β-catenin target 
genes, the transformation of these cells in vitro, and their 
ability to form tumors in vivo [114]. In addition, more than 
40% of invasive breast tumors have a hypermethylation of 
the promoter, and therefore a strong downregulation of 
expression of the secreted frizzled-related proteins (sFRPs), 
the negative regulators of the Wnt signaling pathway [115, 
116].

1.6	 �Crosstalk Between RTKs and GPCRs

The RTKs crosstalk with each other through multiple feed-
back and transactivation mechanisms. For example, MET 
can interact with and be transactivated by ERBBs, thus syn-
ergizing in the regulation of the downstream pathway com-
ponents [117, 118]. Furthermore, RTK signaling often 
parallels or synergizes with GPCR signaling. The GPCRs 
can be upstream or downstream of the RTKs, and GPCRs are 
under the transcriptional regulation of RTKs and vice versa 
[119]. Furthermore, GPCRs and RTKs can transactivate each 
other. For example, GPCR activation regulates ectodomain 
shedding of the ERBB ligands. The PAR1 and the Wnt path-
way have been shown to transactivate EGFR and HER2 in 
this manner [120–123]. Thus, GPCRs can activate the PI3K-
AKT and the Ras-ERK pathways directly or through transac-
tivation of the RTKs. In addition, EGFR-mediated activation 
of ERK induces nuclear translocation of the pyruvate kinase 
(PKM), which regulates β-catenin transcriptional activity 
[124]. The expression of β-catenin target genes can further 
be induced through the AKT- or RSK-dependent inhibition 
of GSK3β or the direct phosphorylation of β-catenin by AKT 
[125–127].

1.7	 �Other Receptors Deregulated in BC

The tumor microenvironment is a complex milieu of cell sur-
face and secreted factors that affect BC development and 
progression. Tumor-associated fibroblasts (TAFs), endothe-
lial cells, and inflammatory cells comprise the majority of 
the tumor microenvironment and express factors that affect 
tumor progression. Tumor cells express a number of non-
RTK and/or non-GPCR receptors, the discussion of which is 
beyond the scope of this chapter, that sense signals from the 
microenvironment and often integrate them into the common 
pathways described above. For example, plexins, the recep-
tors of semaphorins, originally described for their role in 
axon guidance, have now been implicated in BC metastasis, 
in part due to their ability to be transactivated by HER2 and 
MET and to activate Rho signaling [128, 129]. Tumor cells 
also express a number of cytokine receptors that interpret the 
pro-inflammatory signaling from leukocytes, tumor-
associated macrophages (TAMs), TAFs, and autocrine loops. 
Cytokine receptors can activate several pro-survival and pro-
liferation pathways but can also transactivate RTKs [130]. 
Lastly, integrins and cadherins, the cell adhesion mediators, 
are often deregulated in metastatic BC and play a central role 
in the epithelial-to-mesenchymal transition as well as in the 
activation of oncogenic signaling. Integrins can feed into 
both the PI3K-AKT and the Ras-ERK signaling pathways 
[131, 132]. Integrins also regulate ERBB expression at the 
mRNA translation level, as well as interact directly with 
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ERBBs and regulate their tyrosine kinase activity [133, 134]. 
Further insight into the complexity of these intracellular 
crosstalk networks will aid in the identification of effective 
therapeutic targets and the mechanisms of therapeutic 
resistance.

1.8	 �Outlook

BC is one of the most common cancers worldwide and the 
second leading cause of cancer-related death in women 
[135]. It is a heterogeneous disease with a complex molecu-
lar etiology. A great deal of research has focused on the 
mechanisms underlying BC development, growth, and pro-
gression. Dysregulated RTK signaling has been identified as 
a critical event in breast tumorigenesis. For example, HER2 
and IR are overexpressed by 20 and 80% of BCs respec-
tively, and mutation of PI3K, a key mediator of RTK signal-
ing, is mutated in 35% of human breast tumors [77, 135, 
136]. Identification of such oncogenic proteins has led to a 
deeper understanding of BC and allowed for the develop-
ment of targeted therapies for the treatment of this disease. 
Nevertheless, additional research is required to characterize 
mechanisms of tumor initiation as well as therapeutic resis-
tance. Indeed, crosstalk between different RTK pathways 
and the existence of signaling feedback mechanisms are 
poorly understood processes that play critical roles in BC 
development and resistance to therapy. In the future, funda-
mental studies focusing on these issues in  vitro should be 
combined with clinical research and early phase clinical tri-
als to further characterize the role of RTKs in BC and iden-
tify new targets for anticancer therapies.
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