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Introduction

Broadening the genetic diversity for economically important traits is one of the
main tasks of wheat genetics and breeding. There are many evidences of low allelic
variability or loss of alleles related with yield, grain quality, and resistance to biotic
and abiotic stresses among modern bread wheat varieties (Fu and Somers 2009;
Gultyaeva 2012; Novoselskaya-Dragovich et al. 2015). The reduction in genetic
diversity was accelerated in the second half of the 20th century, when a replacement
of local wheat germplasm on high-yielding commercial cultivars took place. This
has been demonstrated by analysis of pedigrees, phenotypic and molecular genetic
assessments of plant material (Dreisigacker et al. 2004; Khlestkina et al. 2004).

Fungal diseases are among the major constraints that affect plant growth and
yield of bread wheat (Triticum aestivum L.). Many efforts are focused on transfer of
disease resistance genes from various cereal species of Triticeae tribe to the bread
wheat genome.

T. aestivum belongs to one of the four Triticum genus sections—the Triticum
section consisting of hexaploid wheat species with genome BAuD. Further section
(Dicoccoides) is represented by tetraploid emmer wheats with genome BAu, and
includes tetraploid progenitor of bread wheat, which hybrized with Aegilops tau-
schii Coss (genome D), resulting in formation of allohexaploid wheat (BAuD) about
10,000 years ago. Other Triticum sections are Monococcum (diploid einkorn wheat
with genomes Au and Ab) and Timopheevi (tetraploid and hexaploid wheat species
with genomes GAu and GAuAb, respectively) (Goncharov 2002). Both the B and
the G genomes are related to the S genome present in Ae. speltoides (Kimber 1974).
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High similarity between Ae. tauschii and T. aestivum D-genome and the close
evolutionary relationship between the B, S and G genomes allows for the relatively
straightforward transfer of genetic information from Ae. tauschii, Ae. speltoides and
T. timopheevii to bread wheat. Further Triticeae species (from Aegilops, Secale and
Hordeum genera) also represent an important genetic reservoir for improvement of
bread wheat (Friebe et al. 1996; Schneider et al. 2008; Trubacheeva et al. 2008;
Pershina et al. 2009; Molnar-Lang et al. 2014). A wide range of wheat-alien lines
has been developed over the past decades (Friebe et al. 1996, 2001; Wheat Genetics
Resource Center). Synthetic wheats or lines with translocations and chromosome
substitutions are often used as intermediate forms for gene transfer to varieties. The
development of effective and usable genetic markers has made the process of
heterologous gene transfer within the Triticeae tribe more efficient (Marais et al.
2001; Adonina et al. 2012; Chen et al. 2013; Timonova et al. 2013).

A number of resistance genes to leaf, stem, and yellow rusts and powdery
mildew has been transferred into the genome of common wheat from wild and
cultivated wheat relatives. Successful examples include the transfer of the Lr9 and
Lr19 genes from Ae. umbellulata and Th. ponticum species (McIntosh et al. 1995).
Until recently these genes remained effective against a broad set of leaf rust races
(Puccinia triticina Eriks.) worldwide.

However, only a small number of the resistance genes described to date are used
in breeding for development of resistant wheat varieties. Mainly this is due to the
negative effects of foreign genetic material on agronomic traits.

In addition to wide application of alien germplasm for improvement of bread
wheat resistance to fungal diseases, genes of various Triticeae species can be useful
for increasing bread wheat tolerance to unfavorable environment conditions (re-
viewed in Colmer et al. 2006; Nevo and Chen 2010; Inbart-Pompan et al. 2013;
recent examples are given in Yudina et al. 2015a, b), improvement of bread making
quality (Aegilops ssp. genes: Kunert et al. 2007; Rehman et al. 2008; Garg et al.
2009; Sin et al. 2011; Wang et al. 2012, 2013; Zhou et al. 2014; T. dicoccoides
Kunert et al. 2007) and nutrition properties: various Triticum ssp. and Aegilops
ssp. genes can be used for increased production of iron and zink (Rawat et al. 2009)
or antioxidant compounds (Khlestkina et al. 2010; Tereshchenko et al. 2012a, b).

Triticum Species for Bread Wheat Improvement

Hexaploid Wheats T. Spelta and T. Macha (BAuD)

Hexaploid wheat T. spelta contributed to bread wheat resistance against septoria
tritici blotch via substitution of chromosomes 2D, 5A, 5D, 6B, 6D and 7D (Simon
et al. 2005). Two regions of chromosome 7D from spelt wheat were associated with
isolate-specific resistance expressed at the seedling (locus QStb.ipk-7D1) and
another at the adult (QStb.ipk-7D2) plant stage (Simon et al. 2010). The locus QStb.
ipk-7D2 was found on the short arm of chromosome 7D in a similar position to the
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locus Lr34/Yr18 known to provide durable resistance against multiple pathogen
races (Spielmeyer et al. 2008). Substituted chromosome 6B of hexaploid wheat T.
macha is a carrier of a major determinant of head blight resistance, chromosomes
2A, 2B, 3A, 4A, 5A and 5B have also positive effect on resistance to these
pathogens (Grausgruber et al. 1998; Steed et al. 2005; Buerstmayr et al. 2011; Burt
et al. 2015).

Tetraploid Wheats T. Dicoccoides and T. Durum (BAu)

Powdery mildew resistance genes were transferred from T. dicoccoides to bread
wheat chromosomes 6AL (Xie et al. 2003) and 5BL (PmAS846; Xue et al. 2012).
Other genes conferring resistance to this disease were found in T. dicoccoides
chromosomes 5BL (Pm36; Blanco et al. 2008), 3BL (Li et al. 2009), 2BL (Maxwell
et al. 2010) and 2BS (Hua et al. 2009; Liu et al. 2012).

T. dicoccoides leaf rust (Lr53) and stripe rust (Yr35) resistance genes were
transferred to bread wheat chromosome 6BS (Marais et al. 2005). Other genes for
stripe rust resistance were found in T. dicoccoides (YrH52 and Yr15, Peng et al.
2000; Yr36, Uauy et al. 2005).

This species is also a potential donor of Fusarium head blight resistance genes
(Hartel et al. 2004; Buerstmayr et al. 2013).

T. durum is a perspective donor of stem rust resistance gene Sr13 (Simons et al.
2011). The role of Sr13 and the role of chromosome regions putatively harboring
Sr9, Sr14, Sr17 and Sr28 was shown for resistance to highly virulent stem rust race
Ug99 (Letta et al. 2013).

T. durum resistance genes are often transferred to bread wheat via synthetic
hexaploid forms obtained by crossing T. durum with Ae. tauschii. Genome-wide
association study of 181 synthetic hexaploid wheats revealed a number of stripe rust
resistance loci, including that on chromosomes of the A and B genomes of T.
durum: 1AS, 1BS, 2AS, 2BL, 3BL, 5A, 5BL, and 7AL (Zegeye et al. 2014).

Molecular analysis of hybrid lines derived from crossing of Belarusian wheat
varieties with T. durum suggested contribution of chromosomes 4B and 5B in the
formation of the complex resistance to leaf rust, powdery mildew and septoriosis
(Leonova et al. 2013).

Tetraploid Wheat T. Timopheevii (GAu)

T. timopheevii was a donor of two stem rust resistance gene: Sr36 and Sr37
(McIntosh et al. 2013). The gene Sr36 (formerly SrTt1) was used in breeding
programs for more than 40 years. Sr36 refers to a group of the genes, providing
effective resistance to the most aggressive race of stem rust, Ug99 (Yu et al. 2014).
For Sr36 gene protocols for polymerase chain reaction were developed and
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diagnostic markers were designed for application in marker-assisted selection
(MAS) programs.

The gene Sr37 (SrTt2) despite its effectiveness against Ug99 was not used in
breeding to improve the resistance of wheat varieties because of the significant
negative effects of T4BL-4GL translocation on the productivity traits (McIntosh
et al. 1995).

Two genes determining resistance to powdery mildew, Pm6 and Pm27, were
transferred from T. timopheevii ssp. timopheevii into chromosomes 2B and 6B
respectively (Jørgensen and Jensen 1973; Järve et al. 2000). The gene Pm6 was
widely used for creation of resistant wheat varieties and is still one of the most
effective genes in many regions of the world, including Europe, China and North
America (Alam et al. 2011).

Three resistance genes with different efficiency to leaf rust (Lr18, LrTt1, and
LrTt2), and two quantitative trait loci (QLr.icg-1A, QLr.icg-2B) were described in
the genome of different subspecies of T. timopheevii (Yamamori 1994; Leonova et
al. 2007, 2011). The gene Lr18, originating from T. timopheevii ssp. timopheevii
has lost its efficacy against leaf rust races worldwide and is not currently used in
breeding. The presence of the genes LrTt1 and LrTt2 (T. timopheevii var. viticu-
losum) and locus QLr.icg-2B (unknown subspecies of T. timopheevii) in wheat
genotypes provides resistance to the wide range of leaf rust races in West Siberian
regions of Russia (Leonova et al. 2007; Timonova et al. 2013). These loci have
been used for creation of breeding lines and wheat cultivar “Pamyati Maistrenko”
(Laikova et al. 2013).

Additionally, three genes determining resistance to leaf rust (Lr50), stem rust
(Sr40) and powdery mildew (Pm37) were identified in the genome of wild sub-
species T. timopheevii ssp. armeniacum (Brown-Guedira et al. 2003; Perugini et al.
2008; Wu et al. 2009).

Besides the aforementioned genes, there were evidences that wheat breeding
lines with translocations from T. timopheevii contain genetic loci responsible for
resistance to spot blotch, fusarium and septoriosis (Ma and Hughes 1995;
Christopher et al. 2007; Srinivasachary et al. 2008).

Diploid Wheats T. Monococcum (Am) and T. Boeoticum (Ab)

Stem rust resistance genes Sr21, Sr22, and Sr35 were transferred from diploid
wheat T. monococcum to bread wheat (Kerber and Dyck 1973; Rouse and Jin
2011). Sr21 (Chen et al. 2015) and a number of other T. monococcum stem rust
resistance genes different from Sr21, Sr22, and Sr35 (2 genes, Rouse and Jin 2011;
gene SrTm4, Briggs et al. 2015) confer resistance to highly virulent stem rust race
Ug99.

Two powdery mildew resistance genes (PmTb7A.1 and PmTb7A.2) were iden-
tified and mapped on chromosome 7AL of another diploid wheat species, T.
boeoticum (Chhuneja et al. 2012, 2015).
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Aegilops Species for Wheat Improvement

Ae. Speltoides

Ae. speltoides, which is characterized by a high grain protein content along with
fungal diseases resistance, was a donor of the leaf rust resistance genes Lr28, Lr35,
Lr36, Lr47, and Lr51 (reviewed in Schneider et al. 2008; Todorovska et al. 2009).
Among recent examples, genes encoding leaf rust resistance have been transferred
from Ae. speltoides into T. aestivum (Adonina et al. 2012). Lr28, Lr36 and Lr47
genes were shown to be highly effective against leaf rust populations in most
regions of the world, although, with the exception of the Lr28, remaining genes
were not widely used in breeding practice for development of resistant wheat
cultivars due to negative effects on agronomic traits.

Ae. speltoides is also a source of Sr32, Sr39, Sr47, and SrAes7t genes providing
resistance of common and durum wheats to stem rust including race Ug99
(McIntosh et al. 1995; Faris et al. 2008; Klindworth et al. 2012; Yu et al. 2014).

Two Ae. speltoides powdery mildew resistance genes (Pm12 and Pm32) were
introgressed into common wheat chromosomes 6BL and 1BL respectively
(McIntosh et al. 1995; Hsam et al. 2003). Pm12 is very effective against populations
of powdery mildew pathogen worldwide. But this gene is not widely used in wheat
breeding because of negative influence of alien chromatin on wheat productivity
(Song et al. 2007).

Recently gene Pm53 was located on the long arm of chromosome 5BL of winter
wheat germplasm line and appears to be a new source of powdery mildew resistance
that can be tracked with molecular markers in MAS schemes (Petersen et al. 2015).

Ae. Tauschii

Ae. tauschii, the D genome donor of bread wheat has been used extensively for the
transfer of agronomic important traits to wheat, including leaf rust resistance genes
Lr41, Lr42, and Lr43 (Cox et al. 1994) as well as stem rust resistance genes Sr33
(1DS), Sr45 (1DS), and Sr46 (2DS) conferring resistance to highly virulent race
Ug99 (Rouse and Jin 2011; Yu et al. 2015). It was shown later that Lr40 is the same
gene as Lr21, while Lr41 is a synonym of Lr39. Lr43 is not a unique gene because
initial germplasm lines consist of the progenies with gene combination (Lr21 and
Lr39) (McIntosh et al. 2013).

Other two Ug99-effective stem rust resistance genes were recently transferred to
bread wheat from chromosomes 6DS (SrTA10187) and 7DS (SrTA10171) of Ae.
tauschii (Olson et al. 2013).

Ae. tauschii is often used for introgression of resistance genes into the genome of
bread wheat through the development of synthetic hexaploid forms. Association
mapping with the help of a set of synthetic hexaploid wheats revealed 2 novel stripe
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rust resistance loci on chromosomes 3DL and 6DS originating from Ae. tauschii
(Zegeye et al. 2014). Stripe rust resistance genes were revealed on Ae. tauschii
chromosomes 3DS (YrY206, Zhang et al. 2009) and 4DS (YrAS2388, Huang et al.
2011). Potential of this species for improvement of stripe rust resistance was also
shown by Liu et al. (2013).

Miranda et al. (2006, 2007) identified Ae. tauschii-derived wheat powdery mil-
dew resistance genes Pm34 and Pm35 on wheat chromosome 5D. Sun et al. (2006)
mapped 2 genes, PmY201 and PmY212, on chromosome 5DL of Ae. tauschii.
Maxwell et al. (2012) characterized a novel Ae. tauschii-derived gene (MlNCD1)
conferring resistance to powdery mildew, mapped to the short arm of chromosome
7D in more distal position compared to the previously known Pm38 gene.

Other Aegilops Species

Germplasm of the other Aegilops species (not related with hexaploid wheat origin)
has been exploited to a limited extent for a search and transfer of the genes
determining wheat resistance to fungal diseases. This is primarily due to method-
ological difficulties of introduction of foreign genetic material into the genome of
common wheat by direct hybridization. Nevertheless, a number of genes for
resistance to rust diseases was identified in the genomes of Ae. ventricosa (Lr37,
Yr17, Sr38), Ae. geniculata (Lr57, Yr40, Sr53), Ae. triuncialis (Lr58), and Ae.
peregrina (Lr59) (Seah et al. 2001; Kuraparthy et al. 2007a, b; Marais et al. 2008)

For translocation T5DL∙5DS-5MgS from Ae. geniculata, containing leaf and
stripe rust resistance genes (Lr57, Yr40) the absence of negative effects on endo-
sperm texture of winter wheat cultivars has been proven (Kuraparthy et al. 2009).
Positive effects on bread-making quality was detected for translocation containing
cluster Lr37-Yr17-Sr38 genes from Ae. ventricosa (Labuschagne et al. 2002).

A number of disease resistance genes have been transferred from other Aegilops
species: Ae. umbellulata (LrU1, LrU2, YrU1), Ae. caudata (LrAC), Ae. variabilis
(unknown gene), and Ae. variabilis (LrV, YrV) (Chhuneja et al. 2008; Riar Kaur
et al. 2012; Spetsov et al. 2013). Apparent linkage drag was observed neither in the
introgression lines obtained on the basis of Ae. umbellulata and Ae. variabilis, nor
in their backcross progenies, suggesting that new genetic loci could be exploited
commercially.

Rye as a Source of Disease Resistance Genes for Bread
Wheat

Among the successful introduction of rye (Secale cereale L.) genetic material into
the genome of common wheat only two translocations have practical value, and in
both cases chromosome 1RS took part in these translocations.
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The translocated 1RS chromosome arm of the rye cultivar ‘Kavkaz’ frequently
occurs in wheat cultivars of European selection (Villareal et al. 1998; Purnhauser
et al. 2011). It confers disease resistance against powdery mildew (Pm8), stem rust
(Sr31), leaf rust (Lr26) and stripe rust (Yr9) (Lukaszewski 2000). Cultivars with this
so-called 1BL.1RS translocation (Mettin et al. 1973; Zeller 1973) showed high
yield potential and multiple disease resistance (Rabinovich 1998; Kim et al. 2004;
Belan et al. 2010).

Translocation 1AL.1RS, obtained on the basis of rye cultivar ‘Amigo’ contains
genes for resistance to wheat aphid (Gb2), powdery mildew (Pm17) and stem rust
(unknown gene). This translocation is spread mainly in the American wheat vari-
eties. Translocation 1AL.1RS was also found to have positive effects on drought
tolerance, grain protein content and yield (McIntosh et al. 1995; Kim et al. 2004).

Other wheat-rye translocations, such as T3AS-3RS with Sr27 gene,
T4BS.4BL-5RL with Lr25, T6BS-6RL with Pm20, T2AS-2RS.2RL with Lr45, and
T2BS-2RL containing the locus of resistance to Hessian fly are not widely used in
breeding due to their negative effects on agronomic traits.

Conclusions and Prospects

Wild and cultivated wheat relatives and species from related genera are an inex-
haustible source of genes providing resistance to diseases and insects. To date, more
than 50 % of known genes determining resistance to rust diseases and powdery
mildew originate from wheat relatives (McIntosh et al. 2013). However, only a
limited number of genes were utilized in practical breeding to improve genetic basis
of bread wheat resistance. Others were used only for development of introgression
and isogenic lines.

One of the main reasons for limited practical application of the resistance genes is
the presence of alien genetic material tightly linked with the target gene and nega-
tively influencing agronomic traits. For example gene Lr19 closely linked to the gene
Y, determining the yellow color of flour is not used for development of resistance of
wheat cultivars in those countries which traditionally prefer the flour of white color.

In recent years, the development of new molecular methods for tagging of
disease resistance genes and technology of marker-assisted selection made it pos-
sible to eliminate excessive donor material, which may have negative effect on
agronomic traits. In this way, for example, bread wheat lines with shorter intro-
gression fragments containing Sr37 and Sr39 genes with effective resistance to stem
rust were obtained (Yu et al. 2010; Zhang et al. 2012). The study demonstrated that
the lines with reduced alien chromatin have no negative effects on productivity
traits anymore.

Further difficulties can be related with insufficient level of alien gene expression
due to divergence between bread wheat cis- or trans-regulatory elements and those
of the donor species (Khlestkina et al. 2009; Shoeva et al. 2016) or suppression of
alien genes by their orthologs in wheat (Hurni et al. 2014).
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The recently developed approach for precise gene editing, CRISPR/Cas9 system
(reviewed in Bortesi and Fischer 2015), has been already used successfully for
editing resistance genes in wheat (Wang et al. 2014). This system allows making
fine changes in plant genome and may help to overcome the difficulties mentioned
above by editing regulatory sequences or direct insertion of desirable gene
sequences without hybridization.
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