
Chapter 8
Cyclic Plasticity Models: Critical Reviews
and Assessments

Accurate description of plastic deformation induced during a cyclic loading process
is required for the mechanical design of machinery subjected to vibration and
buildings and soil structures subjected to earthquakes since the middle of the last
century. Elastoplastic constitutive model formulated for this aim is called the cyclic
plasticity model. Substantially, the key of the pertinence in cyclic plasticity model is
how to describe appropriately a small plastic strain rate induced by the rate of stress
inside the yield surface. Therefore, a quite delicate formulation of plastic strain rate
developing gradually as the stress approaches the yield surface is required to this
end. Here, needless to say, the continuity and the smoothness conditions described
in Sect. 7.1 would have to be fulfilled in a cyclic plasticity model.

Various cyclic plasticity models have been proposed to date, while most of them
violate the continuity and the smoothness conditions unfortunately. Then, the
beginners for the cyclic plasticity model would be perplexed as to which model is
most pertinent and should be chosen for their study and analyses. In order to avoid
their perplexity and missed selections, the cyclic plasticity models will be classified
from the mathematical structures and their distinctive physical features will be
examined in this chapter. Then, their pertinences/impertinences will be critically
assessed in detail.

8.1 Classification of Cyclic Plasticity Models

Cyclic plasticity models proposed to date are classifiable into the two types
described in the following.
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The one type is based on the concept of the kinematic hardening, i.e., the
translation of subyield surface(s) assumed inside the conventional yield surface or
the small single yield surface translating rapidly with a plastic deformation, while
the innermost surface encloses a purely elastic domain. Several cyclic plasticity
models in this type have been proposed to date. The other type is based on the
natural concept that the plastic strain rate develops as the stress approaches the yield
surface, i.e. the extension of the subloading surface model described in Chap. 7.
The cyclic loading behavior is described rigorously by extending the subloading
surface model such that the similarity-center of the normal-yield and the subloading
surfaces translates with the plastic deformation. It is called the extended subloading
surface model, while the subloading surface model described in Chap. 7 for which
the similarity-center is fixed is renamed the initial subloading surface model.

The classification of the cyclic plasticity models is shown schematically in
Fig. 8.1. Their mathematical and mechanical features and pertinences/
impertinences to the description of cyclic loading behavior will be revealed in
detail in the subsequent sections.
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Fig. 8.1 Classification of cyclic plasticity models
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8.2 Cyclic Kinematic Hardening Models: Improper
Use of Kinematic Hardening

The conventional plasticity postulates that a plastic strain rate is induced by the rate
of stress on the yield surface but it is required for the cyclic plasticity model to
describe the plastic strain rate induced by the rate of stress inside the yield surface.
The description of plastic deformation induced in the cyclic loading process was
initiated by exploiting the kinematic hardening concept with the assumption of
existence of a purely elastic domain. It is called the cyclic kinematic hardening
model. However, we should notice the following crucial defects.

1. The stress region, in which a plastic strain rate is not induced but only an elastic
strain rate is induced by cyclic change of stress, does not exist in general as
known from the fact that the plastic strain rate is induced during a cyclic loading
with any small stress amplitude. Therefore, the yield surface enclosing a
purely-elastic domain must not be incorporated in the modelling of cyclic
elastoplastic constitutive equation.

2. The purpose for the creation of unconventional plasticity model is the
description of the plastic strain rate by the rate of stress inside the yield surface
which cannot be described by the conventional plasticity model assuming the
yield surface enclosing a purely-elastic domain. However, the cyclic kinematic
hardening models are incapable of describing the plastic strain rate in the cyclic
loading by the stress amplitude inside the small yield surface enclosing a
purely-elastic domain. Then, the models inheriting the yield surface enclosing a
purely-elastic domain are required to incorporate smaller and smaller yield
surfaces one after another endlessly depending on the stress level and the stress
amplitude, like an infinity mirror, a nest of boxes, a matryoshka doll in Russia,
etc. so that they fall into the endless pit without the fundamental resolution of
the problem. In addition, note that it cannot be physically accepted to incor-
porate an infinitely small yield surface, resulting in the indetermination of the
direction of plastic strain rate, since the normal direction to the infinitesimal
surface is indeterminate. Eventually, the defect of the conventional plasticity
model cannot be solved by the cyclic kinematic hardening models inheriting a
(small) yield surface enclosing a purely-elastic domain.

3. The mechanism for the development of plastic strain rate is substantially
different from the mechanism for the development of anisotropy such as the
kinematic hardening,

4. A purely elastic state would not move up to a high stress in a fully-yield state.
5. Plastic deformation behavior of material with a fatigue limit smaller than a size

of yield surface enclosing a purely-elastic domain cannot be described for the
stress amplitude smaller than the size of yield surface.

Besides, remind that the kinematic hardening (Prager 1956; Armstrong and
Frederick 1966) is merely the simple method proposed primarily to describe the
induced anisotropy of non-frictional, i.e. plastically-pressure independent metals.
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The kinematic hardening is inapplicable but the rotational hardening rule
(cf. Chap. 11) has to be adopted to describe the anisotropy of the plastically-
pressure dependent, i.e. frictional materials (e.g. soils, rocks, concretes and friction
behavior). The cyclic kinematic hardening models would not possess the rationality
and the generality as will be explained in detail for each model.

8.2.1 Multi-surface Model

Mroz (1966, 1967, 1976) and Iwan (1967) proposed the multi surface model based
on the following basic assumptions.

(a) Plural encircled subyield surfaces are incorporated, while the ratios of the sizes
of these surfaces to the outer-most surface (conventional yield surface) are kept
constant throughout a deformation.

(b) Interior of the innermost subyield surface is a purely-elastic domain.
(c) Subyield surfaces are pushed out by the current stress point. Then, plural

surfaces contact at a point.
(d) Plastic modulus is prescribed by the size of the subyield surface on which the

current stress lies, while it is smaller for a more outer subyield surface.

The uniaxial deformation behavior of the multi-surface model is illustrated in
Fig. 8.2 for the simple material without a variation of the outmost surface.

However, this model possesses the following serious defects.

1. Plastic modulus decreases suddenly at the moment when the stress reaches a
larger subyield surface, so that the smoothness condition in Eq. (7.2) is violated
at that moment. Smooth stress-strain curve cannot be described but piece-wise
linear curve is predicted. Therefore, it is required to determine the offset value,
i.e. the plastic stain at yield point, which is accompanied with an arbitrariness.

2. Plural subyield surfaces contact at the current stress point and there exist plural
plastic moduli at that contact point so that the singular point in the field of
plastic modulus is induced there. Numerical calculation becomes unstable for
the cyclic loading behavior in the vicinity of contact point.

3. Plastic deformation cannot be predicted at all for the cyclic loading inside the
innermost surface even in a high stress level.

4. It is physically impertinent that the innermost subyield surface contacts with the
outermost surface, so that the purely-elastic domain reaches the fully-plastic state.

5. Stress transfers to a larger subyield surface by moving half of the difference of
the sizes of subyield surfaces in the initial loading process as shown in
Fig. 8.2b. On the other hand, it transfers to a larger subyield surface by moving
just the difference of the sizes of subyield surfaces in the unloading-reverse
loading process as shown in Fig. 8.2d. Therefore, the Masing rule (Masing
1926) meaning that the curvature of stress-strain curve in the unloading-reverse
loading decreases to a half of the curvature of initial loading curve is described
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exactly and simply as shown in Fig. 8.2d. By virtue of this mechanical feature,
this model has been used widely. However, the variation of curvature observed
in real material behavior is not so large as described by the Masing rule.

6. In the cyclic loading process under a constant amplitude, the plastic shakedown
is induced immediately for non-hardening (sub)yield surfaces and after several
cycles for hardening (sub)yield surfaces, tracing the fixed loop cyclically
(Figs. 8.2f and 8.3). In other words, the accumulation of plastic strain during a
pulsating stress loading, called the mechanical ratcheting effect, cannot be
described at all by this model. In fact, however, the remarkable mechanical
ratcheting is observed in real metal behavior which can be simulated accurately
by the extended subloading surface model as will be described in Sect. 10.4 for
metals. Therefore, the deformations of machinery and structures subjected to
cyclic loading are predicted to be unrealistically small by the multi surface
model, resulting in a risky mechanical design of machinery.

7. The continuity condition in Eq. (7.1) is also violated at the moment when the
stress transfers to a larger subyield surface if the tangential inelastic strain rate
described in Sect. 7.7 is incorporated, which is induced discontinuously.

(d) Reverse loading process with excessive Masing effect: 
Curvature in reverse loading deduces to just a half.
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Fig. 8.2 One-dimensional loading behavior predicted by multi-surface model
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8. Judgment on which subyield surface among multiple subyield surfaces the
current stress lies is required in the loading criterion. In addition, deformation
analysis by this model is complicated because it is necessary to calculate all
movements of multi-subyield surfaces. It results in the increases of memory
usage and calculations necessary for numerical analysis. It becomes more
serious in the analysis of cyclic loading behavior in fluctuating unsteady loading
process.

9. Numerical calculation of cyclic loading behavior in the vicinity of innermost
yield surface is unstable, the tangent modulus jumping from the elastic to the
elastoplastic ones and vice versa.

8.2.2 Infinite Surface Model

Modification of the multi surface model was proposed by Mroz et al. (1981), in
which infinite number of subyield surfaces are incorporated inside the yield surface
in contrast to the two surface model described in the next subsection. It is called the
infinite surface model. The smoothness condition in Eq. (7.2) is fulfilled so that the
smooth stress-strain curve is described in the initial monotonic loading process but
it is violated at the moment when the stress passes through the starting point of
reverse loading, called the stress reversal point, in the reloading process after the
partial unloading, whereas the singularity of the plastic modulus is induced at that
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Fig. 8.3 Prediction of cyclic loading behavior by the multi surface model under a constant stress
amplitude
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point, since subyield surfaces with different sizes contact mutually. It is caused by
the inherent characteristic of the multi surface model that the plural yield surfaces
contact at one point, resulting in the singularity of the plastic modulus. All the
defects (1)–(9) described in the multi surface model except for (3) and the fulfill-
ment of smoothness condition in the initial monotonic loading process are retained
in the infinite surface model. Further, note that the incorporation of an infinitely
small yield surface cannot be physically accepted since it causes the singularity in
the direction of plastic strain rate as was described in the item 2 in Section 8.2.

8.2.3 Two-Surface Model

Dafalias and Popov (1975, 1976) and Krieg (1975) proposed the two-surface model
based on the following assumptions:

(a) Only one subyield surface enclosing a purely-elastic domain is incorporated
inside the conventional-yield surface which is renamed as the “bounding sur-
face” by Dafalias and Popov (1975) and “limit surface” by Krieg (1975).

(b) The ratio of the size of the subyield surface to that of the bounding surface is
kept constant throughout the deformation.

(c) The subyield surface is pushed out by the current stress point and translates
toward the conjugate point on the bounding surface, while the outward-normal
at conjugate point on the bounding surface is identical with that at the current
stress point on the subyield surface.

(d) The plastic modulus is determined by the distance from the current stress point
to the conjugate stress point on the bounding surface.

Here, it is required that the subyield surface must translate so as not to intersect
with the bounding surface because the direction of plastic strain rate becomes
indeterminate at the intersecting point of these surfaces. The rigorous translation
rule was derived by Hashiguchi (1981, 1988).

This model has been adopted widely for the prediction of deformation behavior of
metals (cf. e.g. Dafalias and Popov 1976; McDowell 1985, 1989; Ohno and Kachi
1986; Ellyin 1989; Hassan andKyriakides 1992; Yoshida andUemori 2002a, b, 2003).

The uniaxial loading behavior of the two-surface model is illustrated in Fig. 8.4
for the simple material without a variation of the bounding surface. The mechanical
response of this model is opposite to that of the multi-surface model, although they
would seem similar since only the numbers of subyield surfaces are different, as
follows:

1. The tangent modulus changes suddenly from the elastic to the elastoplastic
modulus at the moment when the stress reaches the subyield surface. Therefore,
the smoothness condition in Eq. (7.2) is violated at that moment. Needless to
say, the smooth stress-strain curve is not described but the suddenly-bent
stress-strain curve is predicted. Therefore, it is required to determine the offset
value, which is accompanied with an arbitrariness.
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2. The singular point of plastic modulus is induced at the contact point of the
bounding and the subyield surfaces, while the elastic and the elastoplastic
tangent moduli are induced at that one point. Numerical calculation of cyclic
loading behavior in the vicinity of contact point becomes unstable.

3. Plastic deformation cannot be predicted at all for the cyclic loading inside the
cyclic stress inside the subyield surface even in a high stress level.

4. It is physically impertinent that the subyield surface enclosing the purely-elastic
domain contacts directly with the bounding surface describing the fully-plastic
state.

5. The plastic modulus depends on the distance from the current stress to the
conjugate stress irrespective of the loading process, i.e. the initial, the reverse
and the reloading processes and thus the curvature of stress-strain curves are
identical irrespective of these processes. Then, the Masing effect cannot be
described at all contrary to the multi-surface model. The ratio of the size of the
inner-yield surface to that of the bounding surface is chosen to be 1/3–2/5
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Fig. 8.4 Uniaxial loading behavior predicted by two-surface model
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(Yoshida and Uemori 2002a, b, 2003) so that the inner yield surface contains the
zero stress state as far as a kinematic hardening does not highly develop. Based
on this fact too, it is obvious that plastic strain rate cannot be predicted in the
unloading (stress reducing) process by this model and the size ratio must be
chosen less than 1=4 in order that the inner yield surface does not contain the
zero stress state in general. Eventually, the unloading behavior becomes unre-
alistically elastic in order that the initial loading curve matches to real behavior.
Consequently, the closed hysteresis loop cannot be depicted in the pulsating
loading process (positive or negative one side cyclic loading process) so that the
unrealistically large mechanical ratchetting is predicted. Stress versus strain
curves are depicted in reloading process but unloading process have never been
depicted in the pulsating loading in literatures (Yoshida and Uemori 2002a, b,
2003). Nevertheless, Yoshida and Uemori (2002a, b, 2003) insist that their
model can predict the spring-back phenomenon. In their formulation, the
Young’s modulus is formulated to decrease but saturate to the limited value with
the plastic equivalent strain in order to improve the simulation of the test data of
spring-back behavior of metals. In fact, however, if once the Young’s modulus
decreases in the tension loading, it decreases acceleratingly to zero, since the
decrease of the Young’s modulus is caused by the growth of cracks which
develop increasingly in the continuing tension loading process as has been
revealed in the damage mechanics described in Chap. 14. Therefore, the method
for prediction of springback due to the decrease of Young’s modulus (Yoshida
and Uemori 2003) is physically unacceptable, which also leads to the unrealistic
prediction of deformation behavior after the springback. In other words, it would
be quite irrational idea invented deceiving the inherent defect of the two surface
model that only the elastic deformation is induced in the unloading (stress
reducing) process as will be examined in detail in Sect. 10.5.

6. In the cyclic loading process with the constant amplitude of the positive or
negative one side stress, the open hysteretic loop is described and thus the
excessive strain accumulation in the cyclic loading, i.e. the excessive mechan-
ical ratcheting is predicted contrary to the multi-surface model as shown in
Fig. 8.5.

7. The continuity condition in Eq. (7.1) is also violated at the moment when the
stress reaches the bounding surface if the tangential inelastic strain rate is
incorporated.

8. Judgment whether or not the current stress reaches the subyield and/or the
bounding surface is required in the loading criterion.

9. Numerical calculation of cyclic loading behavior in the vicinity of subyield
surface is unstable, the tangent modulus jumping from the elastic to the
elastoplastic ones and vice versa.
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8.2.4 Single Surface Model

The single surface model is proposed by Dafalias and Popov (1977), in which the
subyield surface shrinks to a point in the two surface model. It would describe a
smooth response unless the shrinking surface does not lie on the bounding surface.
Besides, the intense dependence of the direction of plastic strain rate on the
direction of stress rate leading to the rate-nonlinearity which would be impertinent
physically and mathematically. Further, this model cannot be free from the basic
defects contained in the two-surface model.

8.2.5 Superposed Kinematic Hardening Model

The cyclic plasticity model assuming the small single yield surface which translates
by the superposition of plural non-linear kinematic rules, excluding the conven-
tional yield surface, was proposed by Chaboche et al. (1979) and Chaboche and
Rousselier (1983). It may be called the superposed kinematic hardening model. Its
alteration was proposed by Ohno and Wang (1993), which is called the combined
nonlinear kinematic-isotropic hardening model by Ohno et al. (2013). It is not an
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physical model but merely an empirical model in the polynomial approximation of
test data by using a lot of material constants lacking physical meanings.

(a) Chaboche model

The following small Mises type yield surface with the isotropic and the
Armstrong-Frederick (1966) kinematic hardenings is introduced by Chaboche et al.
(1979) and improved by Chaboche and Rousselier (1983).ffiffiffi

3
2

r
jjr̂0jj = F0 + F ð8:1Þ

where the increase of the isotropic hardening function, �F, evolves by the following
equation.

�F
�
¼ c(Fs � F)e� eqp ð8:2Þ

c is the material constant and �Fs is the material constant describing the saturation
value of �F.

The kinematic hardening is given by the superposition of the several non-linear
kinematic hardening rules of Armstrong and Frederick (1966) as follows:

a
� ¼

Xn
i¼1

a
�
i ð8:3Þ

where

a
�
i ¼ Ain̂�

ffiffiffi
2
3

r
biai

 !
jje�pjj ðno sum) ð8:4Þ

which is based on Eq. (6.114). Ai and bi ði ¼ 1; 2; � � �; nÞ are the material constants,
while n is chosen usually 4*8. Equation (8.3) is integrated for the uniaxial loading
process as follows:

aa ¼
Xn
i¼1

Ai

bi
½1� expð�biepaÞ� ð8:5Þ

for epa [ 0 under the initial condition aa ¼ 0 for epa ¼ 0.
The uniaxial loading behavior of Chaboche model is illustrated in Fig. 8.6,

where the isotropic hardening is not incorporated by setting c = 0.

(b) Ohno-Wang model

Ohno and Wang (1993) introduced the small Mises type yield surface which
translates by the superposition of the several bilinear kinematic hardening rules
composed of the linear kinematic hardening and the isotropic non-hardening as
follows:
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ffiffiffi
3
2

r
jjr̂0jj = Fc ð8:6Þ

where Fc is the material constant and thus the isotropic hardening is not induced.
The kinematic hardening rule is given by

a
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i¼1
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�
i ð8:7Þ
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2
3
e
�p � H[fi] e

�p:
ai
�ai
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ri

� �
ðno sum) ð8:8Þ

where hi and ri ði = 1; 2; � � � ; nÞ are the material constants, while n is chosen 4*8
usually. The linear kinematic hardenings proceed but they stop suddenly when the
following condition is satisfied in each of them.

fi � �a2i � r2i ð8:9Þ

where

�ai �
ffiffiffi
3
2

r
jjaijj ð8:10Þ

H[ ] is the Heaviside step function, i.e., H½s� ¼ 1 for s� 0, H½s� ¼ 0 for s\0. Then,
the kinematic hardening proceeds when the plastic strain rate is induced directing
outwards the surface described by Eq. (8.9) but it ceases when ai reaches the
surface fi � �a2i � r2i = 0 ðH[fi] = 1) as ascertained by
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The uniaxial loading behavior of this model is illustrated in Fig. 8.7, exhibiting
the piecewise linear relation requiring the cumbersome judgments for the Heaviside
step function in numerical calculation.

Ohno and Wang (1993) showed that the model with Eq. (8.8) exhibits similar
behavior to the multi surface model. They extended Eq. (8.8) by replacing the
Heaviside step function to the continuous function as follows:
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2
3
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ri
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dp:
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ðno sum) ð8:11Þ

where mi ði = 1; 2; � � �; nÞ are material constants. On account of this modification,
the stress vs. strain curve in the monotonic loading process becomes smooth after
the stress reached the yield surface. Here, note that Eq. (8.11) for mi ! 1 is
reduced to Eq. (8.8) exhibiting the bilinear curve so that the piecewise linear stress
versus strain curve with the completely closed hysteresis loop resulting in a
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Fig. 8.7 Ohno-Wang model (Ohno and Wang 1993)
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no-ratcheting is predicted. On the other hand, Eq. (8.11) for mi ¼ 0 is reduced to
the Armstrong-Frederick nonlinear kinematic hardening rule so that the excessively
large ratcheting is predicted. Further, the model was extended by Ohno and
Abdel-Karim (2000) as follows:

a
�
i ¼ hi

2
3
dp � liaijje�pjj � H½ fi� dp:

ai
�ai

� �
ai
ri

� �
(no sum) ð8:12Þ

where li are the material constants. Equation (8.12) is the combination of the
Armstrong-Frederick kinematic hardening and the piecewise kinematic hardening
in Eq. (8.8) so that it approaches the behavior of the aforementioned Chaboche
model. The Ohno model would be regarded as an impertinent modification of the
Chaboche model.

The superposed kinematic hardening model possesses the following defects.

1. It is not a physical model but the empirical model due to the polynomial
approximation of test data.

2. A lot of material constants without clear physical meaning are incorporated.
3. The yield surface is limited to the Mises yield surface or cylindrical yield

surface in the principal stress space.
4. The tangent modulus changes suddenly from the elastic to the elastoplastic

modulus at the moment when the stress reaches the yield surface, violating the
smoothness condition in Eq. (7.2). Needless to say, the smooth stress-strain
curve is not described but the suddenly-bent stress-strain curve is predicted.
Therefore, it is required to determine the offset value, i.e. the plastic stain at
yield point, which is accompanied with an arbitrariness.

5. Plastic deformation cannot be predicted for the cyclic loading inside the yield
surface even in a high stress level.

6. It is physically impertinent that the small yield surface enclosing a
purely-elastic domain reaches a high stress, i.e. full yield state.

7. The continuity condition in Eq. (7.1) is also violated at the moment when the
stress reaches the bounding surface if the tangential inelastic strain rate is
incorporated.

8. Judgment whether or not the current stress reaches the yield surface is required
in the loading criterion.

9. Numerical calculation of cyclic loading behavior in the vicinity of small yield
surface is unstable, the tangent modulus jumping from the elastic to the
elastoplastic ones and vice versa.

10. The applicability is limited to the description of the deformation behavior for
the variation of stress in the deviatoric stress plane so that it is limited to metals
only with the Mises yield condition and the plastic equivalent hardening. On
the other hand, the multi- and the two-surface and the subloading surface
models have been applied to soils, and the multi-surface and the subloading
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surface model has been further applied to friction phenomena (e.g. Mroz and
Stupkiewicz 1994; Hashiguchi et al. 2005b, 2016; Hashiguchi, 2013a;
Hashiguchi and Ozaki, 2008). Consequently, the superposed kinematic hard-
ening model lacks the generality markedly.

11. The explicit formulations of this model are concerned with infinitesimal
deformation up to several percent strain without a rotation, which are based on
the infinitesimal strain in Eq. (2.49) possessing the deficiencies described in
Sect. 2.6 and the material-time derivatives of the stress and the kinematic
hardening violating the objectivity as described in Sect. 4.4. Therefore, it
ignores even the fundamentals of modern continuum mechanics started by
Oldroyd (1950) at the middle of the last century. Needless to say, it is inap-
plicable to the deformation analyses under a material rotation as seen in a metal
forming process for instance. On the other hand, the other models, e.g. the
subloading loading and the two surface models are formulated in the
hypoelastic-based plasticity which holds for the finite deformation up to 100 %
strain under a finite rotation even if the Jaumann rate is adopted.

Nevertheless, the ad hoc Chaboche model was officially implemented in the
commercial software Marc and Abaqus so that it is used widely by metal engineers
because it can be understood even by the beginners of elastoplasticity theory
possessing the elementary knowledge only of the Mises yield condition, the
kinematic hardening, the infinitesimal strain and the material-time derivative
lacking the objectivity.

8.2.6 Common Drawbacks in Cyclic Kinematic Hardening
Models

The cyclic plasticity models based on the kinematic hardening concept possess the
common drawbacks as follows:

1. The original purpose for the creation of unconventional plasticity model is the
description of the plastic strain rate by the rate of stress inside the yield surface
which cannot be described by the conventional model assuming the yield
surface enclosing a purely-elastic domain. The purpose cannot be attained
endlessly by the methods which incorporate the small yield surface enclosing a
purely-elastic domain.

2. It is premised that the development of plastic strain rate (decrease of plastic
tangent modulus) proceeds by the development of the kinematic hardening. In
fact, however, the main source for the development of plastic strain rate would
be different from the kinematic hardening, i.e. anisotropy because the plastic
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strain rate develops as the stress increases to overcome the friction resistance
between material particles, i.e. as the stress approaches the yield surface.
Therefore, these models would lack the physical rationality.

3. The tangent modulus lowers suddenly from the elastic one to the elastoplastic
one at the yield point so that the smoothness condition in Eq. (7.2) is violated
and thus a smooth stress-strain curve cannot be described. Therefore, it is
required to determine the offset value, i.e. the plastic stain at yield point, which
is accompanied with an arbitrariness.

4. The strain accumulation in a small cyclic loading inside a small yield surface
cannot be described since a small yield surface enclosing an elastic domain is
assumed. Note that even the cyclic loading in a high stress near full yield state
does not cause the strain accumulation as shown in Fig. 8.8. This kind of
loading situation is often observed in practical engineering, e.g. the phe-
nomenon that the cantilever supporting a weight near yielding load is subjected
to a cyclic loading with a small stress amplitude by a wind or a sea waves for
instance. This defect leads to the risky mechanical design for the cyclic loading
by which a large strain accumulation is induced in real materials. In addition,
the spring-back phenomenon cannot be described as described for the
two-surface model.

5. The judgment whether or not the stress reaches conventional-yield (outmost,
bounding, limit, small yield) and/or subyield surface is fulfilled is required in
the loading criterion.

6. The continuity condition in Eq. (7.1) is also violated if the tangential-inelastic
strain rate is incorporated since it is induced suddenly when the stress reaches
the surface(s). Therefore, the non-proportional loading behavior and the plastic
instability phenomena cannot be described pertinently.

Elastic state

0 

σ

ε 0 

σ

ε

Stop: 
Elastic deformation 
is repeated.

(a) Real deformation behavior (b) Prediction by cyclic plasticity models
      based on kinematic hardening concept 

Fig. 8.8 Unrealistic prediction of cyclic loading behavior after partial unloading-reloading by the
multi, the two and the superposed kinematic hardening models postulating purely elastic domain
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7. The mathematical structures of these models differ basically from the con-
ventional plasticity, assuming the plural surfaces (the multi and the two surface
models) or the small yield surface (the superposed kinematic hardening model).
On the other hand, the mathematical structure in the subloading surface model
is the natural extension of that in the conventional one, assuming only the
conventional yield surface as an independent surface as was shown in Chap. 7
and will be shown elaborately in Chap. 9.

8. Quite small loading increments must be input resulting in inefficient numerical
calculation as far as any particular computer subroutine to pulled-back the
stress to the yield surface (Kobayashi and Ohno, 2002; Ghaei and Green, 2010)
is not incorporated, because the automatic controlling function to pull-back the
stress to the yield surface contained in the subloading surface model is not
furnished. Besides, numerical calculation of cyclic loading behavior in the
vicinity of small yield surface is unstable, the tangent modulus jumping from
the elastic to the elastoplastic ones and vice versa.

9. Phenomena which can be implemented to the return-mapping projection are
limited. In fact, it would be difficult to incorporate the cyclic isotropic
hardening-stagnation which will be described in Sect. 10.2 since the pull-back
of the plastic strain or the back stress to the isotropic hardening surface cannot
be executed readily in the return-mapping projection. It is quite peculiar that the
cyclic isotropic hardening-stagnation is abandoned by the proposers themselves
(Chaboche et al. 1979; Chaboche 2008; Ohno 1982; Kobayashi and Ohno
2002) in the FEM analyses.

10. The exact finite strain theory based on the multiplicative decomposition of
deformation gradient, called the multiplicative finite strain theory, cannot be
formulated for the kinematic hardening models. On the other hand, the exact
formulation was attained for the subloading surface model as will be described
in detail in Chap. 12.

11. They have been formulated for the description of elastoplastic deformation of
pressure-independent Mises metals and thus it is difficult or impossible for
these models to be applied to materials other than pressure-independent metals,
e.g. pressure-dependent metals, soils, rocks and concretes. Therefore, the cyclic
kinematic hardening models would be the ad hoc models which are applicable
only to quite limited material and phenomena.

As known from the facts revealed in this section, the cyclic kinematic hardening
models possess various serious defects. Nevertheless, they are installed widely in
the commercial FEM software (Chaboche model: Marc, Abaqus; Yoshida-Uemori
model: PAM-STAMP, LS-DYNA (Japan)). The proposers of the cyclic
kinematic-hardening models, i.e. the multi surface, the two surface and the
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superposed-kinematic hardening models should accept sincerely the intrinsic limits
and defects of these models and also the users of these models should recognize
these serious limits and defects for the sound development of elastoplastic theory
and deformation analysis.

On the other hand, the subloading surface model described in the last chapter,
the next section and the subsequent chapters would be the universal model which
will become widespread with the passage of time. The overall assessment of cyclic
plasticity models is summarized in Table 8.1.

8.3 Expansion of Loading Surface: Extended Subloading
Surface Model

The subloading surface model formulated in Chap. 7, called the initial subloading
surface model hereinafter, is incapable of describing cyclic loading behavior
appropriately, predicting an open hysteresis loop in an unloading-reloading process
and thus overestimating a mechanical ratcheting phenomenon. The insufficiency is
caused by the fact that the similarity-center of the normal-yield and the subloading
surfaces is fixed at the origin of stress space and thus a purely-elastic deformation is
described in the unloading process, resulting in the open hysteresis loop. Here, it
should be noted that purely-elastic response is induced only in an initiation of
reverse loading process in general. Then, the insufficiency was remedied by making
the similarity-center of the normal-yield and the subloading surfaces translate with
the plastic deformation (Hashiguchi 1985b, 1986, 1989).

The uniaxial loading behavior is depicted in Fig. 8.9 for the simple material
behavior without a variation of the normal-yield surface. The similarity-center goes
up following the stress by the plastic strain rate in the initial loading process as seen
in Fig. 8.9a, b. The subloading surface shrinks and thus only elastic strain rate is
induced until the stress goes down to the similarity-center in the unloading process
as seen in Fig. 8.9c. After that the subloading surface begins to expand and thus the
plastic strain rate in the compression is induced in the unloading-inverse loading
process whilst the similarity-center goes down following the stress by the plastic
strain rate as seen in Fig. 8.9d. Again only the elastic strain rate is induced until the
stress goes up to the similarity-center in the reloading process from the complete
unloading as seen in Fig. 8.9e. After that the subloading surface begins to expand
and thus the plastic strain rate is induced whilst the similarity-center goes up
following the stress by the plastic strain rate as seen in Fig. 8.9f. The expanded
figure of Fig. 8.9f is also shown at the lowest part in Fig. 8.9. Consequently, the
closed hysteresis loop is depicted realistically as shown in this figure.
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The extended subloading surface model would describe the cyclic loading
behavior realistically as illustratively shown in Fig. 8.10. It does not contain any
drawbacks in the cyclic plasticity models based on the kinematic hardening con-
cept, while the continuity and the smoothness conditions in Eqs. (7.1) and (7.2) are
satisfied only in this model. Then, it has been applied to the descriptions of
rate-independent and rate-dependent elastoplastic deformation behavior and
plastic-instability phenomena of not only metals but also geomaterials and further
the friction phenomena between solids as will be described in detail in the subse-
quent chapters.
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Fig. 8.9 Prediction of uniaxial loading behavior by extended subloading surface model: a initial
state, b initial loading process, c unloading process until similarity-center, d unloading-inverse
loading process after passing similarity-center, e reloading process until reaching similarity-center
and f reloading process. (—— Stress, –�–�– Elastic-core, - - - - Center of subloading surface)
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