
Chapter 7
Unconventional Elastoplasticity Model:
Subloading Surface Model

Elastoplastic constitutive equations with the yield surface enclosing the elastic
domain possess many limitations in the description of elastoplastic deformation, as
explained in the last chapter. They are called the conventional model in the
Drucker’s (1988) classification of plasticity models. Various unconventional
elastoplasticity models have been proposed, which are intended to describe the
plastic strain rate induced by the rate of stress inside the yield surface. Among them,
the subloading surface model is the only pertinent model fulfilling the mechanical
requirements for unconventional models. These mechanical requirements are first
described and then the subloading surface model is explained in detail.

7.1 Mechanical Requirements

There exist various mechanical requirements, e.g., the thermodynamic restriction
and the objectivity for constitutive equations. Among them, the continuity and the
smoothness conditions are violated in many elastoplasticity models, while their
importance for formulation of constitutive equations has not been sufficiently rec-
ognized to date. Before formulation of the plastic strain rate, these conditions will
be explained below (Hashiguchi 1993a, b, 1997, 2000).

7.1.1 Continuity Condition

It is observed in experiments that “stress rate changes continuously for a contin-
uous change of strain rate”. This fact is called the continuity condition and is
expressed mathematically as follows (Hashiguchi 1993a, b, 1997, 2000).
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lim
dd!O

½r�� ðr,Hi; dþ dd) �r�� ðr,Hi; d)] ! O ð7:1Þ

where Hi ði¼ 1; 2; 3; � � �Þ denotes collectively scalar-valued or tensor-valued
internal state variables. In addition, dð Þ stands for an infinitesimal variation. The
response of the stress rate to the input of strain rate in the current state of stress and

internal variables is designated by r�� (r;Hi; d): Uniqueness of solution is not
guaranteed in constitutive equations violating the continuity condition, predicting
different stresses or deformations for identical input loading. The violation of this
condition is schematically shown in Fig. 7.1. Ordinary elastoplastic constitutive
equations, in which the plastic strain rate is derived obeying the consistency con-
dition, fulfill the continuity condition. As described later, however, no elastoplastic
constitutive equation fulfills it except for the subloading surface model when they
are extended to describe the tangential inelastic strain rate.

The concept of the continuity condition was first advocated by Prager (1949).
However, a mathematical expression of this condition was not given. The condition
was defined as the continuity of strain rate to the input of stress rate by Prager
(1949) inversely to the definition given above. However, identical stress rate
directing inwards the yield surface can induce different strain rates in loading and
unloading states for softening materials. Also, identical stress rate along the yield
surface can induce different strain rates in a perfectly-plastic material as illustrated
in Fig. 7.2. Besides, it is noteworthy that a stress rate cannot be given arbitrarily
since there exists a limitation in strength of materials although a strain rate can be
given arbitrarily. For that reason, the Prager’s (1949) notion does not hold in the
general loading state including softening and the perfectly plastic states.
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Fig. 7.1 Violation of continuity condition
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7.1.2 Smoothness Condition

It is observed in experiments that “the stress rate induced by the identical strain
rate changes continuously for a continuous change of stress state”. This fact is
called the smoothness condition and is expressed mathematically as follows:

lim
dr!O

r�� ðr + dr,Hi; d)� r�� ðr,Hi ; d) ! O ð7:2Þ
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Fig. 7.2 Impertinence of Prager’s (1949) continuity condition in softening state
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A smooth response of stress–strain relation is not described by constitutive equations
violating the smoothness condition, causing discontinuous change of tangent mod-
ulus, as illustrated in Fig. 7.3 for the conventional elastoplastic constitutive equations
assuming the yield surface enclosing a purely-elastic domain. Then, constitutive
equations violating the smoothness condition exhibit abrupt change of tangent
modulus from the elastic to the elastoplastic state, so that it is required to determine
the offset (permanent strain) value, i.e. the plastic stain at yield point, which is
accompanied with an arbitrariness (although 0.2 % plastic strain is often used).

The rate-linear constitutive equation is described as

r�� = Kepðr,Hi): d ð7:3Þ

where the fourth-order tensor Kep is the elastoplastic modulus, which is a function
of the stress and internal variables, can be described generally as

Kep =
@ r��

@d
ð7:4Þ

Consequently, Eq. (7.2) can be rewritten as

lim
dr!O

[Kepðr + dr,Hi) �Kepðr,Hi )] ! O ð7:5Þ

where O designates the second-order and fourth-order zero tensors.
Constitutive equations violating the smoothness condition cannot predict a

smooth stress-strain curve. Therefore, they cannot describe softening behavior
pertinently, as depicted in Fig. 6.13. Further, they cannot predict the strain accu-
mulation for cyclic loading of stress amplitude less than the yield stress, as depicted
in Fig. 6.14. The smoothness condition is of great importance in the description of
cyclic loading behavior for which an accurate description of plastic strain rate
induced by the rate of stress inside the yield surface is required. Among the existing
constitutive models only the subloading surface model always fulfills the
smoothness condition.
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Fig. 7.3 Violation of smoothness condition in the conventional plasticity model and the
kinematic hardening cyclic plasticity models assuming a purely elastic domain
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7.2 Subloading Surface (Hashiguchi) Model

The basic concept and equations for the subloading surface model (Hashiguchi and
Ueno 1977; Hashiguchi 1978, 1980, 1989) are described below. This is the only
model fulfilling the mathematical requirements described in 7.1.

In order to describe the plastic strain rate induced by the rate of stress inside the
yield surface, let the following postulate be incorporated based on the concept of
the subloading surface (Hashiguchi 1980, 1989, 2013b).

Fundamental postulate of unconventional elastoplasticity (Subloading sur-
face concept): The stress approaches the yield surface when the plastic strain rate
is induced, exhibiting a continuous variation of tangent modulus, but it recedes
from the yield surface when only the elastic strain rate is induced.

In this context, it is first required to incorporate the general measure which
describes the approaching degree of the stress to the yield surface, renamed the
normal-yield surface, in order to formulate the plastic strain rate. Then, let the
following subloading surface which always passes through the current stress and
maintains a similar shape and an orientation to the normal-yield surface be intro-
duced (see Fig. 7.4).

f ðrÞ = RFðHÞ ð7:6Þ

where Rð0�R� 1) is the ratio of the size of the subloading surface to that of the
normal-yield surface and called the normal-yield ratio, playing the role for the
measure of approaching degree to the normal-yield surface.

Based on the above-mentioned fundamental postulate of elastoplasticity, the rate
of the normal-yield ratio must satisfy the following conditions (see Fig. 7.5).
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Fig. 7.4 Normal-yield and subloading surfaces
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R
�

! 1 for R = 0
[ 0 for R\1
= 0 for R = 1
ð\ 0 for R [ 1)

8>><
>>: for dp 6¼ O ð7:7Þ

R
� ¼ 0 for de = O

\0 for de 6¼ O

�
for dp = O ð7:8Þ

Here, the rate of the normal-yield ratio evolves with the plastic strain rate,
obeying Eq. (7.7) but it is calculated from the equation of the subloading surface in
Eq. (7.6), substituting a stress changing by the elastic constitutive relation under
fixed internal variables when only the elastic strain rate is induced. Then, it follows
that

R
�

= U(R)jj dpjj = U(R) �k
�

for dp 6¼ O ð7:9Þ

R ¼ f ðrÞ
F

for de 6¼ O, dp ¼ O ð7:10Þ

where U(R) is the monotonically-decreasing function of R fulfilling the conditions
(see Fig. 7.6).

Fig. 7.5 Plastic strain rate based on the subloading surface concept
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U(R)

! + 1 for R ¼ 0 (elastic state)
[ 0 for R \1 (subyield state)
= 0 for R = 1 (normal-yield state)
\0 for R [ 1 (over normal-yield state)

8>><
>>: ð7:11Þ

The function U(R) in Eq. (7.9) with Eq. (7.11) is schematically shown in Fig. 7.6.
The explicit form of the function U(R) is given by

UðRÞ ¼ u cot½ðp=2ÞR� ð7:12Þ

and the other examples of the function U(R) are shown as

U(R) ¼ �u lnR; U(R) = u
1
R
� 1

� �
ð7:13Þ

where u is the material parameters. Here, note that the normal-yield ratio
R increases obeying the evolution rule in Eq. (7.9) formulated by the plastic strain
rate in the plastic-loading process. On the other hand, it decreases obeying
Eq. (7.10) where R is calculated using the stress calculated by the elastic consti-
tutive relation in Eq. (6.29) in the elastic-unloading process, where the internal
variable F is fixed.

Equation (7.9) with Eqs. (7.12) and (7.13) is analytically integrated as follows:

R =
2
p
cos�1 cos

�
2
p
R0 exp

�
� 2
p
uðep � ep0Þ

��� �
forU ¼ u cot

�
2
p
R

�
RðlnR� 1Þ � R0ðlnR0 � 1Þ = uðep � ep0Þ for U = �ulnR

�RðlnRþ 1ÞþR0ðlnR0 þ 1Þ = uðep � ep0Þ for U = u
1
R
� 1

� �

9>>>>>>=
>>>>>>;

ð7:14Þ

Fig. 7.6 Function U(R) in rate of normal-yield ratio R
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under the initial condition ep = ep0 : R = R0, where ep �
R jjdpjjdtðt : time). Here,

note that analytical expression of R holds only for the cotangent function in
Eq. (7.14)1, although inversely ep can be expressed analytically by R for all of these
functions.

Further, note that the following inequality holds as depicted in Fig. 7.7 in which
u ¼ 30 is used for u cot[(p/2)R] and u[(1/RÞ� 1] and u ¼ 100 for �ulnR:

u cot½ðp=2ÞR�\�u lnR\u(
1
R
� 1)\0 For R[ 1 ð7:15Þ

when the material parameter u is chosen such that the values of UðRÞ in these
functions are almost identical in the range R\1, noting

R ! 2 : R
� ! �1 forU¼u cot½ðp=2ÞR�

R ! 1 : R
� ! �1 forU¼�u lnR

R ! 1 : R
� ! �u forU¼ u

1
R
� 1

� �
9>>>>=
>>>>;

ð7:16Þ

The cotangent function in Eq. (7.12) would be most beneficial among the three
functions shown above by the following reasons.
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Fig. 7.7 Three types of function UðRÞ in the evolution rule of the normal friction-yield ratio R

208 7 Unconventional Elastoplasticity Model …



(1) The analytical expression of R can be obtained only for the cotangent function
in Eq. (7.12) as shown in Eq. (7.14)1.

(2) It possesses the largest negative value in the range R[ 1 among these three
kinds of function U(R): Then, it provides the most intense controlling function
to pull back the stress to the normal-yield surface when the stress jumps out
from that surface in numerical calculations as will be explained in Sect. 7.3
with Fig. 7.13.

Here, note that there exist a lot of materials containing usual metals in which the
plastic strain rate is hardly induced in a wide range of the normal-yield ratio. Then,
let the following relation be assumed instead of Eq. (7.11), in which the plastic
strain rate is not induced until the normal-yield ratio R reaches a certain value of the
material parameter Reð\1Þ (see Fig. 7.8).

U(R)

! + 1 for 0�R�Re (elastic state)
[ 0 for Re\R \1 (subyield state)
= 0 for R = 1 (normal-yield state)
\0 for R [ 1 (over normal-yield state)

8>><
>>: ð7:17Þ

The material parameter Re is interpreted to be the ratio of the (half) stress amplitude
rfl at the fatigue (or endurance) limit, i.e. the fatigue limit stress to the yield stress
ry under the zero value of average stress �r, i.e. Re ¼ rfl=ryj�r¼0. Fatigue limit is
observed in steels, titanium, etc. but it is not observed in other materials involving
non-ferrous metals.

Fig. 7.8 Function UðRÞ with purely-elastic domain for evolution rule of normal-yield ratio
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Note here that the incorporation of the material parameter Re does not mean the
incorporation of the yield surface enclosing a purely-elastic domain as known from
the fact: The plastic strain rate is predicted for the cyclic loading with a small stress
amplitude under a high average stress by the subloading surface model with the
incorporation of Re but it cannot be predicted if the yield surface enclosing a
purely-elastic domain is incorporated as seen in the cyclic kinematic hardening
model, i.e. the multi surface, the two surface and the superposed kinematic hard-
ening models which will be described in Sect. 8.2.

Equation (7.12) is modified to satisfy Eq. (7.17) as follows:

U(R) = u cot
p
2
hR� Rei
1� Re

� �
ð7:18Þ

where h i is the Macaulay’s bracket defined by hsi¼ ðs + jsj)/2, i.e. s\0 : hsi = 0
and s� 0 : hsi = s (s: arbitrary scalar variable). Equation (7.18) conforms to the
fulfillment of the smoothness condition since it decreases continuously from infinite
value in R ¼ Re. If u is fixed to be constant, Eq. (7.9) with Eq. (7.18) can be
integrated analytically as

R =
2
p
(1� Re)cos�1 cos

p
2
R0 � Re

1 � Re

� �
exp �u

p
2
ep � ep0
1� Re

� �� �
þRe

ep � ep0 =
2
p
1� Re

u
ln
cos

p
2
R0 � Re

1 � Re

� �

cos
p
2
R � Re

1 � Re

� �

9>>>>>>>>=
>>>>>>>>;

for R0 �Re

ð7:19Þ

whilst one must set R0 ¼ Re for R0\Re. However, the judgment whether of R\Re

or R�Re is required in Eq. (7.18). The judgment whether R reaches Re is required
in Eq. (7.18), although the yield judgment is not required.

Equation (7.18) with the purely-elastic limit Re is given above. However, a
monotonic loading behaviour and a low cycle loading behavior with a large stress
amplitude cannot be realistically described resulting in an excessively large plastic
strain accumulation if we choose Re ffi 0 and a high cycle loading behaviour with a
small stress amplitude cannot be described resulting in no accumulation of plastic
strain if we choose Re 
 0: Therefore, Eq. (7.18) is not applicable to a general
cyclic loading behaviour with variable (fluctuating) stress amplitudes.
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Eventually, any of Eqs. (7.12), (7.13) and (7.18) is inapplicable to the prediction
of cyclic loading behavior under variable stress amplitudes in materials without a
fatigue limit. The following functions would be applicable to general cyclic loading
behavior in wide classes of materials.

U(R) = u cot
p
2

�
R� Re

1� Re

	n� �
ð7:20Þ

UðRÞ ¼ u

��
1� Re

R� Re

	n

� 1
�

ð7:21Þ

where nð� 1Þ is the material parameter. The value of the function U(R) is larger
throughout a whole region of R for a lager value of u, and it is larger in a region of

1n

1n

1n

1n

R1
0

( )RU

21/2 n

Fig. 7.9 Extended function UðRÞ ¼ u cot½ðp=2ÞRn�
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small value of R for a larger value of n. The function in Eq. (7.12) is schematically
illustrated in Fig. 7.9 for Re ¼ 0.

The time-differentiation of Eq. (7.6) of the subloading surface leads to

@f ðrÞ
@r :r�� �RF

� �R
�
F = 0 ð7:22Þ

Substituting Eq. (7.6) into Eq. (6.32), one has

@f ðrÞ
@r :r = RF ð7:23Þ

which yields

n : r =

@f ðrÞ
@r :r

jj @f ðrÞ
@r jj

=
RF

jj @f ðrÞ
@r jj

;
1

jj @f ðrÞ
@r jj

=
n :r
RF

ð7:24Þ

where

n � @f ðrÞ
@r =jj @f ðrÞ

@r jj ðjjnjj ¼ 1Þ ð7:25Þ

Equation (7.22) with Eq. (7.24) results in

n : r�� � F
�

F
+

R
�

R

 !
r

" #
¼ 0 ð7:26Þ

Now, adopt the associated flow rule

dp ¼ �k
�
n ( �k

�
¼ jjdpjj[ 0Þ ð7:27Þ

The evolution rule of the normal-yield ratio is described as the equation

R
�

= U(R) �k
�
in addition to the Eq. (7.9) for the expression of the flow rule in

Eq. (7.27). Note, however, that the equation R
�

= U(R) �k
�
does not hold for the

expression of the flow rule dp = �k
�
@f (r)/@r because of jj@f (r)/@rjj 6¼ 1 in

general.
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Substituting Eqs. (6.42) and (7.9)1 with Eq. (7.27), one has

n : r�� � F0

F
fHn(r, H; n) �k

�
+

U(R)
R

�k
�

� �
r

� �
¼ 0 ð7:28Þ

It follows from Eqs. (7.27) and (7.28) that

�k
�
¼ n :r��

�Mp
; dp ¼ n :r��

�Mp
n ð7:29Þ

where

�Mp � F0

F
fHn(r, H;n)þ U(R)

R

� �
n :r ð7:30Þ

which is reduced to the plastic modulus of the conventional elastoplasticity, i.e.

�Mp =
F0

F
fHn(r, H; n)n :r = Mp ð7:31Þ

in the normal-yield state ðR ¼ 1 ! UðRÞ ¼ 0Þ:
The strain rate is described from Eqs. (6.27)1, (6.29) and (7.29) as

d = E�1:r�� þ n :r��

�Mp
n =



E�1 +

n� n
�Mp

�
:r�� ð7:32Þ

from which the magnitude of plastic strain �k
�
in terms of strain rate, denoted by the

symbol �K
�
, is derived as follows:

�K
�
=

n : E : d
�Mp þ n : E : n

; dp ¼ n : E : d
�Mp þ n : E : n

n ð7:33Þ

The stress rate is described from Eq. (6.29) with Eq. (7.33) as

r�� = E : d� n : E : d
�Mp þ n : E : n

E : n =
�
E� E : n� n : E

�Mp þ n : E : n

�
: d ð7:34Þ

The loading criterion is given by

dp 6¼ O for �K
�

[ 0

dp ¼ O for �K
�
� 0

)
ð7:35Þ
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or

dp 6¼ O : n : E : d[ 0
dp ¼ O : otherwise

ð7:36Þ

where the judgment whether or not the stress reaches the yield surface is not
required since the plastic strain rate is induced continuously as the stress approaches
the normal-yield surface.

There exists the risk that the subloading surface once contracts and then expands,
so that a plastic strain rate is induced at the moment of stress reversal event in the
neighborhood of the similarity-center of the normal-yield and the subloading sur-
faces even when n : E : d \0 holds. Therefore, the magnitude of input loading
increment must be so small as to avoid the risk in the numerical calculation method.

The stress vs. strain curve by the subloading surface model is illustrated for the
simplest case of the perfectly-plastic material in Fig. 7.10.

7.3 Salient Features of Subloading Surface Model

This model possesses the following distinguished abilities.

R10

( )U R

decreasesu

Fig. 7.11 Influence of u on function U(R)

0 0

2σ

1σ

3σ

1σ

1ε

Subloading surface model 

Conventional plasticity
( ) model u

Normal-yield surface 

Subloading 
   surface 

R
1

Fig. 7.10 Smooth stress–strain curve predicted by the subloading surface
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(1) Smooth transition from elastic to plastic state is described, which is observed in
real material behavior. Then, we don’t need suffer from the determination of an
offset value (plastic strain value in yield point). In contrast, the determination is
required in all of the other elastoplastic models since they assume a surface
enclosing a purely-elastic domain leading to the abrupt elastic-plastic transition,
while the determination is accompanied with an arbitrariness. The influences of
the material parameter u on the function UðRÞ and the stress-strain curve are
depicted in Figs. 7.11 and 7.12, respectively. The larger the material parameter
u, the more rapidly the normal-yield ratio R increases causing the more rapid
increase of stress, i.e. approaching the behavior of the conventional plasticity.

(2) Plastic strain rate can be described even for low stress level and for cyclic
loading process under small stress amplitudes since a purely-elastic domain is
not assumed.

(3) The yield-judgment whether or not the stress reaches the yield surface is
unnecessary since the plastic strain rate develops continuously as the stress
approaches the normal-yield surface. In contrast, the yield judgment is required

ε

σ

0

Fig. 7.12 Influence of u on stress–strain curve

Fig. 7.13 Stress is automatically controlled to be attracted to the normal-yield surface in the
subloading surface model
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in all of the other elastoplastic models since they assume a surface enclosing a
purely-elastic domain.

(4) The stress is automatically pulled back to the normal-yield surface when it goes

over the surface in numerical calculation because of R
�
\0 for R [ 1 from

Eq. (7.7) with Eq. (7.11)4 as seen in Fig. 7.13. In contrast, the particular
operation to pull back the stress is required in all of the other models because
they assume a surface enclosing a purely-elastic domain.

For the normal-yield state R = 1 (U = 0), the plastic strain rate in Eq. (7.29)
with Eq. (7.30) is reduced to Eq. (6.43) with Eq. (6.41) for the conventional
plasticity, i.e.

dp ¼ n : r��
F0
F fHnðr, H; nÞn :r n ¼

@f ðrÞ
@r : r��

F0fHn r, H;
@f ðrÞ
@r

� � @f ðrÞ
@r

0
BB@

1
CCA

For u ! 1 leading to the sudden decrease of the function U from U ! 1
for R \1 to U = 0 for R = 1 in Eq. (7.11), the plastic modulus �Mp in Eq. (7.30)
drops suddenly from the infinite value to the value Mp in Eq. (6.41) so that the
present model behavior is reduced to the conventional elastoplasticity model
behavior by choosing a large value of the material parameter u, thereby exhibiting an
sudden transition from the elastic to plastic state. On the other hand, as u becomes
smaller, a gentler transition from the elastic to plastic state is described. Therefore,
u plays the role to alleviate the sudden transition from the elastic to plastic state.

It follows from Eq. (6.43) and Eq. (7.29) in the plastic loading process, fulfilling

k
� � 0 or �k

�
� 0, that

Mp [ 0 ! n : r�� [ 0; F
�
[0 : normal hardening

Mp = 0 ! n : r�� = 0; F
�

= 0 : normal nonhardening

Mp\ 0 ! n : r�� \ 0; F
�
\0 : normal softening

9>>=
>>; ð7:37Þ

for the conventional model and

�Mp [ 0 ! n : r�� [0 : subloading hardening

�Mp = 0 ! n : r�� = 0 : subloading nonhardening

�Mp\ 0 ! n : r�� \ 0 : subloading softening

9>>=
>>; ð7:38Þ

for the subloading surface model. Here, it should be noted that the signs of Mp or
�Mp and n : r�� coincide with each other in both models but they do not necessarily

coincide with the sign of F
�
in the subloading surface model.

The distinguished advantages of the subloading surface model in the descrip-
tions of irreversible mechanical phenomena can be obtained by the simple
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modification of existing computer program for the conventional elastoplasticity
model to add only one material parameter u for the evolution rule of the
normal-yield ratio without any expense.

7.4 Numerical Performance of Subloading
Surface Model

The stress controlling function of the subloading surface model is described in
Sect. 7.3. This fact will be shown below by the numerical calculation for the
response of the uniaxial loading behavior, adopting the simplest subloading surface
model for the isotropic Mises material with the evolution rule of the normal-yield
ratio in Eq. (7.9) with Eq. (7.12). The response of the conventional elastoplastic
constitutive model is also shown for the comparison.

The relations of the axial stress ra and the normal-yield ratio R versus the axial
strain ea are depicted in Fig. 7.14. The responses adopting the linear isotropic
hardening F = F0 þ hceep (hc: material constant) are depicted in Fig. 7.14a and
those for the nonlinear isotropic hardening in Eq. (6.56) are shown in Fig. 7.14b.
The two levels of axial strain increment dea = 0.0006 and 0.0055 are input in the
numerical calculations. Here, any special stress controlling algorithm to pull it back
to the yield surface is not introduced. The material parameters are chosen as
follows:

Material constants:

Youg0smodulus:E = 100000MPa,

Hardening
Linear isotropic: hc = 7000MPa

Nonlinar isotropic: h1 = 0:8, h2 = 50,

�
Evolution of normal - yield ratio : u = 200:

Initial values:

Hardening function:F0 = 500MPa,

Stress : r0 = OMPa

The nonsmooth curves bent at the yield stress are expressed by the conventional
model. Moreover, the stress deviates from the exact curve of conventional elasto-
plasticity. The deviation becomes large with the increases in the nonlinearity of
hardening and in the increase of input strain increment. On the other hand, the
stress is automatically attracted to the normal-yield surface in the subloading sur-
face model even for the quite large strain increment dea = 0.0055 (0:55%Þ: The
zigzag lines tracing the exact curve are calculated such that the stress rises up when
the it lies below the normal-yield surface but it drops down immediately if it goes
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Fig. 7.14 Numerical accuracies of the conventional elastoplastic and the subloading surface
model: Uniaxial loading behavior of Mises material with isotropic hardening. a Linear isotropic
hardening b nonlinear isotropic hardening (continued)
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over the normal-yield surface, obeying the evolution rule of normal-yield ratio in

Eq. (7.9) with Eq. (7.12), i.e. R
�
[ 0 for R\1 and R

�
\0 for R[ 1: The plastic

modulus �Mp lowers than that in the conventional one and further it can be negative

at the over normal-yield state R[ 1 leading to U\0, while n : r�� \0 (subloading

Fig. 7.14 (continued)
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softening defined in Eq. (7.38)) holds for �Mp\0 because of �k
�
[ 0 as known from

Eqs. (7.29–7.31). The amplitude of zigzag decreases gradually in the monotonic
loading process, while, needless to say, the amplitude is smaller for a smaller input
increment of strain. Eventually, the subloading surface model posseses the distin-
guished high ability for numerical calculation as verified also quantitatively in these
concrete examples, which has not been attained in any other elastoplastic consti-
tutive equations including the multi, the two, the infinite, superposed kinematic
hardening and the bounding surface models assuming a purely-elastic domain as
will be described in Chap. 8.

7.5 On Bounding Surface and Bounding Surface Model

The terms bounding surface and bounding surface model are widely used for
models falling within the framework of unconventional plasticity describing the
plastic strain rate induced by the rate of stress inside the yield surface. They were
named by Y. F. Dafalias, who also coined the terms plastic spin (Dafalias 1985a)
and hypoplasticity (Dafalias 1986). The only concrete model proposed by Dafalias
as the bounding surface model is the two-surface model (Dafalias and Popov 1975),
in which a small subyield surface is assumed inside the yield surface. The small
subyield surface encloses the purely elastic domain and translates maintaining the
size which maintains constant ratio to the size of the bounding surface (Dafalias and
Popov 1977). On the other hand, the basic structure of the bounding surface model
with a radial mapping used later by Dafalias and Herrmann (1980) falls within the
framework of the subloading surface model, as has been recognized by Dafalias
himself in his statement “It appears that the first time a radial mapping formulation
was proposed, it was in reference to granular materials by Hashiguchi and Ueno
(1977)” which is the original sentence in Dafalias (1986, p. 980).

However, note the following facts.

(1) The bounding surface is no more than the yield surface that has been assumed
historically in the field of plasticity. The term yield surface has a clear physical
meaning that the plastic deformation begins when stress reaches it; it also has
the geometrical meaning that the stress cannot go out from it in the quasi-static
deformation process. In contrast, the phrase bounding surface has only a
geometrical meaning but has no physical meaning.

(2) The yield surface always exists. However, the stress goes over the yield
surface in the deformation process at a high rate as represented by the over-
stress model describing a viscoplastic deformation. Therefore, no surface
exists which bounds the stress except for the quasi-static deformation process.
Consequently, the phrase “bounding surface” has no generality.

(3) The term bounding surface model induces the confusion as if all unconven-
tional plasticity models inheriting the yield surface belong to the bounding
surface model. Krieg (1975) uses the term limit surface in his two surface
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model, Mroz (1967) uses outmost surface in his multi surface model, and
Hashiguchi (1989) uses normal-yield surface in his subloading surface model
instead of yield surface. However, they use these words only in a limited sense
for naming elements in their models: they never use these words as names of
their proposed models such as the limit surface model, the outmost surface
model, or the normal-yield surface model. The term bounding surface should
be used only for the two surface model of Dafalias and Popov (1975) in order
to avoid the confusion.

Furthermore, Dafalias uses the phrase bounding surface model with a radial
mapping (Dafalias and Herrmann 1980). Nevertheless, it possesses physical and
mathematical structure which differs from the two-surface model but it is based on
the identical basic structure to the subloading surface model proposed in 1977 three
years earlier than 1980 when Dafalias began to write the articles on the bounding
surface model with a radial mapping. Furthermore, it includes various the imma-
turity and the impertinence in the explicit formulations as described below.

In the bounding surface model with a radial mapping, the following ratio is
adopted as the measure to describe the degree of approaching the yield (bounding)
surface.

b � jjryjj=jjrjj ð1� b�1) ð7:39Þ

which is the ratio of the magnitude of conjugate stress ry on the yield surface to the
magnitude of current stress r. Then, the plastic modulusMp in the plastic strain rate
of the conventional plasticity, i.e. Eq. (6.41) is modified merely by the interpolation
method without incorporation of the consistency condition as

Mp ! Mp þ Ĥh b� 1
be � b

i =
! 1 for b� be

Mp for b = 1

( !
ð7:40Þ

where Ĥ is the function of stress and internal variables and be is the value of the
variable b at the elastic limit.

Here, note the following facts.

(i) The variable bð1� b� 1) is merely the inverse of normal-yield ratio
Rð0�R� 1Þ in the subloading surface model, whilst b ! 1 and b = 1
correspond to R = 0 and R = 1, respectively.

(ii) The plastic modulus Mp in the bounding surface model with a radial map-
ping is given by the interpolation method between the stress in an elastic
limit and the stress on the yield (bounding) surface, where no consistency
condition is introduced as can be confirmed from the statement “No con-

sistency condition f
�
= 0 is required for stress points inside F = 0, since now

f = 0 is always defined at any rij.” (Dafalias 1986, p. 978), whereas the
consistency condition for the subloading surface is introduced into the
subloading surface model. Various equations other than Eq. (7.40) can be
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assumed for the plastic modulus if an easy-going interpolation method is
adopted. In fact, Eq. (7.40) differs substantially from the plastic modulus of
Eq. (7.30) in the subloading surface model which is derived rigorously from
the consistency condition formulated based on the assumption that the
normal-yield ratio approaches unity in the plastic loading process.

(iii) Therefore, it is not guaranteed that the stress approaches the yield surface in
the plastic loading process. On the other hand, the subloading surface model
possesses a stress controlling function to attract the stress to the yield surface
in the plastic loading process even if the stress goes out from the yield
surface in the numerical calculation by the finite strain or stress increments.

(iv) A formulation for describing cyclic loading behavior has not been given for
the bounding surface model with a radial mapping. On the other hand, it was
attained in the subloading surface model as the extended subloading surface
model (Hashiguchi 1989) by making the similarity-center of the normal-yield
and the subloading surfaces move with the plastic strain rate as will be
described in detail in the next chapter.

Eventually, it can be concluded for the bounding surface model with radial
mapping as follows:

(I) The bounding surface is substantially the synonym of the yield surface
although it does not express any physical meaning. Therefore, the term:
bounding surface model would cause confusion as if all models adopting the
yield surface belong to this model, while in fact it is insisted by Dafalias that
the model with “stress reversal surfaces” (infinite surface model of Mroz
et al. 1981) proposed for soils can be classified as a radial mapping model
(Dafalias 1986, p. 981) in addition to the impertinent assessment on the
subloading surface model. It is desirable to make effort for concrete formu-
lation of pertinent model rather than only coining new terms. Eventually, the
term bounding surface should be used only for the two surface model for-
mulated by Dafalias himself.

(II) The bounding surface model with radial mapping falls within the framework
of the subloading surface model but it is not formulated rationally, whereas the
rigorous formulations including the description of cyclic loading behavior
have been given by the subloading surface model.

Eventually, the ones using the bounding surface with radial mapping should
abandon its use and instead they should notice the subloading surface model for
rigorous deformation analyses and sound development of plasticity.
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7.6 Incorporation of Kinematic Hardening

The subloading surface based on the yield surface in Eq. (6.85) with the kinematic
hardening is described as

f ðr̂Þ = RFðHÞ ð7:41Þ

The material-time derivative of Eq. (7.41) leads to

@f ðr̂Þ
@r̂

:r�� � @f ðr̂Þ
@r̂

: a�� �RF0 H
� �R

�
F = 0 ð7:42Þ

Substituting the associated flow rule

dp = �k
�
n̂ ( �k

�
¼ jjdpjj � 0Þ ð7:43Þ

Eq. (7.42) is rewritten substituting Eq. (6.88) as

@f ðr̂Þ
@r̂

:r�� � @f ðr̂Þ
@r̂

: �k
�
fkn(r,a,F; n̂0)� RF0 �k

�
fHn(r,H;n̂)� U �k

�
F = 0 ð7:44Þ

Noting

@f ðr̂Þ
@r̂

: r̂ = f ðr̂Þ = RF

@f ðr̂Þ
@r̂

= jj @f ðr̂Þ
@r̂

jjn̂

1=jj @f ðr̂Þ
@r̂

jj =
@f ðr̂Þ
@r̂

: r̂

f ðr̂Þ =jj @f ðr̂Þ
@r̂

jj = n̂ : r̂
RF

9>>>>>>>>>>=
>>>>>>>>>>;

ð7:45Þ

Equation (7.44) is rewritten as

n̂ : r�� �n̂ : �k
�
fkn(r,a,F; n̂0)� n̂ : r̂ F0

F
�k
�
fHn(r,H; n̂Þþ U

R
�k
�

� �
= 0 ð7:46Þ

from which one has

�k
�
=

n̂ :r��

�Mp
; dp =

n̂ :r��

�Mp
n̂ ð7:47Þ

where

7.6 Incorporation of Kinematic Hardening 223

http://dx.doi.org/10.1007/978-3-319-48821-9_6
http://dx.doi.org/10.1007/978-3-319-48821-9_6


�Mp � n̂ :

F0

F
fHn(r,H;n̂)þ U

R

�
r̂ + fkn(r, a,F; n̂0)

� �
ð7:48Þ

The loading criterion is given by

dp 6¼O : n̂ : E : d[ 0
dp = O : otherwise

�
ð7:49Þ

7.7 Incorporation of Tangential-Inelastic Strain Rate

As presented in Eqs. (6.43) and (6.95), the inelastic strain rate in the traditional
constitutive equation has the following limitations.

(i) The inelastic strain rate depends solely on the stress rate component normal
to the yield surface, called the normal stress rate, but is independent of the
component tangential to the yield surface, called the tangential stress rate,
since it is derived merely based on the consistency condition.

(ii) The direction of inelastic strain rate is determined solely by the current state
of stress and internal variables but it is independent of the stress rate.

(iii) The principal directions of inelastic strain rate tensor coincide with those of
stress tensor, exhibiting the so-called coaxiality, in the case of isotropy in
which the direction of plastic strain rate depends only on the direction of
stress by the fact described in Sect. 1.12.

On the other hand, it has been verified by experiments that an inelastic strain rate
induced by the deviatoric part of the tangential stress rate, called the deviatoric
tangential stress rate, influences considerably on a deformation in the
non-proportional loading process deviating from the proportional loading path
normal to the yield surface, which is called the tangential inelastic strain rate. Here,
the spherical part of the tangential stress rate does not induce an inelastic strain rate,
as Rudnicki and Rice (1975) verified based on the fissure model. In addition, the
tangential inelastic strain rate is induced considerably in the plastic instability
phenomena with the strain localization induced by the generation of the shear band
and it influences on the macroscopic deformation and strength characteristics. To
remedy these insufficiencies of the traditional plastic constitutive equation, various
models have been proposed to date as follows:

(1) Intersection of plural yield surfaces: Various models assuming the intersection
of plural yield surfaces have been proposed (Batdorf and Budiansky 1949;
Koiter 1953; Bland 1957; Mandel 1965; Hill 1966; Sewell 1973, 1974). The
Koiter’s (1953) model was adopted by Sewell (1973, 1974), but it is indicated
that the applicability of the model is limited to the inception of uniaxial loading.
Models in this category cannot describe the latent hardening pertinently and are
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not readily applicable to general loading processes (cf. Christoffersen and
Hutchinson (1979)).

(2) Corner theory: The singularity of outward-normal of the yield surface is
introduced by assuming the conical corner or vertex at the stress point on the
yield surface. Therefore, the direction of plastic strain rate can take a wide
range surrounded by the outward-normal of the yield surface (Christoffersen
and Hutchinson 1979; Ito 1979; Gotoh 1985; Goya and Ito 1991; Petryk and
Thermann 1997). There exist the two kinds of models: One kind is based on the
assumption of an imaginary infinitesimal vertex and the other subsumes a finite
projecting cone. The evolution rule of the cone cannot be formulated and the
reloading from the cone surface after partial unloading cannot be described
pertinently in the latter models. It was described by Hecker (1972) and Ikegami
(1979) that the yield surface projects towards the loading direction generally
but the formation of the so-called vertex is doubtful.

(3) Hypoplasticity: This term was first used by Dafalias (1986) in the analogy to the
term hypoelasticity introduced by Truesdell (1955) described in Sect. 5.4.
Models in this category are classified into the two kind of models in which the
direction of plastic strain rate depends on the direction of the stress rate

r�� =jjr�� jj (Mroz 1966; Dafalias and Popov 1977; Hughes and Shakib 1986;
Wang et al. 1990; Hashiguchi 1993a) and the models in which the direction of
the plastic strain rate depends on the direction of strain rate d/jjdjj (Hill 1959;
Simo 1987; Hashiguchi 1997). The singularity in the field of direction of plastic
strain rate is introduced in the algebraic ways into these models, although it is
done geometrically in the models described in (1) and (2). However, the
magnitude of the plastic strain rate is derived from the consistency condition.
Therefore, the plastic strain rate diminishes when the stress rate is directed
tangentially to the yield surface, as in the traditional constitutive equations
without the vertex.

The constitutive equations described in (1)–(3) possess the following problems.

(i) A formulation of pertinent model which fulfills the consistency condition and
is applicable to the general loading process is difficult.

(ii) The stress rate vs. strain rate relation becomes nonlinear. Therefore, the
inverse expression cannot be derived, which renders deformation analysis as
difficult.

Differently from the above-mentioned models, the following linear relation
between the stress rate vs. strain rate with the tangential-inelastic strain rate, called
the J2� deformation theory, has been formulated by Budiansky (1959) and later
Rudnicki and Rice (1975) by extending Eq. (6.59) with the isotropic Mises yield
condition as follows:

d = E�1 : r�� +
3
2
1
F0
r�
eq

req
r0 + /(reqÞ

�
r��
0 �
�

r0

jjr0jj :r
�� 0
�

r0

jjr0jj
�

ð7:50Þ
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which can be rewritten as

d = E�1 : r�� +
3
2
1
F0
r�
eq

req
r0 + /(reqÞ

�
r��
0 �

ffiffiffiffiffiffiffiffi
2=3

p
r�
eq r0ffiffiffiffiffiffiffiffi

2=3
p

req

�

= E�1 : r�� þ
�
3
2
1
F0 � /(reqÞ

�
r�
eq

req
r0 + /(req)r��

0
ð7:51Þ

where the rate-linearity is retained.
On the other hand, Hencky’s deformation theory (Hencky 1924) is described as

e = E�1: r + /(req)r0 ð7:52Þ

The corotational time-derivative of Eq. (7.52) leads to

e
�� = E�1:r�� + /0(req)r�

eq
r0 + /(req)r��

0 ð7:53Þ

Comparing Eq. (7.51) with Eq. (7.53), choosing F(req) so as to fulfill

F0(eeqp(req)) =
3
2

1
/(req) + /0(req)req

ð7:54Þ

and regarding d as e
�� , it is known that the J2� deformation theory coincides with

Hencky’s deformation theory (7.52). However, it possesses crucial limitations as
described in below.

Fig. 7.15 Example showing the fact that tangential-inelastic strain rate is not induced by spherical
stress rate since inelastic volumetric change is not induced in metals

226 7 Unconventional Elastoplasticity Model …



In what follows, let the tangential inelastic strain rate be incorporated into the
above-mentioned subloading surface model in the following (Hashiguchi 1998,
2005; Hashiguchi and Tsutsumi 2003; Hashiguchi and Protasov 2004;
Khojastepour and Hashiguchi 2004a, b; Khojastehpour et al. 2006).

Inelastic strain rate is induced even by the deviatoric stress rate component
tangential to the loading surface in real material behavior, while it would not be
induced by spherical stress rate as would be inferred from the example for the fact
that inelastic volumetric change would not be induced in metals (see Fig. 7.15).
However, this fact has been ignored in the traditional plasticity described in the
preceding sections in which the inelastic strain rate is given only by the plastic
strain rate derived from the consistency condition of the subloading surface so that
it is depends only on the stress rate component normal to the subloading surface.

In order to describe the inelastic strain rate induced by the deviatoric stress rate
component tangential to the subloading surface, assume that the strain rate is
additively composed of the elastic strain rate, the plastic strain rate and the tan-
gential-inelastic strain rate dt as follows (Hashiguchi, 1998, 2013b, 2016):

d = de + dp + dt ð7:55Þ

Further, assume that the tangential-inelastic strain rate dt is induced by the tan-

gential component of the stress rate r�� to the subloading surface in the deviatoric

stress space, which is denoted by r��
0
t (Fig. 7.16) defined by

Fig. 7.16 Normal and tangential stress rates for subloading surface model in deviatoric stress
plane
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r��
0
t � T0

t : r
��
= r��

0 � r��
0
nðn :r

�� 0
t = n0 :r��

0
t = 0Þ

r��
0
n � (n0 : r�� )n0 = ðn0 � n0) : r��

9=
; ð7:56Þ

n0 � n0

jjn0jj ¼
�
@f ðrÞ
@r

�0����
����
�
@f ðrÞ
@r

�0����
����
�

6¼ n0 ¼
�
@f ðrÞ
@r

�0����
���� @f ðrÞ@r

����
����
�
ðjjn0jj = 1Þ

ð7:57Þ

T0
t � I 0 � n0 � n0, T0

ijkl � I 0
ijkl � n0

ijn
0
kl ð7:58Þ

fulfilling

n0t � T0
t : n = n0 � ðn0 : n)n0 = O ð7:59Þ

The fourth-order tensor I 0 is the deviatoric projection tensor in Eq. (1.146). The
fourth-order tensor T0

t is the deviatoric-tangential projection tensor which trans-
forms an arbitrary second-order tensor to the tangential part to the subloading
surface in the deviatoric stress space and the second-order tensor subjected to this
projection is designated by ð Þ0t, i.e. t0t � T0

t : t leading further to T0
t : t

0
t ¼ t0t. Then,

r�� 0t is the deviatoric-tangential projection tensor of the stress rate r�� , which is called
the deviatoric-tangential stress rate.

Now, assume that the tangential-inelastic strain rate dt is related linearly to the

tangential-deviatoric stress rate r�� 0t by the extended hypoelastic relation (Truesdell
1955) in the normal-yield state (R ¼ 1) as follows:

dt ¼ E�1:r�� 0t ð7:60Þ

where E is the fourth-order tensor which is a function of stress and internal vari-
ables in general. Let Eq. (7.60) be extended for the sub-yield state as follows:

dt ¼ TðRÞE�1:r�� 0t ð7:61Þ

In this equation TðRÞ is the monotonically-increasing function of R given by

TðRÞ ¼ ~cR~n ð7:62Þ

or

TðRÞ ¼ ~c

�
R� ~Re

1� ~Re

	~n
¼ 0 for R� ~Re

[ 0 for ~Re\R\1

¼ ~c for R ¼ 1

8><
>:

0
BB@

1
CCA ð7:63Þ
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where ~c, ~nð� 1Þ and ~Re (\1) are the material constants. The tangential-inelastic
strain rate is induced increasingly as the stress approaches the normal-yield
surface, always fulfilling the continuity and the smoothness conditions (Hashiguchi
1993a,b, 1997, 2000). On the other hand, if the tangential-inelastic strain rate is
incorporated into the plasticity model assuming the yield surface enclosing a
purely-elastic domain, both of the continuity and the smoothness conditions are
violated, since the tangential-inelastic strain rate is induced suddenly at the moment
when the stress reaches the yield surface.

Adding the tangential-inelastic strain rate in Eq. (7.62) to Eq. (7.32), the strain
rate is given by

d = E�1:r�� þ n :r��

�Mp
nþ TðRÞE�1:r�� 0t

= E�1 þ n� n
�Mp

þ TðRÞE�1:T0
t


 �
:r�� ð7:64Þ

In what follows, we assume the elastic modulus tensor E fulfilling

T0
t : E : n =O ð7:65Þ

which holds in the Hooke’s law in (Eq. 5.35) for example. Taking account of Eq.
(7.65), it follows from Eq. (7.64) that

T0
t : E : d ¼ ð1þ TðRÞÞr�� 0t ð7:66Þ

leading to

r�� 0t ¼
1

1þ TðRÞT
0
t : E : d ð7:67Þ

Substituting Eq. (7.67) into Eq. (7.61), one obtains

dt � TðRÞ
1þ TðRÞE

�1T0
t : E: d ð7:68Þ

The expression in Eq. (7.33) itself for the plastic multiplier in terms of strain rate
is obtained from Eq. (7.64), noting Eq. (7.59). Then, the stress rate is given by

substituting Eq. (7.55) with Eq. (7.34) and Eq. (7.68) into the relation r�� ¼ E : de in
Eq. (6.29) as follows:

r
�� ¼ E : ðd� dp � dtÞ ¼ E : d� n : E : d

�Mp þ n : E : n
E : n� TðRÞ

1þ TðRÞT
0
t : E : d

¼ E� E : n� n : E
�Mp þ n : E : n

� TðRÞ
1þ TðRÞT

0
t : E

� �
: d

ð7:69Þ
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Equations (7.64) and (7.69) are given for the Hooke’s law in Eq. (5.35) as follows:

d ¼ E�1 þ n � n
�Mp

þ TðRÞ
2G

T0
t

� �
:r�� ð7:70Þ

r�� ¼ E� E : n � n : E
�Mp þ n : E : n

� 2G
TðRÞ

1þ TðRÞT
0
t

� �
: d ð7:71Þ

Here, it is known that the bulk modulus K is irrelevant to the tangential inelastic
strain rate which is induced only by the deviatoric part of stress rate.

The loading criterion is given by the equation identical to that without the
tangential-inelastic strain rate, since the tangential-inelastic strain rate is always
induced by the tangential stress rate.

The tangential-inelastic strain rate dt develops gradually as the current stress
approaches the normal-yield surface, i.e. the subloading surface expands fulfilling
the continuity and the smoothness condition in the subloading surface model as

Fig. 7.17 Incorporation of tangential inelastic strain rate illustrated for von Mises yield surface
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shown in Fig. 7.17 for the isotropic Mises material. The validity of Eq. (7.70) or
(7.71) has been verified by Hashiguchi and Protasov (2004) for metals and
Hashiguchi and Tsutsumi (2001, 2003, 2007) and Tsutsumi and Hashiguchi (2005)
and for geomaterials. On the other hand, all models other than the subloading
surface model violate the smoothness condition. Therefore, they violate also the
continuity condition in Eq. (7.1) as illustrated for the J2-deformation model of
Rudnicki and Rice (1975) in Fig. 10. Note that the tangential-inelastic strain rate
does not affect the yield surface and thus the consistency condition.

The subloading surface model has been applied to metals (Hashiguchi 1980,
1989; Hashiguchi and Yoshimaru 1995; Hashiguchi and Tsutsumi 2001;
Hashiguchi and Protasov 2004; Khojastehpor et al. 2006; Tsutsumi et al. 2006;
Hashiguchi et al. 2012) and soils (Hashiguchi and Ueno 1977; Hashiguchi 1978;
Topolnicki 1990; Kohgo et al. 1993; Asaoka et al. 1997; Hashiguchi and Chen
1998; Chowdhury et al. 1999; Hashiguchi et al. 2002; Khojastehpor and
Hashiguchi 2004a, b; Khojastehpor et al. 2006; Nakai and Hinokio 2004;
Hashiguchi and Tsutsumi 2006; Hashiguchi and Mase 2007, 2011; Wongsaroj et al.
2007). Consequently, its capability has been verified widely.
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