
Chapter 5
Elastic Constitutive Equations

Elastic deformation is induced by the reversible deformation of material particles
themselves without a mutual slip between them. They therefore exhibit high stiff-
ness. Elastic constitutive equations are classifiable into the three types depending on
the exactness in the description of reversibility, i.e. the hyperelasticity (or Green
elasticity) possessing the strain energy function, the Cauchy elasticity possessing
the one-to-one correspondence between stress and strain and the hypoelasticity
possessing the linear relation between stress rate and strain rate. As preparation for
the study of elastoplasticity in the subsequent chapters, they are explained in this
chapter.

5.1 Hyperelasticity

In the hyperelastic material, the one to one correspondence between the stress and
the strain exists and further the work done during the loading process from a certain
strain to another certain stain is determined uniquely independent of the loading
path in that process. Then, the hyperelastic material must possess the strain
(Helmholtz) energy function which is determined uniquely by a tensor describing
deformation of material. For instance, let the deformation gradient tensor F be
adopted for the tensor describing the deformation with the strain energy function,
which is the most basic tensor describing the deformation of material. Then, letting
the strain energy function per unit volume in the reference configuration be denoted
by u, the work done per the reference unit volume during the change of the
deformation gradient from F0 to F must be uniquely determined by the values of
deformation gradient in the reference and the current states, i.e.
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ZF

F0

dw0ðFÞ ¼
ZF

F0

@uðFÞ
@F

: dF ¼ uðFÞ � uðF0Þ ð5:1Þ

leading to

w0
� ðFÞ ¼ @uðFÞ

@F
: F

�

Then, the 1st Piola Kirchhoff stress tensor P is given by

P ¼ @uðFÞ
@F

ð5:2Þ

noting Eq. (4.90)4.
Substituting Eq. (5.2) into Eqs. (3.19) and (3.23), we obtain various expressions

of the hyperelasticity by the deformation gradient as follows:

r ¼ 1
detF

@uðFÞ
@F

FT ; s ¼ @uðFÞ
@F

FT ; S ¼ F�1 @uðFÞ
@F

ð5:3Þ

Furthermore, noting

@
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ðdridPAFrQ þFrPdridQAÞ
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FiP ¼ 2FiP

@

@CPA

ð5:4Þ

and denoting the strain energy function described in terms of the right
Cauchy-Green tensor C or the Green strain E by w, one has

@u
@F

¼ 2F
@w
@C

¼ F
@w
@E

@w
@C

¼ 1
2
F�1 @u

@F
¼ 1

2
@w
@E

@w
@E

¼ F�1 @u
@F

¼ 2
@w
@C

9>>>>>>=
>>>>>>;

ð5:5Þ
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Then, substituting Eq. (5.5) into Eq. (5.3), the hyperelasticity is expressed as
follows:

r ¼ 2
1

detF
F
@wðCÞ
@C

FT ¼ 1
detF

F
@wðEÞ
@E

FT

s ¼ 2F
@wðCÞ
@C

FT ¼ F
@wðEÞ
@E

FT

P ¼ 2F
@wðCÞ
@C

¼ F
@wðEÞ
@E

S ¼ 2
@wðCÞ
@C

¼ @wðEÞ
@E

ð5:6Þ

As known from Eq. (5.6)4, the constitutive relation for isotropic elastic defor-
mation is described through the elastic potential energy function of the right
Cauchy-Green deformation tensor C in the initial configuration, i.e. the
three-dimensional stretching resulting in the volume change and the shape change
(pure shear deformation). It is based on the physical background that the elastic
deformation is induced by the expansion/contraction of the intervals betweenmaterial
particles connected by the elastic springs. On the other hand, the plastic deformation is
induced by the slips betweenmaterial particles so that it cannot be formulated through
the potential energy function but it must be formulated in a rate form.

It holds from Eq. (1.246) for any scalar-valued tensor function @wðEÞ leading to
the isotropic material that

@wðEÞ
@E

¼ /E
0 Iþ/E

1Eþ/E
2E

2 ð5:7Þ

where /E
0 ;/

E
1 ;/

E
2 are the functions of invariants of E. Equation (5.7) reduces to the

following equation for the linear elastic material.

@wðEÞ
@E

¼ aðtrEÞIþ 2bE ð5:8Þ

where a; b are the material parameters.
The function @wðCÞ is described as

wðCÞ ¼ wðIC; IIC; IIICÞ ð5:9Þ

where

IC � trC

IIC � 1
2
ðtr2C� trC2Þ

IIIC � detC

9>>=
>>;

ð5:10Þ
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with

@IC
@C

¼ @trC
@C

¼ I

@IIC
@C

¼
@
1
2
ðtr2C� trC2Þ

@C
¼ ICI� C

@IIIC
@C

¼ @ detC
@C

¼ IICI� ICCþC2 ¼ IIICC�1

9>>>>>>>>=
>>>>>>>>;

ð5:11Þ

noting Eq. (1.295). Then, substituting Eq. (5.11) into Eq. (5.6), it follows that

r ¼ 2
1ffiffiffiffiffiffiffiffi
IIIC

p F
@w
@IC

Iþ @w
@IIC

ðICI� CÞþ @w
@IIIC

ðIICI� ICCþC2Þ
� �

FT ð5:12Þ

The strain energy function of the Mooney-Rivlin model (Mooney 1940; Rivlin
1948) which is applicable to the elastic deformation of the incompressible rubber is
given as

w ¼ a1ðIC � 3Þþ a2ðIIC � 3Þ ðIIIC ¼ 1Þ ð5:13Þ

where a1 and a2 are material parameters.
Further, the neo-Hookean model is given by the simplification setting a2 ¼ 0 as

follows:

w ¼ 1
2
mðIC � 3Þ ðIIIC ¼ 1Þ ð5:14Þ

where m is the material parameter.
Further, the strain energy function of the Ogden model (Ogden 1982, 1984)

which is applicable to the elastic deformation of the incompressible rubber for a
large deformation is given as

w ¼
X3
n¼1

bn
an

ðkan1 þ kan2 þ kan3 � 3Þ ðk1k2k3 ¼ 1Þ ð5:15Þ

where ki are the principal values of U ¼ C1=2, an and bn are material parameters.
Equation (5.15) is reduced to Eq. (5.13) for the Mooney-Rivlin model by choosing
the material parameters as follows (cf. Hisada 1992):

b1 ¼ 2C1; a1 ¼ 2
b2 ¼ �2C2; a2 ¼ �2
b3 ¼ 0; a3 ¼ 0

9=
; ð5:16Þ

The hyperelastic equation for soils is referred to Sect. 11.10.
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The time-differentiation of Eq. (5.6)4 leads to

S
� ¼ @2wðEÞ

@E�@E
:E

� ð5:17Þ

Here, the symbol � specifies the fourth-order tensor due to the second-order partial
derivative by the second-order tensor, although the expression without this symbol
is widely used in a lot of literatures (e.g. Simo and Hughes 1988; Bonet and Wood
1997; Belytschko et al. 2014). Substituting Eqs. (2.128) and (5.17) into Eq. (4.61),

the Truesdell rate of Kirchhoff stress s�� Ol is rewritten as

s
DOl ¼ F

@2wðEÞ
@E� @E

:ðFTdFÞ
� �

FT s
D
Ol
ij ¼ FiAFjBFkCFlD

@2wðEÞ
@EAB@ECD

dkl

� �
ð5:18Þ

which is the rate of hyperelastic equation in the current configuration. Here, s
DOl is

related to the Zaremba-Jaumann rate of Cauchy stress in Eq. (4.70) as

s
DOl ¼ Jðr�� w � dr� rdþrtrdÞ ð5:19Þ

The Zaremba-Jaumann rate of Cauchy stress is related to the strain rate from these
equations as

r
�� w ¼ 1

detF
F

@2wðEÞ
@E� @E

ðFTdFÞ
� �

FT þ drþrd� rtrd ð5:20Þ

which is expressed as

r
�� w ¼ ~E : d ð5:21Þ

where the hyperelastic tangent modulus tensor ~E in the current configuration is
given by

~Eijkl � 1
detF

FiAFkCFlDFjB
@2wðEÞ

@EAB@ECD
þRijkl � rijdkl ð5:22Þ

with

Rijkl � 1
2
ðrikdjl þrildjk þrjkdil þrjldikÞ ðRijkl¼Rklij¼Rjikl¼RijlkÞ ð5:23Þ
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5.2 Infinitesimal Elastic Deformation

For the infinitesimal deformation, the hyperelastic constitutive equation can be
given as

r ¼ @wðeÞ
@e

; r� ¼ @w2ðeÞ
@e� @e

: e� ¼ E : e� ; E � @r
@e

¼ @2wðeÞ
@e� @e

ð5:24Þ

where e is the infinitesimal strain in Eq. (2.55).
For the particular Helmholtz free strain energy function (strain energy function)

wðeÞ ¼ 1
2
LðtreÞ2 þGtre2 ð5:25Þ

the stress is given by the linear relation to the elastic strain e as

r ¼ LevIþ 2Ge ð5:26Þ

i.e.

r ¼ Lþ 2
3
G

� �
evIþ 2Ge0 ð5:27Þ

which is referred to as the Hooke’s law, where L and G are called the Lame0

constants. It follows by taking the trace and the deviatoric part of Eq. (5.27) that

ev ¼ 3
3Lþ 2G

rm; e0 ¼ 1
2G

r0 ð5:28Þ

where rmð � ðtrrÞ=3Þ is the mean stress. Then, the inverse relation of Eq. (5.26) is
given by

e ¼ 1
3Lþ 2G

ðtrrÞIþ 1
2G

r0 ¼ 4G� 3L
6Gð3Lþ 2GÞ ðtrrÞIþ

1
2G

r ð5:29Þ

The inverse relation can be derived by first making the spherical and the deviatoric
parts and then combing them as shown above.

Equations (5.26) and (5.29) are rewritten as

r ¼ KevIþ 2Ge0 ¼
�
K � 2

3
G

�
evIþ 2Ge

e ¼ 1
3K

rmIþ 1
2G

r0 ¼
�

1
3K

� 1
2G

�
rmIþ 1

2G
r

ð5:30Þ
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where

K � Lþ 2
3
G ð5:31Þ

It follows from Eq. (5.30) that

rm ¼ Kev; r0 ¼ 2Ge0 ð5:32Þ

Then, K and G are called the bulk elastic modulus and the shear elastic modulus,
respectively.

Equations (5.26), (5.29) and (5.30) are represented as

r ¼ E : e ð5:33Þ

using the elastic modulus tensor E given by

E ¼
�
Lþ 2

3
G

�
T þ 2GI 0; Eijkl � Lþ 2

3
G

� �
dijdkl þ 2G

�
dikdjl þ dildjk � 1

3
dijdkl

�

E�1 ¼ 1
9Lþ 6G

T þ 1
2G

I 0; ðE�1Þijkl ¼
1

9Lþ 6G
dijdkl þ 1

2G

�
dikdjl þ dildjk � 1

3
dijdkl

�
9>>>=
>>>;

ð5:34Þ

and

E ¼ KT þ 2GI 0; Eijkl � Kdijdkl þ 2G
1
2
ðdik djl þ dil djkÞ � 1

3
dij dkl

� �

E�1 ¼ 1
9K

T þ 1
2G

I 0; ðE�1Þijkl ¼
1
9K

dij dkl þ 1
2G

1
2
ðdik djl þ dil djkÞ � 1

3
dij dkl

� �

ð5:35Þ

where T is the fourth-order tracing tensor and I 0 is the fourth-order deviatoric
projection tensor defined in Eq. (1.143) and (1.146), respectively. The inverse
relation between the two equation in Eq. (5.35) is confirmed by
ðKT þ 2GI 0Þ:½ð1=9ÞKT þð1=2GÞI 0� ¼ ð1=3ÞT þI 0 ¼ I , noting Eq. (1.146).

It follows from Eq. (5.35)2 for the uniaxial loading process (rij ¼ 0 for i ¼ j 6¼ 1
and i 6¼ j), noting T 1111 ¼ 1; I 0

1111 ¼ 2=3; T 2211 ¼ 0; I 0
2211 ¼ �1=3 that

e11 ¼ 1
E
r11; e22 ¼ � m

E
r11 ! e22

e11
¼ �m ð5:36Þ
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where

E ¼ 9KG
3K þG

; m ¼ 3K � 2G
2ð3KþGÞ ð5:37Þ

the inverses of which are given as

K � E
3ð1� 2mÞ ; G � E

2ð1þ mÞ ð5:38Þ

Here, E is the ratio of the axial stress rate to the axial strain rate and is called the
Young’s modulus, and m is the ratio of lateral strain rate to axial strain rate and is
called the Poisson’s ratio. The strain energy function in (5.25) is expressed as

wðeÞ ¼ mE
2ð1þ mÞð1� 2mÞ ðtreÞ

2 þGtre2 ð5:39Þ

which must be positive so that the Poisson’s ratio is limited in the range

�1\m\1=2 ð5:40Þ

The lower limit and the upper limit correspond to the similar shape and the constant
volume, respectively, as known from Eq. (5.38). The former is seen in artificial
structures, e.g. honeycomb.

Substituting Eq. (5.38) into Eq. (5.35), the elastic modulus tensor is also
described using the Young’s modulus and the Poisson’s ratio as follows:

E ¼ E
3ð1� 2mÞT þ E

1þ m
I 0; Eijkl ¼ E

3ð1� 2mÞ dijdkl þ
E

1þ m
1
2
ðdikdjl þ dildjkÞ � 1

3
dijdkl

� �

E�1 ¼ 1� 2m
3E

T þ 1þ m
E

I 0; ðE�1Þijkl ¼
1� 2m
3E

dij dkl þ 1þ m
E

1
2
ðdikdjl þ dildjkÞ � 1

3
dijdkl

� �

ð5:41Þ

or

E ¼ E
1þ m

m
1� 2m

T þI
� �

; Eijkl ¼ E
1þ m

m
1� 2m

dijdkl þ 1
2
ðdikdjl þ dildjkÞ

� �

E�1 ¼ � 1
E

�
mT � ð1þ mÞI

�
; ðE�1Þijkl ¼ � 1

E
mdijdkl � 1

2
ð1þ mÞðdikdjl þ dildjkÞ

� �

ð5:42Þ
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Relationships between two independent elastic constants are listed in Table 5.1.
The Helmholtz free energy function (strain energy function) wðeÞ and the Gibbs’

free energy function (complementary energy function) /ðrÞ are given for the linear
elasticity as

wðeÞ ¼ 1
2
e : E : e ¼ 1

2
E

1þ m
eijeij þ E

1� 2m
ðekkÞ2

� �
ð5:43Þ

/ðrÞ ¼ 1
2
r : E�1 :r ¼ 1

2E

�
ð1þ mÞrijrij � mðrkkÞ2

�
ð5:44Þ

from which it follows that

r ¼ @w
@e

¼ E : e ¼ E
1þ m

m
1� 2m

evIþ e
� �

¼ E
1

3ð1� 2mÞ evIþ
1

1þ m
e0

� �
ð5:45Þ

e ¼ @/
@r ¼ E�1 :r ¼ 1

E

�
ð1þ mÞr� 3mrmI

�
¼ 1

E

�
ð1� 2mÞrmIþð1þ mÞr0

�

ð5:46Þ

5.3 Cauchy Elasticity

The elastic material which does not have a strain energy function but has a
one-to-one correspondence between the Cauchy stress and a strain is called the
Cauchy elastic material. Here, the stress tensor is given by an equation of strain
tensor and thus the equation includes six strain components. The equation of six
strain components does not fulfill the condition of complete integration leading to
the strain energy function so that it does not result in the hyperelasticity in general.
Then, the work done by the stress is generally dependent on the deformation path.

Table 5.1 Relationships between two independent elastic constants

E; m G; m E; G E; K G; K L; G

E E 2ð1þ mÞG E E 9KG
3K þG

lð3Lþ 2GÞ
LþG

G E
2ð1þ mÞ

G G 3EK
9K � E

G G

K E
3ð1� 2mÞ

2ð1þ mÞG
3ð1� 2mÞ

EG
3ð3G� EÞ

K K
Lþ 2

3
G

v v v E � 2G
2G

3K � E
6K

3K � 2G
2ð3K þGÞ

L
2ðLþGÞ

L mE
ð1þ mÞð1� 2mÞ

2Gm
1� m

GðE � 2GÞ
3G� E

3Kð3K � EÞ
9K � E

K � 2
3
G

L

5.2 Infinitesimal Elastic Deformation 161



For that reason, an energy dissipation/production is induced during the stress or
strain cycle.

In the above-mentioned definition, the Cauchy elastic material is described as

r ¼ fðeÞ ð5:47Þ

in terms of the Almansi strain tensor e in Eq. (2.45) or (2.47). Equation (5.47)
reduces to the following equation by virtue of Eq. (1.246) for the isotropic material.

r ¼ /e
0Iþ/e

1eþ/e
2e2 ð5:48Þ

where /e
0;/

e
1;/

e
2 are functions of invariants of e. Furthermore, for an isotropic

linear elastic material, Eq. (5.48) reduces to

r ¼ LðtreÞIþ 2Ge ð5:49Þ

noting Eq. (5.26). Limiting to the infinitesimal strain leading to e ffi e, Eq. (5.49)
results in Eq. (5.26), i.e.

r ¼ LðtreÞIþ 2Ge ð5:50Þ

Here, substituting Eq. (5.50) with Eq. (2.50) into Eq. (3.31), the Navier’s equation
is obtained by replacing L and G to a and b, respectively, as follows:

ðaþ bÞ @2uj
@xj@xi

þ b
@2ui
@xj@xj

þ qbi ¼ qv� i

ðaþ bÞrðr �uÞþ bDuþ qb ¼ q v� ð5:51Þ

noting Eqs. (1.309), (1.315) and

@ a
@uk
@xk

dij þ 2b
1
2

�
@ui
@xj

þ @uj
@xi

�� �

@xj
¼ a

@2uj
@xj@xi

þ b
@2ui
@xj@xj

þ b
@2uj
@xj@xi

5.4 Hypoelasticity

The following material, for which the corotational rate of stress is related linearly to
the strain rate, is referred to as the hypoelastic material by Truesdell (1955).

r�� ¼ HðrÞ½d� ð5:52Þ
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where the tensor function HðrÞ½d� designates the linearity in the strain rate d and
the isotropies in r and d.

In what follows, we adopt the following elastic constitutive relation with the
elastic modulus tensor E incorporated in the infinitesimal elastic deformation in
Sect. 5.2, i.e.

r�� ¼ E : d ð5:53Þ

which leads to the following relations for the Hooke’s law, noting Eqs. (5.30),
(5.45) and (5.46).

r�� ¼ KdvIþ 2Gd0 ¼ K � 2
3
G

� �
dvIþ 2Gd

d ¼ 1
3K

r� mIþ 1
2G

r�� 0 ¼ 1
3K

� 1
2G

� �
r� mIþ 1

2G
r��

9>>=
>>;

ð5:54Þ

r� m ¼ Kdv; r�� 0 ¼ 2Gd0 ð5:55Þ

r�� ¼ E
1

3ð1� 2mÞ dvIþ
1

1þ m
d0

� �
¼ E

1þ m
m

1� 2m
dvIþ d

� �

d ¼ 1
E

�
ð1� 2mÞr� mIþð1þ mÞr�� 0

�
¼ 1

E

�
ð1þ mÞr�� �3mr� mI

�
9>>=
>>;

ð5:56Þ

Besides, the following equation in which the Jaumann rate of Cauchy stress is
related nonlinearly to the strain rate is called the hypoplastic material (Kolymbas
and Wu 1993).

r�� ¼ fðd; rÞ; r�� ij ¼ fijðdkl;rklÞ ð5:57Þ

where fij is the nonlinear function of dkl, and for rate-independent deformation it is
the homogeneous function of dkl in degree-one fulfilling fijðjsjdklÞ ¼ jsjfijðdklÞ
which implies ð@fij=@dklÞdkl ¼ fij on account of Euler’s theorem for homogeneous
function (see Appendix D).

While the three popular types of elastic materials are described in this chapter,
the other elastic material, called the Cosserat elastic material, was advocated by
Cosserat and Cosserat (1909). The couple stress is related to the rotational strain in
this material. It has been applied to the prediction of localized deformation (e.g. cf.
Mindlin 1963; Muhlhaus and Vardoulaskis 1987).
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