Chapter 5
Elastic Constitutive Equations

Elastic deformation is induced by the reversible deformation of material particles
themselves without a mutual slip between them. They therefore exhibit high stiff-
ness. Elastic constitutive equations are classifiable into the three types depending on
the exactness in the description of reversibility, i.e. the hyperelasticity (or Green
elasticity) possessing the strain energy function, the Cauchy elasticity possessing
the one-to-one correspondence between stress and strain and the hypoelasticity
possessing the linear relation between stress rate and strain rate. As preparation for
the study of elastoplasticity in the subsequent chapters, they are explained in this
chapter.

5.1 Hyperelasticity

In the hyperelastic material, the one to one correspondence between the stress and
the strain exists and further the work done during the loading process from a certain
strain to another certain stain is determined uniquely independent of the loading
path in that process. Then, the hyperelastic material must possess the strain
(Helmholtz) energy function which is determined uniquely by a tensor describing
deformation of material. For instance, let the deformation gradient tensor F be
adopted for the tensor describing the deformation with the strain energy function,
which is the most basic tensor describing the deformation of material. Then, letting
the strain energy function per unit volume in the reference configuration be denoted
by ¢, the work done per the reference unit volume during the change of the
deformation gradient from F( to F must be uniquely determined by the values of
deformation gradient in the reference and the current states, i.e.

© Springer International Publishing AG 2017 153
K. Hashiguchi, Foundations of Elastoplasticity: Subloading Surface Model,
DOI 10.1007/978-3-319-48821-9_5



154 5 Elastic Constitutive Equations

F F
[ = [ 200 ar = o(F) - (k) (5.1)
Fo Fy
leading to
wo(F) = —agf) : F

Then, the 1st Piola Kirchhoff stress tensor II is given by

9¢(F)
nm=—- 5.2
OF (5:2)
noting Eq. (4.90),.
Substituting Eq. (5.2) into Egs. (3.19) and (3.23), we obtain various expressions
of the hyperelasticity by the deformation gradient as follows:
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and denoting the strain energy function described in terms of the right
Cauchy-Green tensor C or the Green strain E by /, one has
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Then, substituting Eq. (5.5) into Eq. (5.3), the hyperelasticity is expressed as
follows:
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As known from Eq. (5.6)4, the constitutive relation for isotropic elastic defor-
mation is described through the elastic potential energy function of the right
Cauchy-Green deformation tensor C in the initial configuration, i.e. the
three-dimensional stretching resulting in the volume change and the shape change
(pure shear deformation). It is based on the physical background that the elastic
deformation is induced by the expansion/contraction of the intervals between material
particles connected by the elastic springs. On the other hand, the plastic deformation is
induced by the slips between material particles so that it cannot be formulated through
the potential energy function but it must be formulated in a rate form.

It holds from Eq. (1.246) for any scalar-valued tensor function 9y(E) leading to
the isotropic material that

where ¢, ¢}, ¢5 are the functions of invariants of E. Equation (5.7) reduces to the
following equation for the linear elastic material.
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where a, b are the material parameters.
The function Oy(C) is described as

where
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noting Eq. (1.295). Then, substituting Eq. (5.11) into Eq. (5.6), it follows that
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The strain energy function of the Mooney-Riviin model (Mooney 1940; Rivlin
1948) which is applicable to the elastic deformation of the incompressible rubber is
given as

lﬁ = a) (IC — 3) +a2(HC — 3) (HIC = 1) (513)

where a; and a, are material parameters.
Further, the neo-Hookean model is given by the simplification setting a, = 0 as
follows:

Y= %V(IC —-3) (lc=1) (5.14)

where v is the material parameter.

Further, the strain energy function of the Ogden model (Ogden 1982, 1984)
which is applicable to the elastic deformation of the incompressible rubber for a
large deformation is given as
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where /; are the principal values of U = C'2, o, and f, are material parameters.
Equation (5.15) is reduced to Eq. (5.13) for the Mooney-Rivlin model by choosing
the material parameters as follows (cf. Hisada 1992):

ﬁl = 2C1, o = 2
By =-2C, op=-2 (5.16)
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The hyperelastic equation for soils is referred to Sect. 11.10.
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The time-differentiation of Eq. (5.6)4 leads to
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Here, the symbol ® specifies the fourth-order tensor due to the second-order partial
derivative by the second-order tensor, although the expression without this symbol
is widely used in a lot of literatures (e.g. Simo and Hughes 1988; Bonet and Wood
1997; Belytschko et al. 2014). Substituting Eqgs. (2.128) and (5.17) into Eq. (4.61),

the Truesdell rate of Kirchhoff stress T is rewritten as
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A
which is the rate of hyperelastic equation in the current configuration. Here, ™ is
related to the Zaremba-Jaumann rate of Cauchy stress in Eq. (4.70) as
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The Zaremba-Jaumann rate of Cauchy stress is related to the strain rate from these
equations as
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which is expressed as
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where the hyperelastic tangent modulus tensor E in the current configuration is
given by
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5.2 Infinitesimal Elastic Deformation

For the infinitesimal deformation, the hyperelastic constitutive equation can be
given as
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where € is the infinitesimal strain in Eq. (2.55).
For the particular Helmholtz free strain energy function (strain energy function)

W(E) = %L(tra)2 + Gtrg? (5.25)

the stress is given by the linear relation to the elastic strain € as
6 = Le, 1+ 2Ge (5.26)

ie.
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which is referred to as the Hooke’s law, where L and G are called the Lamé
constants. It follows by taking the trace and the deviatoric part of Eq. (5.27) that
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where 0,,( = (tr6)/3) is the mean stress. Then, the inverse relation of Eq. (5.26) is
given by
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The inverse relation can be derived by first making the spherical and the deviatoric
parts and then combing them as shown above.
Equations (5.26) and (5.29) are rewritten as
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where
2
It follows from Eq. (5.30) that
on = Ks,, 6’ =2G¢’ (5.32)
Then, K and G are called the bulk elastic modulus and the shear elastic modulus,
respectively.
Equations (5.26), (5.29) and (5.30) are represented as

(5.33)

using the elastic modulus tensor E given by

2 2 1
E= (L + g G) T+ ZGI/, Eijkl = (L + g G) 5ij5k1 +2G (51'1{5/’1 + 51’15]7( — 5 5,']‘5/{1)

1
=74 —I/, (B =

50
T 9L+ 6G 2G 1%+ 56

. 1. .
(5ik5jl + 0l — 3 5ijf5kl>

(5.34)

1
9L+ 6G 2G

and

1 . 1
E=KT + ZGI,, Eijkl = K(S,*jé}d +2G [E (51‘]( 6/‘1 + 0 ()jk) — g (S,j 5kl:|

E! :—T+—I’, (B =

5,5
G i + 54

1 1
ik Vi i — F Y
{ (Oix 01 + 0 O) 35j5kl]

9K 2G

(5.35)

where T is the fourth-order tracing tensor and Z’ is the fourth-order deviatoric
projection tensor defined in Eq. (1.143) and (1.146), respectively. The inverse
relation between the two equation in Eq.(5.35) is confirmed by
(KT +2GT'):[(1/9)KT + (1/2G)T') = (1/3)T +Z' = Z, noting Eq. (1.146).
It follows from Eq. (5.35), for the uniaxial loading process (0;; = Ofori =j # 1
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where
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the inverses of which are given as
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Here, E is the ratio of the axial stress rate to the axial strain rate and is called the
Young’s modulus, and v is the ratio of lateral strain rate to axial strain rate and is
called the Poisson’s ratio. The strain energy function in (5.25) is expressed as
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which must be positive so that the Poisson’s ratio is limited in the range
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The lower limit and the upper limit correspond to the similar shape and the constant
volume, respectively, as known from Eq. (5.38). The former is seen in artificial

structures, e.g. honeycomb.

Substituting Eq. (5.38) into Eq. (5.35), the elastic modulus tensor is also
described using the Young’s modulus and the Poisson’s ratio as follows:
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Table 5.1 Relationships between two independent elastic constants

E, v G, v E, G E, K G, K L G
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Relationships between two independent elastic constants are listed in Table 5.1.

The Helmholtz free energy function (strain energy function) y/(€) and the Gibbs’
free energy function (complementary energy function) ¢(6) are given for the linear
elasticity as
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from which it follows that
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5.3 Cauchy Elasticity

The elastic material which does not have a strain energy function but has a
one-to-one correspondence between the Cauchy stress and a strain is called the
Cauchy elastic material. Here, the stress tensor is given by an equation of strain
tensor and thus the equation includes six strain components. The equation of six
strain components does not fulfill the condition of complete integration leading to
the strain energy function so that it does not result in the hyperelasticity in general.
Then, the work done by the stress is generally dependent on the deformation path.
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For that reason, an energy dissipation/production is induced during the stress or
strain cycle.
In the above-mentioned definition, the Cauchy elastic material is described as

o = f(e) (5.47)

in terms of the Almansi strain tensor € in Eq. (2.45) or (2.47). Equation (5.47)
reduces to the following equation by virtue of Eq. (1.246) for the isotropic material.
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where ¢, @], ¢5 are functions of invariants of e. Furthermore, for an isotropic
linear elastic material, Eq. (5.48) reduces to

6 = L(tre)I +2Ge (5.49)

noting Eq. (5.26). Limiting to the infinitesimal strain leading to e = g, Eq. (5.49)
results in Eq. (5.26), i.e.

¢ = L(trg)T +2Ge (5.50)

Here, substituting Eq. (5.50) with Eq. (2.50) into Eq. (3.31), the Navier’s equation
is obtained by replacing L and G to @ and b, respectively, as follows:
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5.4 Hypoelasticity

The following material, for which the corotational rate of stress is related linearly to
the strain rate, is referred to as the hypoelastic material by Truesdell (1955).

6 = H(0)[d] (5.52)
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where the tensor function H(6)[d] designates the linearity in the strain rate d and
the isotropies in @ and d.

In what follows, we adopt the following elastic constitutive relation with the
elastic modulus tensor E incorporated in the infinitesimal elastic deformation in
Sect. 5.2, i.e.

(5.53)

which leads to the following relations for the Hooke’s law, noting Egs. (5.30),
(5.45) and (5.46).
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Besides, the following equation in which the Jaumann rate of Cauchy stress is
related nonlinearly to the strain rate is called the hypoplastic material (Kolymbas
and Wu 1993).

¢ =f(d, 0), G = fi(du, On) (5.57)

where f;; is the nonlinear function of dj;, and for rate-independent deformation it is
the homogeneous function of dy in degree-one fulfilling f;;(|s|du) = |s|fii(du)
which implies (0f;j/0du)du = f;; on account of Euler’s theorem for homogeneous
function (see Appendix D).

While the three popular types of elastic materials are described in this chapter,
the other elastic material, called the Cosserat elastic material, was advocated by
Cosserat and Cosserat (1909). The couple stress is related to the rotational strain in
this material. It has been applied to the prediction of localized deformation (e.g. cf.
Mindlin 1963; Muhlhaus and Vardoulaskis 1987).
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