
Chapter 4
Objectivity and Objective (Rate) Tensors

Constitutive property of material is independent of observers. Therefore, constitu-
tive equation has to be described by variables obeying the common objective
transformation rule described in Sect. 1.3.1. State variables, e.g. stress, strain and
back stress tensors in the same configuration obey the common coordinate trans-
formation rule. However, the material-time derivatives of tensors in the current
configuration do not obey the objective transformation rule, since they are influ-
enced by the rigid-body rotation. Then, instead of the material-time derivative of
tensors, particular time-derivatives of tensors obeying the objective transformation
rule have to be adopted in constitutive equations.

The consideration on the fulfillment of objectivity is of great importance for the
hypoelastic-based constitutive equation formulated in the current configuration
which is influenced directly by the rigid-body rotation, while the hypoelastic-based
plasticity is comprehensively explained in this book. Then, the objectivity and the
formulation of constitutive relations fulfilling the objectivity will be comprehen-
sively described in this chapter.

4.1 Objectivity

Physical quantities except for scalar ones are observed to be different depending on
the state, e.g. position, direction, velocity of observers. On the other hand,
mechanical property of material is observed identically independent of the state of
observers. In particular, it is observed identically independent of the rigid-body
rotation of material. Therefore, a constitutive equation describing material property
must be expressed in a common form independent of coordinate systems. Then, it
must be described so as not to be influenced by the rigid-body rotation of material.
This fact was not so obvious in the olden time and was advocated by Oldroyd
(1950) in the middle of the last century. It is referred to as the principle of material-
frame indifference (Oldroyd 1950) or principle of objectivity or simply objectivity.
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This would be regarded as the starting point of the modern continuum mechanics
which is called sometimes as the rational mechanics (Truesdell and Toupin 1960;
Truesdell and Noll 1965).

Here, note that components of tensor describing mechanical state of material,
e.g. stress, strain and anisotropic internal variables are observed to be changed by
the fixed coordinate system if the material rotates, even when the components are
observed to be unchanged by the coordinate system rotating concurrently with the
material itself. Therefore, the material-time derivative of tensor describing
mechanical state is observed to be non-zero, by the fixed coordinate system when
the material rotates even when it is observed to be zero by the observer rotating
concurrently with the material itself. It is caused by the fact that the material-time
derivative of tensor designates the rate of tensor observed by the coordinate system
moving in parallel with material but without rotation. Then, the material-time
derivative cannot be adopted for the description of constitutive equations in a
current rate form.

Machine elements are often subjected not only to deformation but also to
rigid-body rotation, as seen in metal forming, gears, wheels, etc. Soils near the side
edges of footings, at the bottom ends of piles, etc. undergo a large rigid-body
rotation. Therefore, formulations of constitutive equations which is not influenced
by the rigid-body rotation are of great importance in practical engineering
problems.

4.2 Influence of Rigid-Body Rotation on Various
Mechanical Quantities

In order to check whether or not a constitutive equation is formulated so as to
satisfy the objectivity principle, it is expedient to examine the influence of
rigid-body rotation on the tensor variables used in constitutive equations. Instead,
one may examine how the components of these variables are observed by the
coordinate systems with the fixed base feig and the rotating base fe�i ðtÞg which are
related as

e�i ðtÞ ¼ QTðtÞei; e�i ð0Þ ¼ ei; e� �i ðtÞ ¼ Q
�
TðtÞei ð4:1Þ

provided that the rotating base fe�i ðtÞg coincides with the fixed base feig at the
beginning of deforming/rotation ðt ¼ 0Þ, where one has

Q(t) ¼ ei � e�i (t), Q(0) ¼ I ð4:2Þ

noting Eq. (1.89) with Eq. (4.1). These bases are illustrated in Fig. 4.1 for the
two-dimensional state.
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The components of the initial infinitesimal line element dX in the initial state
ðt ¼ 0Þ is observed to be identical by these bases, since fe�i ðtÞg coincides with feig
in the initial state. On the other hand, the components of the current infinitesimal
line-element dx(t) is observed to be different by these bases as the rotating base
fe�i ðtÞg differs from the fixed base feig for t[ 0. Here, noting dx(tÞ ¼ F(t)dX, we
have

dX� ¼ dX ðfe�i ð0Þg ¼ feigÞ, dx�(tÞ ¼ Q(t)dx(tÞ ¼ Q(t)F(t)dX ð4:3Þ

and

dx�(tÞ ¼ F�(t)dX�(0) = F�(t)dX ð4:4Þ

from which it follows that

F�(tÞ ¼ Q(t)F(t) ð4:5Þ

It is known from Eq. (4.5) that the deformation gradient F(t) is the second-order
tensor but it obeys the transformation rule of the first-order tensor. This is based
on the fact that the deformation gradient is the two-point tensor as specified in
Eq. (2.14).

Substituting Eq. (4.5) into Eqs. (2.20)–(2.22), (2.35), (2.36) and (2.45), the
following relations are obtained for various quantities describing a deformation.
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Fig. 4.1 Coordinate systems with the fixed base feig and the rotating base fe�i ðtÞg which
coincides with the base feig at the beginning of deformation/rotation (illustrated in
two-dimensional state for e3 ¼ e�3)
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U� ¼ U, C� ¼ C (F�TF� = (QFÞTQF ¼ FTQTQF ¼ FTFÞ ð4:6Þ

V� ¼ QVQT , b� ¼ QbQT (F�F�T ¼ QF(QFÞT ¼ QFFTQTÞ ð4:7Þ

R� ¼ QR (F� ¼ QF ¼ QRU ¼ QRU� ¼ R�U�Þ ð4:8Þ

E� ¼ E ð¼ FTeFÞ; e�¼ QeQT ð4:9Þ

Noting the relation

F
� �F��1 ¼ ðQFÞ�ðQFÞ�1 ¼ ðQ� FþQF

� ÞF�1Q�1 ¼ QðF� F�1 �Q
� TQÞQT

it holds for the velocity gradient in Eq. (2.75) that

l� ¼ Qðl�XÞQT ¼ QlQT+X ð4:10Þ

where X and X are defined by

X � Q
� TQ; X � Q

�
riQrjei � ej

X � Q
�
QT ; X � Q

�
irQjrei � ej

)
ð4:11Þ

and they are related by

X ¼ �QXQT ; X ¼ �QTXQ ð4:12Þ

where Q
�
is given by

Q
� ¼ er � e� �r ð4:13Þ

from Eq. (4.2) because of e� i ¼ 0. Substituting Eqs. (4.2) and (4.13) into Eq. (4.11),
we have

X ¼ e� �r � e�r ; X ¼ ðe� �r � e�j Þei � ej ð4:14Þ

from which it follows that

e� �i ¼ Xe�i ð4:15Þ

It is known from Eq. (4.15) that X is the spin of the base fe�i g.
The substitution of Eq. (4.10) into Eqs. (2.80) and (2.81) yields the following

transformation rules.
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d� ¼ QdQT ð4:16Þ

w� ¼ Qðw�X)QT ¼ QwQT+ X ð4:17Þ

The relative spin in Eq. (2.85), i.e.

XR � R
�
RT ð4:18Þ

obeys the transformation identical to that of w as follows:

XR� ¼ QðXR �XÞQT ¼ QXRQTþX ð4:19Þ

noting

R
� �R�T ¼ ðQRÞ�ðQRÞT ¼ ðQ� RþQR

� ÞRTQT

¼ QR
�
RTQT þQ

�
QT ¼ QXRQT þQQTQ

�
QT ¼ QXRQT �QQ

� TQQT

We obtain the following conclusions for the influence of rigid-body rotation
from Eqs. (4.6) to (4.19).

(1) The right Cauchy-Green deformation tensor C and the Green strain tensor
E are based in the reference configuration and thus they are observed to be
unchangeable, i.e. invariant, obeying the transformation rule of scalar quan-
tities independent of the rigid-body rotation. On the other hand, the left
Cauchy-Green deformation tensor b and the Almansi strain tensor e are based
in the current configuration and thus obey the transformation rule of
second-order tensor.

(2) The strain rate tensor d obeys the transformation rule of the second-order
tensor. On the other hand, the velocity gradient tensor l, the continuum spin
tensor w and the relative spin XR are directly subjected to the influence of rate
of rigid-body rotation, lacking the objectivity.

The following transformations hold for stress tensors described in Chap. 3.

ð4:20Þ

s� ¼ QsQT ð4:21Þ

P� ¼ QP

ðP� ¼ Jr�F��T ¼ JQrQTðQFÞ�T ¼ JQrQTQ�TF�T ¼ QJrF�T ¼ QPÞ
ð4:22Þ
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S� ¼ S

ðS� ¼ F��1s�F��T ¼ ðQFÞ�1ðQsQTÞðQFÞ�T ¼ F�1QTQsQTQ�TF�T ¼ F�1sF�T ¼ SÞ
ð4:23Þ

Then, the Cauchy stress tensor r and the Kirchhoff stress tensor s obeys the
transformation rule of the second-order tensor. On the other hand, the first
Piola-Kirchhoff stress tensor P obeys the transformation rule of the first-order
tensor so that it is the two-point tensor. The second Piola-Kirchhoff stress tensor
S is the invariant under the superposition of rigid-body rotation.

The consideration of objectivity is of great importance in the formulation of
hypoelastic-based plastic constitutive equations since the rates of stress and ani-
sotropic internal state variables in the current configuration are influenced directly
by the rigid-body rotation as described above. Then, the time-derivatives of state
variables will be further considered in the subsequent sections.

4.3 Material-Time Derivative of Tensor

The material-time derivatives of state variables is the rates of them observed by the
coordinate system moving in parallel with material particle as explained in Sect. 2.2.
However, it will be mathematically verified in this section that the material-time
derivative of tensor does not obey the objective transformation rule and thus it
cannot be used in constitutive equations.

Consider the transformation of the material-time derivative of a state variable
obeying the objective transformation in Eq. (1.71) and (1.73). The material-time
derivative of the tensor t in the current configuration reads (Hashiguchi 2007a):

t
��
p1p2���pm ¼ Q

�
p1q1Qp2q2 � � �Qpmqm tq1q2���qm þQp1q1Q

�
p2q2 � � �Qpmqm tq1q2���qm þ � � �

þQp1q1Qp2q2 � � �Q
�
pmqm tq1q2���qm þQp1q1Qp2q2 � � �Qpmqmt

�
q1q2���qm

ð4:24Þ

t
�
p1p2���pm ¼ Q

�
q1p1Qq2p2 � � �Qqmpm t

�
q1q2���qm þQq1p1Q

�
q2p2 � � �Qqmpm t

�
q1q2���qm þ � � �

þQq1p1Qq2p2 � � �Q
�
qmpm t

�
q1q2���qm þQq1p1Qq2p2 � � �Qqmpm t

��
q1q2���qm

ð4:25Þ

Noting the relation Q
�
piqi ¼ dpisQ

�
sqi ¼ QpitQstQ

�
sqi ¼ �QpitQ

�
stQsqi ¼ �QpitXtqi and

replacing t!qi; qi!ri, then Eqs. (4.24) and (4.25) can be rewritten as follows:
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t
��
p1p2���pm ¼ Qp1q1Qp2q2 ���Qpmqm ðt

�
q1q2���qm � Xq1r1 tr1q2���qm � Xq2r2 tq1r2���qm

� ��� � Xq1rm tq1q2���rmÞ ð4:26Þ

t
�
p1p2���pm ¼ Qq1p1Qq2p2 � � �Qqmpm ðt

��
q1q2���qm � Xq1r1 t

�
r1q2���qm � Xq2r2 t

�
q1r2���qm

� � � � � Xqmrm t
�
q1q2���rmÞ ð4:27Þ

It is known from Eqs. (4.26) and (4.27) that the material-time derivative does not
obey the objective transformation rule, noting that the components t

�
p1p2...pm in thefixed

coordinate system is not zero even when the components t
��
p1p2...pm in the coordinate

system rotatingwith thematerial is zero. Equations (4.26) and (4.27) are expressed for
the vector v and the second-order tensor t in symbolic notation as follows:

v� � ¼ Qðv� �XvÞ; v� ¼ QTðv� � �Xv�Þ ð4:28Þ

t
�� ¼ Qðt� �Xtþ tXÞQT ; t

� ¼ QTðt�� �Xt� þ t�XÞQ ð4:29Þ

Consequently, the material-time derivative cannot be adopted in constitutive
equations.

In order to see the irrationality for using the material-time derivative of tensor,
consider the hypoelastic constitutive equation, which relates the material-time
derivative of Cauchy stress tensor linearly to the strain rate tensor and to which the
hypoelastic-base plastic constitutive equation described after Chap. 6 also belong,
as follows:

r� ¼ H : d

where the tangent modulus tensor H (fourth-order tensor) is the function of stress
and anisotropic internal variables in general. It follows from this equation with
Eq. (4.29) that

d ¼ H�1: QTðr� � �Xr� þr�XÞQ ð6¼ H�1: QTr� �Q ¼ H�1: QTðQrQTÞ�Q
¼ H�1:r�� Þ

This leads to the irrational result that the deformation is induced, i.e. d 6¼ O even
if the stress observed by the coordinate system rotating ðX 6¼ O) with the material

itself does not change, i.e. r� � ¼ O. This is caused by the non-objectivity of
material-time derivative of tensor, while the strain rate d is not a material-time
derivative of tensor but is the original tensor defined so as to obey the objective
transformation by excluding the continuum spin tensor w from the velocity gradient
tensor l. In the next section, the objective time-derivative of tensor will be intro-
duced which is based on the rate of tensor observed by the coordinate system
deforming/rotating with material itself, satisfying the objectivity.
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4.4 Convected Time-Derivative of Tensor

The objective rate of tensor describing the physical quantity must be independent of
the spin of rigid-body rotation and thus it has to be given primarily by the convected
rate, i.e. the rate of tensors observed by the coordinate system deforming and
rotating with material itself, i.e. the convected (or convective or embedded) coor-
dinate system in which the coordinate axes are etched in material itself. The con-
vected rate, i.e. convected time-derivative is the generalization of the Lie derivative
(cf. e.g. Truesdell and Toupin; Marsden and Hughes 1983, 1960; Bonet and Wood
1997; Simo 1998; Belytschko et al. 2014; de Souza-Neto et al. 2008). The con-
vected coordinate system turns to the curvilinear coordinate system in general as a
deformation proceeds. Therefore, it is required first to study the mathematics on the
general curvilinear coordinate system in order to capture the exact physical inter-
pretation of the objective rate tensors. However, it is beyond the level of this book.
One can refer to Hashiguchi (2012) for the comprehensive. In what follows, the
explanation for the objective rate tensor will be devised so as to be understood
without the detailed mathematical formulation in the curvilinear coordinate system.

(1) Description in convected bases

Consider the embedded primary base fGIg in the reference configuration, which
becomes fgi(t)g in the current configuration as the deformation of material is
induced. Then, let the reciprocal bases for the primary bases fGIg and fgi(t)g be
denoted by fGIg and fgi(tÞg, respectively, noting the definition in Eq. (1.45). Here,
it should be noted that the reciprocal base fgi(tÞg can be embedded under a pure
rotation of material but it cannot be embedded under a deformation of material
because it does not keep the reciprocal relation to the primary base fgi(t)g if
deformation is induced. They satisfy

GI �GJ ¼ dJI ; gi(t) � g j(tÞ ¼ d j
i ð4:30Þ

by virtue of Eq. (1.46). In addition, the following tensors are the generalized
expressions of the identity tensor as can be confirmed by Eq. (1.105), while the
identity tensor is called metric tensor in the general Euclidian space described in the
curvilinear coordinate system.

G � GI �GI ¼ GI �GI

¼ GIJGI �GJ ¼ GI
JGI �GJ

¼ GJ
IG

I �GJ ¼ GIJGI �GJ

g(t) � gi(t)� gi(tÞ ¼ gi(t)� gi(t)

¼ gij(t)gi(t)� gj(tÞ ¼ gij(t)gi(t)� g j(t)

¼ g j
i (t)g

i(t)� gj(tÞ ¼ gij(t)gi(t)� g j(t)

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð4:31Þ
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setting GIJ � GI �GJ ; GI
J � GI �GJ ¼ dIJ , G

J
I � GI �GJ ¼ dJI ; GIJ � GI �GJ and

gij � gi � g j; gij � gi � gj ¼ dij, g j
i � gi � g j ¼ d j

i ; gij � gi � gj. The vector and the
tensor based in the reference and the current configurations are called the
Lagrangian vector and tensor and the Eulerian vector and tensor, respectively. In
principle, the Lagrangian and the Eulerian vectors and tensors and their indices are
denoted by the uppercase and the lowercase letters, respectively. Further, the tensor
based in both of the reference and the current configurations is called the
Lagrangian–Eulerian or Eulerian–Lagrangian two-point tensor, and they are
denoted by the uppercase letter, and their indices are denoted by using both of the
uppercase and the lowercase letters so as to specify the base vectors in which they
are based. The symbol (t) specifying the quantities in the current time is omitted
below for the sake of simplicity. The necessity for introducing the primary and the
reciprocal bases can be recognized from the typical example that the deformation
gradient tensor F, which is the most basic variable for describing the deformation, is
specified by the exploiting them as will be shown below.

Regarding the infinitesimal line-element vector dX in the reference configuration
and the infinitesimal line-element dx in the current configuration to be the primary
base vectors GI and gi, respectively, in Eq. (2.15), we obtain the relations between
the reference and current base vectors as follows:

gi ¼ dIiFGI ; GI ¼ diIF
�1gi ð4:32Þ

F ¼ diIgi �GI ; FT ¼ diIG
I � gi ð4:33Þ

F�1 ¼ dIiGI � gi; F�T ¼ dIig
i �GI ð4:34Þ

gi ¼ diI F
�TGI ; GI ¼ dIiF

Tgi ð4:35Þ

from which we have

g� i ¼ dIiF
�
GI ¼ F

�
F�1gi ¼ lgi

g� i ¼ dIiF
� �TGI ¼ F

� �TFTgi ¼ �F�TF
� Tgi ¼ �lTgi

)
ð4:36Þ

noting Eq. (2.74) and I
� ¼ ðFF�1Þ� ¼ F

�
F�1 þFF

� �1 ¼ F
� �TFT þF�TF

� T ¼ O.
While the deformation gradient F is the two-point tensor based in both the current
and the reference configurations, it is further regarded to be the two-point (mixed)
identity tensor in the convected bases, i.e. the reference reciprocal base GI and the
current primary base gi from Eq. (4.33).

Vector and tensor in the current base are described by Eqs. (1.44), (1.105) and
(1.106) as follows:
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v = (v � gr)gr ¼ (v � gr)g
r ð4:37Þ

t = (gr � tgs)gr � gs = (gr � tgs)gr � gs = (gr � tgs)gr � gs = (gr � tgs)g
r � gs ð4:38Þ

noting

tijei � ej = (ei � tej)ei � ej

¼

f½ðei � gr)g
r] � t[(ej � gs)g

s	gðei � gp)gp � (ej � gq)gq
= (gr � tgs)[(ei � gr)ei � gp]gp � [(ej � gs)ej � gq]gq
= (gr � tgs)(gr � gp)gp � (gs� g

q)gq
= (gr� tgs)gr � gs

f½ðei � gr)g
r] � t[(ej � gs)gs	gðei � gp)gp � (ej � gq)g

q

= (gr � tgs)gr � gs

f½ðei � gr)gr] � t[(ej � gs)g
s	gðei � gp)g

p � (ej � gq)gq
= (gr � tgs)gr � gs

f½ðei � gr)gr] � t[(ej � gs)gs	gðei � gp)g
p � (ej � gq)g

q

= (gr � tgs)g
r � gs

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

where the components in the rectangular base are denoted by the roman letter tij in
order to distinguish them from the components denoted by the italic letters tij in the
convected bases. The following expressions in the embedded coordinate system
hold from Eqs. (4.37) and (4.38).

v ¼ vigi ¼ vigi ð4:39Þ

t ¼ tijgi � gj ¼ ti� jgi � g j ¼ t� ji g
i � gj ¼ tijgi � g j ð4:40Þ

where

vi ¼ v � gi; vi ¼ v � gi ð4:41Þ

tij ¼ gi � tg j, ti� j ¼ gi � tgj, t� ji ¼ gi � tg j, tij ¼ gi � tgj ð4:42Þ

Here, note that the opposite combination of the contravariant and the covariant
(see Appendix B) holds between component and base vector of tensor in general,
while this fact is obvious for vector by virtue of Eq. (1.47).

(2) Pull-back and push-forward operations

The objective time-derivative of tensor would be no more than the rate of variation
in tensor observed from the material itself. Then, in order to derive it, we have to
incorporate the tensor which changes only when the state of physical quantity is
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observed to change by the material itself. To this end, we incorporate the tensors
defined in the following.
Eulerian tensor: The tensor based in the current configuration, i.e. standing on the
current base vectors is called the Eulerian tensor (e.g. b, V, e, RE, l, d, w, ω, ΩE,
ΩR, σ, τ obeying t* = QtQT).
Lagrangian tensor: The tensor based in the reference configuration, i.e. standing on
the reference base vectors is called the Lagrangian tensor (e.g. C, U, E, B, RL, ΩL,
S, B obeying T*= T).

Here, we should notice the following facts.

1) The Eulerian and the Lagrangian tensors possess the same components in the
convected coordinate system. Therefore, they are derived by changing the
base vectors from each other.

2) The Eulerian tensor is changeable but the Lagrangian tensor remains unal-
tered when the state observed from the material itself, i.e. components in the
convected coordinate system does not change because the current base
vectors are changeable but the reference base vectors remain unaltered in the
convected coordinate system. In other words, the Eulerian tensor is influ-
enced by the rigid-body rotation but the Lagrangian tensor is independent of
that, describing the variation of state observed from the material itself. Here,
on the other hand, note that one can represent tensors in any coordinate
system. However, the variational rates of physical quantities observed from
material itself, which can be adopted in constitutive relation, cannot be
described simply in the orthogonal coordinate system.

3) Variation of physical quantity in material itself can be described by the
Lagrangian tensor without the influence of superposed rigid-body rotation,
while the Eulerian tensor is influenced by the superposed rigid-body rotation.
This advantage of the Lagrangian tensor is utilized for the objective
time-integration of tensor-valued quantities in numerical calculation as will
be described in Sect. 20.10.

Two-point tensor: The tensor based in both the current and the reference
configurations, i.e. standing on the current and reference base vectors is called the
two-point tensor (e.g. F, R, P(= PT) obeying T* = QT or TQT).

The transformation from the Eulerian tensor to the Lagrangian tensor and its inverse
are called the pull-back and the push-forward operations, respectively, and executed
bymultiplying the two-point tensor (Lagrangian-Eulerian tensor, e.g. F;F�T ;R for the
pull-back and Eulerian-Lagrangian tensor, e.g. FT ;F�1;RT for the push-forward
from the left and their inverse ones from the right) describing the deformation and/or
rotation in general. In what follows, the concrete examples by the deformation
gradient tensor are shown noting Eqs. (4.33), (4.34), (4.39) and (4.40) as follows:

v
 G ¼ dIi v

iGI ¼ F�1v; v
 

G ¼ diIviG
I ¼ FTv

V
!g ¼ diIV

Igi ¼ FV; V
!

g ¼ dIi VIgi ¼ F�TV
ð4:43Þ
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t
 GG ¼ dIid

J
j t
ijGI �GJ ¼ F�1tF�T ; t

 G
�G ¼ dIid

j
J t
i
� jGI �GJ ¼ F�1tF

t
 �G
G ¼ diId

j
J t

� j
i GI �GJ ¼ FT tF�T ; t

 
GG ¼ diId

j
J t
ijGI �GJ ¼ FT tF

)

T
!gg ¼ diId

j
JT

IJgi � gj ¼ FTFT ; T
!g

� g ¼ diId
J
j T

I
� Jg

i � g j ¼ FTF�1

T
!�g

g ¼ dIid
j
JT

� J
I gi � gj ¼ F�TTFT ; T

!
gg ¼ dIid

J
j T

IJgi � g j ¼ F�TTF�1

9>=
>;
ð4:44Þ

noting
F�1v ¼ dIiGI � givrgr ¼ dIi v

iGI

F�1tF�T ¼ dIiGI � gitpqgp � gqd
J
j g

j �GJ ¼ dIiGI t
ijdJj �GJ

as the example of Eq. (4.44)1. The over arrow turning left ð Þ and right ð!Þ is
added for the pull-back and the push-forward operation, respectively. Further, the
uppercase letter index G is added in order to specify the replacement of the current
base to the reference base in the pull-back operation and the lowercase letter index
g is added in order to specify the replacement of the reference base to the current
base in the push-forward operation, and they are put in the lower or upper position
for the covariant or the contravariant component, respectively, while these symbols
were devised by Hashiguchi (2011). Here, note that the pulled-back and
push-forward operations of tensors in higher order than two cannot be expressed in
the symbolic notations by the multiplications of the deformation gradient tensor but
can be represented only by exchanging the current base vectors to the reference
base vectors and its inverse as far as quite particular definitions of tensor operations
are not adopted.

It is noteworthy that the differences between the contravariant and the covariant
forms in the pull-back and the push-forward operations diminish when only rotation

is taken account leading to F ¼ F�T ¼ R; F�1 ¼ FT ¼ RT . The tensor R t
 ¼ RT tR

pulled back only by the rotation, regarding F ¼ R, is called the rotation-free tensor
or rotation-insensitive tensor since the rotation R is excluded from the Eulerian
tensor.

The Lagrangian tensors C, E and S described in Sect. 4.2 are derived by the
pull-back from the Eulerian tensors g, e and s as follows:

C ¼ g
 

GG ¼ diId
j
JgijG

I �GJ ¼ FTgF ¼ FTF

E ¼ e
 

GG ¼ diId
j
JeijG

I �GJ ¼ FTeF

S ¼ s
 

GG ¼ dIid
J
j sijGI �GJ ¼ F�1sF�T

and the two-point tensors F and P are derived by the pull-back from the Eulerian
tensors g and s as follows:
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F ¼ g
 ĝ

�G ¼ diIgi �GI ¼ gi � gidrIgr �GI

g
 

ĝG ¼ d j
Jgijg

i �GJ ¼ gijgi � g jdrJgr �GJ

( )
¼ gF

P ¼ s
 ĝG ¼ dJj sijgi �GJ ¼ sijgi � gjd

J
rg

r �GJ

s
 �G

ĝ ¼ dJj s� j
i g

i �GJ ¼ s� j
i g

i � gjd
J
rg

r �GJ

8<
:

9=
; ¼ sF�T

noting Eqs. (4.32), (4.35) and (4.44). The over hat symbol ð^Þ specifies the
un-exchange of base vector. P is the induced two-point tensor from the Kirchhoff
stress s. On the other hand, F is regarded as the inherent two-point tensors. Here, it
can be called the identity tensor in the broad sense, since it possesses the compo-
nents of the Kronecker’s delta in both the current and the reference bases. F was
called the two-point tensor in Eq. (2.14) for the orthogonal coordinate system,
where it was described by the components of position vectors in the current and the
reference configurations in the orthogonal coordinate systems. Then, the physical
meaning of the two-point tensor would be obscure by the expression in the
orthogonal coordinate system. On the other hand, the physical meaning of the
two-point tensor would be captured clearly by the expression in the convected
coordinate system such that it is based extending over the reference and the current
bases which are not arbitrary but composed by the definite sets of the embedded
base vectors.

The Eulerian tensor changes even when the state of physical quantity observed
from the material itself does not change under a material rotation, since the base
vectors change even by a rotation of the material. On the other hand, the Lagrangian
tensor pulled-back to the ref-erence configuration with the fixed base vectors does
not change in the material rotation and thus it called the rotation-free tensor, while
the Lagrangian tensor inherits the components in the Eulerian tensor. Then, the
constitutive relation described by the Lagrangian tensors is used in the deformation
analysis. The Eulerian base vectors are calculated by the push-forward op-eration of
the Lagrangian (reference) base vectors through the deformation gradient tensor,
which is required to capture the Eulerian tensor in the current configuration from
the Lagrangian tensor.

The physical and geometrical interpretations for the relations between the
above-mentioned Eulerian and Lagrangian tensors can be referred to Hashiguchi
and Yamakawa (2012).

(3) Convected time-derivatives: Objective rate of tensor

The material-time derivative of the vector v is described in the current primary base
fgig and the current reciprocal base fgig from Eq. (4.39) by

v� ¼
ðvrgrÞ� ¼ v�

r
gr þ vrg� r

ðvrgrÞ� ¼ v� rgr þ vrg
� r

(
ð4:45Þ
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The first terms in the right-hand sides of Eq. (4.45) represent the rates of the
vector v observed from the embedded coordinate system and thus they are called
the convected time-derivative. In other words, they mean the rate of physical
quantity observed from the embedded coordinate system having the base vectors
composed of line-elements etched in a material. Also, they are interpreted as the
rates observed from material itself and thus they are independent of rigid-body
rotation, possessing the objectivity. Here, however, note that the rotation of the
embedded base is different from the rotation of the substructure of material in
general as known from the fact that the movements of line-elements etched in
material coincides with the deformed geometrical appearance of material but it does
not necessarily coincide with the movements of material fibers representing the
substructure of anisotropic material. The convected time-derivatives of vector are
expressed from Eq. (4.45) as

v
�! g � v� rgr ¼ v� � vrg� r ¼ v� � lv ¼ v� þFF

� �1v ¼ FðF�1vÞ� ¼ ðv G
!

Þ�g

v
�! 
g � v� rgr ¼ v� � vrg

� r ¼ v� þ lTv ¼ v� þF�TF
� Tv ¼ F�TðFTvÞ� ¼ ðvG 

!
Þ�g

ð4:46Þ

by using Eq. (4.36), noting vrg� r ¼ vrlgr ¼ lv.
Analogously to the vector described above, the material-time derivative of tensor

in the current base is described from Eq. (4.40) by

t
� ¼

ðtijgi � gjÞ� ¼ t
�ijgi � gj þ tijg� i � gj þ tijgi � g� j

ðti� jgi � g jÞ� ¼ t
�i

� jgi � g j þ ti� jg
�
i � g j þ ti� jgi � g� j

ðt� ji gi � gjÞ� ¼ t
�� j
i g

i � gj þ t� ji g
� i � gj þ t� ji g

i � g� j
ðtijgi � g jÞ� ¼ t

�
ijgi � g j þ tijg

� i � g j þ tijgi � g� j

8>>>><
>>>>:

ð4:47Þ

Exploiting Eqs. (1.106) and (4.36) in Eq. (4.47), the following four types of
convected time-derivatives are derived.

t
�! gg

� t
�ijgi � gj ¼ t

� � lt� t lT ¼ t
� þFF

� �1tþ tF
� �TFT ¼ FðF�1tF�TÞ�FT ¼ ð t GG

!
Þ�gg

t
�! g

�g � t
�i
�j gi � g j ¼ t

� � ltþ t l ¼ t
� þFF

� �1tþ tF
�
F�1 ¼ FðF�1tFÞ�F�1 ¼ ð t G

�G

!
Þ�g�g

t
�! g

�g � t
� �j
i g

i � gj ¼ t
� þ lT t� t lT ¼ t

� þF�TF
� T tþ tF

� �TFT ¼ F�TðFT tF�TÞ�FT ¼ ð t
 �G

G

!
Þ��gg

t
�! 
gg � t

�
ijgi � g j ¼ t

� þ lT tþ t l ¼ t
� þF�TF

� T tþ tF
�
F�1 ¼ F�TðFT tFÞ�F�1 ¼ ð t

 
GG

!
Þ�gg
ð4:48Þ

The notations v
�! g
; t

�! gg

; t
�! g

�g, etc. were used first by Hashiguchi (2011) to
specify the objective time-derivatives and their types of contravariant and covariant,
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where the indices “g” are added in the upper and lower positions in order to specify
the contravariant and the covariant expressions (component positions), respectively,
of vector and tensor (Appendix B). The objective time-derivative is the rate of
tensor observed from material itself but it can be also interpreted from Eqs. (4.46)
and (4.48) to be the current expression of rate of Lagrangian vector or tensor
(transformation of vector or tensor physical quantity described in the reference base
to the current base), the components of which is independent of a rotation of
material. There exist the two and the four types of convected rates of vector and

tensor, respectively, as shown in Eqs. (4.46) and (4.48). In particular, t
�! gg

and t
�! 
gg

are the general forms of the Oldroyd rate (Oldroyd, 1950)) and the Cotter-Rivlin
rate (Cotter and Rivlin, 1955), respectively, while the former is called the Lie
derivative based on the hyperelasticity (cf. e.g. Bonet and Wood 1997; Simo 1998;
Belytschko et al. 2014; de Souza-Neto et al. 2008).

The convected derivatives in Eqs. (4.46) and (4.48) satisfy the objectivity
obviously because they are based on the rates of tensor observed by a material
itself. In addition, this fact can be mathematically confirmed as shown below for
Eqs. (4.46)1 and (4.48)1 as examples, noting Eq. (4.10).

v�g
�! ¼ F�ðF��1v�Þ� ¼ QF½ðQFÞ�1Qv	� ¼ Q½FðF�1vÞ�	 ð4:49Þ

or

v�g
�! ¼ v�

� � l�v� ¼ ðQvÞ� �Qðl�XÞQTQv ¼ Q
�
vþQv� �Qðl�Q

� TQÞv
¼ Qv� þQ

�
v�QðlþQTQ

� Þv ¼ Qðv� � lvÞ ð4:50Þ

and

t�gg
�! ¼ F�ðF��1t�F��TÞ�F�T ¼ QF½ðQFÞ�1QtQTðQF�TÞ	�ðQFTÞ

¼ QFðF�1QTQtQTQF�TÞ�FTQT ¼ Q½FðF�1tF�TÞ� FT 	QT ð4:51Þ

or

t�gg
�! ¼ t

�� � l�t� � t�l�T ¼ ðQtQTÞ� �Qðl�XÞQTQtQT �QtQT ½Qðl�XÞQT 	T

¼ Q
�
tQT þQt

�
QT þQtQ

� T �Qðl�XÞtQT �QtQTQðlT �XTÞQT

¼ Q
�
tQT þQt

�
QT þQtQ

� T �Qðl�Q
� TQÞtQT �QtQTQðlT �QTQ

� ÞQT

¼ Q
�
tQT þQt

�
QT þQtQ

�
T �QltQT�QQTQ

� T tQT �QtlTQT�QtQ
� TQQT

¼ Qðt� � lt� tlTÞQT ð4:52Þ
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4.5 Corotational Rate Tensors

The convected time-derivatives satisfy the objectivity. However, the objectivity is
satisfied even in specialized convected time-derivatives as will be shown below by
the particular case in which only the rotation of material is considered.

Let the spin tensors obeying the following coordinate transformation which is
seen in Eqs. (4.17), (4.19), etc. be designated by the symbol x ( = �xT )
collectively.

x� ¼ Qðx�XÞQT ¼ QxQT þX ð4:53Þ

It is readily known from Eqs. (4.46) and (4.48) that the rates of vector and tensor
obtained by replacing the velocity gradient l to the spin tensor x, i.e. by ignoring
the rate of deformation are described as follows:

v�� ¼ v� � xv ð4:54Þ

t
�� ¼ t

� � xtþ tx ð4:55Þ

which obey the objective transformation rules and are referred to as the corotational
rate or corotational time-derivative. Their fulfillment of objectivity is obvious from
the proof for the convected time-derivatives described in the foregoing, noting that
x obeys the identical transformation rule to that of l. However, Eqs. (4.54) and
(4.55) are inapplicable to deformation analysis as far as x is not given explicitly as
a physical quantity. Needless to say, they must be chosen so as to reflect the
rotational rate of material appropriately. In what follows, typical explicit corota-
tional rate vectors and tensors will be shown.

The replacement of F = R in Eqs. (4.46) and (4.48) leads Eqs. (4.54) and (4.55) to
the corotational rate with the relative spin x ¼ XR tensor in Eq. (2.85) as follows:

v�� R � RðRTVÞ� ¼ v� �XRv ð4:56Þ

t
��R � RðRT tRÞ� RT ¼ t

� �XRtþ tXR ð4:57Þ

t
��R in Eq. (4.57) is called the Green-Naghdi rate (Green-Naghdi 1965). The
Green-Naghdi rate depends on the initial value of R describing the rotation of
material. In other words, it is influenced by the estimation of initial state of rotation
even in isotropic materials. Therefore, it lacks the objectivity in the broad physical
sense, which requires the independence of deformation behavior on the rigid-body
rotation.

Further, by choosing x ¼ wð¼tR
� ðtÞÞ, i.e. the relative spin in Eq. (2.81), Eqs.

(4.54) and (4.55) lead to
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v��w � v� � wv ð4:58Þ

t
��w � t

� � wtþ tw ð4:59Þ

Equation (4.59) is called the Zaremba-Jaumann rate (Zaremba 1903; Jaumann
1911).

The accurate numerical time-integration scheme of the corotational rate tensors
will be described in Sect. 20.10.

The objectivity is the common requirement for constitutive equations. One can
make various objective rates which are given by the convected rates and classified
as shown in Eq. (4.46) for vector and in Eq. (4.48) for second-order tensor.
However, the other consideration is required for the judgment which one of them is
appropriate. In fact, the objective rates described above are determined solely by a
geometrical change of outward appearance of material. On the other hand, the spin
which reflects the mechanical response is the spin of substructure (microstructure)
in material. However, the substructure is invisible from the outward appearance.
Generally speaking, the spin of the substructure is not so large as that given by the
continuum spin. An explicit form of the spin of substructure in the elastoplastic
deformation will be described in Chap. 16.

4.6 Various Stress Rate Tensors

Various rates of the Cauchy stress r and the Kirchhoff stress s ð¼ JrÞ can be
obtained from the aforementioned convected and corotational time-derivatives as
will be shown in this section. Corotational time-derivative with a spin tensor is
designated by the symbol ð��Þ as shown in the last section. On the other and, the
time-derivatives other than corotational time derivatives are designated by the
symbol ðDÞ.
(a) Contravariant convected rates

Based on Eq. (4.48)1, the contravariant convected rate of the Cauchy stress r is
given by

r
DOl � r

�! gg ¼ FðF�1rF�TÞ�FT ¼ FS=J
�

FT ¼ r� � lr� rlTð¼ r
DOlTÞ ð4:60Þ

which is termed the Oldroyd rate of Cauchy stress (Oldroyd 1950). Likewise, it
holds for the Kirchhoff stress that
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s
DOl� s

�! gg ¼ FðF�1sF�TÞ�FT ¼ FS
�
FT ¼ s� � ls� slTð¼ s

DOlTÞ ð4:61Þ

which is termed the Oldroyd rate of Kirchhoff stress.
Further,

r
DTr � J�1s

DOl ¼ J�1ðJrÞ
�! gg

¼ J�1FðF�1ðJrÞF�TÞ�FT ¼ J�1FS
�
FT ¼ r

DOl þr tr d

¼ r� � lr� r lT þr tr d ð¼ r�� TrTÞ
ð4:62Þ

is termed the Truesdell rate of Cauchy stress.

(b) Covariant-contravariant convected rates

The covariant-contravariant convected rate of the Kirchhoff stress s is given from
Eq. (4.48)3 as

ð4:63Þ

The particular case of the rate in Eq. (4.63) is given by

Ps
D � s

�! � g

ĝ ¼ ðsF�TÞ �FT ¼ P
�
FT ¼ s� � s lT ð6¼ Ps

DTÞ ð4:64Þ

which is termed the relative 1st Piola-Kirchhoff stress rate. The following stress
rate is defined as the nominal stress rate in Eqs. (3.36) and (3.37).

Pr
D � 1

J Ps
�� ¼ r� � rlT þr tr d ð6¼ Pr

DTÞ ð4:65Þ

which is the nominal stress rate and used for the equilibrium equation of rate-form
in the current configuration as described in Eq. (3.41).

(c) Covariant convected rates

The covariant convected rate of Cauchy stress is given from Eq. (4.48)4 as

r
DCR � r

�! 
gg ¼ F�TðFTrFÞ�F�1 ¼ r� þ lTrþrl ð¼ r

DCRTÞ ð4:66Þ

which is termed the Cotter-Rivlin rate of Cauchy stress (Cotter and Rivlin 1995).
Likewise, the covariant convected rate of Kirchhoff stress is given by
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s
DCR � s

�! 
gg ¼ F�TðFTsFÞ�F�1 ¼ s� þ lTsþs l ð¼ s

DCRTÞ ð4:67Þ

(d) Corotational rates

The following stress rate based on Eq. (4.57) is termed the Green-Naghdi rate of
Cauchy stress (Green and Naghdi 1965).

r�� R � r
�! R ¼ RðRTrRÞ�RT ¼ r� �XRrþrXR ð¼ r�� RTÞ ð4:68Þ

Similarly, the Green-Naghdi rate of Kirchhoff stress is given by

s�� R � s
�! R ¼ RðRTsRÞ�RT ¼ s� �XRsþsXR ð¼ s�� RTÞ ð4:69Þ

The stress rate based on Eq. (4.59) is given by

r�� w � r� � wrþrw ð¼ r�� wTÞ ð4:70Þ

which is termed the Zaremba-Jaumann rate of Cauchy stress (Zaremba 1903;
Jaumann 1911). Likewise, it follows for the Kirchhoff stress that

s�� w � s� � wsþsw ð¼ s�� wTÞ ð4:71Þ

The stress rate tensors described above are listed in Table 4.1. Here, it should be
noted that objective rates must be used also for all internal variables in addition to
objective stress rate and strain rate.

The stress rate tensors based on the convected and the corotational
time-derivatives satisfy the objectivity. Therefore, the stress rate tensors shown in
this section are objective quantities.

Table 4.1 Various stress rate tensors

Oldroyd rate of Cauchy stress: r
�� Ol � r� � lr� rlT ð¼ r

�� OlT Þ
Truesdell rate of Cauchy stress: r�� Tr � r�� Ol þr tr d ¼ r� � lr� rlT þr tr d ð ¼ r�� TrT Þ
Covariant-contravariant convected rate of the Kirchhoff stress:

Nominal stress rate: Pr
D � 1

J Ps
D ¼ r� � rlT þr tr d ð6¼ Pr

D T Þ

Cotter-Rivlin rate of Cauchy stress: r
D
CR � r� þ lTrþrl ð¼ r

DCRT Þ
Green-Naghdi rate of Cauchy stress: r

�� R � r� �XRrþrXR ð¼ r
�� RTÞ

Zaremba-Jaumann rate of Cauchy stress: r
�� w � r� � wrþrw ð¼ r

�� wT Þ
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The above-mentioned rate tensors are used for rate-type constitutive equations.
In particular, the Oldroyd rate appears in the current rate form of the hyperelastic
constitutive equation. The other rates are used for expressions of its variations as
will be described in Chap. 5. The corotational time-derivatives are used in the
derivation of the consistency condition from the yield condition.

Constitutive equation for irreversible deformation exhibiting the loading-path
dependence has to be formulated in a rate-form in terms of objective stress rate and
objective strain rate. On the other hand, a hyperelastic constitutive equation must be
formulated in terms of objective stress and objective strain. Unfortunately, however,
it is difficult to find an objective rate of strain, although various objective rates of
stress have been found as explained above in detail. In this situation, the particular
spin, called the logarithmic spin, by which the corotational rate of the
Eulerian-logarithmic (Hencky) strain lnV in Eq. (2.68)2 coincides with the strain
rate d, was proposed and the hyperelastic constitutive equation was derived from
the hypoelastic constitutive equation in terms of the logarithmic rate of Cauchy
stress and the strain rate d by Xiao and his colleagues (Xiao 1995; Xiao et al. 1997,
1999). The formulation of the logarithmic spin is explained in Appendix C.

4.7 Time Derivative of Scalar-Valued Tensor Function

Scalar-valued tensor functions of stress and internal variables appear often in
continuum mechanics as seen in the strain energy function and the yield function.
Then, the time-derivative of scalar-valued tensor function is required in order to
derive the rate-type relation of variables, e.g. the consistency condition of yield
condition. The time-derivative of scalar function is independent of rigid-body
rotation and thus it can be given primarily by its material-time derivative. Here, it
should be noticed that the internal variables are formulated by the objective
time-derivatives and thus the consistency condition must be transformed to the
objective time-derivative. It can be proved that the material-time derivative of
scalar-valued tensor function is transformed only to its corotational time-derivative.
This fact would seem physically obvious but it must be proved mathematically. To
this end, its mathematically exact proof for scalar valued function of general tensor
will be given below, referring to the previous studies by Dafalias (1985, 1998;
2011) for vector and second-order tensor and Hashiguchi (2007b) for general
tensor.

The corotational rate of general tensor is defined by extending Eq. (4.54) for the
vector and Eq. (4.55) for the second-order tensor as follows:

t
�� ¼ R

_ ðR_T t½ 	½ 	 Þ�
h ih i

t
�� ¼ R

_ ðR_T t½ 	½ 	 Þ�
h ih i

ð4:72Þ
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where use is made of the symbol ½ 	½ 	 for general objective transformation in

Eq. (1.84) with the replacement Q ! R
_T . Here, noting f

�ðtÞ ¼ f
�ðR_T t½ 	½ 	Þ because of

the requirement f ðtÞ ¼ f ðR_T t½ 	½ 	Þ for scalar variable, one has

f
�ðtÞ ¼ f

�ðR_T t½ 	½ 	Þ ¼ @f ðR_T t½ 	½ 	Þ
@ðR_T t½ 	½ 	Þ

� ðR_T t½ 	½ 	Þ� ¼ R
_T @f ðtÞ

@t

� �� �
� ðR_T t½ 	½ 	Þ�

¼ @f ðtÞ
@t

� R_ ðR_T t½ 	½ 	Þ�
h ih i ð4:73Þ

f
�
(tw1w2...

Þ ¼ @f (R
_

u1w1R
_

u2w2 . . .tu1u2...)

@(R
_

s1p1R
_

s2p2 . . .ts1s2...)
(R
_

v1p1R
_

v2p2 . . .tv1v2...)�

¼ @f (tw1w2...)
@ts1s2...

R
_

s1p1R
_

s2p2 . . .(R
_

v1p1R
_

v2p2 . . .tv1v2...)�

ð4:74Þ

where the symbol * designates the full contraction between derivative components
in order between derivative components, i.e. t � s ¼ tp1p2...pmsp1p2...pm . The deriva-
tion of Eq. (4.73) is shown for vector and second-order tensor as follows:

f
�ðvÞ ¼ f

�ðR_TvÞ ¼ @f ðR_TvÞ
@ðR_TvÞ

� ðR_TvÞ� ¼ R
_T @f ðvÞ

@v
� ðR_TvÞ� ¼ @f ðvÞ

@v
�R

_ðR_TvÞ�

ð4:75Þ

f
�ðtÞ ¼ f

�ðR_T tR
_Þ ¼ @f ðR_T tR

_Þ
@ðR_T tR

_Þ
:ðR_T tR

_Þ� ¼ R
_T @f ðtÞ

@t
R
_T :ðR_T tR

_Þ�

¼ @f ðtÞ
@t

: R
_ðR_T tR

_Þ�R_T

ð4:76Þ

Equations (4.73), (4.75) and (4.76) can be satisfied by the corotational rate in
Eq. (4.72) amongst objective rates. Then, we have the following relation.

f
�ðtÞ ¼ @f ðtÞ

@t
� t� ¼ @f ðtÞ

@t
� t��

f
�ðtq1q2���qmÞ ¼

@f ðtq1q2���qmÞ
@tp1p2���pm

t
�
p1p2���pm ¼ @f ðtq1q2���qmÞ

@tp1p2���pm
t
��
p1p2���pm

ð4:77Þ
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which is described for vector and second-order tensor as follows:

f
�ðvÞ ¼ @f ðvÞ

@v
� v�� ; f

�ðvrÞ ¼ @f ðvrÞ
@vi

v�� i ð4:78Þ

f
�ðtÞ ¼ @f ðtÞ

@t
: t

��
; f

�ðtrsÞ ¼ @f ðtrsÞ
@tij

t
��
ij ð4:79Þ

It follows from Eq. (4.74) that

@f ðtw1w2w3...Þ
@ts1s2s3���

R
_

s1p1R
_

s2p2R
_

s3p3 � � � ðR
_
�

v1p1R
_

v2p2R
_

v3p3 � � � þR
_

p1v1R
_
�

p2v2R
_

p3v3 � � � þ � � �Þtv1v2v3���

¼ @f ðtw1w2w3���Þ
@ts1s2s3���

ðR_s1p1R
_
�

v1p1ds2v2ds3v3 � � � þ ds1v1R
_

s2p2R
_
�

v2p2ds3v3 � � � þ � � �Þtv1v2v3���

¼ @f ðtw1w2w3���Þ
@ts1s2s3���

ðxv1s1 tv1s2s3��� � � � þxs2v2 ts1v2s3��� � � � þ � � �Þ ¼ 0 ð4:80Þ

which is reduced for vector and second-order tensor as follows:

@f ðvÞ
@v

�xv ¼ @f ðvuÞ
@vr

xrivi ¼ vi
@f ðvuÞ
@vr

xri ¼ 0; i:e: tr v� @f ðvÞ
@v

� �
x

� �
¼ 0

ð4:81Þ

tr
@f ðtÞ
@t

tT � tT
@f ðtÞ
@t

� �
x

� �
¼ 0 ð4:82Þ

The fulfillments of Eq. (4.81) and (4.82) require for the tensors in the brackets ð Þ
to be zero or symmetric tensor, while Dafalias (1998) has required for the latter to
be zero tensor. The fulfillment of Eq. (4.81) is easily known for f ðvÞ ¼ sv � v
because of @f ðvÞ = @v ¼ 2sv with Eq. (1.130)3, and that of Eq. (4.82) for the
second-order symmetric tensor t because of ð@f ðtÞ = @tÞtT � tTð@f ðtÞ = @tÞ ¼ O.

Equation (4.77) is extended for plural variables as follows:

f
�ðt1; t2; � � �Þ ¼ @f ðt1; t2; � � �Þ

@t1
� t�1 þ @f ðt1; t2; � � �Þ

@t2
� t�2 þ � � �

¼ @f ðt1; t2; � � �Þ
@t1

� t��1 þ @f ðt1; t2; � � �Þ
@t2

� t��2 þ � � � ¼ f
��ðt1; t2; � � �Þ

ð4:83Þ

which is shown for the function of two tensors in Belytschko et al. (2014). Here, it
should be noted that the mathematical property does not hold for each term, i.e.
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@f ðt1; t2; � � � ; tm
@ti

� t�i 6¼ @f ðt1; t2; � � � ; tmÞ
@ti

� t��i ðno sum) ð4:84Þ

Scalar-valued functions must be independent of rigid-body rotation so that their
material-time derivative possess a unique value which coincides with their coro-
tational time-derivative as can be confirmed by the above-mentioned proof.
However, they do not lead to the other convected time-derivatives which depend on
the rate of deformation, i.e. velocity gradient. Therefore, corotational time-
derivatives can be adopted in the time-derivatives of scalar functions in constitutive
relations, e.g. a strain energy function and a yield function of tensors in the current
configuration but convected time-derivatives other than corotational rates cannot be
adopted in them.

The most popular scalar-valued tensor functions are the principal invariants of
tensor. Principal invariants of tensor are described by three independent principal
invariants of tensor. Then, the material-time derivatives of the principal invariants
are transformed to the corotational time-derivatives merely by replacing all the
material time-derivatives of tensor to the corotational time-derivatives of tensor as
will be written below.

It follows from Eqs. (4.79) and (4.83) that

I
�
¼ (trt)� ¼ (trt)�� ¼ I : t

��
= tr t

��

II
�
¼ (trt2)� ¼ (trt2)�� ¼ 2tT : t

�� ¼ 2(trðt t�� )
III
�
¼ (trt3)� ¼ (trt3)�� ¼ 3t2T : t

�� ¼ 3(trðt2 t�� )

9>>=
>>; ð4:85Þ

I
� ¼ ðtr tÞ� ¼ tr t

��

II
� ¼ 1

2
½ðtr tÞ2 � tr t2	� ¼ ðtr tÞtr t�� � tr ðtt��Þ

III
� ¼ ðdet tÞ� ¼ ðdet tÞt�T : t

�� ¼ ðdet tÞtr ðt�1t
��Þ

9>>=
>>; ð4:86Þ

for the principal invariants in Eqs. (1.183) and (1.178)–(1.180), noting Eqs. (1.294)
and (1.295). Further, it holds that

ðt1: t2Þ� ¼ t
��
1: t2 þ t1 : t

��
2 ¼ trðtT2 t

��
1Þþ trðtT1 t

��
2Þ ð4:87Þ

for the two tensor variables. If t1 and t2 are commutative (possessing same principal
directions) leading to t1t2 ¼ t2t1 ¼ t1tT2 ¼ tT2 t1, one has

t1 : t
�
2 ¼ t1 : t

��
2; t

�
1: t2 ¼ t

��
1: t2 ð4:88Þ

noting

t1:(t2x� xt2Þ ¼ trft1(t2x)Tg � trft1(xt2)Tg ¼ �tr(tT2 t1x)þ tr(t1tT2x) = 0

ð4:89Þ
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All the equations in Eqs. (4.85)–(4.87) hold for arbitrary corotational tensors as
proved here, although they are written explicitly for the Zaremba-Jaumann rate in
some literatures (e.g. Prager 1961; Belytschko et al. 2014).

4.8 Work Conjugacy

The work rate done for the unit volume in the current configuration is given by
r : dð¼ rijdijÞ. Designating the infinitesimal volumes in a specific region of
material in the reference and the current configurations as dV and dvð¼JdVÞ,
respectively, the work rate w� 0 done per the unit reference volume, i.e. a certain
volume element possessing a fixed mass is given from Eqs. (2.35), (2.45), (2.75),
(2.80), (2.128), (3.13), (3.19) and (3.23) as follows:

w� 0 ¼ r : ddv=dV ¼ trðr dÞJ ¼ trðslÞ

¼
tr½ðsF�TÞðlFÞT 	 ¼ trðPF

� TÞ
tr½ðF�1sF�TÞðFTdFÞ	 ¼ trðSE� Þ ¼ trðSC� =2Þ
trðBB

� Þ

8>><
>>:

leading to

w� 0 ¼ Jr : d ¼ s : d ¼ P : F
� ¼ S :E

� ¼ S :C
�
=2 ¼ B : B

� ð4:90Þ

where

B � 1
2
ðSUþUSÞ ð4:91Þ

which is called the Biot stress tensor. Equation (4.90)7 is derived also as follows:

trðSE� Þ ¼ tr S
1
2
ðUU� þU

�
UÞ

� �
¼ 1

2
trðSUU� þUSU

� Þ

¼ 1
2
trðSUþUSÞU� ¼ trðBB

� Þ
ð4:92Þ

noting Eqs. (2.35), (2.45)1 and (2.61).
By taking account of Eq. (4.90)4 into the relation

w� 0 ¼
X3
i¼1

f i �n� i ¼
X3
i¼1

PNi � ðFNiÞ� ¼
X3
i¼1

PNi �F
�
Ni ¼

X3
i¼1

Ni �F
� TPNi

¼ ðF� TPÞii ¼ tr ðPF
� TÞ

ð4:93Þ
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we can confirm the fact that w
�
0 designates the work rate (power) done in the current

cell with the side vectors ðn1, n2, n3Þ which was the orthogonal unit cell with the
side vectors ðN1, N2, N3Þ ðjjNijj¼ 1Þ in the reference state, noting Eqs. (1.117), (2.
15) and (3.18) with the replacements dA!1 and df!f, as shown in Fig. 4.2.
Besides, the first Piola-Kirchhoff stress is calculated supposing that the force f i on
the current cell formed by the vectors ðn1, n2, n3Þ applies to the reference dell
formed by the vectors ðN1, N2, N3Þ.

The work rate reflecting the constitutive property is not concerned with a current
unit volume but is concerned with a reference unit volume, noting that the mass in
the current unit volume is variable but the mass in the reference unit volume is
invariable. The pairs of stresses and strain rates (or rates of deformation gradient)
shown in Eq. (4.90) are called the work-conjugate pair. Stress and strain rate
tensors in the work-conjugacy pair have to be used for the formulation of consti-
tutive equation.
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