Chapter 19
Crystal Plasticity

The crystal plasticity analysis requires the calculation of the slips in numerous slip
systems. Therefore, it could not be realized by the concept of the conventional
elastoplasticity with the yield surface enclosing a purely-elastic domain, since it
requires the yield judgment and the operation to pull-back the resolved shear stress
to the critical shear stress. Then, unfortunately the creep crystal-plasticity model
proposed by Peirce et al. (1982, 1983) is used widely. It is impertinent such that the
creep shear strain rate is always induced even for the state that the resolved shear
stress is unloaded from the critical shear stress as known from the defect of the
creep model described in Sect. 13.3.

The crystal plasticity analysis can be attained appropriately by introducing the
concept of the subloading surface which is endowed with the distinguished
advantages: (1) Yield judgment is not required and (2) Automatic controlling
function to attract the stress to the yield surface in the plastic loading process is
furnished as described in Chaps. 7, 8, and 9. The pertinent formulation for the
crystal plasticity analysis based on the subloading concept will be given in this
chapter.

19.1 Multiplicative Decomposition of Deformation
Gradient Tensor

The intermediate configuration is obtained by excluding the rigid-body rotation in
addition to the elastic deformation from the current configuration as was postulated
in Chaps. 6 and 12. Therefore, the intermediate configuration is independent of the
rigid-body rotation. Consequently, the deformation gradient F is multiplicatively
decomposed into the elastic deformation gradient F¢ composed of the substructure
rotation tensor R® involving the rigid-body rotation and the right elastic stretch
tensor U¢ and the plastic deformation gradient F¥ as follows (see Fig. 19.1):
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dx = R°dx = R°UdX = F’dX = FdX (19.1)
p ekt 193
Then, it follows that
[F = F’FY = R°UF’] (19.3)
F¢ = R°U¢ = V’R® (19.4)
F’ = R°U’ = VPR? (19.5)

where X, x and X are the position vectors of material particles in the initial (ref-
erence), the current and the intermediate configuration, respectively. X is the
position vector of material particle in the configuration pulled-back by the
substructure rotation R from the current configuration.

The initial and the current configurations are designated by Ky and /C, respec-
tively, and the configurations pulled-back from the current configuration by the
substructure rotation R and by the elastic deformation gradient F¢ are designated as

K and IC, respectively, as shown in Fig. 19.1.

19.2 Strain Rate and Spin

The following decomposition is obtained from Eq. (19.2).
1=1+1r (19.6)

where

v .
I=—=FF"!
ox ’
I° = FeFe ! 1P = L Fe!

I’ = frpr-!

(19.7)
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Fig. 19.1 Multiplicative decomposition in crystal plasticity
based on isoclinic concept (Mandel 1973, 1974)

Further, the following additive decompositions to the symmetric and the
anti-symmetric parts hold.

l=d+w
I =d°+w
P& 4w (19.8)
L'=D"+W
with
d=d°+d
w = w’+w } (19.9)
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where
d = sym[l] = sym[FF ], w = ant[l] = ant[FF ']
d° = sym[l’] = sym[FeFe!], w = ant[I°] = ant[FeF*]

o o - . (19.10)
= sym[L’] = sym| PP, W = ant[L”] = ant[FPF~']

&’ = sym[P’] = sym[F’L°F¢!], w” = ant[l’] = ant[FL"F¢!]

Now, adopt the embedded base (g,, g2, g;) described in Sect. 4.4. Here, the first
primary base vector g; is chosen parallel to the crystal lattice and denoted by s* and
the secondary reciprocal base vector g> by n* in the slip system o, satisfying
s*.n* = 0 by Eq. (4.30), while they are called the lattice vectors, director frame,
director triad, isoclinic triad, etc. Limiting to the two-dimensional deformation,
g;(= g?) is the unit vector (||g;|| = 1) and chosen perpendicular to the base vectors
s* and n*. Further, the base vectors s* and n” in the initial configuration are chosen
to be the unit vectors and denoted by the symbols s§ and n§ (||s3|| = ||nd|| = 1),
respectively, which correspond to the reference base vectors G; and G2, respec-
tively, in Sect. 4.4. Reminding the aforementioned assumption that the intermediate
configuration is independent of the rigid-body rotation and noting the simple shear
deformation along the crystalline lattice under the plastic incompressibility, the base
vectors are kept unchanged as sj and nj in the process from the initial to the
intermediate configurations (see Fig. 19.1). This physical consequence is referred to
as the isoclinic concept by Mandel (1973, 1974), while “isoclinic” is the Greek
word meaning “same (or constant) direction” as was described in Sect. 6.1.

The current primary base vector s* and its reciprocal base vector n* are related to
the initial base vectors sj and n§ by Eqgs. (4.32) and (4.35), replacing F to F¢, as
follows:

§* = Fesg — SgFET, Sg _ Feflsot — saFefT
n* = F'n¥ = n2F!, n = F'n* = n°F* (19.11)
(s*+n* = Fs%-F 'nZ = s - F'F* "n = s%-n% = 0)

noting Tv = vI” (T;v; = v,T;;). The base vectors §* and n* obtained by excluding

the substructure rotation from the current configuration as shown in Fig. 19.1 are

related to the initial base vectors sj and nj by replacing F¢ to R® in Eq. (19.11).
The rates of s* and n* are given as follows:

'ac_.eoc_'e e—leo _ qeqo — qogel
s* =F¢sy = FF 's* =1s" =51 } (19.12)
n% = Fe T Fc TFeT _leTno: — —n%
Needless to say, the current base vectors (s*,n”) and (§*,n*) are no longer unit
vectors.
On the other hand, the simple shear strain y* along the slip system « is additively
decomposed into the elastic shear strain y°* and the plastic shear strain y** as follows:
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,yo: — "/m +"’m, ,)')oz — ,)')eoz _’_,5)[;91 <1913>
The difference of plastic displacements, du””, in both ends of infinitesimal line
element dX, which is induced by plastic shear strain y* in slip system a, is given by
the following equation (see Fig. 19.2).
dw”” = *(nf - dX)sj = *s; @ njdX (19.14)
Then, dX changes to
dX = dX +du”*= (I+"s) @ n3)dX (19.15)

in the intermediate configuration.
Noting Eqgs. (19.1); and (19.15), one has

P =1+ @ni, F*'=1-y"si@n} (19.16)
by virtue of (I+97"s§ ® ng)(I — y"”"sj ® ng) = I due to nj-sj = 0. Further, noting
(I+y7s§ @ nd) (I — y*sj @ ng) = P*sf @ ng — s @ nfy?*sf @ g (19.17)

it follows that

FPepre-! = 30%s% o (19.18)
7n&edX du’® =77"§ «dX)sg
,.‘
/] 1‘18’. dX
= »
X7 ¥
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0

Fig. 19.2 Plastic displacement in end of infinitesimal line element dX,
which is induced by plastic shear strain in slip system
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The plastic velocity gradient based in the intermediate configuration is given by
summing the plastic velocity gradients induced in all the relevant slip systems as

follows:

n n
L =Y Wit =N sf @nfirt
p=1 p=1

(19.19)

where n is the number of slip systems. The substitution of Eq. (19.19) into

Eq. (19.10) leads to

D =S P

p=1
wr=3%" Gﬁj‘)pﬁ
p=1
where

P’= sym[s} ® n]
Q’= ant[s} ® nZ]

Substituting Eq. (19.19) with Eq. (19.11) into Eq. (19.7) reads:

n
r=3 s o
B=1

Inserting Eq. (19.22) into Eq. (19.10), one has

n

& =3 phirh
p=1
wP = i q’yrh

o=1

with

p*= sym[s” ® n*]
q* = ant[s” ® n]

Substituting Eq. (19.22) into Eq. (19.6), one has

(19.20)

(19.21)

(19.22)

(19.23)

(19.24)
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n n

F=1-r=1-> "o =1->"(p/+q")j"” (19.25)
p=1 p=1

d° = symfl'] = sym[FF*'| =d - > p/7”

=1 (19.26)

we = ant[l’] = ant[l.?"Fg*l] =w— Y ¢/pF

p=1

19.3 Resolved Shear Stress (Rate)

Let the resolved shear stress be defined as follows (Asaro and Rice 1977):
T"=s"Tn"=p*:1T (19.27)
The time-differentiation of Eq. (19.27) leads to
1% = §*+Tn” +s* - In”* +s* - TH*
Substituting Egs. (19.8) and (19.12), the right-hand side of this equation leads:
§%+Tn* +s*-Tn* + %+ TH*
= (d° 4+ w°)s* - Tn* +s* - Tn* — s*- T(d° + w°) ' n*

=% (d° +w) Tn* +§* - Tn* — s* - T(d° — w*)n*

= 5"+ (T — WT +Tw’ +d°T — Td°)n”
leading to
= ¢ Tn* + %+ (d°T — Td°)n’ (19.28)

where (*) designates the corotational rate based on the spin of crystal lattice sub-

jected to the rigid-body rotation and elastic rotation and Tis given by
T =RRTTR) R =T —wT+Tw = E:d° (19.29)
E being the overall elastic modulus tensor.

Taking account of Eqs. (19.24) and (19.52) and the symmetry of T and d°, one
has
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* * * * *
o o O 0 OO o I,
$°+Tn =S Thy = 85T =S XN :T=p:7T

=p": E: d° = ppEjudy = Euypidy = Ep*: d°

§%(d°T — ©d*)n* = std 1,0’ — sit,din?

r rsTUs

1 1
= Sl )+ (o)) — 3 (5T )+ (s
1 1
5{[(s‘1 ®@n*)T]:d—[(n* ® s*)T] : d} — 5{[17(5“ ®@n*)|:d°
T(n* ®s*)]:d°}

[
1 o o o o 1 o o o o e
= E(S ®n* —n ®s)t—t§(s @n* —n*®s"| :d

Substituting these relations into Eq. (19.28), we have the relation between the
resolved shear stress rate versus the global elastic strain rate as follows:

=

1]

e (19.30)
where
E*=E:p*+ p*(# =) (19.31)

Further, substituting Eq. (19.26), into Eq. (19.30) reads:

n

. (d _ Zpﬁﬁpﬁ) (1932)
p=1

19.4 Plastic Shear Strain Rate

The crystal shear yield condition describing the crystal shear yield region in the slip
system o is given by

* (19.33)

=x
Il
=)

where

=y (19.34)

Il
Q
|
\<

% is the shear kinematic hardening variable and 7} ( > 0) is the shear hardening
function, referred to as the critical shear stress, in the slip system o.
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The associated flow rule to the subloading shear region is adopted for the plastic
shear strain rate as follows:

= i (3> 0)(|#7] = i%) (19.35)
where
= 52;;' - ﬁ = sign(#*) (|| = 1) (19.36)

The material-time derivative of Eq. (19.33) reads:
A - ) =1 (19.37)
="+ (19.38)

The rate of critical shear stress is specified by
. - N . :
2= gl = hapit (19.39)
f=1 f=1

where hgj is given by the following matrix which is the function of the plastic shear
strain (Peirce et al. 1982).

h(y?)  for a=p

— gh(W"’ _ p — —
hay = ah(P) + (=)= ) = { 7100 %= B << 19
(19.40)
h(y?) is given by the functional form
honP
h(y") = hgsech? (077)> (19.41)
Ts — Ty
with
n t
W= Z/ |P |dt (19.42)
p=170
hy and 1, are the initial values of & and 1%, ie. hp = h(0) and 7y = r;‘(O),

respectively, and 7, is the saturation value of ‘E;, ie. 1, = T;‘(oo).
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Assume the following shear nonlinear-kinematic hardening rule.

7=c (i‘”“ - e x“) =i (n“ 1 Xﬁ) (19.43)

& &

where ¢, and {, are the material constants. The latent hardening may be incorpo-
rated for the shear kinematic hardening (e.g. Bassani and Wu 1991; Harder 1999;
Xu and Jiang 2004).

Substituting Egs. (19.39) and (19.43) into Eq. (19.38), one has the consistency
condition for the subloading crystalline shear region.

L . R 1 .
T =p* Zhaﬁlﬁ +c <n“ “Tu x“) 2 (19.44)
1

which is rewritten as

=N hyif (19.45)
p=1
where
A — s A0 1 ol A
L7y

19.5 Strain Rate Versus Stress Rate Relations

The global constitutive relation is given by Eq. (19.29) i.e.
T=E:d (19.47)
On the other hand, the Jaumann rate of the Kirchhoff stress is given as
T =1T-WT+Tw (19.48)

These corotational rates are related as

T=1"+wT— TW (19.49)
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noting
T-—WT+TW =T—(W—w)T+T(W—Ww). (19.50)

The substitution of Eq. (19.23) into Eq. (19.49) leads to

T=1 1 S g (19.51)
p=1
where

" =q"T - tq" (= —p) (19.52)

Further, substituting Eqgs. (19.9); and (19.23), into Eq. (19.47), one has

T=E:(d-d")=E:d— Y E:p/ (19.53)

n
p=1

The substitution of Eq. (19.53) into Eq. (19.51) reads:

T =E:d-) =/ (19.54)
p=1

The strain rate is described by the stress rates from Eq. (19.53) and with
Eq. (19.51) as follows:

d=E":t+ ) ppf =E (1" + Y =) (19.55)
p=1 p=1
Equating Eq. (19.32) with Eq. (19.45), it follows that
E (d -3 pﬂﬁﬁ}ﬁ> = ot (19.56)
=1 =1

which is rewritten as

Eid=Y Myt (19.57)
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where

Moo =h =0 . BB 7

M“ﬁ :ha/g-i-: pn (75 MOCﬁ) (1958)

The plastic shear strain rate is given from Eq. (19.57) as follows:

i =3"M,E d (Z Mypif = E“:d) (19.59)
p=1 p=1
Substituting Eq. (19.59) into Eq. (19.54), it follows that
TV=E:d- Y B =E:d- Y ="y M,Ed
o=1 o=l p=1
leading to
T =K":d (19.60)

where
K’ =E - 2 @ n"M,,E (#K"") (19.61)

The loading criterion for the plastic shear strain rate is given by the sign of the
plastic multiplier in terms of the shear strain rate as follows:

(19.62)

%0 for |3¥ = 3 and 7" >0
7P* =0 for others

19.6 Uniqueness of Slip Rate Mode

Hill and Rice (1972) proved that the sufficient condition for the uniqueness of the
combination of slip rates is the positive-definite of the matrix in Eq. (19.58) in all
the slip systems as follows:

Suppose to impose the two strain rates d and d, and designate the slip rates for

these strain rates as * and ﬁ“, respectively, in the two slip modes, and denote their
differences as follows:



19.6 Uniqueness of Slip Rate Mode 579

A =" =7 (19.63)
Ad=d—d (19.64)

The following inequality must be satisfied from Egs. (19.38) and (19.39),
ignoring the kinematic hardening for simplicity.

2 <Y (hagin”) (19.65)
p=1
where
a o o
n = 8';' - ﬁ = sign(¢*) (Jn*] = 1) (19.66)

The substitution of Eq. (19.32) into Eq. (19.65) leads to

= <d - Zpﬁ~;3> n* <> (hogi'n?) (19.67)

B=1 B=1

resulting in
[E“ : (d — Zpﬁw}/‘> — Zhaﬁ&/‘] n*<0
p=1 p=1
which is described as

(E“ :d — M“ﬁw}/f) n* <0 (19.68)
p=1

where
Myg = hyp +E*: pPnf (19.69)

First, we assume that the slip system « is active in both modes, i.e. 7* # 0,
é“ # 0, so that the following equations hold from Eq. (19.68).

(51 id— > MocﬁV)n“ =0 for 7*#0
p=1 (19.70)

(Ea d— Y Mxﬁ).)ﬁ>n“ =0 for 7*#0
=1
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which leads to

B :Ad - ) MypAil =0 (19.71)
p=1

where Ad = d — d and A = %/ — /. Multiplying A}* to Eq. (19.71), we have
B AAAY = > MypAjl A (19.72)
p=1

Next, we assume that the slip system « is active in the first mode but it is inactive
in the second mode, i.e. 7* # 0, ?“ =0, so that

(Eatd— ZMxﬁ"W)il“ =0 for 7"#0
p=1

(19.73)
(E“:c_l -> Ma,g).)ﬁ>n°‘<0 for 7*=0
p=1

which leads to

<E“ :Ad — ZMaﬁAw}ﬁ> n* >0 (19.74)

p=1
Noting
n*AY* = n*y* >0
Equation (19.74) leads to
(E“ :Ad — Mal;Ai)ﬁ) n*n*Ay* >0
p=1

from which it follows that

B AAY > Y My A AT (19.75)

f=1

Consider the inverse case that the slip system « is inactive in the first mode and

active in the second mode, i.e. 7* = 0, * # 0, so that
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(B*:d— > MygiP)n*<0 for =0

p=1 ) (19.76)
(B*:d — > MygiP)n*=0 for 7*#0

p=1

from which it follows that

n

(E“ :Ad — Ma/;Aﬂ}ﬁ> n*<0
p=1

for which, noting
Ay = —n*3* <0

it follows that
(E“ :Ad — Mal;Ai)ﬁ) n*n*Ay* >0
p=1

Consequently, the inequality in Eq. (19.75) holds also in this case.

Furthermore, in the case that the slip system « is inactive in both of the first and
the second modes, i.e. 7* = 0,7* = 0 leading to A)* = 0, so that the equality in
Eq. (19.72) holds. Consequently, the following inequality holds in all the
above-mentioned four cases.

B AAY > Y Mo AP AT (19.77)
p=1

Taking the total sum of Eq. (19.77) for all of slip systems, the following
inequality holds.

n n

ia“ PADAY > Y MypgAY A (19.78)

o=1 o=1 p=1

Ad = O holds for given strain rate, and if My is the positive-definite matrix, the
right-hand side in Eq. (19.78) is non-negative, so that the uniqueness of slip mode,
i.e. Ay* = 0 holds. In other words, My must be positive-definite in order that the
uniqueness of slip mode, i.e. the uniqueness of 7* holds for given strain rate d.
Then, the matrix My is called the effective slip-systems hardening moduli. The
matrix Mgy is asymmetric, i.e. Myg # Mpy and thus it is not the positive-definite
matrix, so that the uniqueness of slip mode does not holds in general.
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The uniqueness of the matrix My depends on the hardening coefficient, state of
stress and the number and the directions of critical shear stress sensitively. It is not
guaranteed and its tendency is remarkable for a higher latent hardening (Hill 1966;
Hill and Rice 1972; Havner 1982; Asaro 1983; Franciosi and Zaoli 1991).

19.7 Various Schemes for Calculation of Shear Strain
Rates

Big time is required for calculating shear strain rates in numerous slip systems.
Then, various schemes for the improvement of the calculation have been proposed
to date. Main schemes for the improvement will be explained in this section.

19.7.1 Singular Value Decomposition

It is required to solve Eq. (19.57) in order to calculate shear strain rates in slip
systems directly from macroscopic strain rate applied to crystalline. However, the
matrix My is not positive-definite, so that there does not exist a unique solution in
general as described in the last section. The singular value decomposition is used to
calculate the solution with the shortest path (Golub and Van Loan 2013; Press et al.
1988). It has been applied to the crystal plasticity by Anand and Kothari (1996) and
used widely by Miehe and Schroder (2001), Knockaert et al. (2000), Yoshida and
Kuroda (2012), etc. The singular value decomposition is explained in this subsection.

The general second-order tensor T in the n-dimensional space which is asym-
metric and thus cannot be led to the spectral decomposition in general. On the other
hand, designating the eigenvectors of the positive-definite tensors TT? and T”T as
u,and v, (p =1,2,-++,n), respectively, and their eigenvalues G % because they are

positive, it follows that

n
TT? = Zl olu, @u,
pe=

., (19.79)
TI'T = Zl oV, @V,
s
i.e.
TTTup = 02u
pep (19.80)
T'Tv, = 02V, }
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while u,, v, and 0, are not the eigenvectors and eigenvalues except for the
symmetric tensor T.

Exploiting the eigen values and vectors defined above, the tensor T can be led to
the following singular value decomposition.

T = ULV’ (19.81)

where X is the diagonalized tensor with the components 01, 05, «++, 0,, and thus it is
described as follows:

(] 0-..0

0 Opees()
L =diag(ci, Oy, eees Op) =]+ ¢« (19.82)

0 0...0y
provided that the order of the magnitudes of these components is

01>0,>+++>0,(>0). U and V are the orthogonal tensors by lining the
eigenvectors in column (horizontally).

u1 ull u12' ° uln
u Upp Upy === Uy
U=|u uyeeeu, |=1. = O
Uy U, U, s U
nl n2 nn
- (19.83)
A4 Vit Vit Vi
V2 Var Vot t Vo
V:LVI Vz“'Vng . = . .
Vol [V Viz** *Van

where the components of each vector are lined up in row (vertically), satisfying
UU" =U0'U=VvV =VIV=1(||U|| = ||V]| =1) (19.84)
noting (UUT)ij =U;Ujy = (u;+e.)(uj-e,) =u; (uj-e.)e, =w;ou; = d;. It fol-

lows from Eqgs. (19.81) and (19.84) that

T T T 2y1T
TT? = UV VEU! = UX?U } (19.85)

TI'T = vEUTUZVT = vE2v7
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The pseudo-inverse tensor TT of T is defined by

T = veiv? (19.86)
where
(671 0+ ++00--+0]

00;'..00---0

xf =diag(1/ oy, /05, ««1/G,, 0++.0)=|0 0...05.'0-..0| (19.87)
00---0

00---0 0---0
|

provided that we set 1/0,=0(i=1,2,....r) for 6;,=0(i=r+1,2,...,n),

obviously fulfilling ¥xT = I Itis confirmed that the following equation holds from
Eqgs. (19.81), (19.84) and (19.86).

1! = vzviveiv? =1 (19.88)
Consider the following tensor equation with the vectors x and c.
Tx =c (19.89)

If T is the singular tensor, there exist numerous solutions for x. The vector x is
expressed noting Egs. (19.86) and (19.88) as follows:

x = Tle = VElUTe = Vdia(1/0;)U"c (19.90)

which is called the singular value decomposition and calculated from the right to
the left. The solution obtained by the singular value decomposition is unique and
possesses the shortest path among numerous solutions satisfying the original
equation as will be proved as follows.

There exists the zero-dimensional subspace of the vector x projected to zero
vector if T is the singular tensor. Designating the solution of Eq. (19.90) for an

arbitrary tensor xf possessing non-zero component only in the zero component in
Eq. (18.87) by X/, it follows for the vector x + X’ noting Egs. (19.86) and (19.90) that


http://dx.doi.org/10.1007/978-3-319-48821-9_18
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Ix+x|| = |[TTe+x|| = [[VEU e + x|
= [VETUTe + VTX)|| = [[V]]||IETUTe + VY| (19.91)
= |IZfuTe+ Vx|

The components in the second term are non-zero in the zero components in the first
terms and they are orthogonal and thus independent to each other in the n-
dimensional orthogonal coordinate system, so that the minimum of the quantity in
Eq. (19.91) holds for x’ =0 leading to the vector x as the singular value
decomposition.

Consider the following tensor based on the above-mentioned singular value
decomposition.

T = (T +¢I) (19.92)

where T is the nonsingular tensor made by adding the infinitesimal perturbation
tensor el to the singular tensor T. Adopting it in Eq. (19.89), we have

x=(T+e) ‘e (19.93)

from which we can obtain the similar solution to that due to the singular value
decomposition. This is the simplest solution of the singular equation and called the
diagonal shift method (Miehe and Schroder 2001).

Number of unknown quantities on shear strain rates is larger than nine given
equations on macroscopic strain rate components in the crystal plasticity, so that
solution is not determined uniquely. In such case, we may solve by supplementing
the lines composed of zero components to the matrix T and the zero components to
the vector ¢ for the difference of numbers in unknown quantities and given equa-
tions. By applying the singular value decomposition to the simultaneous equation
made by this method, we can obtain the solution with the shortest path. It corre-
sponds to the minimum shear principle by Taylor (1938).

19.7.2 Regularized Schmid Law

The yield surface in the slip systems is formed by plural intersecting planes in the
stress space so that it possesses the sharp corner. Then, the shear strain rates must be
calculated in each slip systems. In order to avoid this complicated work, the reg-
ularized Schmid law has been studied, in which the yield surface with rounded-off
corners is formulated and the only one plastic multiplier by applying the associated
flow rule to that yield surface is calculated.
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The yield condition in slip system is described by

|Ta| 1=0 (19.94)
5
The slip systems described by Eq. (19.94) give rise to the yield surfaces composed
of the planes in number of slip systems, exhibiting the sharp corners at their
intersections. A single smooth yield surface can be formulated by smoothing the
envelope of the yield surfaces in Eq. (19.94) (Gambin 1991, 2001; Gambin and
Barlat 1997; Darrieulat and Piot 1996; Zamiri et al. 2007; Zamiri and Pourboghrat
2010). This is regarded as the invocation of the method to derive the Mises yield
surface from the Tresca yield condition by Hosford (1974, 2009). Zamiri et al.
(2007) proposed the following simple yield surface.

1/m 1/m
n PR 2n—1 p T 2n—1
f= (ZMM 1) = (er -1] =0 (19.95)

o=1"y 7y o=1 }'

noting Eq. (19.27). m( > 1) is the material constant for smoothing the corner of
yield surface, while the larger m is, the smoother the yield surface is. While
Eq. (19.95) is of the power form, in order to avoid the problem on the numerical
calculation caused by the power function, Zamiri and Pourboghrat (2010) proposed
the yield surface in the logarithm-exponential function.

f:%ln{ifﬂ)lp(paa —1)] } =0 (19.96)
=1 Y

where p (> 1) is the material constant for smoothing the corner of yield surface,
while the larger p is, the smoother the yield surface is.

The plastic strain rate for the above-mentioned yield condition with the asso-
ciated flow rule is given by

@ =it o L (320 (19.97)

The plastic multiplier J. is calculated by the formulation based on the consistency
condition of the yield condition (Gambin 1997, 2001; Gambin and Barlat 1997) or
the return-mapping (Zamiri et al. 2007; Zamiri and Pourboghrat 2010).

The above-mentioned regularized Schmid law reduces the calculation time since
only one plastic multiplier for the single yield surface has only to be calculated.
However, it would deviate from the primary purpose of the crystal plasticity for
deriving the macroscopic behavior from the microscopic physical law, since it
replaces the yield conditions in multi slip systems to the global yield surface.
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19.7.3 Creep-Type Crystal Plasticity Mode

The crystal elastoplastic constitutive equation described in the last section possesses
the difficulties:

(1) The yield judgment whether the resolved shear stresses t* reach the critical
shear stress 5 is required.

(2) Particular algorithm to pull-back the resolved shear stresses to the critical shear
stress must be incorporated.

These procedures must be executed in numerous slip systems and thus the
analysis by this constitutive equation is so complicated as actually impossible.
Then, the crystal plasticity analyses by the creep model is widely used as will be
described below.

Nakada and Keh (1966) first advocated and ten years later Hutchinson (1976)
presented the following creep-type rate-dependent equation of crystalline slip rate,
which are widely adopted after the review report by Peirce et al. (1982, 1983) for
single crystals and Asaro and Needleman (1985) for polycrystal.

oL
. . T
Co coL
Y=Y\

o

It

where 7§ is the reference rate of shearing which is taken usually same in all slip

. (1/m)—1

=
Ty

(19.98)

systems and m is the material constant, while for m <0.02 the creep slip rate 7* is
induced abruptly when the magnitude of shear stress, |t*|, reaches the shear-yield
stress 7y. All the slip systems are active and thus the selection of active ones is not
required for Eq. (19.98). However, Eq. (19.98) possesses the following funda-
mental impertinences.

(1) It depends only on the shear stress because it falls within the framework of the
creep-type viscoplasticity. Therefore, the creep crystalline slip rate is determined
only by the current shear stress with time and thus an arbitrary deformation rate
cannot be given to the material obeying Eq. (19.98) which is independent of the
stress rate as far as a large elastic deformation of crystal lattice is not incorpo-
rated. In other words, it cannot be applied to rigid-viscoplastic materials. In
facts, however, the crystalline slip rate would have to depend not only on the
shear stress but also on its rate in a quasi-static deformation at room temperature.
On the other hand, the rate-independent equation of plastic slip rate }”* must
depend on both the shear stress and its rate (magnitude) in the slip system
because it falls within the framework of the plasticity.

(2) It belongs to the creep type model without a definite yield stress among the
viscoplastic models. Therefore, it predicts always the creep deformation except
for the stress-free state, and thus the creep slip rate is induced even when the
magnitude of shear stress, |t*|, decreases as illustrated in Fig. 19.3 in which a
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Fig. 19.3 Shear stress versus crystalline slip curves accompanied with excessive
mechanical ratcheting predicted by creep model (Peirce et al. 1983)

general trend is intelligibly shown for a moderate value of m. It is unrealistic as
known from the fact that any metallic solid has never collapsed under their own
weight at room temperature as indicated in p. 201 in Havner (1992). Needless to
say, it cannot be applied to the description of cyclic loading behavior since it does
not possess a loading criterion and thus it predicts identical deformation behavior
in the reloading process and in the unloading process. Therefore, it predicts
excessively large mechanical ratcheting as illustrated in Fig. 19.3. In general, the
viscoplastic deformation behavior cannot be described pertinently by the
creep-type model and instead it can be predicted realistically by the
overstress-type model possessing the loading criterion as explained in Sect. 13.3.

As examined above, the creep-type equation of crystalline slip contains funda-
mental defects. Then, it has been the strong desire over the last half century to find
the physically and numerically pertinent rate-independent equation of crystalline
slip rate. This fact is declared emotionally as “The various viscoplastic, finite-strain
aggregate calculations reviewed in this section, and similar ones in the literature,
are computationally impressive (although which approximate polycrystal model is
superior appears to be an open question). However, one hopes that there may soon
evolve a theory of rate-dependent crystalline slip in metals that would leave such
great structural landmarks as the Eiffel Tower, Empire State Building, and Golden
Gate Bridge still standing” in p. 204 of Havner (1992). The landmark would have
been found in the subloading crystal plasticity model described in the next section,
while it is not a rate-dependent formulation but is a rate-independent formulation
falling within the framework of plasticity based on the subloading surface concept.

All of the afore-mentioned defects in the rate-dependent crystalline slip rate are
dissolved by subloading crystal plasticity model. The crucial importance for the
incorporation of the subloading concept is manifested most distinctly in the crystal
plasticity analysis which is required to calculate slips in numerous number of slip
systems, while the yield judgment is not required and the stress is automatically
attracted to the yield surface only in the subloading crystal plasticity model.
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19.8 Subloading Crystal Plasticity Model

The crystal shear yield condition describing the crystal shear yield region in the slip
system o is given by

>
K

=1 (19.99)

where

Il
Q
|
=

=ty (19.100)

x* is the shear kinematic hardening variable and r;‘( > 0) is the shear hardening
function, referred to as the critical shear stress, in the slip system o.

Now, incorporate the shear subloading region described by the following
relation based on the subloading concept (Hashiguchi 2015).

S0
7] =r2, Lo’ = il (19.101)
T

where r*(0 < r* < 1) is referred to as the normal-yield shear ratio which designates
always the ratio of [t* — y*| to the critical shear stress 7 not only in the slipping

process (}7* # 0) but also in the non-slipping process (77* = 0).
The associated flow rule to the subloading shear region is adopted for the plastic
shear strain rate as follows:

= i (3 2 0) (37 = i) (19.102)

The material-time derivative of Eq. (19.101) reads:

(=) =y —H'"“r;‘ (19.103)
i.e.
="'t + "+ fz“i“rﬁ‘, (19.104)

The rate of critical shear stress is specified by

1= ;haﬁwﬂ = ;haﬁﬂf (19.105)

where hgg is given by the following matrix which is the function of the plastic shear
strain (Peirce et al. 1982).
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h(y?) fori=j

— h(n _ p = =
hap = qh(y") + (1 = @)h()")Sop(= hp) {qh@p) fori £ Sa=14)
(19.106)
h(y?) is given by the functional form
hoy?
h(77) = hosech? (07/> (19.107)
Ts — Ty

with

ypzn tht 19.108
ﬁz;/0| (19.108)

hy and 1, are the initial values of & and 1, i.e. hg = h(0) and 1y = 7;(0),

respectively, and 7, is the saturation value of ‘E;, ie. 1, = T;‘(oo).

Assume the following shear nonlinear-kinematic hardening rule.

oo *po. 1. o)., So [ o 1 o
L =cy <'VI _—C g ‘Vp Vi ) = CZ)V (l’l —C, Tax') (19109)
7y 1Ly

where ¢, and {, are the material constants. The latent hardening may be incorpo-
rated for the shear kinematic hardening (e.g. Bassani and Wu 1991; Harder 1999;
Xu and Jiang 2004).

Referring to the Sect. 7.2 on the subloading surface model, let us postulate for
the crystalline shear strain rate as follows: The crystalline plastic shear strain rate is
induced when the resolved stress approaches the critical shear stress but only the
crystalline elastic shear strain rate is induced when the resolved stress lowers from
the critical shear stress, while the resolved stress rate causes the crystalline elastic
shear strain rate inevitably. In other words, the resolved shear stress approaches
the critical shear stress when a crystalline plastic shear strain rate is induced
but it lowers from the critical shear stress when only a crystalline elastic shear
strain rate occurs. Here, note that the approaching degree to the resolved shear
stress to the critical shear stress is described by the shear normal-yield ratio R*.
Then, let the evolution equation of shear normal-yield ratio r* be given analogously
to Eq. (7.9) for the normal-yield ratio R of the subloading surface model as follows:

M= U] = U(r*)i* for 3" 40 (19.110)

where the function U(r*) fulfills the conditions (see Fig. 19.4):
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Fig. 19.4 Function U(r*) in the evolution rule of shear normal-yield ratio R*

— +o0o for r*=0 (elastic state)

o) >0 for 0<r*<1 (subyield state)
uir)q 2 0 for r* =1 (normal-yield state) (19.111)
<0 for r* > 1 (over normal-yield state)
Let the explicit function of U(r*) be given by
U(r*) = u, cot[(n/2)r"] (19.112)

where u, and n.( > 1) are the material constants.

The smooth shear stress versus crystalline shear strain curve is depicted and the
resolved shear stress is automatically attracted to the critical shear stress because of
7 <0 for r* > 1 (over shear normal-yield state) in Eq. (19.110) with Eq. (19.111),4
as shown in Fig. 19.5.

Substituting Egs. (19.105), (19.109) and (19.110) into Eq. (19.103), one has the
consistency condition for the subloading crystalline shear region.

L . . 1 . .
= n“r“Zhaﬁ/lﬁ+cz (n“ ~7 ﬂ(“) A+ U () A (19.113)
=1 Ty

from which it follows that

=N hypil (19.114)
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Fig. 19.5 Resolved shear stress is automatically attracted to critical
shear stress in plastic shear process

where
_ 1 _
hap = 1*r*hog + ¢, (fz“ - ﬁx“> Oap +1"U(r")ty0up (# hpa) (19.115)
2y
Equating Eq. (19.32) with (19.114), it follows that
n . n —_ .
= <d - Zpﬂﬁﬂiﬁ> = hypi! (19.116)
p=1 p=1
which is rewritten as
Eid=Y My (19.117)

where

Myp = hap +E* : pPif (# Mgy) (19.118)
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The plastic shear strain rate is given from Eq. (19.117) as follows:
i =3"M,E :d (19.119)
p=1
Substituting Eq. (19.119) into Eq. (19.54), it follows that

T =E:d- Zaﬂn — E:d—zn:E“ﬁ“zn:M;/;Eﬁ:d
o=1 =1 p=1
leading to
™ =K7":d (19.120)
where

K'=E-Y Y & oM, s #K") (19.121)

o=1 p=1

The loading criterion for the plastic shear strain rate is given by the sign of the
plastic multiplier in terms of the shear strain rate as follows:

£ 0 for 25>0 (19.122)
Wwr=0 for A*<O0

The deformation analysis by the forward-Euler calculation method is performed
as follows:

(1) First calculate the plastic multipliers pE by solving Eq. (19.117) for the input of
the strain rate d.

2) If % is positive, calculate the plastic shear strain rate }P* = n“/'l‘“, the critical
shear stress rate ‘cf by Eq. (19.105) and the kinematic hardening rate 7* by
Eq. (19.109), the rate of normal-yield shear ratio /* by Eq. (19.110), the
resolved shear stress rate t* by Eq. (19.32), the Jaumann rate of the Kirchhoff
stress T by Eq. (19.54) and the rates of the base vectors §%, n* of slip system
by substituting Eq. (19.25) into Eq. (19.12). Then, update all these variables.

3) If 2* is negative, set &y =0, 7* = 0, and calculate t* by Eq. (19.32), T by
Eq. (19.54) and §*, n* by substituting Eq. (19.25) into Eq. (19.12) under setting
7P* = 0. Then, update all these variables. Thereafter, update 7* by Eq. (19.101).

(4) Move to the calculation for the next incremental step in which the updated
values obtained in the above-mentioned processes are substituted.
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19.9 Subloading-Overstress-Crystal Plasticity Model

Based on the extension of the overstress model by the subloading surface model in
Eq. (13.29) or (13.30), let the viscoplastic slip rate "”* be given by

. 1 (= )"
g _ L0720 (19.123)

— o
Hes Yem — T

or

)')vpx — L<exp[n(r°‘ - rsl)] - l>l’l“
:ucs Yem — r*

(19.124)

where p., is the material constant standing for the crystalline viscous coefficient,
rem(>1) is the material constant, called the limit dynamic-loading ratio, specifying
the maximum value of r* renamed as the dynamic-loading ratio, and n(>>1) is the
material constant.

The evolution rule of the subloading ratio r*(0 <r* <1) is given by

r& = U(r*)|yr* for r* > r*(yP* £ 0
: (e ; .(/ #0) (19.125)
ri=r" =1t — y*|/t% for others (y"?* =0)
following Eq. (19.110), where the function U(#%) is given as
U(r?) = ue cot[(n/2)r2"] (19.126)

The smooth resolved shear stress versus crystalline plastic shear strain curve is
described always as shown in Fig. 19.6.

The evolution rule of the internal variables are given by replacing the plastic
shear strain rate in the elastoplastic sliding equation to the viscoplastic shear strain
rate. Then, the rate of critical shear stress is given from Eq. (19.105) as

1= hagl " (19.127)
=1
hag = qh(y'") + (1=q)h(y")0up = (hp) (1< q<1.4) (19.128)

' h vp n t .
) s () =3 [t (19.129)
Ts — Ty p=170
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Fig. 19.6 Resolved shear stress versus crystalline plastic shear strain curve

predicted by subloading-overstress-crystal plasticity model
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and the rate of shear kinematic hardening variable is given from Eq. (19.109) as

v 2 VpoL 1 e o oL
= | 0T =
( &

7" and 1 are given following Eqs. (19.54) and (19.32) by

n
T =E:d-) =7
p=1

=8 (d - Zpﬂfzvpﬁ>
=1

The elastic velocity gradient is given following Eq. (19.25) by

n

I :l_lVP:l_Z(pﬂ_’_qﬂ)i,VPﬂ
p=1

(19.130)

(19.131)

(19.132)

(19.133)



596 19  Crystal Plasticity

The deformation analysis by the forward-Euler calculation method is performed
as follows:

(1) For r* > r?, calculate the crystalline slip rate 3"7* by Eq. (19.123) or (19.124),
the rate of critical shear stress 7:;‘ by Eq. (19.127), the rate of shear kinematic

hardening variable * by Eq. (19.130), the rate of resolved shear stress T* by
Eq. (19.132), the rate of subloading shear ratio ;’? by Eq. (19.125),, the

Jaumann rate of the Kirchhoff stress T by Eq. (19.131) and the rates of the
base vectors §%, n* of slip system by substituting Eq. (19.133) into Eq. (19.12).
Thereafter, calculate * by Eq. (19.101).

(2) For the other leading to j"* =0, set i} =0, * =0, and calculate * by

Eq. (19.132), ¥ by Eq. (19.131) and §*, n* by substituting Eq. (19.133) into
Eq. (19.12) under setting 7"”* = 0. Then, update all these variables. Further,
calculate * by Eq. (19.101) and set r} = r*.

(3) Move to the calculation for the next incremental step in which the updated
values obtained in the above-mentioned processes are substituted.

19.10 Extension to Description of Cyclic Loading
Behavior

The crystal plasticity model formulated in the preceding sections is based on the
initial subloading surface model in which the similarity-center of the shear
normal-yield and the shear subloading regions, i.e. the shear elastic-core is fixed at
the shear kinematic hardening variable point. Therefore, unrealistically large shear
strain accumulation is predicted, while open hysteresis loops are depicted as
illustratively shown in Fig. 19.7. As described in Sect. 9.1. It will be extended to
describe cyclic loading behavior by letting the similarity-center of the shear
normal-yield and the shear subloading regions move with a plastic shear strain as
shown in Fig. 19.7. The extended shear crystalline model formulated by
Hashiguchi (2015) will be described in this section.
The subloading shear region is given instead of Eq. (19.101) as follows:
[T*] = r*1? (19.134)

y
where
=1 -3 (19.135)

7> stands for the conjugate (similar) point in the shear subloading shear region to
the point y* in the normal-yield shear region. By letting ¢* denote the
similarity-center of the shear normal-yield and the shear subloading regions, which
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Fig. 19.7 Modification of subloading model to describe cyclic loading behavior

is called shear elastic-core since the most elastic shear behavior is induced when
the resolved shear stress lies on it fulfilling »* = 0, the following relations hold by
virtue of the similarity of the shear subloading region to the shear normal-yield
region (see Fig. 19.8).

Z‘“:C“—)(y C“EC“—X“
R ’ } (19.136)
| f;l |
I~ ?a
; —s
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?" L, T

it AR
s
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"é”sc“—}("’: T

Fig. 19.8 Resolved and critical shear stresses, shear back-stress
and shear elastic-core in slip system



598 19  Crystal Plasticity

It follows from Egs. (19.135) and (19.136) that

7= = (19.137)
=1 4 r*e” (19.138)

where
== (19.139)

The associated flow rule for the extended shear subloading region is adopted for
the plastic shear strain rate as follows:

= I (3 > 0) (977 = 3 (19.140)
where
a = 0l
n* = % = |;{| = Sign(fa) (‘ﬁ“| = l) (19141)

The shear kinematic hardening rule is given from Eq. (19.109) with Eq. (19.140) as

1 . 1
v — o oo 2P|, 0 — ~/;Na P e 19142
7 Q(/ e 17 |x ) ¢ (n Cz?i‘l ) ( )

Now, let the following shear elastic-core region be introduced, which always
passes through the shear elastic-core ¢* and maintains the similarity to the shear
normal-yield surface with respect to the shear kinematic-hardening variable y*.

&= YRZI;‘, e R = 6“/‘5? (19.143)
where R” designates the ratio of the size of the shear elastic-core region to the
normal-yield region (see Fig. 19.8) so that let it be called the shear elastic-core
vield ratio. Then, let it be postulated that the shear elastic-core can never reach the
shear normal-yield region designating the fully-plastic shear state so that the shear
elastic-core does not go over the following limit shear elastic-core region.

&= (19.144)

where &, (< 1) is material parameter and the following inequality must be satisfied.

o>

F< ety e RIS E (19.145)
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The evolution rule of the shear elastic-core is given analogously to Eq. (19.15)

as follows:

. o PO ER“ . H b OfA
& =c, (f — f_L |y”°‘|f1§> = cA* (n“ — %n?)

where ¢, is the material constant and

o

(993

(Ie| = 1)

"1

The material-time derivative of Eq. (19.134) reads:
(P = 7)) = 'y +

where 2“ is described from Eq. (19.137) as

Substituting Eq. (19.149) into Eq. (19.148), one has
ﬁ“{%“ — [+ (1= — }“6“]} = r“%;‘ + i’“r;‘
which is rewritten as
"1t = 0yt + (1 — ) — et + r“%;‘ + ?“r;f
ie.

T =0+ (L= ")+ () — &)

Here, noting the relation

T |f“| & T _ o
=00 00
T [T*] r* =] r
@R
- 7 T

Equation (19.152) is rewritten as

oo
. _ . . . re_,
3 — n“r“‘c;Jrr“Xer (1 _ r“)C“Jr 714
r‘

(19.146)

(19.147)

(19.148)

(19.149)

(19.150)

(19.151)

(19.152)

(19.153)

(19.154)
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Substituting Egs. (19.105), (19.110), (19.142) and (19.146) into Eq. (19.154), it
follows that

. § : sol = 1
P =" hopil e, | i — T he
" T
p=1 €y (19.155)
ol .1 =0 g{f ~ 0 U(r:x) "‘05.1
+ (1 =r*)eA(n —é—cnc)—k " (s
which is rewritten as
= hyit =0 (19.156)
p=1
where
1, — o o —o 1 o
hag = 0" r*hyg +rc, | n —ﬁx Oap
oy (19.157)

+(1- ), (n - %n) oupt L5,
c r*

The overall constitutive equation itself described in Sect. 19.8 holds only with
the replacement of Mgy to the following equation.

Myg = hop +E*: pPalf (£ Mgy) (19.158)
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