
Chapter 14
Damage Model

The elastic deformation due to the deformation of material particles themselves is
induced even when the stress is low, the elastoplastic deformation due to the slips
between material particles (dislocations of crystal lattices in case of metals and slips
between soils particles in soils) is induced when the stress increases up to a certain
stress (yield stress) and the damage due to the separations of material particles is
induced when the stress further increases. The phenomenological formulation of the
deformation up to the failure induced in the damage process within the framework
of the continuum mechanics is called the continuum damage mechanics.

This chapter addresses the elastoplastic constitutive equation with damage which
is extended by incorporating the subloading surface model within the continuum
damage mechanics. It is extended further to the description of the elasto-viscoplastic
deformation with the damage.

The second law of thermodynamics, i.e. the Clausius-Duhem inequality has been
used for the formulation of constitutive relation (e.g. Lemaitre and Chaboche 1990;
Lemaitre 1992; Lemaitre and Desmoral 2005; Murakami 2012) but it would be
helpless or harmful for the formulation of plastic constitutive relation as will be
explained in Chap. 21 and Sect. 21.8 in detail. In addition, the plastic constitutive
relation has been formulated originally in terms of the current stress in the actual
damaged configuration (e.g. Lemaitre and Chaboche 1990; Lemaitre 1992;
Lemaitre and Desmoral 2005; Murakami 2012), although it should be formulated
rigorously in terms of the effective stress in the fictitious undamaged configuration.
Constitutive equations will be first formulated consistently in terms of the effective
stress and thereafter it is transformed to the damaged actual configuration, irrele-
vantly to the second law of thermodynamics in this chapter.
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14.1 Damage Phenomenon

The conventional elastoplastic model premises on the postulate that the yield sur-
face encloses a purely-elastic domain. Therefore, it describes the abrupt transition
from the elastic to the plastic state so that it cannot describe realistically the soft-
ening behavior which is observed in the damage phenomenon. Further, it requires
the yield-judgment whether or not the stress reaches the yield surface and the
operation to pull-back the stress to the yield surface when it goes out from the yield
surface in numerical calculation with finite loading increments. The existing
damage models (cf. e.g. Kachanov 1958; Rabotnov 1969; Lemaitre and Chaboche
1990; Lemaitre 1992; Lemaitre and Desmoral 2005; de Sauza Neto et al. 2008;
Murakami 2012) are based on the conventional elastoplastic model. On the other
hand, the subloading surface model (1980, 1989) describes the smooth elastic-
plastic transition fulfilling always the smoothness condition in Eq. (7.2). Then, it
possesses the distinguished ability as it does not require the yield-judgment and
possesses the automatic controlling function to attract the stress to the yield surface
in the plastic deformation process so that the stress is automatically pulled-back to
the yield surface when it goes out from the yield surface by finite loading incre-
ments in numerical calculation.

The extended elastoplastic constitutive equation for the damage phenomenon is
formulated by incorporating the concept of subloading surface in this chapter. The
formulation is given originally in terms of the effective stress applied in the ficti-
tious undamaged configuration, which is of the identical form to the original
subloading surface model formulation without the damage. However, the hypoe-
lasticity cannot be adopted but the hyperelasticity should be adopted for the damage
model since we cannot assume that the elastic deformation is far small compared
with the plastic deformation in the damage phenomena. Therefore, the formulation
is modified to the hyperelastic-based plasticity in terms of the so-called infinitesimal
strain. Further, it will be extended to be taken account of the rate-dependent plastic
deformation by incorporating the subloading-overstress model described in
Chap. 13.

14.2 Damage Variable

Let the relation of the current area da to the area dAð� daÞ in the undamaged initial
state be described through the damage variable D in the one-dimensional defor-
mation process as follows:

da ¼ dA
1� D

ð14:1Þ
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leading to

r ¼ df
da

¼ ð1� DÞr� ; r� ¼ df
dA

¼ r
1� D

ð14:2Þ

where 1=ð1� D) (� 1; 0�D\1) designates the increase of area caused by the
damage and df is the traction. Mechanical quantities in the fictitious undamaged
configuration are specified by adding the wave under them, i.e. (�). Let Eq. (14.1)
be extended to the three-dimensional deformation process through the second-order
positive-definite tensor Dð¼DTÞ as follows:

nda ¼ ðI�DÞ�1NdA; NdA ¼ ðI�DÞnda ð14:3Þ

leading to

r ¼ df
da

¼ r�N
dA
da

; r� ¼ df
dA

¼ rn da
dA

ð14:4Þ

noting Eq. (3.1), where N and n are the unit outward-normal vectors of the initial
and the current surface, respectively. D is referred to as the damage tensor and
plays the most basic role for the description of constitutive equation of damage.

14.3 Hyperelastic Relation

In what follows, we adopt the hypothesis of strain equivalence (Lemaitre 1971)
insisting that the strain and its elastic and plastic parts in the fictitious undamaged
configuration are equivalent to those in the actual damaged configuration. As
described in Sect. 6.9, the infinitesimal strain is additively decomposed as follows:

e ¼ ee þep ð14:5Þ

Now, adopting the linear elasticity in the Hooke’s law in Eq. (5.42), i.e.

E0 ijkl ¼ E0

1þ m

�
1
2
(dikdjl þ dildjk)þ m

1� 2m
dijdkl

�
E�1
0 ijkl ¼

1
E0

�
1
2
ð1þ mÞ(dikdjl þ dildjk)� mdijdkl

�
9>>=
>>; ð14:6Þ

for which the Helmholtz free energy function w
�
ðeeÞ and the Gibbs’ free energy

/
�
ðr�Þ in the undamaged configuration are given noting Eqs. (5.43) and (5.44) as

w
�
ðeeÞ ¼ 1

2
ee : E0 : ee ¼ 1

2
r� :ee

� �
¼ 1

2
E0

1þ m
eeijeeij þ

m
1� 2m

ðeekkÞ2
h i

ð14:7Þ
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/
�
ðr�Þ ¼

1
2
r� : E�1

0 : r� ¼ 1
2
r� :ee

� �
¼ 1

2E0
ð1þ mÞr�ijr�ij � mðr�kkÞ2
� �

ð14:8Þ

where the fourth-order tensor E0 is assumed to be the constant tensor in the ficti-
tious undamaged configuration, using the Young’s modulus E0 and the Poisson
ratio m in the fictitious undamaged configuration.

The effective stress r� and the elastic strain ee are derived from Eqs. (14.7) and

(14.8), noting Eqs. (5.43) and (5.44) as follows:

r� ¼
@w�ðe

eÞ
@ee ¼ E0 :ee; r�ij ¼

@w�ðe
eÞ

@eeij
¼ E0 ijkleekl ¼ E0

1þ m
eij þ m

1� 2m
ekkdij

� �
ð14:9Þ

ee ¼
@/
�
ðr�Þ

@r�
¼ E�1

0 : r� ; eeij ¼
@/
�
ðr�Þ

@r�ij

¼ 1
E0

ð1þ mÞr�ij
� mr�kk

dij

� �
ð14:10Þ

The elastic strain rate is given from Eq. (14.10) as follows:

e� e ¼ E�1
0 : r�

�
; r�

� ¼ E0 :e
� e ð14:11Þ

14.4 Subloading-Damage Model

The plastic strain rate will be formulated based on the concept of subloading surface
in this section (cf. Hashiguchi 2015a).

14.4.1 Normal-Yield and Subloading Surfaces

The yield condition is given by

f ðr̂�Þ ¼ F�ðH�Þ ð14:12Þ

where H� is the isotropic hardening variable in the fictitious undamaged configu-

ration and

r̂� � r� � a� ð14:13Þ

a� is the kinematic hardening variable in the fictitious undamaged configuration.

The rates of these variables are be described as follows:
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H�
� ¼ f

�Heðr� ;H� ;e
� pÞ ¼ f

�Heðr� ;H� ;e
� p=
����e� p����Þ����e� p����

a�
� ¼ f�keðr� ;a� ; F� ;e

� p0Þ ¼ f�keðr� ;a� ; F� ;e
� p0=
����e� p����Þ����e� p����

9=
; ð14:14Þ

which are homogeneous functions of e� p in degree-one since they are induced only

in the plastic loading process e� p 6¼ O and the first-order time-differential quantities.
Here, let it be assumed that the function f ðr̂�Þ is the homogeneous function of r̂� in

degree-one so that the following relation holds.

@f ðr̂�Þ
@r̂�

:r̂� ¼ f ðr̂�Þ ð14:15Þ

Therefore, the yield surface retains the similar shape.
Hereinafter, the yield surface in Eq. (14.12) is called the normal-yield surface in

the fictitious undamaged configuration. Further, incorporate the following
subloading surface in the fictitious undamaged configuration (see Fig. 14.1).

f ðr̂�Þ ¼ RF�ðH�Þ ð14:16Þ

where R is the normal-yield ratio.
The rate of the normal-yield ratio is given by

R
� ¼ UðRÞ����e� p���� for e� p 6¼ O ð14:17Þ

based on Eq. (7.9).

Normal-yield surface

Subloading surface

0

( )( )  =ˆ Rf F Hσ

( )  =ˆf          Fσ

ijσ

σ

α

σ̂

( )H

Fig. 14.1 Normal-yield and subloading surfaces in the virtual undamaged configuration
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The time-differentiation of Eq. (14.16) leads to

@f ðr̂�Þ
@r̂�

:r�
� � @f ðr̂�Þ

@r̂�
:a�

� � RF�
� � R

�
F� ¼ 0 ð14:18Þ

It follows from Eqs. (14.15) and (14.16) that

@f ðr̂�Þ
@r̂�

:r̂� ¼ RF� ð14:19Þ

which yields

n̂� :r̂� ¼ @f ðr̂�Þ
@r̂�

:r̂�=

�����
����� @f ðr̂�Þ@r̂�

�����
����� ¼ RF�=

�����
����� @f ðr̂�Þ@r̂�

�����
����� ð14:20Þ

leading to

1=

�����
����� @f ðr̂�Þ@r̂�

�����
����� ¼ n̂� :r̂�

RF�
ð14:21Þ

where

n̂� � @f ðr̂�Þ
@r̂�

=

�����
����� @f ðr̂�Þ@r̂�

�����
����� ðjjn̂�jj ¼ 1Þ ð14:22Þ

The substitution of Eq. (14.21) into Eq. (14.18) leads to

n̂� : r�
� � a�

� �
F�
�

F�
þ R

�

R

0
@

1
Ar̂�

2
4

3
5 ¼ 0 ð14:23Þ

Now, adopt the associated flow rule

e� p ¼ �k
�
n̂� ð�k

�
� 0Þ ð14:24Þ

where �k
�
is the positive plastic multiplier. Substituting Eqs. (14.14) and (14.17) with

Eq. (14.24) into Eq. (14.23), one has
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n̂� : r�
� � f�knðr� ;a� ; F� ; n̂�

0Þ �k
�
�

F�
0

F�
f
�Hn

ðr� ;H� ; n̂�Þ �k
�
þ UðRÞ

R
�k
�

0
@

1
Ar̂�

2
4

3
5 ð14:25Þ

where

f
�Hn

ðr� ;H� ; n̂�Þ ¼ H�
�
= �k

�
; f�knðr� ;a� ; F� ; n̂�

0Þ ¼ a�
�
= �k

�
ð14:26Þ

noting the homogeneities of H�
�

and a�
�

in degree-one of e� p. It follows from

Eqs. (14.24) and (14.25) that

�k
� n̂� : r

�

�
M�

p ; e
� p �¼ n̂� : r

�

�
M�

p n̂� ð14:27Þ

where

M�
p � n̂� :

�
f�knðr� ;a� ; F� ; n̂�

0Þþ
� F�

0

F�
f
�Hn

ðr� ;H� ; n̂�Þþ
UðRÞ
R

�
r̂�

�
ð14:28Þ

14.4.2 Stress Rate Versus Strain Rate Relations

The strain rate is described from Eqs. (14.5), (14.11) and (14.27) as

e
� ¼ E�1

0 : r�
� þ n̂� :r�

�

M�
p
n̂� ¼ ðE�1

0 þ n̂� � n̂�
M�

p
Þ:r�

� ð14:29Þ

from which the plastic multiplier in terms of strain rate is derived as follows:

K
�

¼ n̂� : E0 :e
�

M�
p þ n̂� : E0 : n̂�

ð14:30Þ

The stress rate is described from Eqs. (14.11), (14.24) and (14.30) as

r�
� ¼E0 : e

� � n̂� : E0 : e
�

M�
p þ n̂� : E0 : n̂�

E0 : n̂� ð14:31Þ

The loading criterion is given by
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e� p 6¼ O for K
�
[ 0

e� p 6¼ O for K
�
� 0

)
ð14:32Þ

14.5 Hardening Rules

The evolution rules of the isotropic and the kinematic hardening variables are given
in this section.

14.5.1 Isotropic Hardening Rule

The isotropic hardening is described by

F�ðH�Þ ¼ F�0½1þ h1f1� expð�h2H�Þg	; F�
0 ¼ h1h2F�0 expð�h2H�Þ ð14:33Þ

H�
� ¼

ffiffiffi
2
3

r
jje� pjj ¼ �k

�
f
�Hn

ðr� ;H� ; n̂�Þ ð14:34Þ

f
�Hn

ðr� ;H� ; n̂�Þ ¼
ffiffiffi
2
3

r
ð14:35Þ

14.5.2 Nonlinear Kinematic Hardening Rule

Internal variables describe state of substructure of material so that tensor-valued
internal variables must be given by the hyperelastic-like relation, i.e. the partial
differential of the energy storage function of conjugate strain measure.

As described in Sect. 6.9, the plastic strain rate ep be decomposed into the
storage part epks and the dissipation part epkd , i.e.

ep ¼ epks þepkd ð14:36Þ

for the kinematic hardening. In addition, incorporate the energy storage function
wkðepksÞ of the storage part of the plastic strain for the kinematic hardening variable.
Then, the kinematic hardening variable is given as follows:
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a�¼
@w
�
kðep0ksÞ
@epks

ð14:37Þ

Now, adopt the explicit function

w
�
kðepksÞ ¼

1
2
ckep0ks :e

p0
ks ð14:38Þ

where ck is the material constant. The kinematic hardening variable is given from
Eq. (14.37) with Eq. (14.38) by

a� ¼ ckep0ks ð14:39Þ

Further, let the dissipative part of plastic strain rate be given, noting Eq. (6.103),
as

e� p0kd ¼
1

bkðr� ; F�Þ
a�jje

� p0jj ¼ 1
bkða� ; F�Þ

a�jjn̂�
0jj �k

�
ð14:40Þ

noting Eq. (14.24), where bk([ 0) is the material function of r� and F� in general.

Equation (14.40) satisfies the positivity of the dissipation energy, i.e.

a� :e� pkd ¼ ða� :a�Þjje
� p0jj=bk � 0. It follows from Eqs. (14.24), (14.36) and (14.40) that

e� p0ks ¼ e� p0 � e� p0kd ¼ e� p0 � 1
bkðr� ; F�Þ

jje� p0jja� ¼ �k
�
�
n̂�

0 � 1
bkðr� ; F�Þ

a�jjn̂�
0jj
�

ð14:41Þ

The following equation is derived from Eqs. (14.39) and (14.41).

a�
� ¼ cke

� p0
ks ¼ ck

�
e� p0 � 1

bkðr� ; F�Þ
jje� p0jja�

�
¼ �k

�
f�kn

f�kn ¼ ck �k
� �
n̂�

0 � 1
bkðr� ; F�Þ

a�jjn̂�
0jj
�

9>>>=
>>>; ð14:42Þ

which is the modification of the nonlinear kinematic hardening rule by Armstrong
and Frederick (1966).

The constitutive relation for the effective stress was described in the previous
and this sections. Further, we have to formulate the calculation method of the
current stress in the actual configuration from the effective stress, which will be
attained through the damage tensor as described in the subsequent sections.
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14.6 Damage Tensor

The damage variable is the tensor which transforms the elastic response in the
fictitious undamaged configuration to the one in the actual damaged configuration
in general. However, assume that the elastic response in the actual damaged con-
figuration is also given by the linear relation between the Cauchy stress and the
elastic strain as well as the one in the fictitious undamaged configuration shown in
Eq. (14.10), i.e.

r ¼ E :ee; ee ¼ E�1 :r ð14:43Þ

based on the hypothesis of strain equivalence (Lemaitre 1971), where E is elastic
modulus tensor in the actual damaged configuration. It follows from Eqs. (14.10)
and (14.43) that

r ¼ E :E�1
0 : r� ; r� ¼ E0 : E�1:r ð14:44Þ

The relation of E to E0 is described using the damage tensor D in general as
follows:

E ¼ EðE0;DÞ ð14:45Þ

where the evolution rule of the damage tensor D can be generally given as follows:

D
� ¼ fDðr� ; e

eqp;e� pÞ ð14:46Þ

where fD is the homogeneous function of e� p in degree-one.
Now, if we assume the linear relation between the fourth-order tensors E0 and E,

i.e.

Eijkl ¼ DijklpqrsE0pqrs ð14:47Þ

the damage variable D is the eight-order tensor in general.
The following simple transformation rule in terms of the fourth-order tensor D is

adopted by Chaboche (1982).

E ¼ ðI � DÞ : E0 ð14:48Þ

which yields

r ¼ ðI � DÞ : r� ; r� ¼ ðI � DÞ�1 :r ð14:49Þ

However, unfortunately the current stress r is generally no longer symmetric
even for the effective stress tensor r� which is the symmetric tensor. Besides, it
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cannot be used as far as the tensor D is described explicitly by the known physical
variable.

Various explicit damage tensors have been proposed as will be described in the
following.

14.6.1 Isotropic Damage Tensor

Assume the following isotropic damage tensor with the scalar variable D in
Eq. (14.1):

D ¼ DI ð14:50Þ

Substituting Eq. (14.50) into Eq. (14.48), it follows that

E ¼ ðI � DÞ : E0 ¼ ð1� DÞI : E0 ¼ ð1� DÞE0; E0 ¼ E=ð1� DÞ ð14:51Þ

E�1 ¼ E�1
0 =ð1� DÞ; E�1

0 ¼ ð1� DÞE�1 ð14:52Þ

which is described for the Hooke’s law as follows:

Eijkl ¼ ð1� DÞE0ijkl ¼ ð1� DÞ E0

1þ m
m

1� 2m
dijdkl þ 1

2
ðdikdjl þ dildjkÞ

� �
E�1
ijkl ¼

1
ð1� DÞE

�1
0ijkl ¼

1
ð1� DÞE0

1
2
ð1þ mÞðdikdjl þ dildjkÞ � mdijdkl

� �
9>>=
>>;
ð14:53Þ

resulting in

E ¼ ð1� DÞE0; D ¼ 1� E=E0 ð14:54Þ

Then, substituting Eq. (14.52) into Eq. (14.44), one has

r ¼ ð1� DÞr� ; r� ¼ r=ð1� DÞ ð14:55Þ

from which it follows that

r� ¼ ð1�DÞr�
� � D

� r� ; r�
� ¼

r� þ D
� r�

1� D
¼
r� þ D

� r
1�D

1� D
ð14:56Þ

The following relations hold from Eqs. (14.51) and (14.52).
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r ¼ E :ee ¼ ð1�DÞE0 :ee; r� ¼ E0 :ee ¼ 1
1�D

E :ee ð14:57Þ

ee ¼ E�1 :r ¼ 1
1�D

E�1
0 :r ¼ E�1

0 : r� ¼ ð1�DÞE�1 :r ð14:58Þ

The Helmholtz free energy function wðeeÞ and the Gibbs’ free energy /ðrÞ in
the damaged state are given for Eq. (14.53) noting Eqs. (5.40) as

wðee;DÞ ¼ 1
2
r :ee

� �
¼ 1

2
ee : E :ee ¼ 1

2
ð1� DÞee : E0 :ee

¼ 1
2
ð1� DÞ E0

1þ m
eeijeeij þ

m
1� 2m

ðeekkÞ2
h i

ð14:59Þ

/ðr;DÞ
�

¼ 1
2
r : ee

�
¼ 1

2
r : E�1:r ¼ 1

2ð1� DÞr : E�1
0 :r

¼ 1
2ð1� DÞE0

½ð1þ mÞrijrij � mðrkkÞ2	 ð14:60Þ

from which it follows that

rij ¼ @wðee;DÞ
@eeij

¼ ð1� DÞE0ijkleekl ¼ ð1� DÞ E0

1þ m

�
eij þ m

1� 2m
ekkdij

�
ð14:61Þ

eeij ¼
@/ðr;DÞ

@rij
¼ 1

1� D
E�1
0ijklrkl ¼ 1

ð1� DÞE0
½ð1þ mÞrij � mrkkdij	

¼ 1
E0

½ð1þ mÞr�ij � mr�kkdij	 ð14:62Þ

The example of the evolution rule of the isotropic damage variable D is given by
Lemaitre and Chaboche (1990) as follows:

D
� ¼ Y

f

� �aHðeeqp � eeqpd Þ
1� D

e� eqp ð14:63Þ

where f and a are the material constants, and eeqpd is the threshold value of eeqp, and
Hð Þ is the Heaviside step function, i.e. HðsÞ ¼ 0 for s� 0 and HðsÞ ¼ 1 for s[ 0
for a scalar variable s. Y is defined by

Y ¼ � @wðee;DÞ
@D

¼ wðee;DÞ
1� D

¼ 1
2
E0 ijkleeijeekl ¼

1
2
ee : E0 :ee ¼ 1

2
r� :ee ð14:64Þ

noting Eq. (14.59), which designates the releasing rate of the strain energy due to
the damage under the constant strain (@wðee;DÞ=@D\0), i.e. the rate of energy
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dissipated in the crack extension and is called the strain energy density release rate
in the failure mechanics or the damage associated variable (Chaboche 1988).
Equation (14.64) is rewritten as follows:

Y ¼ 1
2E0

½ð1þ mÞr�ijr�ij � mðr�rrÞ2	 ¼
1þ m

2ð1� DÞ2E0
½ð1þ mÞrijrij � mðrrrÞ2	

ð14:65Þ

or

Y ¼ 2
3
1þ m
2E0

r�
eq 2 þ 3

1� 2m
2E0

r�
2
m ð14:66Þ

noting

1
2
r�ijeeij ¼

1
2
r�ij

1
E0

½ð1þ mÞr�ij � mr�kkdijÞ	 ¼
1

2E0
ð1þ mÞr�ijr�ij � mðr�kkÞ2
� �

¼ 1
2E0

ð1þ mÞ
�
r�

0
ij þ

1
3
r�kkdij

��
r�

0
ij þ

1
3
r�kkdij

�
� mðr�kkÞ2

� �

¼ 1
2E0

ð1þ mÞr�
0
ijr�

0
ij þ

1
3
ð1� 2mÞðr�kkÞ2

� �
¼ 1

2E0
ð1þ mÞ 2

3
r�

eq 2 þ 3ð1� 2mÞðr�mÞ2
� �

Equation (14.64) is further rewritten as

Y ¼
r�

eq 2

2E0
Rv ð14:67Þ

where Rv is defined by the following equation and called the stress triaxiality
function

Rv � 2
3
ð1þ mÞþ 3ð1� 2mÞ

� r�m

r�
eq

�2

ð14:68Þ

r�m=r�
eq is referred to as the stress triaxiality.

Analogously to Eqs. (14.55) and (14.56), the relation of the isotropic hardening,
the kinematic hardening variables and their rates in the actual damaged and the
fictitious undamaged configurations are given by

F ¼ ð1� DÞF� ; F� ¼ F=ð1� DÞ ð14:69Þ

F
� ¼ ð1� DÞF�

� � D
�
F� ð14:70Þ
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a ¼ ð1� DÞa� ; a� ¼ a=ð1� DÞ ð14:71Þ

a� ¼ ð1� DÞa�
� � D

� a� ð14:72Þ

Equation (14.50) is widely employed in deformation analyses. However, it
would be inapplicable to damage behavior with a strong anisotropy.

14.6.2 On Strain Energy Density Release Rate

Physical interpretation of the strain energy density release rate is given concisely in
this section referring to Chaboche (1988).

Consider the elastic deformation with crack extension under the uniaxial loading
in Fig. 14.3. It follows in the deformation process from the point a to the point b
that

Energy release increment dEr from elastic body with crack extensionð Þ
¼ Input energy increment � Strain energy increment

¼ ha0abb0 � ðD0bb0 � D0aa0Þ
¼ ha0abb0 � ½ðD0aa0 þha0abb0 � D0ab) - D0aa0	
¼ D0ab

Now, suppose the state that the stress increment is small to be negligible, i.e.
dr ffi 0 and thus one has

dw ¼ D0bb0 � D0aa0 ¼ ðD0aa0 þha0abb0 � D0ab)� D0aa0

¼ ha0abb0 � D0ab ffi 2D0ab� D0ab ¼ D0ab

¼ dEr

ð14:73Þ

Therefore, the half of the input energy increment transforms to the energy release
increment dEr and the other half transfers to the strain energy increment dw.

Now, one has

dee ffi ee
1� D

dD ð14:74Þ

noting

dr ¼ dðEeeÞ ¼ d½ð1� DÞE0ee	 ¼ �dDE0ee þð1� DÞE0dee ffi 0
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Then, it follows from Eqs. (14.59) and (14.64) with Eq. (14.74) that

dw ¼ d
1
2
ree

� �
ffi 1

2
rdee ’ 1

2
r

1� D
eedD ¼ 1

2
r�e

edD ¼ YdD ð14:75Þ

Therefore, YdD is shown by D0ab under the constant stress state in Fig. 14.2.

14.6.3 Unilateral Damage: Microcrack Closure Effect

The degrees of damage in directions subjected to the tension and the compression
stresses are different in some materials, e.g. cast iron, rocks and concretes. It is
called the unilateral damage, while the identical damage generation in directions
subjected to the tension and the compression stresses described in the last section is
called the bilateral damage. The unilateral damage is formulated by Ladeveze and
Lemaitre (1984) as will be described below.

The tensor is described in the spectral representation in Eq. (1.170), i.e.

T ¼
X3
P¼1

TPeP � eP

where TP are the principal values and eP are the principal vectors. The components
are described as follows:

σ

eε0

a
b

0(1 )D E−

0E

a' b'eε edε

σ σ

σ σ

0[ ( ]1 )D dD E+−
YdD

Fig. 14.2 Strain energy release due to crack extension
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Tij ¼
X3
P¼1

TPePiePj; ePi ¼ eP � ei ð14:76Þ

noting

Tij ¼ ei �Tej ¼ ei �
X3
P¼1

TPeP � ePej ð14:77Þ

The components are decomposed into the positive and the negative parts:

Tij ¼ hTiþij þhTi�ij ð14:78Þ

where

hTiþij � P3
P¼1

hTPiePiePj for TP � 0

hTi�ij �
P3
P¼1

�h�TPiePiePj for TP\0

9>>=
>>; ð14:79Þ

with

hTiþij hTi�ij ¼ 0 ð14:80Þ

noting

hTPih�TPi ¼ 0 ð14:81Þ

It follows noting Eq. (14.80) from Eq. (14.78) that

TijTij ¼ hTiþij hTiþij þhTi�ij hTi�ij ð14:82Þ

hTkki2 ¼ hTkki2 þh�Tkki2 ð14:83Þ

hTkki ¼ hTkki � h�Tkki ð14:84Þ

with

hTiþkl dkl 6¼ hTkki; hTi�kldkl 6¼ �h�Tkki ð14:85Þ

and the following derivatives hold.
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@

@Tij

1
2
hTkki2

� �
¼ hTkkidij ð14:86Þ

@

@Tij

1
2
hTiþrs hTiþrs

� �
¼ hTiþij ;

@

@Tij

1
2
hTi�rshTi�rs

� �
¼ hTi�ij ð14:87Þ

Equations (14.60), (14.62) and (14.65) are described by Eqs. (14.79), (14.82),
(14.83) and (14.84) as follows:

/ðr;DÞ ¼ 1 + m
2E0

hriþij hriþij þhri�ij hri�ij
1� D

� m
2E0

hrkki2 � h�rkki2
1� D

ð14:88Þ

Y ¼ 1þ m
2E0

hriþij hriþij þhri�ij hri�ij
ð1� DÞ2 � m

2E0

hrkki2 þh�rkki2
ð1� DÞ2 ð14:89Þ

eeij ¼
@/ðr;DÞ

@r ¼ 1 + m
E0

hriþij þhri�ij
1� D

� m
E0

hrkki � h�rkki
1� D

dij ð14:90Þ

Here, noting

ð1þ mÞhriþij � mhrrridij
¼ ð1þ mÞhriþij þ 1

1� 2m
½ðmþ m2Þhriþkl dkl � mð1� 2mÞhriþkl dkl

� 3m2hriþrs drs � ðmþ m2Þhrrriþ 3m2hrrri	dij
¼ ð1þ mÞhriþij þ 1

1� 2m
½ðmþ m2Þhriþkl dkl � ðmþ m2Þhrrri � mð1� 2mÞhriþkl dkl

� 3m2hriþrs drs þ 3m2hrrri	dij
¼ ð1þ mÞ hriþij þ m

1� 2m
ðhriþkl dkl � hrrriÞdij

h i
� m hriþkl þ

m
1� 2m

ðhriþrs drs � hrrriÞdkl
h i

dkldij

Eq. (14.90) is rewritten as

eeij ¼ 1 + m
E0

hriþij þ m
1� 2m

ðhriþkl dkl � hrrriÞdij
1� D

�
hri�ij þ

m
1� 2m

ðhri�kldkl � h�rrriÞdij
1� D

2
4

3
5

� m
E0

hriþkl þ
m

1� 2m
ðhriþrs drs � hrrriÞdkl
1� D

�
hri�kl þ

m
1� 2m

ðhriþrs drs � h�rrriÞdkl
1� D

2
4

3
5dkldij

ð14:91Þ

On the other hand, the elastic strain is described in terms of the effective stress by
Eq. (5.44) as follows:
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eeij ¼
1þ m
E0

r�ij �
m
E0
r�kkdij ð14:92Þ

The effective stress is described in terms of the current stress by comparing
Eqs. (14.91) and (14.92) as follows:

r�ij ¼
hriþij þhri�ij

1� D
þ m

1� 2m

ðhriþij þhri�ij Þdkl þhrrri � h�rrri
1� D

dij ð14:93Þ

Equations (14.88), (14.89), (14.90) and (14.93) are extended to the unilateral
equations as follows:

/ðr;DÞ ¼ 1 + m
2E0

hriþij hriþij
1� D

þ hri�ij hri�ij
1� hD

 !
� m
2E0

hrkki2
1� D

� h�rkki2
1� hD

 !

ð14:94Þ

Y ¼ � @wðee;DÞ
@D

¼ 1þ m
2E0

hriþij hriþij
ð1� DÞ2 þ h

hri�ij hri�ij
ð1� hDÞ2

 !
� m
2E0

hrkki2
ð1� DÞ2 þ h

h�rkki2
ð1� hDÞ2

 !

ð14:95Þ

eeij ¼
@/ðr;DÞ

@r ¼ 1 + m
E0

hriþij
1� D

þ hri�ij
1� hD

 !
� m
E0

hrkki
1� D

� h�rkki
1� hD

� �
dij

ð14:96Þ

r� ij
¼ hriþij

1� D
þ hri�ij

1� hD
þ m

1� 2m
hriþkl dkl � h�rrri

1� D
þ hri�kldkl � h�rrri

1� hD

� �
dij

ð14:97Þ

where hð0� h� 1Þ is the material parameter corresponding to the bilateral and the
unilateral crack effect for h = 1 and h = 0, respectively.

Let the following variables be introduced for more concise description.

rm � rkk=3 ð14:98Þ

rþ
m � hriþkl dkl=3; r�

m � hri�ij dkl=3 ð14:99Þ

rþ
ij � hriþij þ 3m

1� 2m
ðrþ

m � hrmiÞdij; r�
ij � hri�ij þ

3m
1� 2m

ðr�
m � h�rmiÞdij

ð14:100Þ
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by which the effective stress in Eq. (14.97) is described as

r� ij
¼ rþ

ij

1� D
þ r�

ij

1� hD
ð14:101Þ

where the factor 3m=ð1� 2mÞ is coupling term which accounts for shear effect.
Equations (14.98) to (14.101) are reduced in the one-dimensional state which

can be interpreted concisely as follows (Lemaitre 1992):

r ¼
r 0 0
0 0 0
0 0 0

2
4

3
5

Tension r[ 0 Compression r\0
rm ¼ r=3 rm ¼ r=3ð\0Þ
rþ
m ¼ r=3

r�
m ¼ 0



rþ
m ¼ 0

r�
m ¼ �r=3ð[0Þ



rþ
m � hrmi

r�
m � h�rmi



¼ 0

rþ
m � hrmi

r�
m � h�rmi



¼ 0

rþ
11 ¼ r

r�
11 ¼ 0



rþ
11 ¼ 0

r�
11 ¼ �r



r�11 ¼

r
1� D

r�11 ¼
r

1� hD
ð\0Þ

ð14:102Þ

Therefore, the difference between the actual stress and the effective stress in the
compression state is smaller than that in the tension state if h\1.

14.6.4 Anisotropic (Orthotropic) Damage Tensor

The following asymmetric effective stress was proposed by Murakami and Ohno
(1981) and Murakami (1988).

r� ¼ ðI�DÞ�1r ð14:103Þ

However, an asymmetric stress tensor makes the mathematical formulation and
mechanical analysis very complicated. Then, various symmetrized effective stress
tensors have been proposed. For instance,

r� ¼ ½rðI�DÞ�1 þðI�DÞ�1r	=2 ð14:104Þ
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and

r� ¼ ðI�DÞ�1rðI�DÞ�1 ð14:105Þ

have been proposed by Murakami and Ohno (1981) and Betton (1986), respec-
tively. However, there would not exist potential function leading to them.

Cordebois and Sidoroff (1982a, b) proposed the effective stress tensor

r� ¼ HrH ð14:106Þ

where

H � ðI�DÞ�1=2ð¼HTÞ ð14:107Þ

Equation (14.106) is derived from the potential function as follows:

w ¼ CtrðHrHrÞ ð14:108Þ

ee ¼ @w
@r ¼ 2CHrH ¼ 2Cr� ð14:109Þ

However, Eq. (14.109) is physically impertinent in the present form.
Extending Eq. (14.59) to the anisotropic damage, Lemaitre et al. (2000) assumed

the following Gibbs energy.

w ¼ 1þ m
2E

trðHr0Hr0Þ þ 3ð1� 2mÞ
2E

r2
m

1� gDm
ð14:110Þ

where

Dm � 1
3
trD ð14:111Þ

g is an hydrostatic sensitivity parameter concerning the Poisson’s ratio with dam-
age, while g ffi 3 is used most often. The particular case chosen as D ¼ DI and
g ¼ 1 corresponds to the isotropic damage.

The elastic strain is derived from Eq. (14.110) as follows:

ee ¼ @w
@r ¼ 1þ m

E
r� � 3m

E
r�mI ð14:112Þ
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which is of identical form to the Hooke’s law but the effective stress is related to the
actual stress as follows (Lemaitre et al., 2000):

r� � ðHr0HÞ0 þ rm

1� gDm
I ð14:113Þ

noting

@w
@rij

¼ @

@rij

1þ m
2E

Hpqr0
qrHrsr0

sp þ
3ð1� 2mÞ

2E
r2
m

1� gDm

� �

¼ 1þ m
2E

Hpq
@r0

qr

@rij
Hrsr0

sp þHpqr0
qrHrs

@r0
sp

@rij

� �
þ 3ð1� 2mÞ

2E
2rm

1� gDm

1
3
dij

¼ 1þ m
2E

Hpqðdiqdjr � 1
3
dqrdijÞHrsr0

sp þHpqr0
qrHrsðdisdjp � 1

3
dspdijÞ

� �
þ 1� 2m

E
rm

1� gDm
dij

¼ 1þ m
2E

ðHpir0
spHjs � 1

3
Hpqr0

spHqsdijÞþ ðHjqr0
qrHri � 1

3
Hpqr0

qrHrpdijÞ
� �

þ 1� 2m
E

rm

1� gDm
dij

¼ 1þ m
E

ðHpir0
spHjs)0 þ 1� 2m

E
rm

1� gDm
dij

¼ 1þ m
E

ðHpir0
spHjs)0 þ rm

1� gDm
dij

� �
� m
E

rm

1� gDm
3dij

¼ 1þ m
E

ðHpir0
spHjs)0 þ rm

1� gDm
dij

� �
� m
E
½ðHpir0

spHjsÞ0aa|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

þ rm

1� gDm
daa	dij

Equation (14.113) is regarded to be the modification of Eq. (14.106) proposed by
Cordebois and Sidoroff (1982a, b) so as to conform to the Hooke’s elastic behavior.

Equation (14.113) is rewritten as follows:

r� ¼ MðDÞ :r ð14:114Þ

i.e.

r� ¼ MðDÞ :r0 þrmMðDÞ : I ð14:115Þ

where

MðDÞ ¼ H ~�H� 1
3
ðH2 � Iþ I�H2Þþ 1

9
ðtrH2ÞI� Iþ I� I

3ð1� gDmÞ ð14:116Þ
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with the notation ðA ~�BÞij � TikTlj in Eq. (1.1514), noting

ðHr0HÞ0ij ¼ ðHikr0
klHljÞ0 ¼ Hikr0

klHlj � Hrkr0
klHlrdij=3

¼ Hikðrkl � rmdklÞHlj � Hrkðrkl � rmdklÞHlrdij=3

¼ HikHljrkl � HikHkjrm � HlrHrkrkldij=3þHrkHkrdijrm=3

¼ HikHljrkl � HirHrjrm � HlrHrkrkldij=3þHrkHkrdijrm=3

¼ ½HikHlj � ðHirHrjdkl þ dijHlrHrkÞ=3þHrkHkrdijdkl=9	rkl

¼ f½H ~�H� ðH2 � Iþ I�H2Þ=3þðtrH2ÞI� I=9	rgij

MðDÞ : I ¼
"
H ~�H� 1

3
ðH2 � Iþ I�H2Þþ 1

9
ðtrH2ÞI� Iþ I� I

3ð1� gDmÞ

#
: I ¼ I

1� gDm

H ~�H : I ¼ H2;H2 � I : I ¼ 3H2; I�H2 : I ¼ ðtrH2ÞI

Equations (14.114) are inverted as follows (Mengoni and Ponthot 2015):

r ¼ H�1r�
0H�1 �

r�
0
: H

2

trH�2 H�2 þð1� gDmÞr�mI ð14:117Þ

r ¼ M�1ðDÞ : r� ð14:118Þ

where

M�1ðDÞ ¼ H�1 �H�1 �H�2 �H�2

trH�2 þ 1
3
ð1� gDmÞI� I ð14:119Þ

The rate of the damage tensor is given by

D
� ¼ Y

S

� �m

jdpj ð14:120Þ

where S and m are material parameters and jdpj is defined as

jdPj �
X3
P¼1

jdpPjnP � nP ð14:121Þ

dpP and nP are the principal values and the normalized principal direction vectors of
plastic strain rate. Y is already shown in Eq. (14.67). Then, the principal directions of
the damage rate coincide with those of the plastic strain rate.

The plastic strain rate and the fictitious effective stress rate are calculated by the
fictitious elastoplastic constitutive relations by inputs of strain rate. Then, the
internal variables in the fictitious undamaged configuration and the damage tensor
are calculated by the plastic strain rate, and then the current stress is calculated
though the damage tensor from the fictitious undamaged stress.

In the uniaxial loading, the damage tensors D and H are described in the
orthotropic coordinate system the axes of which coincide with the principal
directions of the damage tensor as

452 14 Subloading-Damage Model

http://dx.doi.org/10.1007/978-3-319-48821-9_1


D ¼
D1 0 0
0 D2 0
0 0 D2

2
4

3
5 ð14:122Þ

H ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D1

p 0 0

0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�D2
p 0

0 0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�D3
p

2
6666664

3
7777775 ð14:123Þ

The effective equivalent stress req
� is different from the effective stress r1� as

follows:

r�
eq ¼ 2

3
r1

1�D1
þ 1

3
r1

1�D2

r� 1 ¼
4
9

r1

1�D1
þ 2

9
r1

1�D2
þ 1

3
r1

1� gDm

9>>=
>>; ð14:124Þ

The elastic strain is described by Eq. (14.112) with Eq. (14.113), noting Eqs.
(14.122) and (14.123) as follows (Lemaitre et al. 2000):

ee1 0 0

0 ee2 0

0 0 ee3

2
64

3
75

¼ 1þ m
E

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D1

p 0 0

0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�D2
p 0

0 0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�D3
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3
77777775

2
3
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3
r1 0
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3
r1

2
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3
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1�D1

p 0 0

0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�D2
p 0

0 0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�D3
p

2
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3
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0
BBBBBBB@
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CCCCCCCA
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E
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2
64

3
75� m

E
3rm
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2
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3
75

¼ 1þ m
E

2
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1
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1
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E
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3
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ð14:125Þ
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Then, setting

E�1 �
r1

ee1
; m�12 � � ee2

ee1
; m�13 � � ee3

ee1
ð14:126Þ

one has

E
E�1

¼ 1þ m
9

�
4

1�D1
þ 1

1�D2
þ 1

1�D3

�
þ 1� 2m

3ð1� gDmÞ

m�12
E
E� 1

¼ 1þ m
9

�
2

1�D1
þ 2

1�D2
� 1
1�D3

�
� 1� 2m
3ð1� gDmÞ

m�13
E
E� 1

¼ 1þ m
9

�
2

1�D1
� 1
1�D2

þ 2
1�D3

�
� 1� 2m
3ð1� gDmÞ

9>>>>>>>>>=
>>>>>>>>>;

ð14:127Þ

The unilateral formulation for the anisotropic damage can be referred to
Ladeveze and Lemaitre (1984) Lemaitre and Desmora (2005).

14.7 Subloading-Overstress Damage Model

The subloading-damage model formulated in the preceding sections will be
extended to be taken account of the rate-dependent plastic deformation by incor-
porating the subloading-overstress model (Hashiguchi 2013a) in the following.

Equations (14.29) and (14.31) in the subloading-damage model is extended by
incorporating the subloading-overstress model in Eq. (13.29) as follows:

e� ¼ e� e þe� vp ¼ E�1
0 : r�

� þ 1
�l

R� Rsh in
Rm � R

n̂� ð14:128Þ

r�
� ¼ E0 :e

� � 1
�l

R� Rsh in
Rm � R

E0 : n̂� ð14:129Þ

where e� vp is the viscoplastic strain rate for which the loading criterion is imposed
by incorporating the Macaulay’s bracket. �l and n are the material parameters, while
�l stands for the viscoplastic coefficient. The surface which passes through the
current stress and is similar to the normal-yield surface is called the dynamic-
loading surface and the ratio of the size of the dynamic-loading surface to the
normal-yield surface is described by Rð¼ f ðr̂�Þ=~FÞ which can be larger than unity

and is called the dynamic-loading ratio. Rmð�1Þ is the material constant desig-
nating the maximum value of the dynamic-loading ratio, called the limit dynamic-
loading ratio. The rates of the internal state variables H� ;a� ;D;D are given by
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replacing the plastic strain rate e� p to the viscoplastic strain rate e� vp in Eqs. (14.14),
(14.42), (14.63) and (14.120) as follows:

H�
� ¼ f

�Heðr� ;H� ;e
� vpÞ ð14:130Þ

a�
� ¼ f�keðr� ;a� ; F� ;e

� vp0Þ ¼ ck e� vp0 � 1
bkðr� ; F�Þ

a�
������e� vp0������

0
@

1
A ð14:131Þ

D
� ¼ Y

f

� �aĤ½eeqvp � eeqvpd 	
1� D

e� eqvp ð14:132Þ

D
� ¼ Y

S

� �m

jdvpj ¼ Y
S

� �mX3
P¼1

jdvpP jnP � nP ð14:133Þ

eeqvp �
ffiffiffiffiffiffiffiffi
2=3

p Z ������e� vp������dt ð14:134Þ

The rate of the subloading ratio Rsð0�Rs � 1Þ is given by replacing the

normal-yield ratio R to Rs and the plastic strain increment e� p to the viscoplastic

strain rate e� vp in Eq. (14.17) for the plastic sliding process and the subloading ratio
Rs is identical to the normal sliding-yield ratio R for the elastic sliding process as
follows:

R
�
s ¼ UðRsÞ

������e� vp������ for e� vp 6¼ O ð14:135Þ

Rs ¼ R for e� vp ¼ O ð14:136Þ

The smooth transition from the elastic to the viscoplastic state is described by
incorporating Rs instead of unity. The response of the subloading-overstress dam-
age model is shown in Fig. 14.3.

14.8 Subloading-Gruson Model

Plastic deformation is induced under hydrostatic stress in porous media even if the
base material is the Mises material the plastic deformation behavior of which is
independent of hydrostatic stress. The elastoplastic constitutive model taken
account of the nucleation and the growth of round voids was proposed first by
Gurson (1977) and further studied by Needleman and Rice (1978), Tvergaard and
Needleman (1984), Needleman and Tvergaard (1985), etc. The yield surface is
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introduced, which is taken account of the void volume fraction and the mean stress
with the evolution rule of the void volume fraction. It is often called the Gurson
model and its elaboration taken account of the void coalescence is called the GTN
(Gurson-Tvergaard-Needleman) model. The subloading-void(Gurson) model will
be described in this section.

The following yield condition is derived by Gurson (1977) by the symmetric
deformation analysis of the rigid-plastic Mises material containing a spherical
cavity.

wðr; F; nÞ ¼ req

F

� �2

þ 2n cosh
3
2
rm

F

� �
� n2 � 1 ¼ 0 ð14:137Þ

where n is the void volume fraction. Equation (14.137) is reduced to the von Mises
yield condition, i.e. req ¼ F for n ¼ 0. The dependence of the yield function in
Eq. (14.137) is shown in Fig. 14.4.

The rate of the void volume fraction n
�
is given by sum of the growth rate n

�
grow

and the nucleation rate of new void n
�
nucl as follows (Needleman and Rice 1978):

n
� ¼ n

�
grow þ n

�
nucl ð14:138Þ

where

n
�
grow ¼ ð1� nÞtr e� pm

n
�
nucl ¼ a1ðF� þr� mÞþ a2 e

� eqp

)
ð14:139Þ
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Fig. 14.3 Stress-strain curve predicted by the subloading-overstress damage model
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The coefficient a1 and a2 are given by Chu and Needleman (1980) as follows:

a1 ¼ fnffiffiffiffiffiffi
2p

p
sn
exp

h
� 1
2

�Fþrm � rn

sn

�2i
a2 ¼ fnffiffiffiffiffiffi

2p
p

sn
exp

h
� 1
2

� eeqp � en
sn

�2i
9>>=
>>; ð14:140Þ

which is derived postulating that the voids nucleates according to the probability
distribution with the stress rn and the strain en as their mean values together with sn
as their standard deviation, and fn is the volume fraction of void nucleating
particles.

The subloading surface for the normal-yield surface in Eq. (14.137) is given by
replacing F to RF in Eq. (14.137) as follows:

wðr; F; nÞ ¼ req

RF

� �2

þ 2n cosh
3
2
rm

RF

� �
� n2 � 1 ¼ 0 ð14:141Þ

The time-differentiation of Eq. (14.141) is given by

w
� ðr;F; nÞ ¼ 2

req

RF

� �
r� eqRF � reqðRF

� þ R
�
FÞ

R2F2

þ 2n sinh
3
2
rm

RF

� �
3
2
r� mRF � rmðRF

� þ R
�
FÞ

R2F2 � 2 n
� ¼ 0

ð14:142Þ

from which one has

2
req

RF

� �
r� eq � req F

�

F
þ R

�

R

 !" #
þ 3n sinh

3
2
rm

RF

� �
r� m � rm

F
�
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þ R
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 !" #
� 2RF n

� ¼ 0

ð14:143Þ
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Fig. 14.4 Effect of void volume fraction in Gurson yield surface
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Assume the associated flow rule

e� p ¼ �k
�
nw ð�k

�
[ 0Þ ð14:144Þ

where

nw � @w
@r =jj @w

@r jj ðjjnwjj ¼ 1Þ ð14:145Þ

It follows adopting the associated flow rule in Eq. (14.144) with Eqs. (6.42) and
(7.9) that

2
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� �
r� eq � req F0�k

�
hw
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r
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" #
¼ 0

resulting in
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þ 3nrm sinh
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���
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r
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ð14:146Þ

where

hw � H
�
= �k

�
ð¼

ffiffiffiffiffiffiffiffi
2=3

p
Þ ð14:147Þ

Noting

r� m ¼ 1
3
I :r� ; r� eq ¼

ffiffiffi
3
2

r
jjr0jj

 !�
¼

ffiffiffi
3
2

r
r0 :r�

jjr0jj ¼
3
2
r0 :r�

r eq ð14:148Þ

one has
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2
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Substituting Eq. (14.149) into Eq. (14.146), the plastic multiplier is derived as
follows:

�k
�
¼ tSG :r�

�MSG ð14:150Þ

where

tSG � 3
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þ
h
n sinh

� 3
2
rm
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�
� 2
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I ð14:151Þ
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ð14:152Þ

The strain rate is given from Eqs. (14.5), (14.144) and (14.150) as

e
� ¼ E�1: r� þ tSG:r�

�MSG
nw ¼ E�1 þ nw � tSG

�MSG

� �
: r� ð14:153Þ

from which the plastic multiplier in terms of strain rate is derived as follows:

�K
�
¼ tSG: E : e

�

�MSG þ tSG: E : nw
ð14:154Þ

The stress rate is described from Eqs. (14.5), (14.144) and (14.154) as

r� ¼ E : e
� � tSG: E : e

�

�MSG þ tSG: E : nw
E : nw ¼ E� ðE : nwÞ � ðtSG: EÞ

�MSG þ tSG: E : nw

� �
: e

� ð14:155Þ

The loading criterion is given by the equation same as Eq. (14.32).
The elaboration of the Gurson model was proposed by Tvergaard (1982) (see

also Tvergaard and Needleman 1984) by introducing the void coalescence into the
yield condition in Eq. (14.137). It is further extended by the concept of the
subloading surface as follows:
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wðr; F; nÞ ¼ req

RF

� �
þ 2n�q1 cosh

3
2
q2rm

RF

� �
� q3n

�2 � 1 ¼ 0 ð14:156Þ

where n�ðnÞ is the extension of the void volume fraction n introduced so as to
represent the loss of the load-carrying capacity due to the void coalescence, i.e.

n� ¼
n for n� nc

nc þ
� 1
q1

� nc
� n� nc
nf � nc

for n[ nc

8<
: ð14:157Þ

nc and nf are the critical void volume fraction at the initiation of void coalescence
and the void volume fraction at failure (complete loss of load-carrying capacity),
respectively. q1, q2 and q3 are the material parameters for the enforcement of the
accuracy which are usually chosen as q1 ¼ 1:5, q2 ¼ 1:0 and q3 ¼ q21. The con-
stitutive model with the yield condition in Eq. (14.153) is called the GTN (Gurson-
Tvergaard-Needleman) model.

The plastic volumetric strain rate is considered in the Gurson model, while it is
not considered in the damage model explained in the preceding sections. On the
other hand, the decrease of the elastic modulus is not considered in the Gurson
model, while it is considered in the damage model. The extended model taken
account of both of them would have to be formulated in feature.
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