Chapter 14
Damage Model

The elastic deformation due to the deformation of material particles themselves is
induced even when the stress is low, the elastoplastic deformation due to the slips
between material particles (dislocations of crystal lattices in case of metals and slips
between soils particles in soils) is induced when the stress increases up to a certain
stress (yield stress) and the damage due to the separations of material particles is
induced when the stress further increases. The phenomenological formulation of the
deformation up to the failure induced in the damage process within the framework
of the continuum mechanics is called the continuum damage mechanics.

This chapter addresses the elastoplastic constitutive equation with damage which
is extended by incorporating the subloading surface model within the continuum
damage mechanics. It is extended further to the description of the elasto-viscoplastic
deformation with the damage.

The second law of thermodynamics, i.e. the Clausius-Duhem inequality has been
used for the formulation of constitutive relation (e.g. Lemaitre and Chaboche 1990;
Lemaitre 1992; Lemaitre and Desmoral 2005; Murakami 2012) but it would be
helpless or harmful for the formulation of plastic constitutive relation as will be
explained in Chap. 21 and Sect. 21.8 in detail. In addition, the plastic constitutive
relation has been formulated originally in terms of the current stress in the actual
damaged configuration (e.g. Lemaitre and Chaboche 1990; Lemaitre 1992;
Lemaitre and Desmoral 2005; Murakami 2012), although it should be formulated
rigorously in terms of the effective stress in the fictitious undamaged configuration.
Constitutive equations will be first formulated consistently in terms of the effective
stress and thereafter it is transformed to the damaged actual configuration, irrele-
vantly to the second law of thermodynamics in this chapter.
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14.1 Damage Phenomenon

The conventional elastoplastic model premises on the postulate that the yield sur-
face encloses a purely-elastic domain. Therefore, it describes the abrupt transition
from the elastic to the plastic state so that it cannot describe realistically the soft-
ening behavior which is observed in the damage phenomenon. Further, it requires
the yield-judgment whether or not the stress reaches the yield surface and the
operation to pull-back the stress to the yield surface when it goes out from the yield
surface in numerical calculation with finite loading increments. The existing
damage models (cf. e.g. Kachanov 1958; Rabotnov 1969; Lemaitre and Chaboche
1990; Lemaitre 1992; Lemaitre and Desmoral 2005; de Sauza Neto et al. 2008;
Murakami 2012) are based on the conventional elastoplastic model. On the other
hand, the subloading surface model (1980, 1989) describes the smooth elastic-
plastic transition fulfilling always the smoothness condition in Eq. (7.2). Then, it
possesses the distinguished ability as it does not require the yield-judgment and
possesses the automatic controlling function to attract the stress to the yield surface
in the plastic deformation process so that the stress is automatically pulled-back to
the yield surface when it goes out from the yield surface by finite loading incre-
ments in numerical calculation.

The extended elastoplastic constitutive equation for the damage phenomenon is
formulated by incorporating the concept of subloading surface in this chapter. The
formulation is given originally in terms of the effective stress applied in the ficti-
tious undamaged configuration, which is of the identical form to the original
subloading surface model formulation without the damage. However, the hypoe-
lasticity cannot be adopted but the hyperelasticity should be adopted for the damage
model since we cannot assume that the elastic deformation is far small compared
with the plastic deformation in the damage phenomena. Therefore, the formulation
is modified to the hyperelastic-based plasticity in terms of the so-called infinitesimal
strain. Further, it will be extended to be taken account of the rate-dependent plastic
deformation by incorporating the subloading-overstress model described in
Chap. 13.

14.2 Damage Variable

Let the relation of the current area da to the area dA( < da) in the undamaged initial
state be described through the damage variable D in the one-dimensional defor-
mation process as follows:

dA
da = ——— 14.1
a=1—7 (14.1)
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leading to

af a o
o= 1-D)o,0 = —_— 14.2
da =(1-D)g,¢ dA~ 1-D ( )
where 1/(1 — D) (>1; 0< D<) designates the increase of area caused by the
damage and df is the traction. Mechanical quantities in the fictitious undamaged
configuration are specified by adding the wave under them, i.e. (.). Let Eq. (14.1)
be extended to the three-dimensional deformation process through the second-order

positive-definite tensor D(=D") as follows:

Nda = (I — D) 'NdA, NdA = (I — D)da (14.3)
leading to
df dA df da
6=—=06N—, 6=—=0N— 14.4
da ~ dCl ’ ~ dA dA ( )

noting Eq. (3.1), where N and N are the unit outward-normal vectors of the initial
and the current surface, respectively. D is referred to as the damage tensor and
plays the most basic role for the description of constitutive equation of damage.

14.3 Hyperelastic Relation

In what follows, we adopt the hypothesis of strain equivalence (Lemaitre 1971)
insisting that the strain and its elastic and plastic parts in the fictitious undamaged
configuration are equivalent to those in the actual damaged configuration. As
described in Sect. 6.9, the infinitesimal strain is additively decomposed as follows:

E=8+¢ (14.5)
Now, adopting the linear elasticity in the Hooke’s law in Eq. (5.42), i.e.

Ey
Eyjju = Ty { (5zk5ﬂ+51151k)+ 51,51(1}

1 1
0ijkl = 7o
ij E,

1 (14.6)
5 (L4 v) Gy + dudje) — voyou

for which the Helmholtz free energy function 1/ (€°) and the Gibbs’ free energy
(;’)(g) in the undamaged configuration are given noting Eqs. (5.43) and (5.44) as
1

1 1 E
&) ==€:1E):&==-6:&) ==
V(&) =38 Eo ( ~ > 21+4v

e ne v e \2
{SijSij—l—E(Skk) (14.7)
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S 1 1 )
?(g) :EQ:E)I ;g(:igzﬁ) =L, [(l+v)gijgij—v(gkk) (14.8)

where the fourth-order tensor Eg is assumed to be the constant tensor in the ficti-
tious undamaged configuration, using the Young’s modulus Ey and the Poisson
ratio v in the fictitious undamaged configuration.

The effective stress @ and the elastic strain € are derived from Eqgs. (14.7) and

(14.8), noting Eqgs. (5.43) and (5.44) as follows:

_a«g(af)_E - _8tg(88)_E . E Ve
€= g ~HE Gi= g = oty = (6+ 75, fudi)
(14.9)
94 (o) 94(9)

~

1
:Eal:§> 8,3': :E_,0|:(1+V)GH—VO- 5U:| (1410)

oo ~ij ~kk

.
The elastic strain rate is given from Eq. (14.10) as follows:

&€ =E;':6, 6=E:& (14.11)

14.4 Subloading-Damage Model

The plastic strain rate will be formulated based on the concept of subloading surface
in this section (cf. Hashiguchi 2015a).

14.4.1 Normal-Yield and Subloading Surfaces

The yield condition is given by

£(6) = E(H) (14.12)

~ N~

where H is the isotropic hardening variable in the fictitious undamaged configu-

ration and

L
Il

c-a (14.13)

o is the kinematic hardening variable in the fictitious undamaged configuration.

The rates of these variables are be described as follows:
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H=f(0.H: &) = [, (. H:&/[&r])][&]
. . e (14.14)
= 1(0, 0 F:87) = 1,0, s |&7]) |7

which are homogeneous functions of £ in degree-one since they are induced only
in the plastic loading process € # O and the first-order time-differential quantities.
Here, let it be assumed that the function f ((;S) is the homogeneous function of (;F in

degree-one so that the following relation holds.

9 (0)
iy

:6 = £(8) (14.15)

Therefore, the yield surface retains the similar shape.

Hereinafter, the yield surface in Eq. (14.12) is called the normal-yield surface in
the fictitious undamaged configuration. Further, incorporate the following
subloading surface in the fictitious undamaged configuration (see Fig. 14.1).

f(6) = RE(H) (14.16)

where R is the normal-yield ratio.
The rate of the normal-yield ratio is given by

R=UR)|&| for &+£0 (14.17)

based on Eq. (7.9).

Normal-yield surface

f(©)=F(H)

Subloading surface

f(©)=RE(H)

Fig. 14.1 Normal-yield and subloading surfaces in the virtual undamaged configuration
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The time-differentiation of Eq. (14.16) leads to

U(G) . UG . . .
—:0 — —~: —RF —RF = 14.18
06 10~ o5 % RE-RE (14.18)

It follows from Egs. (14.15) and (14.16) that

o) .
96 :0 =RF (14.19)
which yields
o) o) | | oree)
0:6 = 10/ | e | = RE/| 5 (14.20)
leading to
1/’8“?‘) _1e (1a21)
o6 RF
where
- Of(e) [or(e)| o
=" /H 56 | (M= (14.22)

The substitution of Eq. (14.21) into Eq. (14.18) leads to

.. EoR
nc-oa—-—|=+=]6| =0 14.23
i -G |t )@ (14.23)
Now, adopt the associated flow rule
& =Jn(i>0) (14.24)

where / is the positive plastic multiplier. Substituting Eqs. (14.14) and (14.17) with
Eq. (14.24) into Eq. (14.23), one has
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I
) . E _:+ UR):
0: |6 £,(0.0 F) A= | 5 [, (G HiM) L+ =i |6 | (1425)
where
S @ HW) =110 g, (00 FR)=d/7 (1426

noting the homogeneities of I;I and ON( in degree-one of €. It follows from
Egs. (14.24) and (14.25) that

n:c " 1;1 10
e n (14.27)
where
Fl
. ~ . U(R)\ .
M’ =10:|f,(0, 0L F: 1) + (7 [ G H: ) + (T))‘f] (14.28)
14.4.2 Stress Rate Versus Strain Rate Relations
The strain rate is described from Egs. (14.5), (14.11) and (14.27) as
€E=E':q Ij:é—ﬁ— E ! LN 14.29
—o-Q‘F@N—(o‘F@,)-Q (14.29)

from which the plastic multiplier in terms of strain rate is derived as follows:

—x (14.30)
n:Ey,:n

~ ~Ep: 1 14.31
n:Ej:n 0" ( )

The loading criterion is given by
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#+£0 for A>O} (14.32)

&€#£0 for 4<0
14.5 Hardening Rules
The evolution rules of the isotropic and the kinematic hardening variables are given
in this section.
14.5.1 Isotropic Hardening Rule
The isotropic hardening is described by

F(H) = F)[1+h{l —exp(=hH)}|, F'=hhyF exp(—hH)  (14.33)

~

. 2. : .
fi= \fgua"u = f (G H: D) (14.34)
o ]2
‘]:Hn(g’é]’l;l) —\V3 (14.35)

14.5.2 Nonlinear Kinematic Hardening Rule

Internal variables describe state of substructure of material so that tensor-valued
internal variables must be given by the hyperelastic-like relation, i.e. the partial
differential of the energy storage function of conjugate strain measure.

As described in Sect. 6.9, the plastic strain rate & be decomposed into the
storage part € and the dissipation part €, i.e.

g =g +&, (14.36)

for the kinematic hardening. In addition, incorporate the energy storage function
xp"(sﬁs) of the storage part of the plastic strain for the kinematic hardening variable.
Then, the kinematic hardening variable is given as follows:
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oY (gR)
g:—Nasp (14.37)
ks
Now, adopt the explicit function
k(b |-
‘f (&) = Eckgks 1E (14.38)

where ¢ is the material constant. The kinematic hardening variable is given from
Eq. (14.37) with Eq. (14.38) by

o = & (14.39)

Further, let the dissipative part of plastic strain rate be given, noting Eq. (6.103),
as

ouf| 7 (14.40)

& = o8] =
# &) =

1 1
bk(g7E) k(%7€)

noting Eq. (14.24), where b;( > 0) is the material function of o and F in general.

Equation (14.40) satisfies the positivity of the dissipation energy, i.e.
oL &), = (01:00) €7 /by > 0. Tt follows from Eqs. (14.24), (14.36) and (14.40) that

. . o . 1 . > A~/ 1 N
&g g g~ |1¢|e=i(R - ——_an 14.41
ks kd bk(gaf) H ”N o bk(g;f) N”N ” ( )

The following equation is derived from Egs. (14.39) and (14.41).

. o pl . 1 . .
d=c€&, = (Ep/—— gr O!):/If
pe CiGp Ck bk(ga F) H ” < ~kn

<, 1 - (14.42)
= (0~ o)
~n TS bi(G,F) ~"~
which is the modification of the nonlinear kinematic hardening rule by Armstrong
and Frederick (1966).

The constitutive relation for the effective stress was described in the previous
and this sections. Further, we have to formulate the calculation method of the
current stress in the actual configuration from the effective stress, which will be
attained through the damage tensor as described in the subsequent sections.
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14.6 Damage Tensor

The damage variable is the tensor which transforms the elastic response in the
fictitious undamaged configuration to the one in the actual damaged configuration
in general. However, assume that the elastic response in the actual damaged con-
figuration is also given by the linear relation between the Cauchy stress and the
elastic strain as well as the one in the fictitious undamaged configuration shown in
Eq. (14.10), i.e.

c=E:&, ¢g&=E"':0 (14.43)
based on the hypothesis of strain equivalence (Lemaitre 1971), where E is elastic
modulus tensor in the actual damaged configuration. It follows from Egs. (14.10)
and (14.43) that

6=E:E;:0, ¢6=E;:E:0 (14.44)

The relation of E to Ej is described using the damage tensor ® in general as
follows:

E = E(E), D) (14.45)

where the evolution rule of the damage tensor D can be generally given as follows:

D =fp(0, &P E) (14.46)

where f), is the homogeneous function of £ in degree-one.
Now, if we assume the linear relation between the fourth-order tensors Eg and E,
ie.

Eijk] = DijklpqrsE()pqrx ( 1447)

the damage variable ® is the eight-order tensor in general.
The following simple transformation rule in terms of the fourth-order tensor D is
adopted by Chaboche (1982).

E=(Z-D):E (14.43)
which yields

6=(Z-D):6, 6=(Z-D)":0 (14.49)

~

However, unfortunately the current stress @ is generally no longer symmetric
even for the effective stress tensor @ which is the symmetric tensor. Besides, it
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cannot be used as far as the tensor D is described explicitly by the known physical
variable.

Various explicit damage tensors have been proposed as will be described in the
following.

14.6.1 Isotropic Damage Tensor

Assume the following isotropic damage tensor with the scalar variable D in
Eq. (14.1):

D=DT (14.50)

Substituting Eq. (14.50) into Eq. (14.48), it follows that
=(Z-D):Eg=(1-D)Z:Ey=(1-D)E,, Ey=E/(1-D) (14.51)
E'=E,'/(1-D), E,'=(1-DE"! (14.52)

which is described for the Hooke’s law as follows:

Ejjy = (1 — D)Eojmw = (1 — D) lli)v [1 7 00 + 1(5zk5]1 +5115]k):|
Eji = rlD)E&ylu = m B (14 v)(0dji + duudjic) — Véijékl:|
(14.53)
resulting in
E=(1-D)E, D=1-EJE (14.54)

Then, substituting Eq. (14.52) into Eq. (14.44), one has

=(1-D)o, 6=6/(1-D) (14.55)

from which it follows that

o
G+DG G+D—

6=(1-D)6 — DG, 6= = 1D 14.56
2T 1

The following relations hold from Eqgs. (14.51) and (14.52).
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1
6=E:8°=(1-D)E;:&°, g:EO:S":mE:Se (14.57)

1
aezE*I:czﬁEglzczEglzg:(1—D)E*1:c (14.58)

The Helmholtz free energy function /(€°) and the Gibbs’ free energy ¢(@) in
the damaged state are given for Eq. (14.53) noting Egs. (5.40) as

(€, D) <— ;0':86) = %8" :E: €= %(1 —D)€°:E): &°
= 3(1-D) [ (] (1459
(JS(G,D)(:lG:Se) _le:m o :éc:Eglzc
2 2 21-D)
_ m[(l )00, — v(0w) (14.60)
from which it follows that
o= %‘%D) = (1 — D)Egjes, = (1 — D) ll—?:v (&3 + =5 o)
(14.61)
8; _ 8(15{(;0):;1)) =1 _l DE(ijlklo—kl = ﬁ [(1+v)T; — vOudy]
— 2 (1410, — 0,8 (14.62)

The example of the evolution rule of the isotropic damage variable D is given by
Lemaitre and Chaboche (1990) as follows:

. Y\“H(e“w — g .
D= (C) %Saﬂj (1463)

where ( and a are the material constants, and ;" is the threshold value of £, and
H() is the Heaviside step function, i.e. H(s) = 0 for s <0 and H(s) = 1 for s > 0
for a scalar variable s. Y is defined by

oy(e,D) y(g,D) 1 1
Y = — = =-Eyu&icy ==-8:Ey:& =
oD 1-D AU A ) 0

0:& (14.64)

N —

noting Eq. (14.59), which designates the releasing rate of the strain energy due to
the damage under the constant strain (Oy(€°,D)/0D <0), i.e. the rate of energy
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dissipated in the crack extension and is called the strain energy density release rate
in the failure mechanics or the damage associated variable (Chaboche 1988).
Equation (14.64) is rewritten as follows:

1 2 1+V 2
Y=——[(14+v)0,0, —v(0,) ]| = ————5—[(1+V)0;0; — (0,
3y (4188~ (@) =5 o (141030 (o))
(14.65)
or
214w 1—-2v
=209’ 4+3—"¢g? 14.66
3 2E0 ~ + 2E0 ~ ( )
noting
11 1 5
) 0,8 = B NijE_O[(l +V)(Z,-j - ngk(sij)} = E (1 +V)€ijgij - V((Zkk)
1 B N s
=25, (1+v) (gﬁ ggkkbij) (Qiﬁ ggkkfstﬁi> —v(0y)
~ laswee +ta—one,?] = L la+v 2o 1301 - 20)(a,
T 2B | R AR | T g, [V TV 3R ASm
Equation (14.64) is further rewritten as
Gqu
Y="—-R, 14.67
2E, (14.67)

where R, is defined by the following equation and called the stress triaxiality
function

Gm 2
R, = (1+v)+3(1—2v)(;eq> (14.68)

~

W N

g,/ is referred to as the stress triaxiality.

Analogously to Egs. (14.55) and (14.56), the relation of the isotropic hardening,
the kinematic hardening variables and their rates in the actual damaged and the
fictitious undamaged configurations are given by

F=(1-D)F, F=F/(1-D) (14.69)

F=(01-D)F-DF (14.70)
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o= (1-D)at, o=0a/(l-D) (14.71)

a=(1-D)A-DA (14.72)

~

Equation (14.50) is widely employed in deformation analyses. However, it
would be inapplicable to damage behavior with a strong anisotropy.

14.6.2 On Strain Energy Density Release Rate

Physical interpretation of the strain energy density release rate is given concisely in
this section referring to Chaboche (1988).

Consider the elastic deformation with crack extension under the uniaxial loading
in Fig. 14.3. Tt follows in the deformation process from the point a to the point b
that

Energy release increment dE, (from elastic body with crack extension)
= Input energy increment — Strain energy increment
= [a’abb’ — (AObb’ — AQaa’)
= [Ja’abb’ — [(AOaa’ 4 [Ja’abb’ — AQab) - AOaa’]
= AOab

Now, suppose the state that the stress increment is small to be negligible, i.e.
do =2 0 and thus one has

dyy = AObb’ — AOaa’ = (AOaa’ + [Ja’abb’ — AOab) — AQaa’
= [Ja’abb’ — AOab =2 2A0ab — AOab = AOab (14.73)
— dE,

Therefore, the half of the input energy increment transforms to the energy release
increment dE, and the other half transfers to the strain energy increment di.
Now, one has

4

de’ =
1-D

dD (14.74)

noting

do = d(E€) =d|[(1 — D)Ey&°] = —dDEyE + (1 — D)Eode® = 0
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Fig. 14.2 Strain energy release due to crack extension

Then, it follows from Egs. (14.59) and (14.64) with Eq. (14.74) that

1 N1 . 1o 1 .

Therefore, YdD is shown by AOab under the constant stress state in Fig. 14.2.

14.6.3 Unilateral Damage: Microcrack Closure Effect

The degrees of damage in directions subjected to the tension and the compression
stresses are different in some materials, e.g. cast iron, rocks and concretes. It is
called the unilateral damage, while the identical damage generation in directions
subjected to the tension and the compression stresses described in the last section is
called the bilateral damage. The unilateral damage is formulated by Ladeveze and
Lemaitre (1984) as will be described below.

The tensor is described in the spectral representation in Eq. (1.170), i.e.

3

T = Z Trep R ep
P=1

where Tp are the principal values and ep are the principal vectors. The components
are described as follows:
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3
= Z TPEP,‘epj, €pi — €ep°*¢€; (1476)
P=1

noting

Tj=e;-Tej=¢e;- Z Tprep @ epe; (14.77)
P=1

The components are decomposed into the positive and the negative parts

- (14.78)
where

(T)F = 3> (T)epen

for Tp>0
S (14.79)
(T > = Z —(—Tp)epiep; for Tp<O
with
(T),; (T); =0 (14.80)
noting
(Tp){=Tp) =0 (14.81)
It follows noting Eq. (14.80) from Eq. (14.78) that
TyTy = (T); (T); +(T);(T); (14.82)
(Tu)? = (Tu)* + (= Tu)’ (14.83)
(Tw) = (Tw) — (—Tix) (14.84)
with
(T 0u # (Tu),  (T)ydu # —(~Tux) (14.85)
and the following derivatives hold
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;Tij <%<Tkk>2> = (Thi) 95 (14.86)
a%- G (T),0 (), ) = (1), 3% (% <T>m<T>m) (Ty;  (1487)

Equations (14.60), (14.62) and (14.65) are described by Egs. (14.79), (14.82)
(14.83) and (14.84) as follows:

(0,p) = 152 O O 0 (O

v {(Ow)’ — (—ow)’
LA M TS VY
2E, 1-D ( 88)

_140(0)) ()] +(0)(6); v (o) + (0w’

2E, (1 - D) 2Ey (1 D) (14.89)

. _04(6,D) 1+ v(0); +{0); v (o) — (—ou)
%= & 1-D E, 1-D % (14.90)

Here, noting

(1+v)(6); —v(0,)d;

=(1+ v)((r)f + _1 > [(v+ v2)<c),j O —v(1 — 2v)<o'>,j Oxl
3v? <6>rv 5= (V+ V2)<Urr> + 3V2<Grr>]5ij
= (1+v)(0); 12 [(v+V)(6) 4 0 — (v +V*) (1) — V(1 = 2v)(6),; O
—3v{(06), 5, +3v ( )]0
1 + v) [(O’ 2 (< >kl O — <arr>)5ij]
—v[(6)5 + 775 ((6),5 65 = (0,))0u] dud

Eq. (14.90) is rewritten as

v _ v _ .
R <5>,-j+ + m((@& O —(0n))0;  (O); + 1772»,(<G>k/5k1 —{(=04))y
& = Eo 1-D B 1-D
v . _ v .
v [(@n + m((“ﬁf Ors = (0))0u (O + m((“ﬁ Ors = (=0n))ou|
- - 00y
Ey 1— 1-D v

(14.91)

On the other hand, the elastic strain is described in terms of the effective stress by
Eq. (5.44) as follows:
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1+4+v v
i~ 0;— E 04.9ij (14.92)

The effective stress is described in terms of the current stress by comparing
Egs. (14.91) and (14.92) as follows:

(©); +(0); v (8)) +(6);)out(0n) — (~0n)

0. =
~ 1-D 1—2v 1-D

5;  (14.93)

Equations (14.88), (14.89), (14.90) and (14.93) are extended to the unilateral
equations as follows:

1L+ ({e);(0); (6);(0); v (o)’ (—ow)’
$(0,D) = 2E, ( 1-D | 1-hD >_2_150<1fk1)_1—ch)
(14.94)
__O0y(&,D)
Y=-—"p
IR <5>;<6>; (6);(0); v (Ou)° (—ow)
"~ 2E ((1—D)2 +h(l—hD)2> 2E()<(1—D)2+h(l—hD)2
(14.95)
. _0¢(6,D) 1+v (o) (o), v (o) (—0w)
%="96 B (1—D+1—hD>_E_Q<1jkD_l—;z];))5U
(14.96)
(6);  (0); v 6) Sy — (—0,) () — (—0)
~y:1—D+1—hD+l—2v( . 1kl—D * kllkl—hD )5’7
(14.97)

where 71(0 </ < 1) is the material parameter corresponding to the bilateral and the
unilateral crack effect for h = 1 and h = 0, respectively.

Let the following variables be introduced for more concise description.

On = Jkk/3 (1498)
o, =(0),0u/3, 0, =(6);0u/3 (14.99)
. 4 3y " 5 - _ 3v _ 5

(14.100)
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by which the effective stress in Eq. (14.97) is described as

o,
i 1—-D  1—hD

o (14.101)

where the factor 3v/(1 — 2v) is coupling term which accounts for shear effect.
Equations (14.98) to (14.101) are reduced in the one-dimensional state which
can be interpreted concisely as follows (Lemaitre 1992):

g 0 0
c=(0 0 O

0 00
Tension g > 0 Compression g<0
0,=0/3 0, =0/3(<0)
o, =0/3 a* =0
G0 ) m el
O —{(Om) }:0 O, = } 0 (14.102)
O — <_0m> Om — < m>
o = } o =0 }
0, = 0 0,=—-0

o

gn:m gn:l_hD(<0)

Therefore, the difference between the actual stress and the effective stress in the
compression state is smaller than that in the tension state if 7 <1.

14.6.4 Anisotropic (Orthotropic) Damage Tensor

The following asymmetric effective stress was proposed by Murakami and Ohno
(1981) and Murakami (1988).

- ([I-D)"'o (14.103)

However, an asymmetric stress tensor makes the mathematical formulation and
mechanical analysis very complicated. Then, various symmetrized effective stress
tensors have been proposed. For instance,

=[6(I-D)"'+(1-D) '6]/2 (14.104)
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and

6=(1-D) 'o(I-D)" (14.105)
have been proposed by Murakami and Ohno (1981) and Betton (1986), respec-

tively. However, there would not exist potential function leading to them.
Cordebois and Sidoroff (1982a, b) proposed the effective stress tensor

¢ = HoH (14.106)
where
H= (1-D) ?*(=H") (14.107)

Equation (14.1006) is derived from the potential function as follows:

Y = Ctr(HoOHO) (14.108)
g = W _ 2CHOH = 2CG (14.109)
00 ~

However, Eq. (14.109) is physically impertinent in the present form.
Extending Eq. (14.59) to the anisotropic damage, Lemaitre et al. (2000) assumed
the following Gibbs energy.

3(1-2v) @2
2E 1 —nD,

1
= J;v tr(Ho'HG') +

v (14.110)

where

1
D, = 3D (14.111)

n is an hydrostatic sensitivity parameter concerning the Poisson’s ratio with dam-
age, while n = 3 is used most often. The particular case chosen as D = DI and
n = 1 corresponds to the isotropic damage.

The elastic strain is derived from Eq. (14.110) as follows:

1
el _Itvg 3oy (14.112)

€¢ = — _
06 E ~ E~
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which is of identical form to the Hooke’s law but the effective stress is related to the
actual stress as follows (Lemaitre et al., 2000):

g
0 = (Ho'H)' + —=—1 14.113
G = (HO'H) + 10 (14.113)
noting
o a [1+v , , 3(1 —2v) o2
= H, o0 H.O m
60'ij 86,’j 2F P4 qrir sp+ 2F l—l’ﬂ)m
1+v[ 00, 90,1 3(1-2v) 20, 1
= H,,—"H,0' +H,0 H,——" T
2E | g, 0 T Oa g | T T T yp,3 %
I+v]| 1 1
= F Hpq(éiqéjr — géqréij)Hma;p +Hpqo—;rHrs(5iS5jp — gévpéy)]
1-2v o
_Om s,
+ E 1-—yD, v
1+v| 1 1
= 2E (Hpio-;ijs - ngqafvaqséij) + (quo-;rHri - ngqO-;rHrpéij)]
1-2v o,
— M5,
+ E 1—-9yD, v
1+v 1-2v o
=——(H,;0 Hg) + ————"—9,
E ( LY sptTl ) + E 1— 7’IDm i
1+4+v , / (o v Op
= H,0 Hjs 0| — =30
E |:( Pt sp j)+1_an J:| El_nIDm b
1+v (o) y g
- H,0! Hy) + ——"—05;| ——=[(Hu0. Hy) + ——844];
E |:(P sp ])+1_77Dm ]:l E[(P sp .I)aa+1_',’Dm ]]

0

Equation (14.113) is regarded to be the modification of Eq. (14.106) proposed by
Cordebois and Sidoroff (1982a, b) so as to conform to the Hooke’s elastic behavior.
Equation (14.113) is rewritten as follows:

06 =M(D):0 (14.114)

6 =M(D):6'+7,M(D):1 (14.115)

where

I®I

] 1
M(D) =H®H—§(H2®I+I®H2)+ §(trH2)I®I+
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with the notation (A@B)ij = Ty Ty in Eq. (1.151y), noting
(HO'H); = (Hy0,Hy)' = HyOyHy — Hu 0, Hid;/3
= Hit(Ou — 0n0n)Hjj — Hi (O — o) Hir04/3
= HyHj0y — HyHyj0 — HiyH 01104 /3 + Hy Hy 0401, /3
= HyH;j0y — H;:H,j0,, — H;H1.0140;i/3 + HiHpr 00 /3
= [HyHy — (HyH,j05 + 6;jHyHy) /3 + Hy Hy 6301 /9] O
={HOH - (H* @ I+1® H?)/3+ (tH*)I ® 1/9]0},
1 I®I I

. 1
M(D):I1= |[HEH--(H* @ 1+12 H? trHHI © 1 (I=
(D) ® 3( QI+I® )+9(r N® +3(1_an) =D,

HOH:1=H H ol:1=3H* 10 H*:1 = (rH*)I

Equations (14.114) are inverted as follows (Mengoni and Ponthot 2015):

S 1
6=H'0H'-"—"—H7?+(1-9D,)0,I (14.117)
~ trH ~
6=M'(D):c (14.118)
where
H?@H? 1
M‘I(D):H_1®H_1—L72+—(1—n2)m)1®1 (14.119)
- trH 3
The rate of the damage tensor is given by
. Y\"™
D= <§> |d”| (14.120)

where S and m are material parameters and |d”| is defined as

3
d°| = " |ain” @ n” (14.121)
P=1

d’, and N” are the principal values and the normalized principal direction vectors of
plastic strain rate. Y is already shown in Eq. (14.67). Then, the principal directions of
the damage rate coincide with those of the plastic strain rate.

The plastic strain rate and the fictitious effective stress rate are calculated by the
fictitious elastoplastic constitutive relations by inputs of strain rate. Then, the
internal variables in the fictitious undamaged configuration and the damage tensor
are calculated by the plastic strain rate, and then the current stress is calculated
though the damage tensor from the fictitious undamaged stress.

In the uniaxial loading, the damage tensors D and H are described in the
orthotropic coordinate system the axes of which coincide with the principal
directions of the damage tensor as
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D, 0 0
D=0 D, 0 (14.122)
0 0 D
b 0
VI—D
1
H= 0 — 0 14.123
D, ( )
- D;

The effective equivalent stress g“ is different from the effective stress 0 as

follows:

2 0 1 o,

' =31-D, "31-D

| — £
;4 0 > o - (14.124)
~1791-D;  91-D, 31-—yD,

The elastic strain is described by Eq. (14.112) with Eq. (14.113), noting Eqgs.
(14.122) and (14.123) as follows (Lemaitre et al. 2000):

g€ 0 0
0 & 0

0 0 &

1 5 1
0 0 0
Vi-D, 301 0 0 Ji-D,
1+v 1 1 1
_ _L 0
E Ji-D, 0 —30 0 JioD,
1 1 1
0 0 0 -0 0 0
Ji=D, 37! V=D,
- 100 5 100
v O v 30,
- 01 0|-—= 010
E 1-nD, E1—nDy
00 1 00 1
201
z 0 0
| 31-D L : s 100 30,/3 100
I+ +v 0 v 30,
= 0 T 0 o)+ El_ano 1o E_ano 10
| 00 1 00 1
0 0 -
31-Ds
p _L(2 1 11 11 1 2 1 1
"73\31-D;, 31-D, 31-D3) 9\1-D; 1-D, 1-Ds
4 1 1
17D1+17D2+1*173 0 0
I4v 2 2 1
=— 0 - - 0 o
OF D, 1-D, [ 1-D, !
2 1 2
0 0 717D1+17D2717D3
L 100
—2v g
—=__ %t __|o 10
E 3(1— yDm
(1 =nDy) 00 1

(14.125)
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Then, setting

g, &5 &5
E Eg—ia Yo = _8_? Viz = _8_§ (14.126)
one has
E_l4v( 4 1 1\, 1-2
E,~ 9 \1-D,  1-D, 1-D;)  3(1—yD,)
E_l4v( 2 2 1 1—2y
Vip— = — _
g T \1-D, "1-D, 1-Dy) 31—y, ( (4127
E l14+v/ 2 1 2 1—2y
YWp =9 \1-p, 1-D, "1-Ds) 31-1D
E, D, 1-D, T1-Dy) 301D,

The unilateral formulation for the anisotropic damage can be referred to
Ladeveze and Lemaitre (1984) Lemaitre and Desmora (2005).

14.7 Subloading-Overstress Damage Model

The subloading-damage model formulated in the preceding sections will be
extended to be taken account of the rate-dependent plastic deformation by incor-
porating the subloading-overstress model (Hashiguchi 2013a) in the following.
Equations (14.29) and (14.31) in the subloading-damage model is extended by
incorporating the subloading-overstress model in Eq. (13.29) as follows:

. .+ 1(R=R)".

E=¢+&P=E":16+-—n 14.128
+ 0 ~+/1Rm—R n ( )
. . 1(R—R)" .
6=E;:£€——— " E;:n 14.129
Y 0 7R, R oD ( )

where £ is the viscoplastic strain rate for which the loading criterion is imposed
by incorporating the Macaulay’s bracket. i and n are the material parameters, while
u stands for the viscoplastic coefficient. The surface which passes through the
current stress and is similar to the normal-yield surface is called the dynamic-
loading surface and the ratio of the size of the dynamic-loading surface to the
normal-yield surface is described by R(=f(6)/ F) which can be larger than unity
and is called the dynamic-loading ratio. R, (>>1) is the material constant desig-

nating the maximum value of the dynamic-loading ratio, called the limit dynamic-
loading ratio. The rates of the internal state variables H, O, D, D are given by
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replacing the plastic strain rate £ to the viscoplastic strain rate €7 in Eqgs. (14.14),
(14.42), (14.63) and (14.120) as follows:

H=f, (6,H;&) (14.130)
1 i
& =f, (6 0 F: &) = sW”—ia‘sW” 14.131
Nkb(N7N7N7 ) @ bk(g,E)N ( )
. Y aI:I[geqvp _ 82‘]"[’] .
—(Z) EE T % Lgeqw 14.132
b (c> D (14.132)

. ? m 7 m 3
D=(=) |a7|= (= armnf e n” 14.133
(5) a71= (5) S arme (14.133)

e = \/2/3/‘(5:”" dt (14.134)

The rate of the subloading ratio R(0<R;<1) is given by replacing the
normal-yield ratio R to R, and the plastic strain increment &£ to the viscoplastic
strain rate £7 in Eq. (14.17) for the plastic sliding process and the subloading ratio

R; is identical to the normal sliding-yield ratio R for the elastic sliding process as
follows:

R = U(RS)‘ for £7 £ 0 (14.135)

R,=R for €7 =0 (14.136)

The smooth transition from the elastic to the viscoplastic state is described by
incorporating R, instead of unity. The response of the subloading-overstress dam-
age model is shown in Fig. 14.3.

14.8 Subloading-Gruson Model

Plastic deformation is induced under hydrostatic stress in porous media even if the
base material is the Mises material the plastic deformation behavior of which is
independent of hydrostatic stress. The elastoplastic constitutive model taken
account of the nucleation and the growth of round voids was proposed first by
Gurson (1977) and further studied by Needleman and Rice (1978), Tvergaard and
Needleman (1984), Needleman and Tvergaard (1985), etc. The yield surface is
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Fig. 14.3 Stress-strain curve predicted by the subloading-overstress damage model

introduced, which is taken account of the void volume fraction and the mean stress
with the evolution rule of the void volume fraction. It is often called the Gurson
model and its elaboration taken account of the void coalescence is called the GTN
(Gurson-Tvergaard-Needleman) model. The subloading-void(Gurson) model will
be described in this section.

The following yield condition is derived by Gurson (1977) by the symmetric
deformation analysis of the rigid-plastic Mises material containing a spherical
cavity.

eq\ 2 3 n
y(o, F,¢) = (JF ) +2§cosh<§%> —&-1=0 (14.137)

where £ is the void volume fraction. Equation (14.137) is reduced to the von Mises
yield condition, i.e. ¢4 = F for ¢ = 0. The dependence of the yield function in
Eq. (14.137) is shown in Fig. 14.4.

The rate of the void volume fraction é is given by sum of the growth rate &gmw

and the nucleation rate of new void énud as follows (Needleman and Rice 1978):

é = égmw + énucl (14 138)

where

. B B “p
Sorow = (1= CJréy } (14.139)
énucl =aj (F + Gm) +a &
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2 4
O-/H/F

Fig. 14.4 Effect of void volume fraction in Gurson yield surface

The coefficient a; and a; are given by Chu and Needleman (1980) as follows:

fn 1(F+6m*611)2j|
a) = I —

ex [——
V21s, P72 Sy

e -5 ()]
a = exp | — = —=
g 278, P72 Sn

which is derived postulating that the voids nucleates according to the probability
distribution with the stress 0, and the strain &, as their mean values together with s,
as their standard deviation, and f, is the volume fraction of void nucleating
particles.

The subloading surface for the normal-yield surface in Eq. (14.137) is given by
replacing F to RF in Eq. (14.137) as follows:

(14.140)

A 30, 5
F = 2& h{ = — — 1= 14.141
Y(o, F, &) (RF> +2¢& cos <2RF> ¢ 0 ( )

The time-differentiation of Eq. (14.141) is given by

. 0%\ G“RF — 0“(RF + RF
Y(O,F, &) =2 2(2 )
RF R°F
. o (14.142)
. 30,\30,RF—06,(RF + RF) .
2¢sinh(2-2) = —2&=
+2¢sin (2 RF) 2 RF? <=0

from which one has

e\ | . F R 30,) . F R .

eqd _ ged| _ 1 -7 _ - _ _ —

Z(RF) [O’ o (F + R) + 3¢ sinh (2 RF> {O'm O (F + R> 2RFE=0

(14.143)
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Assume the associated flow rule

&=in' (i>0 (14.144)
where
oy, oY
s dyiihad V| —
N =oc/llagll (mli=1) (14.145)

It follows adopting the associated flow rule in Eq. (14.144) with Eqs. (6.42) and
(7.9) that

2( T | e — gea F/Ahw—rU—;“ +3esinh (29 |6, — o —F/ithrUj”
RF F i 2RF " "\ F R

. . . 2+
(1= &run’ +a,(Fn' +6,) +a2\/‘,1} -0

— 2RF
3

resulting in

ol 30,
oed 2Ym
2(RF> + {3g smh( RF) 2a1RF}
gl 30, F' U
_ eq 2 A
{[20’ (RF)+350' Smh(ZRF)}(Fh +R)} (14.146)
+2RF {(1 — O’ +a F'hY + \/§a2:| }i =

where

W =7 (=/2/3) (14.147)

Noting

. 1 36':6 36':6
O, ==1: 0' o —— 14.148
3 (\/“ ) \/2||o"|| 2 g (14.148)

one has
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2(6—6(’)66‘1 n [stinh (é@) - 2a1RF} G

REZ 2R (14.149)
) oo (1) Sl

Substituting Eq. (14.149) into Eq. (14.146), the plastic multiplier is derived as
follows:

: t59:6
h=—%¢ (14.150)
M
where
¢’ 30 2
56 =3 [ i h(——’”)—— RF}I 14.151
rF L \3RF) T3 ( )
1756 = ea( T £ 1 (30m 5/ 4 _AnY N \ﬁ
M = {20’ (RF)+3gO'm51nh(2RF Fh+R +2RF|(1-=&NY +a F'h + 342
(14.152)
The strain rate is given from Eqgs. (14.5), (14.144) and (14.150) as
. . t9:6 n’ @ t5% .
_ o1, Vo -1 .
E=E:0+ MSGn _(E +W) (14.153)

from which the plastic multiplier in terms of strain rate is derived as follows:

t5C:E: &

4 :MSG—HSG:E :nY

(14.154)

The stress rate is described from Egs. (14.5), (14.144) and (14.154) as

t:E: & E:n')® (t:E)] .
Ein = |E— DO OEE)] oy 1ss)

GZE:S_MSG—i-tSG:E:nW | MS6 56 E :n¥ |’

The loading criterion is given by the equation same as Eq. (14.32).

The elaboration of the Gurson model was proposed by Tvergaard (1982) (see
also Tvergaard and Needleman 1984) by introducing the void coalescence into the
yield condition in Eq. (14.137). It is further extended by the concept of the
subloading surface as follows:
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eq

_ O-_ * §q2o-m _ *¥2 1
(o, F, &) = (RF) +2&% gy cosh (2 RE ) q3& 1=0 (14.156)

where &*(€) is the extension of the void volume fraction ¢ introduced so as to
represent the loss of the load-carrying capacity due to the void coalescence, i.e.

¢ for £ < ¢,

&= 1o\ E-& . (14.157)
Gt (g-t)g—f freve

¢, and ¢ are the critical void volume fraction at the initiation of void coalescence
and the void volume fraction at failure (complete loss of load-carrying capacity),
respectively. q;, g» and g3 are the material parameters for the enforcement of the
accuracy which are usually chosen as ¢y = 1.5, ¢o = 1.0 and ¢3 = q%. The con-
stitutive model with the yield condition in Eq. (14.153) is called the GTN (Gurson-
Tvergaard-Needleman) model.

The plastic volumetric strain rate is considered in the Gurson model, while it is
not considered in the damage model explained in the preceding sections. On the
other hand, the decrease of the elastic modulus is not considered in the Gurson
model, while it is considered in the damage model. The extended model taken
account of both of them would have to be formulated in feature.
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