
Chapter 12
Multiplicative Elastoplasticity: Subloading
Finite Strain Theory

The subloading surface model was formulated in the Chaps. 6–11 within the
frameworks of the finite hypoelastic-based plasticity in detail and of the infinites-
imal hyperelastic-based plasticity (Sect. 6.9) in brief. Finite deformation and rota-
tion cannot be described in the exact sense by these formulations. The
multiplicative elastoplastic constitutive equation will be formulated for the
subloading surface model with the translation of the elastic-core, although the
multiplicative constitutive equation for the initial subloading surface model, in
which the elastic-core is fixed in the back stress point, was formulated in an
immature form by Hashiguchi and Yamakawa (2012). One must formulate the
constitutive equation possessing the generality and the universality to be inherited
eternally, while any unconventional model, i.e. cyclic plasticity model other than
the subloading surface model has not been extended to the multiplicative finite
strain theory. The exact formulation of the multiplicative finite strain theory based
on the extended subloading surface model has been attained by Hashiguchi (2016a,
b, c, d), which will be explained in detail in this chapter.

12.1 Classification of Elastoplastic Constitutive Equation

The basic frameworks of elastoplasticity are classified as follows:

Infinitesimal elastoplasticity

(1) The infinitesimal strain and its material-time derivative are additively decom-
posed into the elastic and the plastic parts,

(2) The Cauchy stress is used as the stress measure,
(3) The elastic deformation is formulated in the hyperelastic relation,
(4) The initial and the current configurations are not distinguished,
(5) The infinitesimal elastic and plastic deformation is described, ignoring a

rotation,
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Finite elastoplasticity

There are the following two frameworks for the description of finite
deformation/rotation.

Hypoelastic-based plasticity

(1) The symmetric and anti-symmetric parts of the velocity gradient are defined to
be the strain rate and the spin, respectively and further they are is additively
decomposed into the elastic and the plastic parts,

(2) The Cauchy stress and its corotational rate (also for internal variables) are
used,

(3) The elastic strain rate is formulated in the hypoelastic relation,
(4) The pertinent time-integration of stress rate is required,
(5) The formulation is executed in the current configuration which is influenced

by the material rotation,
(6) The finite plastic deformation and the finite rotation are described under the

restriction of the infinitesimal elastic deformation.

Multiplicative hyperelastic-based plasticity

(1) The multiplicative decomposition of the deformation gradient tensor is used
consistently,

(2) The additive decomposition of the strain rate and the spin tensors in the
intermediate configuration into the elastic and the plastic parts are used, which
are decomposed definitely into these parts,

(3) The Mandel stress in the intermediate configuration is used as the stress
measure,

(4) The elastic deformation is formulated in the hyperelastic relation,
(5) The formulation is executed in the intermediate configuration which is not

influenced by the material rotation,
(6) The finite elastic and the plastic deformation and rotation are described exactly.

Then, it realizes the exact description of the finite deformation/rotation.
The formulation of the subloading surface model in the multiplicative

hyperelastic-based plasticity was given by Hashiguchi and Yamakawa (2012) in the
immature form for the initial subloading surface model in which the elastic-core is
fixed so that it is limited to the description of the monotonic loading behavior. The
subloading surface model with the translation of the elastic-core will be formulated
in this section within the framework of the multiplicative hyperelastic-based plas-
ticity. It is to be the first cyclic (unconventional) elastoplasticity model in the
multiplicative hyperelastic-based plasticity for the exact description of finite
elastoplastic deformation/rotation.
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12.2 Further Multiplicative Decomposition
of Plastic Deformation Gradient

The deformation gradient F is multiplicatively decomposed into the elastic defor-
mation gradient Fe and the plastic deformation gradient Fe as described in Sect. 6.1.
Further, decompose Fp into the plastic storage part Fp

ks causing the kinematic
hardening and its plastic dissipative part Fp

kd multiplicatively (Lion 2000).
Analogously, decompose Fp into the plastic storage part Fp

cs causing the translation
of elastic-core and its plastic dissipative part Fp

cd multiplicatively as follows:

F ¼ FeFp; Fp ¼ Fp
ksF

p
kd ; Fp ¼ Fp

csF
p
cd ð12:1Þ

The configurations based on these decompositions are illustrated in Fig. 12.1.
Based on the right Cauchy-Green deformation tensor

C � FTF ð12:2Þ
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Fig. 12.1 Multiplicative decompositions of deformation gradient for elastoplastic material with
translations of kinematic hardening and elastic-core
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the following tensors of the storage parts C
e
;C
__ p

ks;C
^̂ p

cs and the dissipative parts

Cp;C
__ p

kd ;C
^̂ p

cd are defined.

C
e � FeTFe ¼ ðReU

eÞTReU
e ¼ U

e2
; Cp � FpTFp;

C
__ p

ks � FpT
ks F

p
ks ¼ U

__ p
ks
2
;C p

kd � FpT
kd F

p
kd;

C
^̂ p

cs � FpT
cs F

p
cs ¼ U

__ p
cs

2
;C p

cd � FpT
cd F

p
cd

9>>>=
>>>;

ð12:3Þ

where one has

C
p
ks � p

ksC
__ p

ks �G�G ¼ Fp�T
ks C

__ p
ksF

p�1
ks

Cp
cs � p

csC
^̂ p

cs �G�G ¼ Fp�T
cs C

^̂ p
csF

p�1
cs

)
¼ G ð12:4Þ

G is the metric tensors defined in Eq. (4.31) in the intermediate configuration. The
hat symbols ð�Þ, ð__Þ and ð^̂Þ are added to the variables based in the intermediate

configuration K, the kinematic hardening intermediate configuration K__ and the

elastic-core intermediate configuration K
^̂

, respectively. The superscript and/or
subscript is (are) added in the left side in order to specify the pull-back or
push-forward due to the elastic (or plastic) deformation gradient.

In order to explain clearly, the equations described already in Eqs. (6.11) to
(6.18) in Sect. 6.1 are again written in the following Eqs. (12.5)–(12.11).

The velocity gradient l in the current configuration K is additively decomposed
into the elastic and the plastic parts:

l ¼ leþ lp ð12:5Þ

where

l � F
�
F�1;

le � F
�
eFe�1; lp � FeF

�
pFp�1Fe�1 ¼ eL

p
! g

�g ¼ FeL
p
Fe�1

L
p � F

�
pFp�1

9>>=
>>; ð12:6Þ

Further, the velocity gradient L defined as the contravariant-covariant pull-back
(Eq. (4.44)) of the velocity gradient tensor l in the current configuration to the
intermediate configuration K can be additively decomposed into the purely elastic
and the purely plastic parts as follows:

L ¼ L
eþL

p ð12:7Þ

where

L � el
 G
�G ¼ Fe�1lFe

L
e � el

 G
�G ¼ Fe�1leFe ¼ Fe�1F

�
e; L

p � elp
 G
�G ¼ Fe�1lpFe ¼ F

�
pFp�1

9=
; ð12:8Þ
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Therefore, L and L
e
, L

p
can be pertinently adopted in the formulation of elasto-

plastic constitutive equation. It follows from Eq. (12.8) that

L ¼ DþW
L
e ¼ D

eþW
e
; L

p ¼ D
pþW

p

�
ð12:9Þ

D ¼ D
eþD

p
; W ¼W

eþW
p ð12:10Þ

where

D ¼ sym L
� �

; W ¼ ant L
� �

D
e ¼ sym L

e� �
; W

e ¼ ant L
e� �

D
p ¼ sym L

p� �
; W

p ¼ ant L
p� �
9>>=
>>; ð12:11Þ

The rate of C
e
is given from Eqs. (12.3)1 and (12.7) as

C
�
e ¼ 2sym C

e
L
e� � ¼ 2sym C

e
L� L

p� �� � ð12:12Þ

noting

C
�
e¼ ðFeTFeÞ� ¼ FeTF

� eþF
� eTFe ¼ FeTFeðFe�1F

� eÞþ ðF� eTFe�TÞFeTFe

¼ C
e
L
eþL

eT
C

e

Further, the plastic velocity gradient L
p
is additively decomposed for the

kinematic hardening as follows:

L
p ¼ L

p
ksþLp

kd ð12:13Þ

where

Lp
ks � F

� p
ksF

p�1
ks ;L

p
kd � p

ksL
__ p
kd

! G

�G
¼ Fp

ksL
__ p

kdF
p�1
ks ð12:14Þ

L
__ p
kd ¼ F

� p
kdF

p�1
kd � p

ksL
p
kd

 
G
_

�G
_ ¼ Fp�1

ks Lp
kdF

p
ks ¼ D

__ p
kd þW

__ p
kd

D
__ p
kd ¼ sym L

__ p
kd

� �
; W

__ p
kd ¼ ant L

__ p
kd

� �
9=
; ð12:15Þ

noting

L
p ¼ Fp

ksF
p
kd

� �� Fp
ksF

p
kd

� ��1¼ ðF� pksFp
kd þFp

ksF
� p
kdÞFp�1

kd Fp�1
ks

¼ F
� p
ksF

p�1
ks þFp

ksF
� p
kdF

p�1
kd Fp�1

ks

Analogously, the following additive decomposition of the velocity gradient
holds for the elastic-core.
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L
p ¼ L

p
csþL

p
cd ð12:16Þ

where

L
p
cs � F

� p
csF

p�1
cs ; L

p
cd � p

csL
^̂ p
cd

 
�G
��G
¼ Fp

csL
^̂ p

cdF
p�1
cs ð12:17Þ

L
^̂ p
cd ¼ F

� p
cdF

p�1
cd ¼ p

csL
p
cd

 �G

��G ¼ Fp�1
cs L

p
cdF

p
cs ¼ D

__ p
cd þW

^ p
cd

D
^ p
cd ¼ sym

�
L
^̂ p
cd

�
; W

^ p
cd ¼ ant

�
L
^̂ p
cd

�
9=
; ð12:18Þ

The time-derivative of C
__ p

ks in Eq. (12.4) is given by

C
__
�
p
ks ¼ 2pksD

p
ks

 

G
_
G
_ ¼ 2FpT

ks D
p
ksF

p
ks ¼ 2FpT

ks D
p � Dp

kd

� �
Fp
ks ð12:19Þ

noting

C
__
�
p
ks ¼ ðFpT

ks F
p
ksÞ� ¼ FpT

ks F
� p
ksþF

� pT
ks F

p
ks ¼ FpT

ks F
� p
ksF

p�1
ks Fp

ksþFpT
ks F

p�T
ks F

� pT
ks F

p
ks

¼ FpT
ks F

� p
ksF

p�1
ks Fp

ksþFpT
ks ðF

� p
ksF

p�1
ks ÞTFp

ks ¼ FpT
ks L

p
ksF

p
ksþFpT

ks L
pT
ks F

p
ks ¼ 2FpT

ks D
p
ksF

p
ks

Analogously, one has

C
__
�
p
cs ¼ 2pcsD

p
cs

 

G
_
G
_ ¼ 2FpT

cs D
p
csF

p
cs ¼ 2FpT

cs ðD
p � D

p
cdÞFp

cs ð12:20Þ

Further, it follows for the dissipative parts that

C
� p ¼ 2 pD

p
 

GG ¼ 2FpTD
p
Fp;

C
� p
kd ¼ 2pkdD

p
kd

 
GG ¼ 2FpT

kdD
p
kdF

p
kd ;C

� p
cd ¼ 2pcdD

p
cd

 
GG ¼ 2FpT

cdD
p
cdF

p
cd

9=
; ð12:21Þ

noting

C
� p ¼ ðF pTF pÞ� ¼ FpTF

� pþF
� pTFp ¼ F pTðF� pF p�1þF p�TF

� pTÞFp

¼ F pT ½F� pF p�1þðF� pF p�1ÞT �F p

12.3 Stress Measures

Introduce the second Piola-Kirchhoff stress tensor in the intermediate configuration,
which is the contravariant pulled-back (Eq. (4.44)) of the Kirchhoff stress tensor, i.e.
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S ¼ S
T

� �
� pS

!�G�G ¼ FpSFpT ¼ Fe�1 ðFSFTÞFe�T � es
 GG ¼ Fe�1sFe�T

ð12:22Þ

and the Mandel stress

M � C
e
S ¼ FeTsFe�Tð6¼M

TÞ ð12:23Þ

noting

C
e
S ¼ FeTFe

� �
Fe�1sFe�T� � ¼ FeTsFe�T ð12:24Þ

Here, note that the work-conjugate stress measure with the strain rare L in the
intermediate configuration is the Mandel stress M as known from

s : l ¼ tr
�
FeSFeT
� �

FeLFe�1� �T� ¼ trðFeSFeTFe�TLT
FeTÞ

¼ trðFeTFeSL
TÞ ¼ trð�Ce�S�LTÞ ¼ C

e
S : L ¼M:L

Further, the contravariant push-forward (Eq. (4.44)) of the kinematic hardening
variable S

__

k and the elastic-core S
__

c to the intermediate configuration K is given by

Sk � p
ksS

__ GG
k

!
¼ Fp

ksS
__

kF
pT
ks ð¼ STk Þ; S

__

k � p
csSk
 G

_
G
_

¼ Fp�1
ks SkF

p�T
ks

�¼ S
__ T
k

�
Sc � p

csS
^GG
c

!
¼ Fp

csS
__

c FpT
cs

�¼ S
T
c

�
; S

__

c � p
csSc
 G

^
G
^

¼ Fp�1
cs ScFp�T

cs

�¼ S
^
T
c

�
9>=
>;
ð12:25Þ

Further, the Mandel-like variables Mk and Mc for the kinematic hardening
variable and the elastic-core, respectively, are defined as

Mk ¼ C
p
ksSk ¼ GSk ¼ Sk ¼ Fp

ksS
__

kF
pT
ks ¼ p

ksMk

!
��G
�G ¼ Fp�T

ks M
__

kF
pT
ks ð6¼ M

T
k Þ

M
__

k ¼ C
__ p

ksS
__

k ¼ p
ksMk

! ��G
�G ¼ FpT

ks MkF
p�T
ks ð6¼ M

__ T
k Þ

g

ð12:26Þ

Mc ¼ C
p
csSc ¼ �G�Sc ¼ Sc ¼ p

csM
^

c

!
��G
�G ¼ Fp�T

cs M
^

cFpT
cs

� 6¼ M
T
c

�
M
^

c ¼ C
^̂ p

csS
^

c ¼ p
csMc

 �G
^

G
^ ¼ FpT

cs McFp�T
cs

� 6¼M
^

T
c

�
9>=
>; ð12:27Þ

noting Eq. (12.4), (12.25) and Sk ¼ Fp
ksS

__

kF
pT
ks ¼ Fp

ksC
p�1
ks M

__

kF
pT
ks ¼ Fp�T

ks M
__

kF
pT
ks .

The material-time derivative of the kinematic hardening variable Sk in the
intermediate configuration is given by
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S
�

k ¼ Fp
ksS

__
�

kF
pT
ks þ 2sym L

p
ksSk

� � ð12:28Þ

from Eqs. (12.14) and (12.25), noting

S
�

k ¼ Fp
ksS

__
�

kF
pT
ks þF

� p
ksS

__

kF
pT
ks þFp

ksS
__

kF
� pT
ks

¼ Fp
ksS

__
�

kF
pT
ks þF

� p
ksF

p�1
ks SkF

p�T
ks FpT

ks þFp
ksF

p�1
ks SkF

p�T
ks F

� pT
ks

¼ Fp
ksS

__
�

kF
pT
ks þF

� p
ksF

p�1
ks Sk þ SkF

p�T
ks F

� pT
ks

¼ Fp
ksS

__
�

kF
pT
ks þL

p
ksSk þðL

p
ksSkÞT

Further, the material-time derivative of Mk is given from Eq. (12.28) with Eqs.
(12.13) and (12.26) by

M
�

k ¼ S
�

k ¼ Fp
ks S

__
�

kF
pT
ks þ 2sym L

p
ksMk

� � ¼ Fp
ks S

__
�

kF
pT
ks þ 2sym L� L

p
kd

� �
Mk

� �
ð12:29Þ

Analogously, the following relation holds for Mandel-like elastic-core stress.

M
�

c ¼ S
�

c ¼ Fp
csS

^̂
�

cFpT
cs þ 2sym L

p
csMc

� � ¼ Fp
cs S

^̂
�

cFpT
cs þ 2sym L� L

p
cd

� �
Mc

� �
ð12:30Þ

12.4 Hyperelastic Constitutive Equations

Now, the 2nd Piola-Kirchhoff stress push-forwarded to the intermediate configu-
ration, S, is given by the following equation with the strain energy function w C

e� �
,

noting Eq. (5.6)4, where C
e
stands for the purely elastic deformation because of

C
e ¼ U

e2
as shown in Eq. (12.3).

S ¼ 2
@we C

e� �
@C

e ð12:31Þ

and the Mandel stress is given by

M � C
e
S ¼ 2C

e @we C
e� �

@C
e ð6¼M

TÞ ð12:32Þ

The rate of the Mandel stress is given noting Eq. (12.12) as
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M
�
¼ ðCe

SÞ� ¼ L
e
: C
�
e ¼ L

e
: sym[C

eðL� L
pÞ� ð12:33Þ

where L
e
is the fourth-order hyperelastic tangent modulus tensor given by

L
e � @M

@C
e ¼ Sþ 1

2
C

e
:C

e ð12:34Þ

with

C
e � 2

@S

@C
e ¼ 4

@2weðCeÞ
@C

e � @C
e ð12:35Þ

Further, let the 2nd Piola-Kirchhoff stress-like variables for the kinematic

hardening variable L
__

k based in K_ and for the elastic-core S
^

c based in K^ be for-
mulated by the potential energy functions wkðC__ p

ksÞ and wcðC^̂ p
csÞ, noting Eq. (12.25)

with Eq. (12.4), as follows:

S
__

k ¼ 2
@wkðC__ p

ksÞ
@C

__ p
ks

; S
^

c ¼ 2
@wcðC^ p

csÞ
@C

^ p
cs

ð12:36Þ

Sk ¼ p
ksS

__

k

!
GG ¼ 2Fp

ks
@wkðC__ p

ksÞ
@S

__ p
ks

FpT
ks ; Sc ¼ p

csS
^

c

!
GG ¼ 2Fp

cs
@wcðC^ p

csÞ
@C

^ p
cs

FpT
cs ð12:37Þ

M
__

k ¼ C
__ p

ksS
__

k¼ 2C
__ p

ks
@wkðC__ p

ksÞ
@C

__ p
ks

; M
^

c ¼ C
^ p
csS

^

c¼ 2C
^ p
cs
@wcðC^ p

csÞ
@C

^ p
cs

ð12:38Þ

Mk ¼ C
p
ksSk ¼ Sk ¼ 2Fp

ks
@wkðC__ p

ksÞ
@C

__ p
ks

FpT
ks ; Mc ¼ C

p
csSc ¼ Sc ¼ 2Fp

cs
@wcðC^̂ p

csÞ
@C

^̂ p
cs

FpT
cs

ð12:39Þ

The tensors M; Mk; Mc satisfy the symmetries, i.e. M ¼M
T
; Mk ¼

M
T
k ; Mc ¼ M

T
c for particular cases of the strain energy functions we; wk; wc only

of the tensors C
e
; C

__ p
ks; C

^̂ p
cs, respectively, while the elastic-isotropy is caused only

from the first one.

The rates of S
__

k and S
^

c are given from Eq. (12.36) as
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S
__
�

k ¼ C
__
k :

1
2
C
__
�
p
ks; S

^̂
�

c ¼ C
^̂
c :

1
2
C
^̂
�
p
cs ð12:40Þ

where

C
__ k � 2

@S
__ p
ks

@C
__ p

ks

¼ 4
@2wkðC__ p

ksÞ
@C

__ p
ks � @S

__ p
ks

; C
^̂ c � 2

@S
^p
ks

@C
^̂ p

cs
¼ 4

@wcðC^̂ p
csÞ

@C
^̂ p

cs � @C
^̂ p

cs
ð12:41Þ

Substituting Eq. (12.40) with Eq. (12.19) into Eq. (12.29), M
�

k is given as
follows:

M
�

k ¼ Fp
ksC

__
k : FpT

ks ðD
p � D

p
kdÞFp

ksF
pT
ks + 2sym½ðLp � L

p
kdÞMk� ð12:42Þ

Analogously, it follows for the elastic-core that

M
�

c ¼ Fp
csC

^̂
c : FpT

cs ðD
p � D

p
cdÞFp

csF
pT
cs þ 2sym½ðLp � L

p
cdÞMc� ð12:43Þ

12.5 Normal-Yield and Subloading Surfaces

The normal-yield surface with the isotropic and the kinematic-hardenings is
described following Eq. (9.1) in the intermediate configuration by

f ðM̂Þ ¼FðHÞ ð12:44Þ

and the subloading surface following Eq. (9.2) by

f ðMÞ ¼RFðHÞ ð12:45Þ

in the intermediate configuration, which are depicted in Fig. 12.2, where

M � M�Mkð6¼ MTÞ ð12:46Þ

M̂ �M�Mkð6¼ M̂TÞ; ~M �M�Mcð6¼ ~MTÞ;
M̂c � Mc �Mkð6¼Mc

TÞ

)
ð12:47Þ

Mk is the conjugate point in the subloading surface to Mk in the normal-yield
surface. The following relations hold.
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Fig. 12.2 Normal-yield, subloading and elastic-core surfaces in the intermediate configuration in
multiplicative elastoplasticity theory

Mk ¼Mc�RM̂c ðMk �Mc ¼ RðMc �MkÞÞ ð12:48Þ

the rate of which is given by

M
�

k ¼ RM
�

k þð1� RÞM
�

c � R
�
M̂c ð12:49Þ

leading to

M
�
� M

�
�RM

�

k � ð1� RÞM
�

cþR
�
M̂c ð12:50Þ

The variables in the hypoelastic-based plasticity described in the previous sec-
tions correspond to the following variables in the intermediate configuration for the
multiplicative hyperelastic-based plasticity.

r!M; r!M ¼M�Mk

a!Mk; a!Mk

c!Mc; ĉ! M̂c ¼ Mc�Mk

~r! ~M ¼M�Mc

9>>>>=
>>>>;

ð12:51Þ
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The elastic-core surface which passes through the elastic-core Mc and is similar
to the normal-yield surface with respect to the back-stress Mk in the
hyperelastic-based-plasticity is given following Eq. (9.17) as follows:

f ðM̂cÞ ¼ ´cFðHÞ; i.e. ´c ¼ f ðM̂cÞ=FðHÞ ð12:52Þ

12.6 Plastic Flow Rules

The plastic strain rate is given in the following associated flow rule proposed by
Hashiguchi (2016a, b, c, d).

D
p ¼ k

�
N ð k

�
� 0Þ ð12:53Þ

where k
�
is the plastic multiplier and

N � sym
@f ðMÞ
@M

	 
�����
����sym @f ðMÞ

@M

	 
����
���� ðjjNjj¼ 1Þ ð12:54Þ

which is the normalized and symmetrized tensor. If the symmetries of the Mandel

stress and Mandel-like kinematic hardening variable, i.e. M ¼ M
T
and Mk ¼ M

T
k

hold, which are provided by the strain energy functions we and wk of only C
e
and

C
__ p

ks, respectively, one obtains the symmetry @f ðMÞ=@M ¼ ð@f ðMÞ=@MÞT .
The symmetric plastic dissipative parts of the plastic velocity gradients for the

kinematic hardening variable and the elastic-core in Eqs. (12.15) and (12.18) are
assumed following Eqs. (9.11) and (9.15) as follows:

Dp
kd ¼

1
bk
jjDp0jjsym½Mk� ¼

1
bk

k
�
jjN0jjsym½Mk� ð12:55Þ

D
p
cd ¼

´c

n
jjDpjjN̂c ¼ ´c

n
k
�
N̂c ð12:56Þ

where

N̂c � sym
	
@f ðM̂cÞ
@M̂c


�����
����sym

	
@f ðM̂cÞ
@M̂c


����
���� ðjjN̂cjj ¼ 1Þ ð12:57Þ

M̂c � Mc �Mk ð12:58Þ
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In the material parameter u ¼ u expðuc´cCrÞ in Eq. (9.47) for the Masing
effect, ´c is given by Eq. (12.51) and Cr is given by

Cr � N̂c :Nð�1�Cr� 1Þ ð12:59Þ

Let the spins W
p
; W

__ p
kd and W

^ p
cd in Eqs. (12.11), (12.15) and (12.18), which are

induced by the plastic and the dissipative parts, be given by extending Eq. (9.48) as
follows:.

W
p ¼ gpðMD

p�Dp
MÞ ¼ gp k

�
ðMN�NMÞ

Wp
kd ¼ gpkðMDp

kd�Dp
kdMÞ¼ ðgpk=bkÞ k

�
jjN0jjðM sym½Mk��sym½Mk�MÞ

W
p
cd ¼ gpcðMD

p
cd�D

p
cdMÞ ¼ gpcð´c=nÞ k

�
ðM N̂c � N̂cMÞ ð12:60Þ

where gpk and gpc are the material parameters, while the flow rules in Eqs. (12.53),
(12.55) and (12.56) are exploited. The plastic spin tensor W

p
diminishes if the

symmetry of the Mandel stress, i.e. M ¼M
T
due to the elastic isotropy and the

plastic isotropy due to Mk ¼Mc ¼ O hold. Further, the spin tensors W
p
kd and W

p
cd

diminish for the plastic-isotropy due to Mk ¼Mc ¼ O.
The velocity gradients are given by substituting Eqs. (12.53), (12.55), (12.56)

and (12.60) into Eqs. (12.9), (12.15) and (12.18) as follows:

L
p ¼ k

�
½Nþ gpðMN�NMÞ�

Lp
kd ¼ ð1=bkÞk

�
jjN0jjfsym½Mk� þ gpkðM sym½Mk��sym½Mk�MÞg

L
p
cd ¼ ð´c=nÞ k

�
½N̂cþ gpcðM N̂c � N̂cMÞ�

9>>=
>>; ð12:61Þ

The substitutions of Eq. (12.61) into Eqs. (12.33), (12.42) and (12.43) yield:

M
�
¼ L

e
: sym[C

efL� k
�
½Nþ gpðMN�NMÞ�g� ð12:62Þ

M
�

k ¼ k
�
fFp

ksC
__ k : F pT

ks ðN� ð1=bkÞjjN
0jjsym½Mk�ÞFp

ksF
pT
ks þ 2sym½ðNþ gpðMN� NMÞ

� ð1=bkÞjjN0jjfsym½Mk� þ gpkðM sym½Mk��sym½Mk�MÞgÞMk�g
ð12:63Þ

M
�

c ¼ k
�
fFp

csC
__ c : FpT

cs ðN� ð´c=nÞN̂cÞFp
csF

pT
cs

þ 2sym½ðNþ gpðMN� NMÞ � ð´c=nÞ½N̂cþ gpcðM N̂c � N̂cMÞ�ÞMc�g
ð12:64Þ

12.6 Plastic Flow Rules 407

http://dx.doi.org/10.1007/978-3-319-48821-9_9
http://dx.doi.org/10.1007/978-3-319-48821-9_9


12.7 Plastic Strain Rate

The elastic constitutive equation is given by Eqs. (12.31)–(12.33). The plastic strain
rate formulated by Hashiguchi (2016a, b, c, d) will be shown in this section. The
formulations given in this section is not necessary in the numerical calculation by
the return-mapping based on the closet-point projection described in Chap. 20.

The time-differentiation of Eq. (12.45) leads to the consistency condition of the
subloading surface as follows:

@f ðMÞ
@M

:M
�
� R

�
F � RF

� ¼ 0 ð12:65Þ

It holds from Eq. (12.45) that

@f ðMÞ
@M

:Mð¼f ðMÞÞ ¼RF ð12:66Þ

by the Euler’s theorem for the homogenous function f ðMÞ of M in degree-one, and
then it follows that

N :M ¼ @f ðMÞ
@M

:M=jj @f ðMÞ
@M

jj ¼ f ðMÞ=jj @f ðMÞ
@M

jj ¼ RF=jj @f ðMÞ
@M

jj

which leads to

1=jj @f ðMÞ
@M

jj ¼ N:M
RF

ð12:67Þ

where

N � @f ðMÞ
@M

=jj @f ðMÞ
@M

jjð6¼ N
T
; jjNjj = 1Þ ð12:68Þ

The substitution of Eq. (12.67) into Eq. (12.65) leads to

N:M
�
� F

�

F
þ R

�

R

 !
N :M¼ 0 ð12:69Þ

The substitution of Eq. (12.50) into Eq. (12.69) leads to

N : M
�
�N :

	
F
�

F
Mþ R

�

R
ðM� RM̂cÞþRM

�

k þð1� RÞM
�

c



¼ 0 ð12:70Þ
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Further, substituting the relation

M� RM̂c ¼ M�Mk � ðMc�MkÞ ¼ ~M ð12:71Þ

Eq. (12.70) is rewritten as

N:M
�
� N :

hF0H�
F

Mþ R
�

R
~MþRM

�

k þð1� RÞM
�

c

i
¼ 0 ð12:72Þ

where

H
� ¼ fHdðM;H;D

p
=jjDpjjÞjjDpjj ¼ fHnðM;H;NÞ k

�
ð12:73Þ

R
� ¼ UðRÞjjDpjj = UðRÞ k

�
for D

p 6¼ O ð12:74Þ

based on Eqs. (6.37) and (7.9) with Eq. (12.53). The normal-yield ratio is calculated
in general from Eq. (9.45) as follows:

f ð ~MþRM̂cÞ ¼ RFðHÞ ð12:75Þ

which is explicitly described for the Mises metals from Eq. (10.32) as

R ¼
~M0 : ^M0cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~M0 : ^M0cÞ2þ

� 2
3
F2 � k ^M0ck

2�
k ~M0k

2
r

2
3F

2 � k ^M0ck
2 ð12:76Þ

The substitutions of Eqs. (12.63), (12.64), (12.73) and (12.74) into Eq. (12.72)
lead to the consistency condition:

N : M
�
�Mp

k
�
¼ 0 ð12:77Þ

from which it follows that

k
�
¼ N : M

�

M
p ; D

p ¼ N : M
�

M
p N ð12:78Þ
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where

M
p � N :

F0fHnðM;F;NÞ
F

Mþ UðRÞ
R

~M
	

þRfFp
ksC

__ k
: FpT

ks ðN� ð1=bkÞjjN0jjsym½Mk�ÞFp
ksF

pT
ks þ 2sym½ðNþ gpðMN� NMÞ

� ð1=bkÞjjN0jjfsym½Mk� þ gpkðMsym½Mk� � sym½Mk�MÞgÞMk�g
þ ð1� RÞFp

csC
^ c

: FpT
cs ðN� ð´c=nÞN̂cÞFp

csF
pT
cs

þ 2sym½ðNþ gpðMN� NMÞ � ð´c=nÞ½N̂cþ gpcðM N̂c � N̂cMÞ�ÞMc�g
i
ð12:79Þ

The substitutions of Eq. (12.62) into Eq. (12.77) lead to the consistency
condition:

N : 2L
e
: sym[C

e
L� � fN : L

e
: sym[C

efNþ gpðMN� NMÞg� þM
pgK

�
¼ 0

ð12:80Þ

using the symbol K
�
for the plastic multiplier in terms of the strain rate instead of k

�

in terms of the stress rate. The plastic multiplier is given from Eq. (12.80) as
follows:

K
�
¼ 2N : L

e
: sym[C

e
L�

M
pþN : L

e
: sym[C

efNþ gpðMN�NMÞg� ð12:81Þ

The loading criterion is given by

D
p 6¼ O for K

�
[ 0

D
p ¼ O for others

)
ð12:82Þ

which can be given actually as

D
p 6¼ O for N :L

e
:sym[C

e
L�[ 0

D
p ¼ O for others

)
ð12:83Þ
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12.8 Calculation Procedures

The calculation procedure by the above-mentioned formulations is described in this
section.

First, the plastic multiplier K
�
is calculated by the input of the velocity gradient L

into Eq. (12.81). The forward-Euler method or the return-mapping projection can
be adopted to this calculation. Then, substituting it into Eq. (12.61), the plastic and
the dissipative parts L

p
, L

p
kd and L

p
cd are calculated. Thereafter, the stress and the

tensor-valued internal variables are calculated by the method described below.
The rates of the plastic gradient and its dissipative parts are given from

Eqs. (12.6)3, (12.15)1 and (12.18)1 as follows:

F
�
p ¼ L

p
Fp

F
� p
kd ¼ L

__ p
kdF

p
kd ¼ Fp�1

ks L
p
kdF

p
ksF

p
kd

F
� p
cd ¼ L

^p
cdF

p
cd ¼ Fp�1

cs L
p
cdF

p
csF

p
cd

9>>=
>>; ð12:84Þ

where L
p
, Lp

kd and L
p
cd are given by Eq. (12.61). The storage parts Fe; Fp

ks and Fp
cs

of the deformation gradient are given by substituting the time-integrations of
Eq. (12.84) into

Fe ¼ FFp�1; Fp
ks ¼ FpFp�1

kd ; Fp
cs ¼ FpFp�1

cd ð12:85Þ

Further, C
e
;C
__ p

ks and C
^̂ p

cs are calculated by substituting Eq. (12.85) into
Eq. (12.3). Further, the stress S, the kinematic hardening variable S

__

k and the

elastic-core S
^

c are calculated by substituting C
e
;C
__ p

ks and C
^̂ p

cs into Eqs. (12.31) and
(12.36). The isotropic hardening variable and the normal-yield ratio are calculated
by the time-integration of Eqs. (12.73), (12.74) and (12.75).

The plastic constitutive equation with the plastic modulus in Eq. (12.78) is not
necessary to be used in the numerical calculation by the return-mapping in which
the plastic strain rate is calculated by use of only the plastic flow rule in Eq. (12.53)
and then the stress and internal variables are calculated.

The time-integrations of Eq. (12.84) for the deformation gradient tensors Fp; Fp
kd

and Fp
cd can be executed in high efficiency by the tensor exponential method (Miehe

1996; Weber and Anand 1990; Hashiguchi and Yamakawa 2012).
The numerical calculation scheme for the multiplicative elastoplasticity adopting

the initial subloading surface model ðMc ¼ OÞ without the plastic spins ðWp ¼
W

p
kd ¼W

p
cd ¼ OÞ can be referred to Hashiguchi and Yamakawa (2012).

12.9 Cyclic Stagnation of Isotropic Hardening of Metals

The stagnation of the isotropic hardening for a while after the reverse of loading
was described in Sect. 10.2. It will be extended to the framework of the multi-
plicative finite strain theory in this section.
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The normal-isotropic hardening surface in the intermediate configuration is
given by

gð ~MkÞ ¼ ~K ð12:86Þ

where

~Mk � Mk�Hð 6¼ ~M
T

k Þ ð12:87Þ

The scalar variable K and the second-order tensor variable Hð6¼ H
T
; trH ¼ 0Þ

designate the size and the center, respectively, of the normal-isotropic hardening
surface, the evolution rules of which will be formulated later. Further, the
sub-isotropic hardening surface, which always passes through the back stress Mk in
the intermediate configuration and has a similar shape and a same orientation to the
normal-isotropic hardening surface is expressed by the following equation (see
Fig. 12.3).

gð ~MkÞ ¼ ~R~K ð12:88Þ

The normal-isotropic hardening ratio ~R is calculable from the equation ~R ¼
gð ~MkÞ=~K in terms of the known values Mk , H and ~K.

Normal-isotropic
hardening surface 

Sub-isotropic 
hardening surface 

0
ijM.

Normal-yield surface 

kM

Θ

•
Θ

kM

( )=kg RKM

( ) =kg KM

kN
∼

∼

∼

∼ ∼

∼ ∼

Fig. 12.3 Normal- and sub-isotropic hardening surfaces in multiplicative elastoplasticity
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The consistency condition of the sub-isotropic hardening surface is given by

@gð ~MkÞ
@ ~Mk

: M
�

k� @gð ~MkÞ
@ ~Mk

: H
�
¼ ~R~K

�
þ ~R

�
~K ð12:89Þ

The rates of ~K andH are given by the following equations based on Eqs. (10.21)
and (10.22).

~K
�
¼ C~R1h@f ~Nk :M

�

ki @gð ~MkÞ
@ ~Mk

�����
����� ð12:90Þ

H
�
¼ ð1�CÞ~R1h~Nk:M

�

ki~Nk ð12:91Þ

where are the material constants and

~Nk � @gð ~MkÞ
@ ~Mk

=jj @gð
~MkÞ

@ ~Mk

jj ð6¼ ~N
T

k Þ ð12:92Þ

Substituting Eqs. (12.91) and (12.92) for the evolution rules of K and H into
Eq. (12.90), the rate of the normal-isotropic hardening ratio is given by

~R
�
¼ 1

~K
½h@gð

~MkÞ
@ ~Mk

: M
�

ki � @gð ~MkÞ
@ ~Mk

: ð1� CÞ~R1hNk : M
�

kiNk �~RC~R1h@gð
~MkÞ

@ ~Mk

: M
�

ki�

¼ 1
~K
h@gð

~MkÞ
@ ~Mk

: M
�

kif1� ½1� Cð1� ~RÞ�~Rfg ð12:93Þ

which is the monotonically-decreasing function of ~R fulfilling

~R
�

¼ 1
~K
h@f ð

~MkÞ
@ ~Mk

: M
�

ki ð[ 0Þ for ~R¼ 0

\
1
~K
h@f ð

~MkÞ
@ ~Mk

: M
�

ki ð[ 0Þ for ~R\1

¼ 0 for ~R¼ 1

\0 for ~R[ 1

8>>>>>>>>>><
>>>>>>>>>>:

ð12:94Þ

Therefore, Mk is attracted automatically to the normal-isotropic hardening sur-

face even if it goes out from that surface by virtue of the inequality ~R
�
\0 for ~R[ 1

as shown in Eq. (12.96). Furthermore, the judgment of whether Mk lies on the
normal-isotropic hardening surface is not required in the present formulation.
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The evolution rule of isotropic hardening is given analogously to Eqs. (10.27)
and (10.28), noting Eq. (12.63) as follows:

H
� ¼ ~R

th~Nk : A=kAkif Hn k
�
¼ fHsn k

�
ð12:95Þ

where t is the material constant and

fHsn � ~R
th~Nk : A=kAkif Hn ð12:96Þ

A � Fp
ksC
__k : FpT

ks ðN� ð1=bkÞkNksym½Mk�ÞFp
ks F

pT
ks þ 2sym½ðNþ gpðMN� NMÞ

� ð1=bkÞkN0kfsym½Mk� þ gpkðMk sym½Mk� � sym½Mk�MkÞgÞMk�
ð12:97Þ

The plastic modulus is given by replacing fHn to fHsn in Eq. (12.79).

The function gð ~MkÞ is given in the simplest form as follows:

gð ~MkÞ ¼ k ~Mkk ð12:98Þ

which will be used in the subsequent sections for the comparisons with test data. It
follows from Eqs. (12.92) and (12.98) that

~Nk � @gð ~MkÞ
@ ~Mk

¼
~Mk

k ~Mkk
ð12:99Þ

The incorporation of the tangential-inelastic strain rate described in Sect. 9.10
into the multiplicative elastoplasticity requires a further study.
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