Chapter 12
Multiplicative Elastoplasticity: Subloading
Finite Strain Theory

The subloading surface model was formulated in the Chaps. 6-11 within the
frameworks of the finite hypoelastic-based plasticity in detail and of the infinites-
imal hyperelastic-based plasticity (Sect. 6.9) in brief. Finite deformation and rota-
tion cannot be described in the exact sense by these formulations. The
multiplicative elastoplastic constitutive equation will be formulated for the
subloading surface model with the translation of the elastic-core, although the
multiplicative constitutive equation for the initial subloading surface model, in
which the elastic-core is fixed in the back stress point, was formulated in an
immature form by Hashiguchi and Yamakawa (2012). One must formulate the
constitutive equation possessing the generality and the universality to be inherited
eternally, while any unconventional model, i.e. cyclic plasticity model other than
the subloading surface model has not been extended to the multiplicative finite
strain theory. The exact formulation of the multiplicative finite strain theory based
on the extended subloading surface model has been attained by Hashiguchi (2016a,
b, c, d), which will be explained in detail in this chapter.

12.1 Classification of Elastoplastic Constitutive Equation

The basic frameworks of elastoplasticity are classified as follows:
Infinitesimal elastoplasticity

(1) The infinitesimal strain and its material-time derivative are additively decom-
posed into the elastic and the plastic parts,

(2) The Cauchy stress is used as the stress measure,

(3) The elastic deformation is formulated in the hyperelastic relation,

(4) The initial and the current configurations are not distinguished,

(5) The infinitesimal elastic and plastic deformation is described, ignoring a
rotation,
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Finite elastoplasticity

There are the following two frameworks for the description of finite
deformation/rotation.
Hypoelastic-based plasticity

(1) The symmetric and anti-symmetric parts of the velocity gradient are defined to
be the strain rate and the spin, respectively and further they are is additively
decomposed into the elastic and the plastic parts,

(2) The Cauchy stress and its corotational rate (also for internal variables) are
used,

(3) The elastic strain rate is formulated in the hypoelastic relation,

(4) The pertinent time-integration of stress rate is required,

(5) The formulation is executed in the current configuration which is influenced
by the material rotation,

(6) The finite plastic deformation and the finite rotation are described under the
restriction of the infinitesimal elastic deformation.

Multiplicative hyperelastic-based plasticity

(1) The multiplicative decomposition of the deformation gradient tensor is used
consistently,

(2) The additive decomposition of the strain rate and the spin tensors in the
intermediate configuration into the elastic and the plastic parts are used, which
are decomposed definitely into these parts,

(3) The Mandel stress in the intermediate configuration is used as the stress
measure,

(4) The elastic deformation is formulated in the hyperelastic relation,

(5) The formulation is executed in the intermediate configuration which is not
influenced by the material rotation,

(6) The finite elastic and the plastic deformation and rotation are described exactly.

Then, it realizes the exact description of the finite deformation/rotation.

The formulation of the subloading surface model in the multiplicative
hyperelastic-based plasticity was given by Hashiguchi and Yamakawa (2012) in the
immature form for the initial subloading surface model in which the elastic-core is
fixed so that it is limited to the description of the monotonic loading behavior. The
subloading surface model with the translation of the elastic-core will be formulated
in this section within the framework of the multiplicative hyperelastic-based plas-
ticity. It is to be the first cyclic (unconventional) elastoplasticity model in the
multiplicative hyperelastic-based plasticity for the exact description of finite
elastoplastic deformation/rotation.
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12.2 Further Multiplicative Decomposition
of Plastic Deformation Gradient

The deformation gradient F is multiplicatively decomposed into the elastic defor-
mation gradient F¢ and the plastic deformation gradient F as described in Sect. 6.1.
Further, decompose F’ into the plastic storage part F} causing the kinematic
hardening and its plastic dissipative part F;, multiplicatively (Lion 2000).
Analogously, decompose F? into the plastic storage part 2 causing the translation
of elastic-core and its plastic dissipative part F/, multiplicatively as follows:

cs™ cd

F=FF, FP=FF, F=FF (12.1)

The configurations based on these decompositions are illustrated in Fig. 12.1.
Based on the right Cauchy-Green deformation tensor

C=F'F (12.2)

Fig. 12.1 Multiplicative decompositions of deformation gradient for elastoplastic material with
translations of kinematic hardening and elastic-core
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the following tensors of the storage parts Ei(“:fk’s,égv and the dissipative parts
Cr, 65;1, C?, are defined.

C =F'F = (RT)'RU =T, ¢’ = P'F,

~ ~ 2 )
CZS = FZSTF?Y = UZ& 7C]1:d = F?«?F]IZd’ (123)
C?&‘ = FZY FIZV = ch ’ C[L)d = Flc)d F[L)d

where one has
C, =rCh . =R TCrpr! —
_ks ksvksGG ks Vks ks -G (12.4)
Cr, =1.Clge = FI, TCLFL !

G is the metric tensors defined in Eq. (4.31) in the intermediate configuration. The
hat symbols (7), (7) and () are added to the variables based in the intermediate

configuration K, the kinematic hardening intermediate configuration /C and the

elastic-core intermediate configuration IC, respectively. The superscript and/or
subscript is (are) added in the left side in order to specify the pull-back or
push-forward due to the elastic (or plastic) deformation gradient.

In order to explain clearly, the equations described already in Eqs. (6.11) to
(6.18) in Sect. 6.1 are again written in the following Eqs. (12.5)-(12.11).

The velocity gradient / in the current configuration /C is additively decomposed
into the elastic and the plastic parts:

1=L+P (12.5)
where
1= I.TF_I,
. . — g _
F=FF P =FRRoRel =) = LR (12.6)
I’ = frpr-!

Further, the velocity gradient L defined as the contravariant-covariant pull-back
(Eq. (4.44)) of the velocity gradient tensor [ in the current configuration to the
intermediate configuration K can be additively decomposed into the purely elastic
and the purely plastic parts as follows:

L=L'+L" (12.7)

where
T ?6 e— e
L=°lz=F""IF

. <z ., <z i (12.8)
L'=9;=F"I'F =F"'F, L' =V;=F '"IF =FF"'
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Therefore, L and L°, L” can be pertinently adopted in the formulation of elasto-
plastic constitutive equation. It follows from Eq. (12.8) that

L=D+W
LoD W, T’ — EP+W”} (129)
D=D'+D', W=W+W (12.10)
where
D =sym[L], W =ant[L]
D’ =sym[L‘], W’=ant[L] (12.11)
D’ =sym[L"], W’ =ant[L"]

The rate of C' is given from Eqs. (12.3); and (12.7) as

C¢ = 2sym[C’L’] = 2sym[C" (L - L")] (12.12)

noting

Ce= (FeTFe). _ FeTI'?e +I';|eTFe _ FeTFe(Fefll}e) + (I';eTFefT)FeTFe

_ Eefe + EeTEe

Further, the plastic velocity gradient L” is additively decomposed for the
kinematic hardening as follows:

L'=L+L}, (12.13)
where
T 2o -1 T 0 G T -1
L]I:s = FZSFZS 7L§c)d = i(SIﬂ( .G = FIIESL]I;dFis (1214)
- . G - -
{f/;d = FZszd = I/:sI:kd,G = F’;Zi LiaFi = D+ W (12.15)
D}, = sym[L},], = ant[L,]
noting

Ep = (FZF;:(I) ) (FisFZd) - = (FZJFZd + FZAFZd)FQJlFisl
= FLF, "+ FL I, F,

Analogously, the following additive decomposition of the velocity gradient
holds for the elastic-core.
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L"=L) +L), (12.16)
where

L O R (12.17)

< . _ =G = - -
L, =¥ Fy, ‘= g‘vLIc)d.G =F; lLIc)dF]c’s =D+ Wi, (12.18)

D}, =sym[L};|, W[, =ant[L]]
The time-derivative of 6;’? in Eq. (12.4) is given by

Cl = 2Dy 5 = 2P DL F}, = 2F,[ (D" — D}, ), (12.19)

noting

Cl, = (FFy)" = P F, + FF, = FUF R R+ FFL TR,

= P RLF L+ F (B )R, = FUDLE, + P F], = 2F, DL F),
Analogously, one has

Cgs = 21()Aﬁf.§aa = 2F1c)sTﬁ[:AF1:A = 2F1c)sT(ﬁp - ﬁfd)ng (1220)

Further, it follows for the dissipative parts that

C? =2/D 6 = 2F'D'F?,

— - (12.21)
4 T ~ Y TR
C/fd = 2idedGG = ZFid D]l:dFIIZdv Cfd = 2Ic)de-dGG = ZFISd Dchgd

noting

C’ = (F7'FP) = PTR 4 BT = PP (RORP B TR )R
_ FPT[I}pr71 + (I}Pprl)T]Fp

12.3 Stress Measures

Introduce the second Piola-Kirchhoff stress tensor in the intermediate configuration,
which is the contravariant pulled-back (Eq. (4.44)) of the Kirchhoff stress tensor, i.e.
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5(=8") = rs%C — ST — F! (FSF)F* T = 1°0 — Folepe T
(12.22)
and the Mandel stress
M=CS=FtF 7 #M) (12.23)
noting
C'S = (F'F) (F'tF ") = FTtF " (12.24)

Here, note that the work-conjugate stress measure with the strain rare L in the
intermediate configuration is the Mandel stress M as known from

t:1 = t[(FSF) (FLF )] = w(FSFTF "L F7)
— t(FTFSL’) = (C SL") =CS:L=M:L
Further, the contravariant push-forward (Eq. (4.44)) of the kinematic hardening
variable S and the elastic-core S to the intermediate configuration iC is given by

S =F 'S (=8])

= P 'SP 7 (= ST)
(12.25)

Further, the Mandel-like variables M; and M, for the kinematic hardening
variable and the elastic-core, respectively, are defined as

M, =C,S;=GS; =S, =F,S;F] =" MkG = P TMF (£ M)

ks }
M, = C}S; =7 M, = Fii MyF, " (M)

(12.26)

Se=1M:G = FITMEL (£ M)

=
I
a

.

C

-l

(12.27)

=2

I

O(
o)

Se
c fag IstC.E} = FPTM P:T (7£ MZ)
noting Eq. (12.4), (12.25) and S; = F,. S, F*" = F2 C2"'MFY" = F, "MyF.)
The material-time derivative of the kinematic hardening variable S; in the

intermediate configuration is given by
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Se = FL. S F +2sym (L} S;] (12.28)

from Eqs. (12.14) and (12.25), noting

Si=F S'kFPT "’sSkFZST LS T
— P S F RS TR RS R T
~FS kFg;T +F RIS 4+ SR TR
PSP IV + (VS

Further, the material-time derivative of My is given from Eq. (12.28) with Egs.
(12.13) and (12.26) by

M, =5, F;’SS JFT 4 2sym [L) M, ] = F;’SskF +2sym|[(L — L, ) M]
(12.29)

Analogously, the following relation holds for Mandel-like elastic-core stress.

M, =S, =FS8 F 4 25ym[L’M,] = F,S.F + 2sym[(L — I,)M,]
(12.30)

12.4 Hyperelastic Constitutive Equations

Now, the 2nd Piola-Kirchhoff stress push-forwarded to the intermediate configu-
ration, S, is given by the following equation with the strain energy function w(ée),
noting Eq. (5.6)4, where C° stands for the purely elastic deformation because of
C° = U7 as shown in Eq. (12.3).

_ _oye(C
s, (C) (12.31)
oC
and the Mandel stress is given by
e 0 _
M =C'S =2C l//aé ) (#M) (12.32)

The rate of the Mandel stress is given noting Eq. (12.12) as
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— (CS) =T :C* = [ :sym[C (L — )] (12.33)

where L° is the fourth-order hyperelastic tangent modulus tensor given by

Cc:C (12.34)
with

8 _, PY(C)

6652 — — AT —  —¢
oC 0C ®oC

(12.35)

Further, let the 2nd Piola-Kirchhoff stress-like variables for the kinematic

hardening variable I, based in K and for the elastic-core S, based in K be for-
mulated by the potential energy functions lp"(él,;) and y°(C?,), noting Eq. (12.25)
with Eq. (12.4), as follows:

k/g~p C [
~ C — /4
Sk al// (pks) , SC _ 28!// {Cm) (1236)
aCk? aCI:A
_ - k(gvp __ c(Cp
5, =187 =2, W pr 5 =597 — o W B pr (1239
5Sks 8CC[.;
k/ep _
M, = C? S§;=2C? o SC"“) , M, =CS.= 2C” W ( ) (12.38)
ks ks p cs
aCks BC}ZA-
M= S =8 =2, W Clpr N s =5 o, W Clpr
ocr k. oC,

The tensors M, My, M, satisfy the symmetries, i.e. M= MT, M, =
M,, M. =M. for particular cases of the strain energy functions ¢, /*, y* only

of the tensors C', C2, C?

b, respectively, while the elastic-isotropy is caused only
from the first one.

The rates of Sy and §C are given from Eq. (12.36) as



404 12 Multiplicative Elastoplasticity: Subloading Finite Strain Theory

- § gl
=C*: EC,‘Z, =C°: 5 (12.40)
where
cf=2 6% =4 8ﬂ2‘pk<élk)‘v) c'=2 6§§; =4 ?W(é@ (12.41)
aCch  aCk @ oS’ aCl  OCh ® OCP,

Substituting Eq. (12.40) with Eq. (12.19) into Eq. (12.29), M, is given as
follows:

M, = F,,C*:F)[ (D" - D)FL R, + 2sym[(L) L )My]  (12.42)

Analogously, it follows for the elastic-core that

M, = F.C*: F'" (D" — D,)F".F’T 4 2sym[(L’ — L",)M] (12.43)

csT cs

12.5 Normal-Yield and Subloading Surfaces

The normal-yield surface with the isotropic and the kinematic-hardenings is
described following Eq. (9.1) in the intermediate configuration by

f(M) =F(H) (12.44)
and the subloading surface following Eq. (9.2) by

f (M) =RF(H) (12.45)
in the intermediate configuration, which are depicted in Fig. 12.2, where

M=M - M, (# M) (12.46)
M

ﬁzm_ ) M—Mc(# ﬁT% } (12.47)
M

Nt

M, (£ M’
M.=M., -

M, is the conjugate point in the subloading surface to M; in the normal-yield
surface. The following relations hold.
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A of (1_\21)

Subloading surface
S M) =RF(H)

“Elastic-core surface’ :
fMc) = iF(H)

—
Normal-yield surface M

f(M)= RF(H)

Fig. 12.2 Normal-yield, subloading and elastic-core surfaces in the intermediate configuration in
multiplicative elastoplasticity theory

M, = M.—RM, (M, — M, =

(12.48)
the rate of which is given by
M, — RM; + (1 — )M, — RM, (12.49)
leading to
M = M—RM; — (1 — R)M. + M. (12.50)

The variables in the hypoelastic-based plasticity described in the previous sec-

tions correspond to the following variables in the intermediate configuration for the
multiplicative hyperelastic-based plasticity.

6 — M, 6 —M=M-M,
o — Mk, o — Mk

_ o _ (12.51)
c—> M, ¢— M, =M.—M;
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The elastic-core surface which passes through the elastic-core M. and is similar
to the normal-yield surface with respect to the back-stress M; in the
hyperelastic-based-plasticity is given following Eq. (9.17) as follows:

FO) = %.F(H), ie %.=f(M,)/F(H) (12.52)

12.6 Plastic Flow Rules

The plastic strain rate is given in the following associated flow rule proposed by
Hashiguchi (2016a, b, c, d).

D’ :iﬁ(;t >0) (12.53)

where / is the plastic multiplier and

= sm L] /sy ZEN | =1y 2w

which is the normalized and symmetrized tensor. If the symmetries of the Mandel
stress and Mandel-like kinematic hardening variable, i.e. M = M’ and M, = M,{

12l

hold, which are provided by the strain energy functions ¥¢ and /* of only C’ and
eis, respectively, one obtains the symmetry df (M)/OM = (9f(M)/0M)’ .

The symmetric plastic dissipative parts of the plastic velocity gradients for the
kinematic hardening variable and the elastic-core in Egs. (12.15) and (12.18) are
assumed following Eqs. (9.11) and (9.15) as follows:

T =] 1

D, =, 1D llsym(M,]| = 7 [N fsym{M (12.55)

k k
D, = 9?7 D7 |IN| = i‘jﬁc (12.56)

where

N. = sym| ZED /o[ XL H (N = 1) (12.57)

oM. OM.
M, = M, — M, (12.58)
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In the material parameter u = uexp(u.;.Cy) in Eq. (9.47) for the Masing
effect, . is given by Eq. (12.51) and Cy is given by

Co=N,:N(—1<Cp<1) (12.59)

Let the spins W, WZd and W‘Zd in Egs. (12.11), (12.15) and (12.18), which are
induced by the plastic and the dissipative parts, be given by extending Eq. (9.48) as
follows:.

W = (MD’—D' M) = 1 A(MN-NM)

Wi = e (MDf;,—Dif, M) = (ﬂ‘"/bk)?IINII(M m[M, ] —sym[M;]M)

W, = (MDD, M) = 1f(%/&) A(MN, — N.M) (12.60)

where ni and #? are the material parameters, while the flow rules in Eqs. (12.53),
(12.55) and (12.56) are exploited. The plastic spin tensor W’ diminishes if the
symmetry of the Mandel stress, i.e. M = M’ due to the elastic isotropy and the
plastic isotropy due to My = M. = O hold. Further, the spin tensors W, and W",
diminish for the plastic-isotropy due to My = M, = O.

The velocity gradients are given by substituting Egs. (12.53), (12.55), (12.56)
and (12.60) into Egs. (12.9), (12.15) and (12.18) as follows:

The substitutions of Eq. (12.61) into Egs. (12.33), (12.42) and (12.43) yield:

M = I°: sym[C{L. — 7 [N + " (MN-NM)]}] (12.62)
My = AP 2 FYT (N - (1/b)[[N||sym({ML)FLFL + 2sym{(N + (MN — NM)
— (1/b)| [N {sym[Mi] -+ 72 (M sym[M,] —sym[M,]M) } M}
(12.63)
M, = Z{F0,C R0 (N — (98 /&N R R
+2sym((N -+ (MN — NM) — (9%./&) [N, + 2 (MN, — N.V)|)M.]}
(12.64)
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12.7 Plastic Strain Rate

The elastic constitutive equation is given by Eqs. (12.31)—(12.33). The plastic strain
rate formulated by Hashiguchi (2016a, b, ¢, d) will be shown in this section. The
formulations given in this section is not necessary in the numerical calculation by
the return-mapping based on the closet-point projection described in Chap. 20.

The time-differentiation of Eq. (12.45) leads to the consistency condition of the
subloading surface as follows:

D) M — kF — RF=0 (12.65)
It holds from Eq. (12.45) that

OfM) 0 o
ot M=/ (M) =RF (12.66)

by the Euler’s theorem for the homogenous function f(M) of M in degree-one, and
then it follows that

*.*,W(M), ( M) ( M) af (M)
N-M*TM M/|| = Hf M)/l =" II— /“TM I
which leads to
(M) N:M
I H = RF (12.67)
where
— oM _
N=2 ) T N ) = ) (12.68)
The substitution of Eq. (12.67) into Eq. (12.65) leads to
— F R
N:M - (F + R>N M=0 (12.69)

The substitution of Eq. (12.50) into Eq. (12.69) leads to

:M—-N: { M+ = (M RM)+RMk+(17R)MC =0 (12.70)

[zl
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Further, substituting the relation

—RM. =M~ M, — (M.-M,) =M (12.71)

=l

Eq. (12.70) is rewritten as

N:M - N: [Ffﬁ+§ﬁ+leﬁk+(11e)ﬁ -0 (12.72)

where
B = fua(VLH, D /|07 |) [ || = fo (M HN) 7 (12.73)
R=UR®)|D| =URZ for D'#0 (12.74)

based on Egs. (6.37) and (7.9) with Eq. (12.53). The normal-yield ratio is calculated
in general from Eq. (9.45) as follows:

f(M+RM.) = RF(H) (12.75)

which is explicitly described for the Mises metals from Eq. (10.32) as

o~ ~ A 2 2y ~ 2
MM M+ (2 M) (V)

R= (12.76)

~ 2
P — M|

The substitutions of Eqgs. (12.63), (12.64), (12.73) and (12.74) into Eq. (12.72)
lead to the consistency condition:

N:M-M" =0 (12.77)
from which it follows that
= N: M —, N: ﬁ—
k== D’ = — N (12.78)


http://dx.doi.org/10.1007/978-3-319-48821-9_6
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where

W =N: F'fy(M, F,N)

M
F TR

+R{FLC SR (N — (1/by) [N sym M) FE, BT + 2sym[(N+ o (VN — N'M)
— (1/b)|IN’ II{sym[Mk] +1y (Msym[Mk} sym[MJM) })M,]}
+(1 - )F”C T (N — (%, /5) )F”F”T

csTcs

+2sym[(N+ 7 (MN — NM) — (9%, /&)[N, + n(MN, — N, VM) )M.]}

(12.79)

The substitutions of Eq. (12.62) into Eq. (12.77) lead to the consistency
condition:

N:20 :sym[C'L] — {N: I :sym[C{N+#”(MN - NM)}| + M} A=0
(12.80)
using the symbol Z for the plastic multiplier in terms of the strain rate instead of 2

in terms of the stress rate. The plastic multiplier is given from Eq. (12.80) as
follows:

- ON:[°: CL
y/ P — N:l coymlCL] (12.81)
M +N:L :sym[C {N+ y’(MN-NM)}|
The loading criterion is given by
D #0 for 4 >o} (12,82
D’ =0 for others
which can be given actually as
D’ for N:L:sym[C'L] > 0
D #0 for N sym[C L] > (12.83)
D’ =0 for others
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12.8 Calculation Procedures

The calculation procedure by the above-mentioned formulations is described in this
section.

First, the plastic multiplier A is calculated by the input of the velocity gradient L
into Eq. (12.81). The forward-Euler method or the return-mapping projection can
be adopted to this calculation. Then, substituting it into Eq. (12.61), the plastic and
the dissipative parts r’ s fid and ffd are calculated. Thereafter, the stress and the
tensor-valued internal variables are calculated by the method described below.

The rates of the plastic gradient and its dissipative parts are given from
Egs. (12.6)3, (12.15); and (12.18); as follows:

v =T'F
. ~ e
Fllzd = LIZdde = Fis LZdFisFid (12-84)

v r —17P wp P

Flcd = LﬁdFlc)d =F(; chdFlcsFlcd
where L, L?, and Efd are given by Eq. (12.61). The storage parts F*, F}_and FZ,
of the deformation gradient are given by substituting the time-integrations of
Eq. (12.84) into

FF=FF~' ¥ =FF, F =FF' (12.85)

Further, 66762 and CP are calculated by substituting Eq. (12.85) into

Eq. (12.3). Further, the stress S, the kinematic hardening variable S « and the

elastic-core gc are calculated by substituting C, 6;; and (vjf_s into Egs. (12.31) and
(12.36). The isotropic hardening variable and the normal-yield ratio are calculated
by the time-integration of Eqs. (12.73), (12.74) and (12.75).

The plastic constitutive equation with the plastic modulus in Eq. (12.78) is not
necessary to be used in the numerical calculation by the return-mapping in which
the plastic strain rate is calculated by use of only the plastic flow rule in Eq. (12.53)
and then the stress and internal variables are calculated.

The time-integrations of Eq. (12.84) for the deformation gradient tensors F*, F?,
and ¥, can be executed in high efficiency by the tensor exponential method (Miehe
1996; Weber and Anand 1990; Hashiguchi and Yamakawa 2012).

The numerical calculation scheme for the multiplicative elastoplasticity adopting
the initial subloading surface model (M. = O) without the plastic spins (W’ =
W, = W, = 0) can be referred to Hashiguchi and Yamakawa (2012).

12.9 Cyclic Stagnation of Isotropic Hardening of Metals

The stagnation of the isotropic hardening for a while after the reverse of loading
was described in Sect. 10.2. It will be extended to the framework of the multi-
plicative finite strain theory in this section.


http://dx.doi.org/10.1007/978-3-319-48821-9_10
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The normal-isotropic hardening surface in the intermediate configuration is
given by

g(My) =K (12.86)

where
~T

The scalar variable K and the second-order tensor variable @ (# 6T, r® = 0)
designate the size and the center, respectively, of the normal-isotropic hardening
surface, the evolution rules of which will be formulated later. Further, the
sub-isotropic hardening surface, which always passes through the back stress M, in
the intermediate configuration and has a similar shape and a same orientation to the

normal-isotropic hardening surface is expressed by the following equation (see
Fig. 12.3).

8(My) =RK (12.88)

The normal-isotropic hardening ratio R is calculable from the equation R =
g(My)/K in terms of the known values My, © and K.

Normal-yield surface

Normal-isotropic
hardening surface

sMp)=K
Sub-isotropic
hardening surface

g(M)=RK

‘\0_/ ;

Fig. 12.3 Normal- and sub-isotropic hardening surfaces in multiplicative elastoplasticity
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The consistency condition of the sub-isotropic hardening surface is given by
0g(M,) =  9g(My) = .= =
@:MFM:@:RIHRK (12.89)
8Mk aMk

The rates of K and © are given by the following equations based on Eqs. (10.21)
and (10.22).

. - ~ ﬁ
& = cie (N, v |28V (12.90)

M
0= (1-O)RF (Ne: MON, (12.91)

where are the material constants and
~ 6g M ~T
R, =200 ) oMy - g (1292)
8Mk OMy

Substituting Eqs. (12.91) and (12.92) for the evolution rules of K and ® into
Eq. (12.90), the rate of the normal-isotropic hardening ratio is given by

a(ﬁ) .

1 0g(My) o Dg(M)

R==[(=: My) =2 :(1— C)R* (N : Mk)Nk —RCR*( : M)
K" oM, oM, oM,
_ L 98 Np -1 — (1 — RIR) (12.93)
M,
which is the monotonically-decreasing function of R fulfilling
1.0 M) - .
== f(;") : M) (> 0) for R=0
K oM,
= 1 9f(M,) - -
R{ <~ <f< My) : My) (> 0) for R<1 (12.94)
K' oM,
=0 for R=1
<0 for R>1

Therefore, My is attracted automatically to the normal-isotropic hardening sur-

face even if it goes out from that surface by virtue of the inequality R <0 for R > 1
as shown in Eq. (12.96). Furthermore, the judgment of whether M, lies on the
normal-isotropic hardening surface is not required in the present formulation.


http://dx.doi.org/10.1007/978-3-319-48821-9_10
http://dx.doi.org/10.1007/978-3-319-48821-9_10
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The evolution rule of isotropic hardening is given analogously to Egs. (10.27)
and (10.28), noting Eq. (12.63) as follows:

H =R (N A/ A sy 2| = frton 2 (12.95)

where v is the material constant and

stn = RU<N]€ :X/HK||> Hn (1296>
A = FLC :F (N~ (1/b0)||IN[[sym[M,])F}, B} + 2sym[(N -+ (MN — NM)
— (1/b¢)[IN|[ {sym[M] + (M sym[M] — sym[M] M) }) M|
(12.97)
The plastic modulus is given by replacing fy, to fy,, in Eq. (12.79).
The function g(My) is given in the simplest form as follows:
g(My) = [ M| (12.98)

which will be used in the subsequent sections for the comparisons with test data. It
follows from Egs. (12.92) and (12.98) that

(M) _ M,

ﬁk = —~
oM M|

(12.99)

The incorporation of the tangential-inelastic strain rate described in Sect. 9.10
into the multiplicative elastoplasticity requires a further study.
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