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Introduction

These lecture notes cover the course Linear Forms in Logarithms created for the
Summer School Diophantine Analysis organized in Würzburg, Germany in 2014.
The notes intend to be an introduction to Diophantine approximation and linear
forms in logarithms.

We begin with the theory of Diophantine approximation which has an extremely
important application in the study of Diophantine equations. One of the main topics
is the question how well a given real number α can be approximated by rational
numbers. By placing certain constraints on the rational numbers used in the approxi-
mation, we are able to classify the real number α as either a rational or an irrational
number, or as an algebraic or a transcendental number. Diophantine approximation
and transcendence theory are very close areas that share many theorems andmethods
which will be useful in the second part of these lecture notes.

There,we introduce linear forms in logarithms and provide lower bounds for linear
forms in logarithms of algebraic numbers due to Alan Baker, one of the most famous
mathematician in this field of mathematics. Baker was awarded the Fields Medal
in 1970 because of his profound and significant contributions to number theory. To
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illustrate the importance of his machinery, many useful and interesting applications
of the introduced concepts are presented.

1 Diophantine Approximation

Rational numbers are in every interval of the real line, no matter how small that
interval is because the set of rational numbers is dense in the set of real numbers. As
a consequence, for any given real number α, we are able to find a rational number
as close as we like to α.

Approximating a real number by rational numbers helps us to better understand the
set of real numbers and gives us a surprising insight in the properties of real numbers.
By placing certain constraints on the rational numbers used in the approximation of
the real number α, properties of the real number α can be observed such that classify
it as either a rational or an irrational number, or as an algebraic or a transcendental
number.

As rational numbers approach a fixed real number, their denominators grow arbi-
trarily large. We study how closely real numbers can be approximated by rational
numbers that have a fixed bound on the growth of their denominators.

1.1 Dirichlet’s Theorem

One of the main questions in Diophantine approximation is whether there exists any
rational number p

q satisfying the inequality

∣
∣
∣
∣

a

b
− p

q

∣
∣
∣
∣
<

1

q2
.

The affirmative answer follows from the fundamental result due to Dirichlet1 on
rational approximation of real numbers.

Theorem 1.1.1 (Dirichlet 1842) Let α be a real number and n a positive integer.
There exists a rational number p

q , 0 < q ≤ n, satisfying the inequality

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

(n + 1)q
. (1.1)

Proof For n = 1, p
q = �α�

1 or p
q = �α�+1

1 satisfies

1Peter Gustav Lejeune Dirichlet (1805–1859), a German mathematician.
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∣
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α − p

q
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∣
∣
∣
≤ 1

2
,

where � � stands for floor function. For n ≥ 2, we consider n + 2 elements

0, α − �α�, 2α − �2α�, . . . , nα − �nα�, 1,

of the interval [0, 1].
Assume first that these elements are distinct as they are in the caseα is an irrational

number. The interval [0, 1] can be subdivided into n + 1 subintervals of the length
1

n+1 and the pigeonhole principle guarantees that two of these numbers differ in
absolute value by at most 1

n+1 . If one of the numbers is 0 and the other is iα − �iα�,
then i ≤ n, |iα − �iα�| < 1

n+1 and

∣
∣
∣
∣
α − �iα�

i

∣
∣
∣
∣
≤ 1

(n + 1)i
.

After �iα�
i is reduced to lowest terms p

q , the rational number p
q satisfies (1.1). Similarly,

if the two numbers in question are jα − � jα� and 1, then j ≤ n and reducing � jα�+1
j

to lowest terms p
q , we have that p

q satisfies (1.1). Finally, if the two numbers are
iα − �iα� and jα − � jα� with i < j , then

| jα − � jα� − (iα − �iα�)| = |( j − i)α − (� jα� − �iα�)| ≤ 1

n + 1
.

Consequently, j − i < n and

∣
∣
∣
∣
α − � jα� − �iα�

j − i

∣
∣
∣
∣
≤ 1

(n + 1)( j − i)
.

Thus, after � jα�−�iα�
j−i is reduced to lowest terms p

q , the rational number p
q satisfies

(1.1).
If the n + 2 numbers from the beginning are not distinct, then α itself is a rational

number with denominator at most n. In this case, there exist i < j so that α is equal
to one of the following fractions

�iα�
i

,
� jα� − �iα�

j − i

reduced to lowest terms. If the numbers are not distinct, the required inequality (1.1)
is trivially satisfied by α itself.

Corollary 1.1.2 For α irrational, there exist infinitely many relatively prime num-
bers p, q such that
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∣
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∣
∣
α − p

q

∣
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∣
∣
<

1

q2
. (1.2)

Proof Suppose there are only finitely many rationals

p1
q1

,
p2
q2

, . . . ,
pk
qk

satisfying (1.2). In this case,
∣
∣
∣
∣
α − pi

qi

∣
∣
∣
∣
> 0

for 1 ≤ i ≤ k. Consequently, since α is irrational, there exists a positive integer n
such that the inequality

∣
∣
∣
∣
α − pi

qi

∣
∣
∣
∣
>

1

n + 1

holds for 1 ≤ i ≤ k. However, this contradicts Dirichlet’s Theorem 1.1.1 which
asserts that, for this n, there exists a rational number p

q with q ≤ n such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

(n + 1)q
<

1

q2
.

Remark 1.1.3 Corollary1.1.2 does not hold for α rational. Assume α = u
v
. For p

q �=
α, we have ∣

∣
∣
∣
α − p

q

∣
∣
∣
∣
=

∣
∣
∣
∣

u

v
− p

q

∣
∣
∣
∣
≥ 1

vq
,

so (1.1) implies q < v, hence the inequality (1.1) can be satisfied only for finitely
many relatively prime integers p, q.

Corollary 1.1.4 A real number α is irrational if and only if there are infinitely many
rational numbers p

q such that
∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2
.

A proof can be found in [44]. It appears that irrational numbers can be distinguished
from rational numbers by the fact that they can be approximated by infinitely many
rational numbers p

q with an error less than 1
q2 .

We may ask for the best possible value C > 0 such that the statement of the
Corollary 1.1.4 holds with 1

Cq2 in place of 1
q2 ? The answer will be given in Hurwitz’s2

Theorem 1.3.5 which characterizes the best Dirichlet-type inequality.

2Adolf Hurwitz (1859–1919), a German mathematician.
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1.2 Continued Fractions

Definition 1.2.1 • An infinite generalized continued fraction is an expression of
the form

a0 + b1

a1 + b2

a2 + b3
...

, (1.3)

where a0, a1, a2, . . . and b1, b2, . . . are either rational, real or complex numbers
or functions of such variables.

• For bi = 1, i ∈ N, (1.3) is called an infinite simple continued fraction. Its abbre-
viated notation is

[a0, a1, a2, . . . ].

• An expression

[a0, a1, . . . , an] = a0 + 1

a1 + 1

a2 + · · · + 1

an−1 + 1

an

is called a finite simple continued fraction with ai ≥ 1, i = 1, . . . , n and an ≥ 2
integers that are called partial quotients. The rational numbers

p0
q0

= [a0], p1
q1

= [a0, a1], p2
q2

= [a0, a1, a2], . . . ,
pn
qn

= [a0, a1, a2, . . . , an]

are called the convergents of p
q and n is its length.

Remark 1.2.2 We set p−2 := 0, p−1 := 1, q−2 := 1, q−1 = 0.

Lemma 1.2.3 (Law of formation of the convergents) For n ≥ 0,

pn = an pn−1 + pn−2, qn = anqn−1 + qn−2. (1.4)

Proof The equalities (1.4) are satisfied for n = 0. We assume that (1.4) is satisfied
for n − 1, i.e.,

pn−1 = an−1 pn−2 + pn−3, qn−1 = an−1qn−2 + qn−3.

Then we get
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pn
qn

= [a0, a1, . . . , an−1 + 1/an]

= (an−1 + 1
an

)pn−1 + pn−2

(an−1 + 1
an

)qn−1 + qn−2

= (anan−1 + 1)pn−2 + an pn−1

(anan−1 + 1)qn−2 + anqn−1
= an pn−1 + pn−2

anqn−1 + qn−2
.

Lemma 1.2.4 For n ≥ −1,

qn pn−1 − pnqn−1 = (−1)n. (1.5)

Proof Let n = −1. We observe that q−1 p−2 − p−1q−2 = (−1)−1. We assume that
(1.5) is satisfied for n − 1. Using Lemma 1.2.3, we find

qn pn−1 − pnqn−1 = (anqn−1 + qn−2)pn−1 − (an pn−1 + pn−2)qn−1 =
= −(qn−1 pn−2 − pn−1qn−2) = (−1)n.

Lemma 1.2.5 For n ≥ 0,

qn pn−2 − pnqn−2 = (−1)n−1an.

Proof It follows from Lemmas 1.2.3 and 1.2.4 that

qn pn−2 − pnqn−2 = (anqn−1 + qn−2)pn−2 − (an pn−1 + pn−2)qn−2 =
= an(qn−1 pn−2 − pn−1qn−2) = (−1)n−1an.

Theorem 1.2.6 The convergents pk
qk

satisfy the following inequalities:

(i) p0
q0

<
p2
q2

<
p4
q4

< . . . ,

(ii) p1
q1

>
p3
q3

>
p5
q5

> . . . ,

(iii) for n even and m odd,
pn
qn

<
pm
qm

.

Proof Using Lemma 1.2.5, we find

pn−2

qn−2
− pn

qn
= (−1)n−1an

qn−2qn
.

For n ≥ 2 and n even, we obtain pn−2

qn−2
<

pn
qn
, while pn−2

qn−2
>

pn
qn
, for n ≥ 3 and n odd.
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It remains to prove the last inequality. Let n < m. Since pn
qn

≤ pm−1

qm−1
, it is sufficient

to prove pm−1

qm−1
<

pm
qm

, which is satisfied by Lemma 1.2.4,

qm pm−1 − pmqm−1 = (−1)m = −1 < 0.

The proof for n > m follows analogously.

Lemma 1.2.7 For an integer a0 and positive integers a1, a2, . . . , an, the continued
fraction [a0, a1, . . . , an] is rational. Conversely, for every rational number u

v
there

exist n ≥ 0, an integer a0 and positive integers a1, a2, . . . , an such that

u

v
= [a0, a1, . . . , an].

For u
v

≥ 1, we have a0 ≥ 1.

Proof Using Lemma 1.2.3, we find

[a0, a1, . . . , an] = [a0, a1, . . . , ak−1, [ak, ak+1, . . . , an]] = pk−1rk + pk−2

qk−1rk + qk−2
,

where rk := [ak, ak+1, . . . , an].
Conversely, let v > 0 and gcd(u, v) = 1. For v = 1, clearly u

v
∈ Z, hence, setting

a0 = u
v
, we obtain u

v
= [a0].

If v > 1, then there exist q, r ∈ Z such that u = vq + r, 1 ≤ r < v. We assume
v
r = [a1, . . . , an]. Since v

r > 1, we conclude that a1, . . . , an ∈ N. Hence,

u

v
= q + 1

v
r

= q + 1

[a1, . . . , an] = [q, a1, . . . , an],

where a0 = q. Clearly, if u
v

≥ 1, then a0 = q ≥ 1.

Remark 1.2.8 There is a one-to-one correspondence between rational numbers and
finite simple continued fractions.

Remark 1.2.9 Let u
v
be rational, gcd(u, v) = 1 and u > v > 0. It follows from

Euclid’s algorithm that

u = vq1 + r1, v = r1q2 + r2, . . . , r j−1 = r jq j+1,

hence
u

v
= q1 + 1

c
r1

= q1 + 1

q2 + 1
r1
r2

= · · · = [q1, q2, . . . , q j+1].
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Example 1.2.10

7

11
= 0 + 1

11

7

= 0 + 1

1 + 4

7

= 0 + 1

1 + 1

7

4

=

= 0 + 1

1 + 1

1 + 3

4

= 0 + 1

1 + 1

1 + 1

4

3

= 0 + 1

1 + 1

1 + 1

1 + 1

3

,

which can be written as
7

11
= [0, 1, 1, 1, 3].

Example 1.2.11 The number e is irrational.
The proof goes as follows: if we assume that e is rational, then it can be represented
as

e =
∞

∑

i=0

1

i ! = u

v
.

Let n be an integer such that n > v. We define p
q = ∑n

i=0
1
i ! , with q = n!. Using

Remark 1.2.9, we get

1

v
≤ q

∣
∣
∣
∣
e − p

q

∣
∣
∣
∣
= n!

∞
∑

j=1

1

(n + j)!

< n!
∞

∑

k=0

1

(n + 1)!
1

(n + 1)k
≤ 1

n + 1

1

1 − 1
n+1

= 1

n
,

a contradiction to n > v.

Lemma 1.2.12 For every integer r , there exist exactly two different simple continued
fraction expansions representingr , namely r = [r ]andr = [r − 1, 1]. For r rational,
there exist exactly two different simple continued fraction expansions representing
r , namely [a0, a1, . . . , an] with an ≥ 2 and [a0, a1, . . . , an−1, an − 1, 1].
Proof Every r ∈ Q can be represented as a finite simple continued fraction, namely

r = [a0, a1, . . . , an], a0 ∈ Z, a1, a2, . . . , an ∈ N.

If r ∈ Z, then n = 0 and r = [a0] = a0, resp. r = [r ]. Otherwise, when n > 0, then
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r = a0 + 1

[a1, . . . , an] ,

with [a1, . . . , an] ≥ 1. In view of r − a0 ∈ Z, we conclude that [a1, . . . , an] = 1.
Since a1 ≥ 1, we get a1 = 1, n = 1, so a0 = r − 1 and r = [r − 1, 1].

Now consider r = u
v
, gcd(u, v) = 1, v > 0. We use induction on v in order

to prove the second claim. The case when v = 1 has already been considered.
If v > 1, we get u

v
= a0 + u1

v
, where u1 < v. Let α1 := u1

v
. Using the hypothe-

sis of the induction, we conclude that α1 has two continued fraction expansions
[a1, a2, . . . , an−1, an], an ≥ 2 and [a1, a2, . . . , an − 1, 1].
Lemma 1.2.13 Let a0 be an integer and a1, a2, . . . , be positive integers. Then,
the limit limn→∞ pn

qn
exists and its value is irrational. Conversely, for α irrational,

there exist a unique integer a0 and unique positive integers a1, a2, . . . such that
α = limn→∞ pn

qn
.

Proof In view of p0
q0

<
p2
q2

< · · · <
p1
q1
, it is clear that both limits

lim
n→∞
n even

pn
qn

and lim
n→∞
n odd

pn
qn

exist, and it is easily shown that both limits are equal. We put α = limn→∞ pn
qn

and
compute

∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
<

∣
∣
∣
∣

pn+1

qn+1
− pn

qn

∣
∣
∣
∣
= 1

qnqn+1
<

1

q2
n

.

Since pn, qn are relatively prime, there exist infinitely many rational numbers p
q such

that |α − p
q | < 1

q2 , so α is irrational.

Conversely, let α be irrational, a0 = �α�, and let α1 := a0 + 1
α1

. We notice that

α1 > 1 is irrational. For k ≥ 1 let ak = �αk� and αk = ak + 1
αk+1

. We observe that
ak ≥ 1, αk+1 > 1, and αk+1 is irrational. Our goal is to show

α = [a0, a1, a2, . . . ].

Using Lemmas 1.2.3 and 1.2.4 with α = [a0, a1, . . . ,αn+1], we find

qnα − pn = qn
αn+1 pn + pn−1

αn+1qn + qn−1
− pn

= qn(αn+1 pn + pn−1) − pn(αn+1qn + qn−1)

αn+1qn + qn−1
= (−1)n

αn+1qn + qn−1
.

Hence, ∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
<

1

q2
n

, (1.6)
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which implies limn→∞ pn
qn

= α. Finally, it remains to prove that the integers
a0, a1 ≥ 1, a2 ≥ 1, . . . are uniquely determined. In view of

α = [a0, a1, a2, . . . ] = a0 + 1

[a1, a2, . . . ] ,

and 0 ≤ α − a0 < 1, we find a0 = �α� which implies that a0 is unique and α1 =
[a1, a2, . . . ] is uniquely determined by α. Because a1 = �α1�, a1 is unique, etc. This
proves the lemma.

1.3 Hurwitz’s Theorem

In the sequel we assume α to be irrational. According to (1.6), we conclude that each
convergent of α satisfies the inequality

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

q2
.

Vahlen3 and Borel4 have proved the following theorems that deal with approximation
properties of two and three consecutive convergents, respectively.

Theorem 1.3.1 (Vahlen 1895, [48]) Let α be an irrational number and denote by
pn−1

qn−1
,
pn
qn

two consecutive convergents of α. Then, at least one of them satisfies

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

2q2
.

Proof We observe that

∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
+

∣
∣
∣
∣
α − pn−1

qn−1

∣
∣
∣
∣
=

∣
∣
∣
∣

pn
qn

− pn−1

qn−1

∣
∣
∣
∣
= 1

qnqn−1
<

1

2q2
n

+ 1

2q2
n−1

.

Thus, ∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
<

1

2q2
n

or

∣
∣
∣
∣
α − pn−1

qn−1

∣
∣
∣
∣
<

1

2q2
n−1

.

Theorem 1.3.2 (Borel 1903, [9]) Let α be an irrational number and denote by
pn−1

qn−1
,
pn
qn

,
pn+1

qn+1
three consecutive convergents of α. Then at least one of them satisfies

the inequality ∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1√
5q2

.

3Theodor Vahlen (1869–1945), an Austrian mathematician.
4Émile Borel (1871–1956), a French mathematician.



Linear Forms in Logarithms 11

Proof Letα = [a0, a1, . . . ], αi = [ai , ai+1, . . . ], βi = qi−2

qi−1
, q ≥ 1. It is not difficult

to deduce that ∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
= 1

q2
n (αn+1 + βn+1)

.

We show that there does not exist a positive integer n satisfying

αi + βi <
√
5 (1.7)

for i = n − 1, n, n + 1. Our reasoning is indirect. We assume that (1.7) is satisfied
for i = n − 1, n. It follows from

αn−1 = an−1 + 1

αn
,

1

βn
= qn−1

qn−2
= an−1 + qn−3

qn−2
= an−1 + βn−1

that
1

αn
+ 1

βn
= αn−1 + βn−1 ≤ √

5.

Hence, 1 = αn · 1
αn

≤ (
√
5 − βn)(

√
5 − 1

βn
) or, equivalently, β2

n − √
5βn + 1 ≤ 0

which implies βn ≥
√
5−1
2 . For βn rational, we conclude that βn >

√
5−1
2 . Now, if

(1.7) is satisfied for i = n, n + 1, then again βn+1 >
√
5−1
2 , so we deduce

1 ≤ an = qn
qn−1

− qn−2

qn−1
= 1

βn+1
− βn <

2√
5 − 1

−
√
5 − 1

2
< 1,

the desired contradiction.

Legendre5 provedwith the following important theorem a converse to the previous
results.

Theorem 1.3.3 (Legendre, [32]) Let p, q be integers such that q ≥ 1 and

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

2q2
.

Then p
q is a convergent of α.

Proof Let α − p
q = εν

q2 with 0 < ν < 1
2 and ε = ±1. In view of Lemma 1.2.12 there

exists a simple continued fraction

p

q
= [b0, b1, . . . , bn−1]

5Adrien-Marie Legendre (1752–1833), a French matheamtician.
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satisfying (−1)n−1 = ε. We define ω by

α = ω pn−1 + pn−2

ωqn−1 + qn−2
,

such that α = [b0, b1, . . . , bn−1,ω]. Hence,

εν

q2
= α − p

q
= 1

qn−1
(αqn−1 − pn−1) = 1

qn−1
· (−1)n−1

ωqn−1 + qn−2
,

giving ν = qn−1

ωqn−1+qn−2
and ω = 1

ν
− qn−2

qn−1
> 1. Next we consider the finite or infinite

continued fraction of ω,
ω = [bn, bn+1, bn+2, . . . ].

Since ω > 1, we conclude b j ∈ N, j = n, n + 1, n + 2, . . . . Consequently,

α = [b0, b1, . . . , bn−1, bn, bn+1, . . . ]

which is the continued fraction expansion for α and

p

q
= pn−1

qn−1
= [b0, b1, . . . , bn−1]

is indeed a convergent to α.

Lemma 1.3.4 Assume the continued fraction expansion for α is given by

α = [a0, a1, . . . , aN , 1, 1, . . . ]. (1.8)

Then

lim
n→∞ q2

n

∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
= 1√

5
.

A proof can be found in [45].

Theorem 1.3.5 (Hurwitz, [31]) Let α be an irrational number.

(i) Then there are infinitely many rational numbers p
q such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1√
5q2

.

(ii) If
√
5 is replaced by C >

√
5, then there are irrational numbers α for which

statement (i) does not hold.

Proof Claim (i) follows directly from Theorem 1.3.2, while claim (ii) follows from
Theorem 1.3.3 and Lemma 1.3.4. Namely, if α is irrational and of the form (1.8),
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then according to Theorem 1.3.3, all solutions of |α − p
q | < 1

Cq2 withC >
√
5 can be

found among the convergents to α, however, in view of Lemma 1.3.4 this inequality
is satisfied by only finitely many convergents to α.

Definition 1.3.6 An irrational number α is said to be a quadratic irrational number
if it is the solution of some quadratic equation with rational coefficients.

Definition 1.3.7 The continued fraction expansion [a0, a1, . . . ] of a real number α
is said to be eventually periodic if there exist integers m ≥ 0 and h > 0 such that

an = an+h, for all n ≥ m.

In this case the continued fraction expansion is denoted by

[a0, a1, . . . , am−1, am, am+1, . . . , am+h−1].

The continued fraction expansion is said to be periodic if it is eventually periodic
with m = 0.

Euler6 and Lagrange7 have proved an important characterization of quadratic
irrationals in terms of their continued fraction expansion:

Theorem 1.3.8 (Euler 1737; Lagrange 1770) A real number α is quadratic irra-
tional if and only if its continued fraction expansion is eventually periodic.

A proof can be found in [46].

Theorem 1.3.9 Let d > 1 be an integer which is not a perfect square. Then the
continued fraction expansion of

√
d is of the form

[a0, a1, . . . , an−1, 2a0]

with a0 = �√d�, a1 = an−1, a2 = an−2, . . . .

A proof can be found in [41].

Remark 1.3.10 Let E > 1 be an integer which is not a perfect square. Let

α0 = s0 + √
E

t0

be a quadratic irrational with s0, t0 ∈ Z, t0 �= 0 such that t0 | (E − s20 ). Then the
partial quotients ai are given by the recursion

ai = �√αi�, si+1 = ai ti − si , ti+1 = E − s2i+1

ti
, αi+1 =

⌊ si+1 + √
E

ti+1

⌋

.

6Leonhard Euler (1707–1783), a Swiss mathematician.
7Joseph-Louis Lagrange (1736–1813), an Italian-French mathematician.
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Example 1.3.11 For d ∈ N,

√

2d(2d − 1) = [2d − 1; 2, 4d − 2],
√

2d(8d − 1) = [4d − 1; 1, 2, 1, 8d − 2].

Definition 1.3.12 An irrational number α is said to be badly approximable if there
is a real number c(α) > 0, depending only on α, such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
>

c(α)

q2

for all rational numbers p
q .

Proposition 1.3.13 If an irrational number α is badly approximable, then for every
ε > 0, there are only finitely many rational numbers p

q satisfying

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2+ε
.

Proof Let c(α) be a positive real number such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
>

c(α)

q2

for all rational numbers p
q . Now suppose that there are infinitely many rational num-

bers p
q satisfying

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2+ε
.

Consequently, there exists a rational number p1
q1

for which the inequality

qε
1 >

1

c(α)

holds. It follows that ∣
∣
∣
∣
α − p1

q1

∣
∣
∣
∣
≤ 1

q2
1q

ε
1

<
c(α)

q2
1

,

which is a contradiction.

Corollary 1.3.14 For quadratic irrational numbers α and any ε > 0, there are only
finitely many rational numbers p

q satisfying
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∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2+ε
.

Aproof can be found in [44]. Hence, the exponent in the upper bound 1
q2 inDirichlet’s

Theorem 1.1.1 cannot be improved for real quadratic irrational numbers.
More on Diophantine approximation can be found in [13, 19, 20, 44, 45].

1.4 Algebraic and Transcendental Numbers

1.4.1 Basic Theorems and Definitions

Definition 1.4.1 Givenfields F and E such that F ⊆ E , then E is called an extension
of F , denoted by F ≤ E or E/F. The dimension of the extension is called the degree
of the extension and it is abbreviated by [E : F]. If [E : F] = n < ∞, E is said to
be a finite extension of F .

Remark 1.4.2 It can be shown that, if f is a nonconstant polynomial over the field
F , then there is an extension E of the field F and α ∈ E such that

f (α) = 0.

Hence, the field extension of the initial field F is often obtained from the field F by
adjoining a root α of a nonconstant polynomial f over the field F ; in this case the
minimal field containing α and F is denoted by F(α).

Definition 1.4.3 A real number α is called algebraic over Q if it is a root of a
polynomial equationwith coefficients inQ.A real number is said to be transcendental
if it is not algebraic.

Definition 1.4.4 The minimal polynomial p of an algebraic number α overQ is the
uniquely determined irreducible monic polynomial of minimal degree with rational
coefficients satisfying

p(α) = 0.

Elements that are algebraic overQ and have the same minimal polynomial are called
conjugates over Q.

Definition 1.4.5 Let α be an algebraic number. Then the degree of α is the degree
of the minimal polynomial of α over Q.

Remark 1.4.6 If
Xd + rd−1X

d−1 + · · · + r1X + r0

is the minimal polynomial of an algebraic number α over Q, then multiplication by
the least common multiple of the denominators of the coefficients ri , i = 0, . . . ,
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d − 1, produces a unique polynomial P with P(α) = 0 having the form

P(X) = ad X
d + ad−1X

d−1 + · · · + a1X + a0,

where the coefficients ai , i = 0, . . . , d, are relatively prime integers and ad > 0.
We will call this polynomial the minimal polynomial of α over Z.

Example 1.4.7 A real number is rational if and only if it is an algebraic number of
degree 1.

Example 1.4.8 We shall show that

x = 10
2
3 − 1√−3

is an algebraic number.

To see that, we write
√−3x + 1 = 102/3 and get (

√−3x + 1)3 = 100. Expanding
the left-hand side, it follows that

3
√−3x3 + 9x2 − 3

√−3x + 99 = 0.

Dividing by 3
√−3, we get

x3 − √−3x2 − x − 11
√−3 = 0.

From this we deduce the minimal polynomial of x as

P(x) =
(

(x3 − x) − √−3(x2 + 11)
)(

(x3 − x) + √−3(x2 + 11)
)

=
= x6 + x4 + 67x2 + 363.

1.4.2 Liouville’s Theorem

The main task in Diophantine approximation is to figure out how well a real number
α can be approximated by rational numbers. In view of this problem, as we have
mentioned earlier, a rational number p

q is considered to be a “good” approximation
of a real number α if the absolute value of the difference between p

q and α may not
decrease when p

q is replaced by another rational number with a smaller denominator.
This problem was solved during the 18th century by means of continued fractions.

Knowing the “best” approximation of a given number, the main problem is to find
sharp upper and lower bounds of the mentioned difference, expressed as a function
of the denominator.

It appears that these bounds depend on the nature of the real numbers to be
approximated: the lower bound for the approximation of a rational number by another



Linear Forms in Logarithms 17

rational number is larger than the lower bound for algebraic numbers, which is itself
larger than the lower bound for all real numbers. Thus, a real number that may be
better approximated than an algebraic number is certainly a transcendental number.
This statement had been proved by Liouville8 in 1844, and it produced the first
explicit transcendental numbers. The later proofs on the transcendency of π and e
were obtained by a similar idea.

Theorem 1.4.9 (Liouville 1844) Let α be a real algebraic number of degree d ≥ 2.
Then there exists a constant c(α) > 0, depending only on α, such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α)

qd

for all rational numbers p
q .

There are a few ways of proving Liouville’s Theorem 1.4.9: one can be found in
[12]; a second, and maybe the most familiar one, uses the mean value theorem, an
interesting variant concerning the constant c(α) is given in [45].

Corollary 1.4.10 Letα be a real algebraic number of degree d ≥ 2. For every δ > 0,
there are only finitely many rational numbers p

q satisfying the inequality

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

qd+δ
.

A proof can be found in [44].
We observe that the denominators of rational numbers which are getting closer

and closer to a fixed real number α grow arbitrarily large. Liouville’s Theorem
1.4.9 proves that this is indeed the case for real algebraic numbers α. For example,
Liouville’s Theorem 1.4.9 implies that, if p

q is within a distance 1
1010 of α, then

qd ≥ 1010c(α).

Remark 1.4.11 Consider the rational numbers p
q and p′

q ′ satisfying

q

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
< q ′

∣
∣
∣
∣
α − p′

q ′

∣
∣
∣
∣
.

The theory of continued fractions provides an efficient algorithm for constructing
the best approximations to α in this case.

Liouville’s Theorem 1.4.9 can be used to find transcendental numbers explicitly.
His construction of transcendental numbers (1844) predates Cantor’s9 proof (1874)
of their existence.

8Joseph Liouville (1809–1882), a French mathematician.
9Georg Ferdinand Ludwig Philipp Cantor (1845–1918), a German mathematician.
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Example 1.4.12 Let

α =
∞

∑

n=1

1

10n! = 0.1100010000000000000000001000....

The digit 1 appears in the 1st, 2nd, 6th, 24th, ..., (n!)th,... decimal place. For k ≥ 1, let
q(k) = 10k! and p(k) = 10k!

∑k
n=1

1
10n! . We notice that p(k) and q(k) are relatively

prime integers, pk
qk

= ∑k
n=1

1
10n! and

∣
∣
∣
∣
α − p(k)

q(k)

∣
∣
∣
∣
=

∞
∑

n=k+1

1

10n! .

Comparing with a geometric series, we find

∞
∑

n=k+1

1

10n! <
1

10(k+1)!

∞
∑

n=0

1

10n
= 10

9

1

q(k)k+1
,

and ∣
∣
∣
∣
α − p(k)

q(k)

∣
∣
∣
∣
<

10
9

q(k)k+1
.

Finally, we observe that α does not satisfy Liouville’s Theorem 1.4.9. It follows
from the calculations above that for any c > 0 and any d > 0, selecting k such that
10
9 < c · q(k)k+1−d , leads to

∣
∣
∣
∣
α − p(k)

q(k)

∣
∣
∣
∣
<

c

q(k)d

for large k. Thus, α must be a transcendental number.

In 1873, Charles Hermite10 proved that e is transcendental and nine years later
Ferdinand von Lindemann11 proved the transcendence of π. Hermite even showed
that ea is transcendental when a is algebraic and nonzero. This approach was gener-
alized by Weierstrass12 to the Lindemann-Weierstrass theorem.

Theorem 1.4.13 (Hermite) e is transcendental.

A proof can be found in [4, 28].

10Charles Hermite (1822–1901), a French mathematician.
11Ferdinand von Lindemann (1852–1939), a German mathematician.
12Karl Weierstrass (1815–1897), a German mathematician.
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Theorem 1.4.14 (Lindemann) π is transcendental.

A proof can be found in [34].

Theorem 1.4.15 (Lindemann, Weierstrass) Let β1, . . . ,βn be nonzero algebraic
numbers and α1, . . . ,αn distinct algebraic numbers. Then

β1e
α1 + · · · + βne

αn �= 0.

A proof can be found in [4].

Corollary 1.4.16 If α is a nonzero algebraic integer, then

eα, sinα, cosα

are transcendental numbers.

Definition 1.4.17 A real numberα is a Liouville number if for every positive integer
n, there exist integers p, q with q > 1 such that

0 <

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

qn
.

Remark 1.4.18 It is known that π and e are not Liouville numbers (see [37, 41],
respectively). Mahler [38] found conditions on the expansion of a real number α
in base g that imply that α is transcendental but not a Liouville number. One such
example is the decimal number called Champernowne’s constant (Mahler’s number).

Theorem 1.4.19 All Liouville numbers are transcendental.

A proof can be found in [46].

Example 1.4.20 We show that

α =
∞

∑

j=0

1

2 j !

is a Liouville number.
First, we observe that the binary expansion of α has arbitrarily long strings of 0’s,

so it cannot be rational. Fix a positive integer n and consider p
q = ∑n

j=0
1
2 j ! with p

and q = 2 j ! > 1 integers. Then

0 <

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
=

∞
∑

j=n+1

1

2 j ! <

∞
∑

j=(n+1)!

1

2 j ! = 1

2(n+1)!−1
≤ 1

2n(n!) = 1

qn
,

which proves that α is indeed a Liouville number.
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1.4.3 Roth’s Theorem

It is natural to ask for stronger versions of Liouville’s Theorem 1.4.9. First improve-
ments were made by Thue,13 Siegel14 and Dyson.15 In 1955, K.F. Roth16 proved the
most far-reaching extension, now known as the Thue-Siegel-Roth theorem, but also
just as Roth’s theorem, for which he was awarded a Fields Medal in 1958. We quote
from Roth’s paper [43].

Theorem 1.4.21 (Roth 1955) Let α be a real algebraic number of degree d ≥ 2.
Then, for every δ > 0, the inequality

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2+δ

has only finitely many rational solutions p
q .

Acomplete proof ofRoth’sTheorem1.4.21 canbe found in [45], and for a generalized
version we refer to [30].

Corollary 1.4.22 Let α be an algebraic number of degree d ≥ 2. Then, for every
δ > 0, there is a constant c(α, δ) > 0 such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α, δ)

q2+δ

for all rational numbers p
q .

A proof can be found in [44]. Note that, if α is a real algebraic number of degree
2, then Liouville’s Theorem 1.4.9 is stronger than Roth’s Theorem 1.4.21. Whereas
the latter one gives the estimate

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α, δ)

q2+δ

for every δ > 0, Liouville’s Theorem 1.4.9 states that there is a constant c(α) > 0
such that ∣

∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α)

q2

for all rational numbers p
q . The analogous result for real algebraic numbers α of

degree ≥3, namely, that there is a constant c(α) > 0 such that an inequality of the
form

13Axel Thue (1863–1922), a Norwegian mathematician.
14Carl Ludwig Siegel (1896–1981), a German mathematician.
15Freeman Dyson (1923), an English-born American mathematician.
16Klaus Friedrich Roth (1925–2015), a German-born British mathematician.
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∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α)

q2

holds for all rational numbers p
q , is conjectured to be false for all such α. However,

this is not known at the present time to be false for a single real algebraic number.

Champernowne’s Constant

The transcendental numbers (except e and π) we have encountered so far are tran-
scendental because their decimal (or dyadic) expansions have infinitely many runs
of zeros whose lengths grow so quickly that the simple truncation of the decimal
(or dyadic) expansion before each run of zeros leads to amazingly good approxima-
tions. However, for most numbers a collection of best rational approximations is not
so easily detected from their decimal expansions. For most numbers even the best
rational approximations are not close enough to allow us to conclude transcendency.

As an illustration of the difficulty of finding suitable rational approximations in
general, we consider Champernowne’s constant (resp. Mahler’s17 number).

Definition 1.4.23 Champernowne’s constant (Mahler’s number)

M = 0.123456789101112131415161718192021 . . .

is18 the number obtained by concatenating the positive integers in base 10 and inter-
preting them as decimal digits to the right of a the decimal point.

Wemention amethodworked out in detail in [11]. Firstly, rational approximations
created by long runs of zeros are used, andM is truncated just after the 1 that appears
whenever a power of 10 is reached. Following this truncation procedure, we see that
the number of decimal digits before each run of zeros exceeds the length of that run
by far. For example, to get a run of just one zero,M has to be truncated after 10 digits,
i.e., 0.123456789. In general, if we want to come across a run of k zeros, we have to
travel on the order of k · 10k digits from the previous run of k − 1 zeros. Thus, this
truncation method cannot generate rational approximations having relatively small
denominators that are sufficiently close to M in order to prove transcendence via
Liouville’s Theorem 1.4.9.

Using amore clever construction to build rational approximations toM, described
in [11], one can find approximations all having relatively small denominators that
allow to apply Liouville’s Theorem 1.4.9 to derive the following partial result.

Theorem 1.4.24 (Mahler 1937) The number

M = 0.123456789101112131415161718192021 . . .

is either a transcendental number or an algebraic number of a degree at least 5.

17Kurt Mahler (1903–1988), a German/British mathematician.
18OEIS A033307.
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A proof can be found in [11, 38]. Theorem 1.4.24 does not guarantee thatM is tran-
scendental, however, it does imply thatM is neither a quadratic irrational, nor a cubic
or even quartic algebraic number. A more advanced analysis building on Liouville’s
Theorem 1.4.9 and Roth’s Theorem 1.4.21 would ensure that M is transcendental.

Theorem 1.4.25 (Mahler 1937) Champernowne’s constant M is a transcendental
number.

A proof can be found in [11, 38].

1.4.4 Thue’s Theorem

Thue’s work was already a major breakthrough for those kind of questions:

Theorem 1.4.26 (Thue) Let α be a real algebraic number of degree d. Then, for
every δ > 0, the inequality ∣

∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q
1
2 d+1+δ

has only finitely many rational solutions p
q .

A proof can be found in [44].

Corollary 1.4.27 Let α be a real algebraic number of degree d. Then, for every
δ > 0, there is a constant c(α, δ) > 0 such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α, δ)

q
1
2 d+1+δ

for all rational numbers p
q .

A proof can be found in [44].
The proof of Roth’s Theorem 1.4.21 is immensely more complex than those for

the theorems of Liouville and Thue, even though, the framework is in essence the
same. The proof of Roth’s Theorem 1.4.21 is not effective, that is, as noted in [30],
for a given α, the proof does not provide a method that guarantees to find the finitely
many rational numbers p

q satisfying

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2+δ
.

In other words, the proof does not give a lower bound on c(α, δ). It is with respect
to the work of Thue and Siegel that Roth’s Theorem 1.4.21 is often named the Thue-
Siegel-Roth theorem.

We give an application of the Thue–Siegel–Roth theorem to Diophantine equa-
tions. It follows from the fact that the approximation exponent of an algebraic
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number α of degree d ≥ 3 is strictly less than d. It appears that the full force of
Roth’s Theorem 1.4.21 is not needed, Thue’s Theorem 1.4.26 is sufficient.

Theorem 1.4.28 Let

ad X
d + ad−1X

d−1 + · · · + a1X + a0 ∈ Z[X ] (1.9)

be an irreducible polynomial overQ of degree d ≥ 3. Then, for every nonzero integer
m, the Diophantine equation

ad X
d + ad−1X

d−1Y + · · · + a1XY
d−1 + a0Y

d = m (1.10)

has only finitely many integer solutions (p, q).

A proof can be found in [47]. An equation of the form (1.10) is called a Thue
equation. It is interesting to note that equations of the form X2 − dY 2 = 1, where d
is a positive and a square free integer, the so called Pellian equations, have infinitely
many integer solutions, but equations of the form X3 − dY 3 = 1 with an arbitrary
integer d have at most finitely many integer solutions. The books [11, 46] provide
nice introductions to various aspects of Diophantine approximation, transcendence
theory and Diophantine equations.

2 Linear Forms in Logarithms

2.1 Introduction

Hilbert’s problems form a list of twenty-three major problems in mathematics col-
lected, proposed and published by D. Hilbert19 in 1900. The problems were all
unsolved at the time and several of them turned out to be very influential for 20th
century mathematics. Hilbert believed that newmachinery andmethods were needed
for solving these problems. He presented ten of them at the International Congress
of Mathematicians in Paris in 1900. The complete list of his 23 problems was pub-
lished later, most notably an English translation appeared 1902 in the Bulletin of the
American Mathematical Society.

Hilbert’s seventh problem, entitled “irrationality and transcendence of certain
numbers”, is dealing with the transcendence of the number

αβ

for algebraic α �= 0, 1 and irrational algebraic β. He believed that the proof of this
problemwould only be given inmore distant future than proofs of Riemann’s hypoth-
esis or Fermat’s last theorem. Even thoughHilbert wasmistaken, hewas correctwhen

19David Hilbert (1862–1943), a German mathematician.
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he expressed his belief that the proof of that problem would be extremely intriguing
and influential for 20th century mathematics. The seventh problem was solved inde-
pendently by Gelfond20 and Schneider21 in 1935. They proved that, if α1,α2 �= 0
are algebraic numbers such that logα1, logα2 are linearly independent overQ, then

β1 logα1 + β2 logα2 �= 0

for all algebraic numbers β1,β2.
In 1935, Gelfond found a lower bound for the absolute value of the linear form

Λ = β1 logα1 + β2 logα2 �= 0.

He proved that
log |Λ| 
 −h(Λ)κ,

where h(Λ) is the logarithmic height of the linear form Λ, κ > 5 and 
 is
Vinogradov’s notation for an inequality that is valid up to an unspecified constant
factor. Gelfond also noticed that generalization of his results would lead to a pow-
erful new analytic method by which mathematicians could prove a huge amount of
unsolved problems in number theory.

2.2 Basic Theorems and Definitions

In 1966 in 1967, A. Baker22 gave in his papers “Linear forms in logarithms of
algebraic numbers I, II, III”, [1–3] an effective lower bound on the absolute value
of a nonzero linear form in logarithms of algebraic numbers, that is, for a nonzero
expression of the form

n
∑

i=1

bi logαi ,

where α1, . . . ,αn are algebraic numbers and b1, . . . , bn are integers. This result ini-
tiated the era of effective resolution of Diophantine equations that can be reduced to
exponential ones (where the unknown variables are in the exponents). The general-
ization of the Gelfond-Schneider theorem was only the beginning of a new and very
interesting branch in number theory called Baker’s theory.

Definition 2.2.1 Let α1,α2, . . . ,αn be n (real or complex) numbers. We call
α1,α2, . . . ,αn linearly dependent over the rationals (equivalently integers) if there
are rational numbers (integer numbers) r1, r2, . . . , rn , not all zero, such that

20Alexander Osipovich Gelfond (1906–1968), a Soviet mathematician.
21Theodor Schneider (1911–1988), a German mathematician.
22Alan Baker (1939), an English mathematician.
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r1α1 + r2α2 + · · · + rnαn = 0.

If α1,α2, . . . ,αn are not linearly dependent over the rationals (integers), they are
linearly independent over the rationals (integers).

Definition 2.2.2 A linear form in logarithms of algebraic numbers is an expression
of the form

Λ = β0 + β1 logα1 + β2 logα2 + · · · + βn logαn,

where αi , i = 1, . . . , n and βi , i = 0, . . . , n are complex algebraic numbers and
log denotes any determination of the logarithm.

Remark 2.2.3 Weare interested in the degenerate casewhenβ0 = 0 andβi ∈ Z, i =
1, . . . , n. In the sequel we write βi = bi , i = 1, . . . , n and log always represents the
principal value of the complex logarithm.

A generalization of theGelfond-Schneider theorem to arbitrarilymany logarithms
was obtained by Baker in 1966 [1]. In 1970, he was awarded the Fields Medal for
his work in number theory, especially in the areas of transcendence and Diophantine
geometry. One of his major contributions is the following

Theorem 2.2.4 (Baker 1966) If α1,α2, . . . ,αn �= 0, 1 are algebraic numbers such
that logα1, logα2, . . . , logαn, 2πi are linearly independent over the rationals, then

β0 + β1 logα1 + · · · + βn logαn �= 0

for any algebraic numbers β0,β1, . . . ,βn that are not all zero.

A proof can be found in [1].

Remark 2.2.5 Linear independence over the rationals implies linear independence
over the algebraic numbers (see [4]).

Theorem 2.2.6 (Baker 1967) The number eβ0α
β1
1 . . . α

βn
n is transcendental for all

nonzero algebraic numbers αi , i = 1, . . . , n and βi , i = 0, . . . , n. Furthermore,
the number α

β1
1 . . . α

βn
n is transcendental if 1,β1, . . . ,βn are linearly independent

over the rationals.

A proof can be found in [3].

Definition 2.2.7 The height H of a rational number p
q is defined by

H

(
p

q

)

= max{|p|, |q|}.

Definition 2.2.8 LetL be a number field of the degree D,α ∈ L an algebraic number
of degree d | D and let

∑

0≤k≤d ak X
k be itsminimal polynomial inZ[X ]with ad �= 0.

We define the absolute logarithmic height h(α) by
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h(α) = 1

d

(

log(|ad |) +
∑

1≤i≤d

max{log(|αi |, 0)}
)

, (2.1)

where αi are the conjugates of α.

Example 2.2.9 The absolute logarithmic height h of a rational number p
q is

h

(
p

q

)

= logmax{|p|, |q|}.

Example 2.2.10 Let α = √
2. The absolute logarithmic height of α is

h(α) = h(
√
2) = 1

2

(

log |√2| + log | − √
2|

)

= 1

2
log 2.

Example 2.2.11 Let

α1 = 1√
3 + √

5
.

Before calculating the absolute logarithmic height of α1, we compute the degree of

the field extension Q

(
1√

3+√
5

)

over Q as

[

Q

(
1√

3 + √
5

)

: Q
]

= 4,

so the degree of the algebraic number α1 = 1√
3+√

5
over Q is 4.

The minimal polynomial of α1 is given by

Pα1(x) =
(

x − 1√
3 + √

5

) (

x − 1

−√
3 − √

5

)

×

×
(

x − 1

−√
3 + √

5

) (

x − 1√
3 − √

5

)

= x4 − 4x2 + 1

4
,

over the rationals, and
Pα1(x) = 4x4 − 16x2 + 1

over the integers. The conjugates of α1 are

α1 = 1√
3 + √

5
, α2 = 1

−√
3 + √

5
, α3 = 1√

3 − √
5
, α4 = 1

−√
3 − √

5
.

Hence, using (2.1), the absolute logarithmic height of α1 is equal to
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h(α1) = h

(
1√

3 + √
5

)

= 1

4

(

log |4| + max

{

log

∣
∣
∣
∣

1√
3 + √

5

∣
∣
∣
∣
, 0

}

+ max

{

log

∣
∣
∣
∣

1

−√
3 + √

5

∣
∣
∣
∣
, 0

}

+

+ max

{

log

∣
∣
∣
∣

1√
3 − √

5

∣
∣
∣
∣
, 0

}

+ max

{

log

∣
∣
∣
∣

1

−√
3 − √

5

∣
∣
∣
∣
, 0

})

= 0.689146.

Let L be a number field of degree D, α1,α2, . . . ,αn nonzero elements of L and
let b1, b2, . . . , bn be integers. We define

B = max{|b1|, |b2|, . . . , |bn|}

and
Λ∗ = αb1

1 αb2
2 . . . αbn

n − 1.

We wish to bound |Λ∗| from below, assuming that it is nonzero.
Since log(1 + x) is asymptotically equal to x as |x | tends to 0, our problemconsists

of finding a lower bound for the linear form in logarithms

Λ = b1 logα1 + · · · + bn logαn + bn+1 log(−1),

where bn+1 = 0 if L is real and |bn+1| ≤ nB, otherwise.

Definition 2.2.12 Let A1, A2, . . . , An be real numbers such that

A j ≥ h′(α j ) := max{Dh(α j ), | logα j |, 0.16}, 1 ≤ j ≤ n.

Then h′ is called the modified height with respect to the field L.

A. Baker, E.M. Matveev23 and G. Wüstholz24 proved the following theorems.

Theorem 2.2.13 (Baker–Wüstholz 1993) Assume that

Λ = b1 logα1 + · · · + bn logαn �= 0

for algebraic αi and integers bi , i = 1, . . . , n. Then

log |Λ| ≥ −18(n + 1)!nn+1(32D)n+2 log(2nD)h′′(α1) . . . h′′(αn) log B,

where D is the degree of the extensionQ(α1, . . . ,αn), B = max{|bi |, i = 1, . . . , n}
and h′′(α) = max{h(α), 1

D | log(α)|, 1
D }.

23Eugene Mikhailovich Mateveev (1955), a Russian mathematician.
24Gisbert Wüstholz (1948), a German mathematician.
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A proof can be found in [6].

Theorem 2.2.14 (Matveev 2001) Assume that Λ∗ is nonzero. Then

|Λ∗| > −3 · 30n+4(n + 1)5.5D2A1 . . . An(1 + log D)(1 + log nB).

If L is real, then

log |Λ∗| > −1.4 · 30n+3(n + 1)4.5D2A1 . . . An(1 + log D)(1 + log B).

Theorem 2.2.15 (Matveev 2001) Assume that

Λ = b1 logα1 + · · · + bn logαn �= 0

for algebraic αi and integers bi , i = 1, . . . , n. Then

log |Λ| > −2 · 30n+4(n + 1)6D2A1 . . . An(1 + log D)(1 + log B),

where B = max{|bi |, 1 ≤ i ≤ n}.
Proofs for Matveev’s theorems can be found in [39].

2.3 A Variation of Baker–Davenport Lemma

For a real number x we introduce the notation

||x || = min{|x − n| : n ∈ Z}

for the distance from x to the nearest integer.
The following result is a variation of a lemma of Baker and Davenport25 [5], it is

due to Dujella26 and Pethő,27 [22].

Lemma 2.3.1 Let N be a positive integer, p
q a convergent of the continued fraction

expansion of an irrational numberκ such that q > 6N and letμ be some real number.
Let ε = ||μq|| − N ||κq||. If ε > 0, then there is no solution to the inequality

0 < mκ − n + μ < AB−m

in positive integers m and n with

25Harold Davenport (1907–1969), an English mathematician.
26Andrej Dujella (1966), a Croatian mathematician.
27Attila Pethő (1950), a Hungarian mathematician.
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log(Aq/ε)

log B
≤ m ≤ N .

Proof Suppose that 0 ≤ m ≤ N . Then

m(κq − p) + mp − nq + μq < q AB−m .

Thus,

q AB−m > |μq − (nq − mp)| − m||κq|| ≥ ||μq|| − N ||κq|| := ε,

from where we deduce that

m <
log(Aq/ε)

log B
.

Remark 2.3.2 The method from Lemma 2.3.1 is called Baker–Davenport reduction.

Example 2.3.3 Find all nonnegative integers that satisfy

0 < |x1 log 2 − x2 log 3 + log 5| < 40e−X , (2.2)

where X = max{x1, x2} ≤ 1030.
Let

x1 log 2 − x2 log 3 + log 5 > 0.

First, we divide (2.2) by log 3, in order to get inequalities of the form as in Lemma
2.3.1. We get

0 < x1
log 2

log 3
− x2 + log 5

log 3
<

40

log 3
e−X .

Now, we define

κ = log 2

log 3
, μ = log 5

log 3
, A = 40

log 3
, B = e.

We observe that the inequalities A > 0, B > 1 are satisfied.
We shall try to find a convergent p

q of the continued fraction expansion of κ that
satisfies the condition q > 6N . Since κ does not have a finite or periodic continued
fraction expansion, we give only the first 25 terms of its continued fraction expansion:

κ = [0, 1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, 1, 15, 1, 9, 2, . . . ].

The first convergent p
q that satisfies the inequality q > 6N is

p

q
= 35270892459770675836042178475339

55903041915705101922536695520222
.
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We therefore obtain

||κq||N ≈ 0.007651391, ||μq|| ≈ 0.466714899.

Hence,
ε = ||μq|| − ||κq||N = 0.4590635078 > 0.

The given inequality does not have any solution in integers m such that

ln
(

40
log 3 · q · 1

0.4590635

)

ln e
≤ m ≤ N .

We observe that m ≤ 77.4746, so N = 77. Repeating Baker–Davenport reduction
onemore time, but nowwith N = 77, we find convergents p

q of the continued fraction
expansion of κ that satisfies the condition > 6N , N = 77. The first such convergent
is

p

q
= 306

485
.

We get
||κq||N ≈ 0.071647126, ||μq|| ≈ 0.487842451.

Finally, we obtain
ε ≈ 0.4161953257.

After applying Baker–Davenport reduction, we get m ≤ 10.6556, resp. N = 10.
Therefore, we can find pairs (x1, x2) satisfying the introduced inequalities. Using a
simple computer algorithm, it turns out that the following pairs

(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3), (4, 3)

satisfy (2.2).
For

x1 log 2 − x2 log 3 + log 5 < 0,

we have

0 < x2
log 3

log 2
− x1 − log 5

log 2
<

40

log 2
e−X .

We define

κ = log 3

log 2
, μ = − log 5

log 2
, A = 40

log 2
, B = e.

Then the inequalities A > 0, B > 1 are satisfied. The next step is to find a convergent
p
q of the continued fraction expansion of κ satisfying q > 6N . For
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p

q
= 1522076097743333607781100045449522888

960323097266207036440783078900790949

we get
ε = 0.124406274 > 0.

Analogously, we find N = 89 after the first reduction and N = 13 after the second
one. Finally, we get that the following pairs

(0, 2), (0, 3), (1, 3), (2, 3), (2, 4), (3, 4), (4, 4), (5, 5).

that satisfy (2.2), as well.

2.4 Applications

For the applications of linear forms in logarithms to Diophantine equations, the
strategy is as follows: first, we use various algebraic manipulations to associate
“relatively big” solutions of the equations to a “very small” value of the specific
linear form in logarithms which implies that we are able to find upper bound for
values of the linear form in the logarithms that corresponds to a solution of the
equation. If we compare that upper bound with the lower bound (using the Baker–
Wüstholz Theorem 2.2.13 or Matveev’s Theorems 2.2.14 and 2.2.15), we get an
absolute upper bound M for the absolute values of the unknowns of the equations.

It often happens that the upper boundM is not too large and using variousmethods,
including reductions and sieves, we can find the complete set of solutions below
M . In order to realize this, it is crucial to get a reasonably small value for M .
Its size is directly related to the size of the “numerical constant” that appears in
Matveev’s Theorem 2.2.14 which is 1.4 · 30n+3n4.5. Many celebrated Diophantine
equations lead to estimates of linear forms in two or three logarithms and in these
cases Matveev’s Theorem 2.2.14 gives numerical constants around 1012 and 1014,
respectively.

2.4.1 A Lower Bound for |2m − 3n|

One of the simplest applications of linear forms in logarithms is to prove that
|2m − 3n| tends to infinity with m + n; in addition one can even get an explicit
lower bound for this quantity. The following material is presented in detail in [14].

Let n ≥ 2 be an integer and m and m ′ are defined by the conditions

2m
′
< 3n < 2m

′+1, |3n − 2m | = min{3n − 2m
′
, 2m

′+1 − 3n}.

Then
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|2m − 3n| < 2m, (m − 1) log 2 < n log 3 < (m + 1) log 2,

and the problem of finding a lower bound for |2m − 3n| clearly reduces to this special
case.

Consider the linear form
Λ = 3n2−m − 1.

Applying Matveev’s Theorem 2.2.14, we get

log |Λ| > −c0(1 + logm).

It is easy to verify that we can take c0 = 5.87 · 108. Hence, the following theorem is
proved.

Theorem 2.4.1 Let m, n be positive integers. Then

|2m − 3n| > 2m(em)−5.87·108

This theorem enables us to find the list of all powers of 3 that increased by 5 give
a power of 2.

Corollary 2.4.2 The only integer solutions to the Diophantine equation

2m − 3n = 5

are (m, n) = (3, 1), (5, 3).

Applying Theorem 2.4.1, we get

5 > 2m(em)−5.87·108 ,

which implies
log 5 > m log 2 − 5.87 · 108(1 + logm),

so that m < 2.1 · 1010 and n < m log 2
log 3 < 1.4 · 1010. Moreover, the equality 2m −

3n = 5 implies
∣
∣
∣
∣
m − n

log 3

log 2

∣
∣
∣
∣
<

5

log 2
3−n .

Since
5

log 2
· 3−n <

1

2n

for n ≥ 4, we observe that, if (m, n) is a solution to our problem with n ≥ 4, then m
n

is a convergent of the continued fraction expansion of ξ = log 3
log 2 . Also, for n < N =
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1.4 · 1010 the smallest value of |m − nξ| is obtained for the largest convergent of the
continued fraction expansion of ξ with the denominator less then N . We thus get

5

log 2
· 3−n >

∣
∣
∣
∣
m − n

log 3

log 2

∣
∣
∣
∣
> 10−11, 0 < n < 1.4 · 1010.

Hence, n ≤ 24. Now, it is very easy to prove the initial statement.
More generally, the following result can be obtained.

Theorem 2.4.3 (Bennett, [7]) For given nonzero integers a, b, c the equation

am − bn = c

has at most two integer solutions.

2.4.2 Rep-Digit of Fibonacci Numbers

The Fibonacci sequence (Fn)n≥0 is given by

F0 = 0, F1 = 1, . . . , Fn+2 = Fn+1 + Fn, n ≥ 0.

Its characteristic equation is

f (X) = X2 − X − 1 = (X − α)(X − β),

where α = 1+√
5

2 and β = 1−√
5

2 . We can also write

Fn = αn − βn

α − β
, n ≥ 0.

In this subsection we are concerned with those Fibonacci numbers Fn that have
equal digits in base 10. Putting d for the repeated digit and assuming that Fn has m
digits, the problem reduces to finding all solutions of the Diophantine equation

Fn = dd . . . d(10) = d10m−1 + d10m−1 + · · · + d = d
10m − 1

10 − 1
, d ∈ {1, 2, . . . 9}.

(2.3)

Theorem 2.4.4 The largest solution of Eq. (2.3) is F10 = 55.

Proof Suppose that n > 1000. We start by proving something weaker. Our goal is
to obtain some bound on n. We rewrite Eq. (2.3) as

αn − βn

√
5

= d
10m − 1

9
.
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Next we separate large and small terms on both sides of the equation. It is easy to
obtain α = −1

β
or β = −1

α
which implies

∣
∣
∣
∣
∣
αn − d

√
5

9
10m

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
βn − d

√
5

9

∣
∣
∣
∣
∣
≤ |βn| +

∣
∣
∣
∣
∣

d
√
5

9

∣
∣
∣
∣
∣
≤ α−1000 + √

5 < 2.5. (2.4)

Our goal is to get some estimates form in terms of n. By induction on n, it is easy
to prove that

αn−2 < Fn < αn−1, n ≥ 3.

Thus,

αn−2 < Fn < 10m or n < m
log 10

logα
+ 2,

and
10m−1 < Fn < αn−1.

On the other hand,

n >
log 10

logα
(m − 1) + 1 = log 10

logα
m −

(
log 10

logα
− 1

)

>
log 10

logα
m − 4.

We deduce that

n ∈ [c1m − 4, c1m + 2], c1 = log 10

logα
= 4.78497..

Since c1 > 4, for n > 1000, we have n ≥ m. Hence,

|Λ| =
∣
∣
∣
∣
∣

d
√
5

9
α−n10m − 1

∣
∣
∣
∣
∣
<

2.5

αn
<

1

αn−2
,

which leads to

log |Λ| = log
d
√
5

9
− n logα + m log 10 < −(n − 2) logα.

Let

α1 = d
√
5

9
, α2 = α, α3 = 10, b1 = 1, b2 = −n, b3 = m,

as well as L = Q(α1,α2,α3) = Q(
√
5), so D = 2 and B = n. The minimal poly-

nomial of α1 over Z is
Pα1(X) = 81X2 − 5d2.
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Hence,

h(α1) <
1

2

(

log 81 + 2 log
√
5
)

= 1

2
log 405 < 3.01,

and

h(α2) = 1

2
(logα + 1) < 0.75, h(α3) = log 10 < 2.31.

We may take
A1 = 6.02, A2 = 1.5, A3 = 4.62.

Then Matveev’s Theorem 2.2.14 gives us a lower bound for Λ, namely

logΛ > −1.4 · 306 · 34.5 · 4(1 + log 4)6.02 · 1.5 · 4.62(1 + log n).

Comparing the above inequality with

logΛ < −(n − 2) logα,

we get

(n − 2) logα < 1.41 · 306 · 34.5 · 4(1 + log 4)6.02 · 1.5 · 4.62(1 + log n),

and
n < 4.5 · 1015.

Reducing the bound. Observe that the right-hand side of the inequality

1 − d
√
5

9
α−n10m ≤ 1

αn

(

βn − d
√
5

9

)

is negative. Writing
z = logα1 − n logα2 + m logα3,

we get that

−2.5

αn
< 1 − ez < 0.

In particular, z > 0. Furthermore, we have ez < 1.5 for n > 1000. Thus,

0 < ez − 1 <
2.5ez

αn
<

4

αn
.

Since ez − 1 > z, we get
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0 < m

(
logα3

logα2

)

− n +
(
logα1

logα2

)

<
4

αn logα2
<

9

αn
.

We notice that (

10md
√
5

αn

)

< 2

and therefore

αn >
10md

√
5

2
> 10m .

Hence,

0 < m

(
logα3

logα2

)

− n +
(
logα1

logα2

)

<
9

10m
.

Since n < 4.5 · 1015, the previous inequality implies m < 9.5 · 1014. With

κ = logα3

logα2
, μ = logα1

logα2
, A = 9, B = 10

we get

0 < κm − n + μ <
A

Bm
,

where m < N := 1015. Observe that

p35
q35

= C35 = 970939497358931987

202914354378543655

and q35 > 202914354378543655 > 2 · 1017 > 6N .

For each one of the values of d ∈ {1, . . . , 9}, we compute ||q35μ||. The minimal
value of this expression is obtained when d = 5 and is

0.029... > 0.02.

Thus, we can take ε = 0.01 < 0.02 − 0.01 < ||q35μ|| − N ||q35κ||. Since
log(Aq35/ε)

log B
= 21.2313...,

we observe that there is no solution in the range m ∈ [

22, 1015
]

. Thus, m ≤ 21,
and n ≤ 102. However, we have assumed that n > 1000. To finish, we compute the
values of all Fibonacci numbers modulo 10000 (their last four digits) and convince
ourselves that there are no Fibonacci numbers with the desired pattern in the range
11 ≤ n ≤ 1000. This example stems from [25, 36].
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2.4.3 Simultaneous Pellian Equations

The following result is due to Baker and Davenport and was historically the first
example of a successful use of lower bounds for linear forms in logarithms of alge-
braic numbers; it actually allowed the effective computation of all commonmembers
of two binary recurrent sequences with real roots; for more details see [19, 25, 36].

Theorem 2.4.5 The only positive integer d such that d + 1, 3d + 1, 8d + 1 are all
perfect squares is d = 120.

Proof If d + 1, 3d + 1, 8d + 1 are all perfect squares, then we write

d + 1 = x2, 3d + 1 = y2, 8d + 1 = z2.

Eliminating d from the above equations, we get

3x2 − y2 = 2, 8x2 − z2 = 7,

which is a system of simultaneous Pellian equations since it consists of two Pellian
equations with a component in common. If we want x to be positive, the solutions
of the above system are

y + x
√
3 = (1 + √

3)(2 + √
3)m,

z + x
√
8 = (±1 + √

8)(3 + √
8)n,

wherem, n are nonnegative integers. Let the sequence (vm) be given by the recursion
formula

v0 = 1, v1 = 3, vm+2 = 4vm+1 − vm,

and put x = w+,−
n , for some n ≥ 0, where the sequences (w+

n ), (w−
n ) are defined by

w+
0 = 1, w+

1 = 4, w+
n+2 = 6w+

n+1 − w+
n , n ∈ N,

w−
0 = 1, w−

1 = 2, w−
n+2 = 6w−

n+1 − w−
n , n ∈ N.

We want to solve the equation
vm = w+,−

n .

For this aim we shall use the following lemmas.

Lemma 2.4.6 If vm = w+,−
n , m, n > 2, then

0 < |Λ| < 7.3(2 + √
3)−2m,

where Λ is
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Λ = m log(2 + √
3) − n log(3 + 2

√
2) + log

2
√
2(1 + √

3)√
3(2

√
2 ± 1)

.

Proof The expression vm = w+,−
n implies

(1 + √
3)(2 + √

3)m − (1 − √
3)(2 − √

3)m

2
√
3

= (2
√
2 ± 1)(3 + 2

√
2)n + (2

√
2 ∓ 1)(3 − 2

√
2)n

4
√
2

. (2.5)

Obviously,

vm >
(1 + √

3)(2 + √
3)m

2
√
3

,

w+,−
n <

(2
√
2 + 1)(3 + 2

√
2)n

2
√
2

,

hence
(1 + √

3)(2 + √
3)m

2
√
3

<
(2

√
2 + 1)(3 + 2

√
2)n

2
√
2

,

(3 − 2
√
2)n <

√
3(2

√
2 + 1)√

2(
√
3 + 1)

(2 − √
3)m < 1.7163(2 − √

3)m .

Dividing (2.5) by 2
√
2±1

4
√
2

(3 + 2
√
2)n , we obtain

∣
∣
∣
∣
∣

2
√
2(1 + √

3)√
3(2

√
2 ± 1)

· (2 + √
3)m

(3 + 2
√
2)n

− 1

∣
∣
∣
∣
∣

≤ 2
√
2 + 1

2
√
2 − 1

(3 − 2
√
2)2n + 2

√
2(

√
3 − 1)√

3(2
√
2 − 1)

(2 − √
3)m(3 − 2

√
2)n

<
2
√
2 + 1

2
√
2 − 1

· 1.71632(2 − √
3)2m + 2

√
2(

√
3 − 1)√

3(2
√
2 − 1)

· 1.7163(2 − √
3)2m

< 7.29(2 − √
3)2m,

which proves Lemma 2.4.6.

Lemma 2.4.7 Let a ∈ R\{0}, a > 1. If |x | < a, then

| log(1 + x)| <
− log(1 − a)

a
|x |. (2.6)

Proof We observe that the function
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log(1 + x)

x

is positive and strictly decreasing for |x | < 1. Consequently, for |x | < a, Inequality
(2.6) holds for x = −a.

We shall investigate the following linear form in three logarithms:

Λ = m log(2 + √
3) − n log(2

√
2 + 3) + log

2
√
2(

√
3 + 1)√

3(2
√
2 ± 1)

.

Let

α1 = 2 + √
3, α2 = 3 + 2

√
2, α3 = 2

√
2(1 + √

3)√
3(2

√
2 ± 1)

,

b1 = m, b2 = −n, b3 = 1, D = [Q(α1,α2,α3) : Q] = 4.

The minimal polynomials over Z are

Pα1(x) = x2 − 4x + 1,

Pα2(x) = x2 − 6x + 1,

Pα3(x) = 441x4 − 2016x3 + 2880x2 − 1536x + 256,

hence

h′′(α1) = 1

2
log(2 + √

3) < 0.6585,

h′′(α2) = 1

2
log(3 + 2

√
2) < 0.8814,

and

h′′(α3) = 1

4
log

(

441
2(4 + √

2)(3 + √
3)

21

2(4 − √
2)(3 + √

3)

21

)

< 1.7836.

Applying the Baker–Wüstholz Theorem 2.2.13, we get a lower bound for Λ, namely

log |Λ| ≥ −3.96 · 1015 logm.

According to Lemma 2.4.6, we may conclude that

m < 6 · 1016.

This upper bound is rather big so we reduce it using Baker–Davenport reduction.
Applying Lemma 2.4.6, we get the upper bound
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Λ = m log(2 + √
3) − n log(2

√
2 + 3) + log

2
√
2(

√
3 + 1)√

3(2
√
2 ± 1)

< 7.29(2 + √
3)−2m .

Let

N = 6 · 1016, κ = logα1

logα2
, μ = logα3

logα2
, A = 7.3

logα2
, B = (2 + √

3)2.

The next step is to find a convergent p
q of the continued fraction expansion of κ =

logα1

logα2
such that q > 6N . The first such convergent is

p

q
= 742265900639684111

993522360732597120
.

Before calculating ε, we observe that

||κq||N ≈ 0.0187822, ||μq|| ≈ 0.00762577.

Unfortunately,
ε = ||μq|| − ||κq||N < 0.

If we want to use Baker–Davenport reduction, we have to find another convergent p
q

of the continued fraction expansion for which the condition ε > 0 is satisfied.
The next convergent p

q of κ that satisfies condition q > 6N is

p

q
= 2297570640187354392

3075296607888933649
.

It follows that
ε = ||μq|| − ||κq||N ≈ 0.296651 > 0.

The given inequality does not have any solutions in integers m such that

log
(

Aq
ε

)

log B
≤ m < N .

Thus, the new upper bound for m is 17. Repeating the procedure once again, we get
m ≤ 4, and there are only two solutions, namely

v0 = w
+,−
0 = 1,

which is the trivial solutions of our Diophantine equation with d = 0, and

v2 = w−
2 = 11,

which suits the case when d = 120.
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2.4.4 Fibonacci Numbers and the Property of Diophantus

The next result is due to Dujella [17]. He proved that, if k and d are positive integers
such that the set

{F2k, F2k+2, F2k+4, d}

is a D(1)-quadruple, then d = 4F2k+1F2k+2F2k+3, where Fk is k-th Fibonacci num-
ber. This is a generalization of the Theorem 2.4.5 of Baker and Davenport for k = 1.
Here a set {a1, a2, a3, a4} of distinct positive integers is called a D(1)-quadruple, if
aia j + n is a perfect square for every i, j with 1 ≤ i < j ≤ 4.

Proof (Sketch) Let k ≥ 2 be a positive integer and

a = F2k, b = F2k+2, c = F2k+4.

Then c = 3b − a. Furthermore,

ab + 1 = (b − a)2, ac + 1 = b2, bc + 1 = (a + b)2.

If we assume that d is a positive number such that {a, b, c, d} has the property D(1)
of Diophantus, it implies that there exist positive integers x, y, z such that

ad + 1 = x2, bd + 1 = y2, (3b − a)d + 1 = z2.

Eliminating d, we get a system of Pellian equations

ay2 − bx2 = a − b, az2 − (3b − a)x2 = 2a − 3b. (2.7)

Dujella proved the following lemmas.

Lemma 2.4.8 Let x, y, z be positive integer solutions of the system of Pellian equa-
tions (2.7). Then there exist integers m and n such that

x = vm = wn,

where (vm) is given by

v0 = 1, v1 = b, vm+2 = 2(b − a)vm+1 − vm, m ∈ Z,

and the two-sided sequence (wn) is defined by

w0 = 1, w1 = a + b, wn+2 = 2bwn+1 − wn, n ∈ Z.
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In order to apply Baker’s method, it is convenient to consider the two-sided
sequence as two ordinary sequences. Therefore, instead of the sequence (vm)m∈Z,
Dujella considered two sequences (vm)m≥0 and (vm)m≤0 and applied the samemethod
for the sequence (wn)n∈Z. Thus, four equations of the form

vm = wn

have to be considered.

Lemma 2.4.9 If vm = wn, and m �= 0, then

0 < m log(b − a + √
ab) − n log(b + √

ac) +
+ log

√
c(±√

a + √
b)√

b(±√
a + √

c)
< 4(b − a + √

ab)−2m .

In the present situation, l = 3, d = 4, B = m and

α1 = b − a + √
ab, α2 = b + √

ac, α3 =
√
c(±√

a + √
b)√

b(±√
a + √

c)
,

h′(α1) = 1

2
logα1 < 1.05 log, h′(α2) = 1

2
logα2 < 1.27 log a,

h′(α3) = 1

4
log(bc(c − a)(

√
a + √

b)2) < 2.52 log a,

log 4(b − a + √
ab)−2m < log a−2m = −2m log a.

Hence,
2m log a < 3.822 · 1015 · 3.361 log3 a logm,

and m

logm
< 6.423 · 1015 log2 a. (2.8)

Applying Lemma 2.4.8, we get

|m| ≥ 2b − 2 > 4a. (2.9)

Comparing (2.8) and (2.9), we obtain

m

log3 m
< 6.423 · 1015,

which impliesm < 8 · 1020, a = F2k < 2 · 1020. The author has proved the theorem
for k ≥ 49.
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It remains to prove the theorem for 2 ≤ k ≤ 48. Dujella used Lemma 2.3.1 with

κ = logα1

logα2
, μ = logα3

logα2
, A = 4

logα3
, B = (b − a + √

ab)2

as well as N = 8 · 1020 and gets a new bound m ≤ N0, where N0 ≤ 12. Repeating
the method one more time, he obtained a new upper bound m ≤ 2 which completes
the proof.

2.4.5 The Non-extendibility of Some Parametric Families
of D(−1)-Triples

Definition 2.1 Let n be a nonzero integer. A set {a1, . . . , am} of m distinct positive
integers is called a Diophantine m-tuple with the property D(n), or simply a D(n)-
m-tuple, if aia j + n is a perfect square for any i, j with 1 ≤ i < j ≤ m.

The set {1, 3, 8, 120} considered in the previous Sect. 2.4.3 is known as the first
example of a D(1)-quadruple found by Fermat.28 In 1969, Baker and Davenport
proved that {1, 3, 8} cannot be extended to a D(1)-quintuple (see [5]). This result
was generalized by Dujella [15], who showed that the D(1)-triple {k − 1, k + 1, 4k}
for an integer k cannot be extended to a D(1)-quintuple, and by Dujella and Pethő
[22], who proved that the D(1)-pair {1, 3} cannot be extended to a D(1)-quintuple. It
is a conjectured that there does not exist a D(1)-quintuple. The most general results
on this conjecture are due to Dujella [18] who proved that there does not exist a D(1)-
sextuple and that there exist at most finitely many D(1)-quintuples. There have been
some improvements on those results recently, but the conjecture still remains open.

In contrast to the case n = 1, it is conjectured that there does not exist a
D(−1)-quadruple (see [16]). The first important step in this direction was done by
Dujella and Fuchs [21] who showed that, if {a, b, c, d} is a D(−1)-quadruple with
a < b < c < d, then a = 1. Later Dujella, Filipin and Fuchs [23] showed that there
exist at most finitely many D(−1)-quadruples. The number of D(−1)-quadruples
is now known to be bounded by 5 · 1060 (see [24]). However, this bound is too
large for verifying the conjecture by present day computers. Recently, He and Togbé
[29] proved that the D(−1)-triple {1, k2 + 1, k2 + 2k + 2} cannot be extended to a
D(−1)-quadruple. Their result and the proof appears to be very important because
of their use of a linear form in two logarithms (instead of three) for the first time; this
leads to a much better upper bound for the solutions which shortens the reduction
time significantly. In this subsection, we extend their method and apply it to several
other families of D(−1)-triples. Let us also mention that it is not always possible to
use linear forms in two logarithms. In the sequel we only explain the idea and give
a sketch of the proofs; more details can be found in [26].

28Pierre de Fermat (1601–1665), a French mathematician.
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Introduction

Let {1, b, c} be a D(−1)-triple with b < c. We define positive integers r , s and t by

b − 1 = r2, c − 1 = s2, bc − 1 = t2.

Then, s and t satisfy

t2 − bs2 = r2. (2.10)

It can be proven thatDiophantine equation (2.10) has at least three classes of solutions
belonging to

(t0, s0) = (r, 0), (b − r,±(r − 1))

(see [27, p. 111]). We call a positive solution (t, s) of (2.10) regular if (t, s) belongs
to one of these three classes. However, it is possible for a solution (t, s) not to be
regular. In general, we do not know in advance how many classes of solutions we
have, except for some special type of b.

Remark 2.4.10 An example having non-regular solutions can be found in the case of
r = 2q2, where q is a positive integer. Then (2.10) has two more classes of solutions
belonging to

(t ′0, s
′
0) = (2q3 + q,±q).

Our goal is to prove the following theorem.

Theorem 2.2 Let (t, s) be a regular solution of (2.10) and let c = s2 + 1. Then, the
system of Diophantine equations

y2 − bx2 = r2,

z2 − cx2 = s2

has only trivial solutions (x, y, z) = (0,±r,±s). Furthermore, if r = 2q2 for some
positive integer q, then the same is true for any positive solution (t, s) of (2.10)
belonging to the same class as one of (2q3 + q,±q).

By [23, Theorem 1] we have that c < 11b6 (using the hyper-geometric method),
hence the above-mentioned result of He and Togbé shows that it is enough to prove
Theorem 2.2 for c = ci with 2 ≤ i ≤ 7, where
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c2 = 4r4 + 1,

c3 = (4r3 − 4r2 + 3r − 1)2 + 1,

c4 = (4r3 + 4r2 + 3r + 1)2 + 1,

c5 = (8r4 + 4r2)2 + 1,

c6 = (16r5 − 16r4 + 20r3 − 12r2 + 5r − 1)2 + 1,

c7 = (16r5 + 16r4 + 20r3 + 12r2 + 5r + 1)2 + 1

(see [27, p. 111]), and in the case of r = 2q2, additionally for c = c′
i with 1 ≤ i ≤ 5,

where

c′
1 = (4q3 − q)2 + 1,

c′
2 = (16q5 + 4q3 + q)2 + 1,

c′
3 = (64q7 − 16q5 + 8q3 − q)2 + 1,

c′
4 = (256q9 + 64q7 + 48q5 + 8q3 + q)2 + 1,

c′
5 = (1024q11 − 256q9 + 256q7 − 48q5 + 12q3 − q)2 + 1.

It is easy to see that Theorem 2.2 immediately implies

Corollary 2.4.11 Let (t, s) be either a regular solution of (2.10) or, in the case of
r = 2q2 for some positive integer q, a regular solution or a positive solution of
(2.10) belonging to the same class as one of (2q3 + q,±q). Let c = s2 + 1. Then,
the D(−1)-triple {1, b, c} cannot be extended to a D(−1)-quadruple.

It was proven in [27, p. 111], that if r is prime, then (2.10) has only regular
solutions. We can generalize this to find that, if r = pk or 2pk for an odd prime p
and a positive integer k, then (2.10) has only regular solutions, except in the case of
r = 2pk with k even. In the latter case, there are exactly five classes of solutions.
Furthermore, if b = p or 2pk , then (2.10) has only regular solutions (b = pk can
occur only if k = 1, since b = r2 + 1; [35]). Hence, we get another corollary of the
Theorem 2.2.

Corollary 2.4.12 Let r be a positive integer and let b = r2 + 1. Suppose that one
of the following assumptions holds for an odd prime p and a positive integer k:

(i) b = p; (ii) b = 2pk; (iii) r = pk; (iv) r = 2pk.
Then, the system of Diophantine equations

y2 − bx2 = r2,

z2 − cx2 = s2

has only the trivial solutions (x, y, z) = (0,±r,±s), where (t, s) is a positive solu-
tion of (2.10) and c = s2 + 1. Moreover, the D(−1)-pair {1, b} cannot be extended
to a D(−1)-quadruple.
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The System of Pellian Equations

Let {1, b, c}be a D(−1)-triplewithb < c, and let r , s, t bepositive integers definedby
b − 1 = r2, c − 1 = s2, bc − 1 = t2. Suppose that we can extend the triple {1, b, c}
to a D(−1)-quadruple with element d. Then, there exist integers x, y, z such that

d − 1 = x2, bd − 1 = y2, cd − 1 = z2.

Eliminating d, we obtain the system of simultaneous Diophantine equations

z2 − cx2 = s2, (2.11)

bz2 − cy2 = c − b, (2.12)

y2 − bx2 = r2. (2.13)

Wemay assume that c < 11b6 (according to Theorem 1, [23]). The positive solutions
(z, x) of Eq. (2.11) and (z, y) of Eq. (2.12) are respectively given by

z + x
√
c = s(s + √

c)2m (m ≥ 0),

z
√
b + y

√
c = (s

√
b ± r

√
c)(t + √

bc)2n (n ≥ 0)

(see Lemmas 1 and 5 in [23]). Using that y is a common solution of Eqs. (2.12) and
(2.13), He and Togbé proved that the positive solutions (y, x) of Eq. (2.13) are given
by

y + x
√
b = r(r + √

b)2l , l ≥ 0,

and, moreover, they proved the following proposition.

Proposition 2.4.13 ([29, Proposition 2.1]) The D(−1)-triple {1, b, c} can be
extended to a D(−1)-quadruple if and only if the system of simultaneous Pellian
equations

(z/s)2 − c(x/s)2 = 1,

(y/r)2 − b(x/r)2 = 1

has a positive integer solution (x, y, z).

Proposition 2.4.13 implies that we can write x = svm = rul , where

vm = α2m − α−2m

2
√
c

and ul = β2l − β−2l

2
√
b

are positive solutions of the Pellian equations Z2 − cX2 = 1 and Y 2 − bW 2 = 1,
respectively, where α = s + √

c and β = r + √
b. We have mentioned before that

we cannot always use linear forms in two logarithms.Moreprecisely, for our approach
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α and β should be near to each other or one of them has to be near to a power of the
other one.

Gap Principles

We next consider the extension of D(−1)-triples {1, b, c} with

c = c2, c3, c4, c5, c6, c7, c
′
1, c

′
2, c

′
3, c

′
4, c

′
5

from above. We shall establish gap principles for these special cases.
Let us define the linear form Λ in three logarithms

Λ = 2m logα − 2l logβ + log
s
√
b

r
√
c
.

The proofs of the following lemmas can be found in [29]; the results rely on Baker’s
theory of linear forms in logarithms.

Lemma 2.4.14 ([29, Lemma 3.1]) If svm = rul has a solution with m �= 0, then

0 < Λ <
b

b − 1
· β−4l .

Lemma 2.4.15 ([29, Lemma 3.3]) If svm = rul has a solution with m �= 0, then
m logα < l logβ.

The proofs of the following lemmas can be found in [26]; these results are based
on the property that an algebraic number α is close to some power of β.

Lemma 2.4.16 Let c = c2 = 4r4 + 1. If the equation svm = rul has a solution with
m �= 0, then

m >
Δ

2
· α logβ,

where Δ is a positive integer.

Lemma 2.4.17 Let c = c3 = (4r3 − 4r2 + 3r − 1)2 + 1or c = c4 = (4r3 + 4r2 +
3r + 1)2 + 1. If the equation svm = rul has a solution with m �= 0, then

m >
3Δ − 1

3
· 8r
9

logβ,

where Δ is a positive integer.

Lemma 2.4.18 Let c = c′
1 = (4q3 − q)2 + 1. If the equation svm = rul has a solu-

tion with m �= 0, then

m >
Δ

6
· α logβ,
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where Δ is a positive integer.

Similar lemmas for other choices of c can be obtained. The following table contains
information how to choose Δ and a lower bound for m.

c Δ a lower bound for m

c5 4m − l m > Δ · 8r4

4r2+1
logβ

c6 5m − l m > 5Δ−1
5 · 32r

33 logβ

c7 l − 5m m > 5Δ−1
5 · 32r

33 logβ

c′
2 2l − 5m m > 10Δ−4

5 · q2 logβ

c′
3 7m − 2l m > 3Δ

2 · q2 logβ

c′
4 2l − 9m m > 18Δ−4

9 · q2 logβ

c′
5 11m − 2l m > 3Δ

2 · q2 logβ

Linear Forms in Two Logarithms

Next we shall apply the following result due to Laurent,29 M. Mignotte30 and
Y. Nesterenko31 to our linear form Λ.

Lemma 2.4.19 ([33, Corollary 2]) Let γ1 and γ2 be multiplicatively independent,
positive algebraic numbers, b1, b2 ∈ Z and

Λ = b1 log γ1 + b2 log γ2.

Let D := [Q(γ1, γ2) : Q], for i = 1, 2 let

hi ≥ max

{

h(γi ),
| log γi |

D
,
1

D

}

,

where h(γ) is the absolute logarithmic height of γ, and

b′ ≥ |b1|
Dh2

+ |b2|
Dh1

.

If Λ �= 0, then

log |Λ| ≥ −24.34 · D4

(

max

{

log b′ + 0.14,
21

D
,
1

2

})2

h1h2.

29Michel Laurent, a French mathematician.
30Maurice Mignotte, a French mathematician.
31Yuri Valentinovich Nesterenko (1946), a Soviet and Russian mathematician.
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This lemma has also been used by He and Togbé in [29]. We are dealing with the
same linear form, but only with a different c. Using the same method to trans-
form our form to a linear form in two logarithms, then applying Lemma 2.4.19 for
c = c2, c3, . . . , c7, c′

1, . . . , c
′
5, and combining the lower bound for |Λ| together with

the gap principles, we can prove Theorem 2.2 for large values of r. That γ1 and γ2 are
multiplicatively independent follows from the fact that α and β are multiplicatively
independent algebraic units and r

√
c

s
√
b
is not an algebraic unit.

As an example we consider the case c = c2 = 4r4 + 1. We can write

Λ = 2m log

(
α

β2

)

− log

(

β−2Δ · r
√
c

s
√
r2 + 1

)

,

where Δ = 2m − l is defined as in Lemma 2.4.16. In the notation of Lemma 2.4.19
we have

D = 4, b1 = 2m, b2 = −1, γ1 = α

β2
, γ2 = β−2Δ · r

√
c

s
√
b
.

Furthermore,

h(γ1) ≤ h

(
α

β

)

+ h(β) = 1

2
logα + 1

2
logβ < logα,

hence, for h1, we can take h1 = logα. Moreover,

h

(
r
√
c

s
√
b

)

= 1

2
log((c − 1)b) <

1

2
logβ6 = 3 logβ,

which yields
h(γ2) < (Δ + 3) logβ =: h2.

For r ≥ 10, we find |b2|
Dh1

= 1

4 logα
< 0.042,

and then
b′ = m

2(Δ + 3) logβ
+ 0.042.

Now Lemma 2.4.16 implies

m

2(Δ + 3) logβ
>

Δ

4(Δ + 3)
· α ≥ α

16
> 169

for r ≥ 26. Thus, for r ≥ 26, we get log b′ + 0.14 > 21
D and applying Lemma 2.4.19

we conclude
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log |Λ| ≥ −24.34 · 44 · (log b′ + 0.14)2 · logα · (Δ + 3) logβ.

On the other hand, Lemma 2.4.14 yields

log |Λ| < 0.002 − 4l logβ.

Combining these lower and upper bounds for Λ, we obtain

l

logα
<

0.002

4 logα logβ
+ 24.34 · 64(log b′ + 0.14)2(Δ + 3).

Furthermore, m logα < l logβ gives us

m

2(Δ + 3) logβ
< 0.0001 + 24.34 · 32(log b′ + 0.14)2

and finally
b′ < 0.042 + 778.88(log b′ + 0.14)2,

which implies b′ < 106996. It furthermore gives m < 213992(Δ + 3) logβ and

α <
2m

Δ logβ
< 427983 · Δ + 3

Δ
< 1.72 · 106,

from which we deduce r < 656. Thus, we have proved Theorem 2.2 for c = c2 and
r ≥ 656.

The cases c = c3, c4 = (4r3 ∓ 4r2 + 3r ∓ 1)2 + 1 are described in details in [26].
The upper bounds for r and q in the remaining cases are given in the following table.

c an upper bound for r or q
c3 r < 1.81 · 106
c4 r < 1.81 · 106
c5 r < 802
c6 r < 1.94 · 106
c7 r < 1.94 · 106
c′
2 q < 846
c′
3 q < 846
c′
4 q < 949
c′
5 q < 1000

The Reduction Method and the Proof of Theorem2.2

We have just proven Theorem 2.2 for large parameters r and q.We are left to consider
the cases of small r and q. Using Baker–Davenport reduction, it turns out that in all
remaining cases there is no extension of the triple {1, b, c} to a quadruple {1, b, c, d}.
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Some useful results from [23] can be used.We know that, if we have the extension
of our triple with the element d, then cd − 1 = z2, where z = Vm = Wn such that

V0 = s, V1 = (2c − 1)s, Vm+2 = (4c − 2)Vm+1 − Vm

and
W0 = s, W1 = (2bc − 1)s ± 2r tc, Wn+2 = (4bc − 2)Wn+1 − Wn.

We use the following lemmas.

Lemma 2.4.20 ([23, Lemma 11]) If Vm = Wn, n �= 0, then

0 < 2n log(t + √
bc) − 2m log(s + √

c) + log
s
√
b ± r

√
c

2
√
b

< (3.96bc)−n+1.

From the proofs of Propositions 2, 3, 4 in [23] we know that n < 1020 in all cases.
Applying Baker–Davenport reduction with

κ = log(t + √
bc)

log(s + √
c)

, μ =
log s

√
b±r

√
c

2
√
b

2 log(s + √
c)

, A = 3.96bc

2 log(s + √
c)

, B = 3.96bc

and N = 1021 with any choice of r and c left, we get after two steps that n < 2.Here,
one may also use that D(−1)-triples {1, b, c} cannot be extended to a quadruple for
r ≤ 143000, which was verified by computer. Hence, in some cases one can avoid
to use reduction at all.

We are still left to deal with the cases of small indices m and n in the equation
z = Vm = Wn. From [21] we know that n ≥ 3; otherwise we have only the trivial
solution (corresponding with an extension with d = 1, which is no real extension,
because we ask for elements in D(n)-m-tuple to be distinct).

The following lemma, which was proved in [26], and which examines the fun-
damental solutions of (2.10) in the cases of b = p, 2pk and r = pk, 2pk , together
with Theorem 2.2 implies Corollary 2.4.12.

Lemma 2.4.21

(1) If b = p or 2pk for an odd prime p and a positive integer k, then Diophantine
Equation (2.10) has only regular solutions.

(2) If r = pk or 2pk for an odd prime p and a positive integer k, then Diophantine
Equation (2.10) has only regular solutions, except in the case of r = 2p2i with
i a positive integer, where it in addition has exactly two classes of solutions
belonging to (2p3i + pi ,±pi ).

2.4.6 Pure Powers in Binary Recurrent Sequences

The Lucas numbers (Ln)n≥0 are given by
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L0 = 2, L1 = 1, . . . , Ln+2 = Ln+1 + Ln, n ≥ 0.

Recall that Fibonacci numbers (Fn) as well as Lucas numbers (Ln) are defined by

Fn = αn − βn

√
5

, Ln = αn + βn, α = 1 + √
5

2
, β = 1 − √

5

2
,

respectively. Now suppose
Fn = y p

is a pure power. Since
αn − √

5y p = O(α−n),

we find
Λ = n logα − p log y − log

√
5 = O(α−2n) = O(y−2p).

There exist integers k, r such that n = kp + r with |r | ≤ p
2 , hence we have

Λ = p log

(
αk

y

)

+ r logα − log
√
5

which is a linear form in three logarithms. If we apply Matveev’s Theorem 2.2.14,
we get

log |Λ| ≥ −c∗ log y log p.

Comparing both estimates of |Λ|, we see that the exponent p is bounded. Matveev’s
Theorem 2.2.14 implies p < 3 · 1013, but a special estimate for linear forms in three
logarithms implies the sharper upper bound is p < 2 · 108 which is suitable for
computer calculations.

For Lucas numbers a similar study leads to a linear form in two logarithms and
p < 300 provided that Ln = y p. By this reasoning, it can be proved [10] that all
perfect powers in the Fibonacci and Lucas sequences are

F0 = 0, F1 = F2 = 1, F6 = 8 = 23, F12 = 144 = 122;

L1 = 1, L3 = 4 = 22.

Using this method we can solve many similar problems, for example, all Pell
numbers for which Pn + 4 is a perfect square are given by P0 = 0, P3 = 5 and
P4 = 12. Recall that the Pell numbers are given by the recursion

P0 = 0, P1 = 1, . . . , Pn+2 = 2Pn+1 + Pn, n ≥ 0.
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2.4.7 Lucas Numbers and the Biggest Prime Factor

Next we are interested in finding all Lucas numbers for which the biggest prime
factor is less than or equal to 5.

We may express Lucas numbers as

Ln =
(

1 + √
5

2

)n

+
(

1 − √
5

2

)n

, n ∈ N.

For Lucas numbers the length of the period of the sequence (Ln mod 5) is equal to
4 with the cycle {1, 3, 4, 2}; therefore 5 can never be a divisor of any Lucas number.
We want to find all Lucas numbers such that

2k3l =
(

1 + √
5

2

)n

+
(

1 − √
5

2

)n

, n, k, l,m ∈ N.

Let α = 1+√
5

2 , so the previous expression can be rewritten as

2k3l = αn − α−n, k, l, n ∈ N.

Thus the corresponding linear form in logarithms is

Λ = 2n logα − k log 2 − l log 3.

Now, applying Matveev’s Theorem 2.2.14, we have n = 3, D = 2, and

A1 ≥ h′(2) = max{2 log 2, | log 2|, 0.16} = 1.38 < 2,

A2 ≥ h′(3) = max{2 log 3, | log 3|, 0.16} = 2.19 < 3,

A3 ≥ h′
(

1 + √
5

2

)

= max{2 log 1 + √
5

2
,

∣
∣
∣
∣
∣
log

1 + √
5

2

∣
∣
∣
∣
∣
, 0.16} = 0.48 < 1.

We get
log |Λ| ≥ −7.28022 · 1015(1 + log 2n).

After finding the upper bound from the expression

Ln

αn
− 1 = −α−2n,

and

log |Λ| < −2n log
1 + √

5

2
,
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we find that n < 3.17654 · 1017. After applying Baker–Davenport reduction, we get
n < 14, so we may conclude that the Lucas numbers for which the biggest prime
factors are less or equal to 5 are

L0 = 2, L2 = 3, L4 = 4 = 22, L6 = 18 = 2 · 32.

2.4.8 Pillai’s Equation

Given positive integers a > b > 1, Pillai32 [42] proved that there are only finitely
many integers c �= 0 admitting more than one representation of the form

c = ax − by

in nonnegative integers x, y. In particular, the equation

ax − by = ax1 − by1 , with (x, y) �= (x1, y1) (2.14)

has only finitelymany integer solutions.We shall apply the technique of lower bounds
for linear forms in logarithms of algebraic numbers to find all the solutions for

(a, b) = (3, 2).

Proposition 2.4.22 The only nontrivial solutions of Eq. (2.14) with (a, b) = (3, 2)
are

31 − 22 = 30 − 21, 32 − 24 = 30 − 23, 32 − 23 = 31 − 21,

33 − 25 = 31 − 23, 35 − 28 = 31 − 24.

Proof The initial equation can be rewritten as

3x − 3x1 = 2y − 2y1 .

After relabeling the variables, we may assume that x > x1. Consequently, y > y1.
Since

2 · 3x−1 = 3x − 3x−1 ≤ 3x − 3x1 = 2y − 2y1 < 2y,

we get x < y. Let B = y. Now,

3x1 | (2y − 2y1) = 2y1(2y−y1 − 1).

We observe that 3m | (2n − 1) if and only if 2 · 3m−1 | n. In particular,

32Subbayya Sivasankaranarayana Pillai (1901–1950), an Indian mathematician.
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x1 ≤ 1 + log((y − y1)/2)

log 3
≤ log(3B/2)

log 3
, (2.15)

therefore,

3x1 <
3B

2
< 2B.

Similarly,
2y1 | (3x − 3x1) = 3x1(3x−x1 − 1).

Analogously, if m ≥ 3, then 2m | (3n − 1) if and only if 2m−2 | n. Thus,

y1 ≤ 2 + log(x − x1)

log 2
<

log(4B)

log 2
, (2.16)

and therefore
2y1 ≤ 4B.

The original equation may be rewritten in such a way that the large parts are on one
side and the small parts are on the other, namely

|3x − 2y | = |3x1 − 2y1 | < 2B,

which in turn gives an inequality of the form

|1 − 3x2−y| <
2B

2B
.

Thus the linear form Λ to study is given by

Λ = x log 3 − y log 2.

If Λ > 0, then

eΛ − 1 <
2B

2B
.

IfΛ < 0, assuming that B > 10, we find 2B
2B < 1

2 and therefore, |1 − eΛ| < 1
2 , which

implies e|Λ| < 2. In particular,

|Λ| <
4B

2B
. (2.17)

The last inequality holds independent of the sign ofΛ. We observe thatΛ �= 0, since
in the opposite case, we would get 3x = 2y which, by unique factorization, implies
x = y = 0, a contradiction. Put

α1 = 2, α2 = 3, b1 = y, b2 = x, B = y, A1 = 1, A2 = log 3
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and

b′ = y

log 3
+ x < B

(
1

log 3
+ 1

)

< 2B.

Since log 2 and log 3 are linearly independent, real and positive, Lemma 2.4.19 yields
the estimate

log |Λ| > −23.34(max{log(2B) + 0.14, 21})2 · log 3.

Comparing the last inequality with (2.17), we get

B log 2 − log(4B) < 23.34 · 3 · (max{log(2B) + 0.14, 21})2.

If the above maximum is 21, we get

B log 2 − log(4B) < 25.7 · 212,

hence B < 17000. Otherwise, we have

B log 2 − log(4B) < 25.7(log(2B) + 0.14)2,

yielding B < 2900. Thus, we consider the inequality B < 17000. From (2.15) and
(2.16), we get x1 ≤ 9 and y1 ≤ 16. Hence,

x − 1 ≤ (y − 1)
log 2

log 3
< B

log 2

log 3
< 11000.

Now, we reduce this bound. Suppose that B ≥ 30, then we get

3x > 3x − 3x1 = 2y − 2y1 ≥ 2B−1 ≥ 229,

which implies x ≥ 19. We check that the congruence

3x − 3x1 − 2y1 ≡ 0 (mod 230)

does not hold for any triple (x, x1, y1) with 11 ≤ x ≤ 1100, 0 ≤ x1 ≤ 9, and 0 ≤
y1 ≤ 16. This gives B ≤ 29.Since 3x−1 < 2y−1 ≤ 228, we get x ≤ 18.Now, it is easy
to show that there are no solutions beyond those in the statement of the proposition.
For details see [36].

2.4.9 The Diophantine Equation axn − byn = c

We consider
axn − byn = c,
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where a, b are strictly positive and x, y, n are unknowns. If for some exponent n
there exists a solution (x, y) with |y| > 1, then

Λ = log
∣
∣
∣
a

b

∣
∣
∣ − n log

∣
∣
∣
∣

x

y

∣
∣
∣
∣
= O(|y|−n).

In the other direction, Matveev’s Theorem 2.2.14 implies

log |Λ| ≥ −c∗ log |y| log n.

Comparing both estimates, we get n < c∗∗, where c∗∗ depends only on a, b, c.
The following theorems give us explicit results.

Theorem 2.4.23 (Mignotte, [40])Assume that the exponentialDiophantine inequal-
ity

|axn − byn| ≤ c, a, b, c ∈ Z+, a �= b

has a solution in positive integers x, y with max{x, y} > 1. Then

n ≤ max

{

3 log(1.5|c/b|), 7400
log A

log(1 + (log A)/ log |a/b|)
}

, A = max{a, b, 3}.

Bennett obtained the following definitive result for c = ±1.

Theorem 2.4.24 (Bennett, [8]) For n ≥ 3, the equation

|axn − byn| = 1, a, b ∈ Z+

has at most one solution in positive integers x, y.

For more examples of applications of linear forms in logarithms we refer to
[25, 36] which are highly recommended for this purpose.
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