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Preface

Number theory is one of the oldest mathematical disciplines. Often enough number
theoretical problems are easy to understand but difficult to solve, typically only by
using advanced methods from other mathematical disciplines; a prominent example
is Fermat’s last theorem. This is probably one of the reasons why number theory is
considered to be such an attractive field that has intrigued mathematicians and math
lovers for over 2000 years.

The subdiscipline called Diophantine analysis may be defined as the combina-
tion of the theories of Diophantine approximation and Diophantine equations. In
both areas, the nature of numbers plays a central role. For instance, a celebrated
theorem of Klaus Roth (worth a Fields Medal) states that, roughly speaking,
algebraic numbers cannot be approximated by rationals too well (see
Theorem 1.4.21 in Chapter “Linear Forms in Logarithms”). As a consequence of
Roth’s theorem, one can show that certain cubic equations have only finitely many
integer solutions, e.g.

aX3 þ bY3 ¼ c

with arbitrary, but fixed nonzero integers a; b; c.
In July 2014, the number theory group of the Department of Mathematics at

Würzburg University organised an international summer school on Diophantine
analysis. In the frame of this event, about fifty participants, mostly Ph.D. students
from all over the world, but also a few local participants, and even undergraduate
students, learned in three courses about different topics from Diophantine analysis;
a fourth course gave in addition some historical background of some aspects of the
early research in this direction.

• Sanda Bujačić (University of Rijeka, Croatia) lectured on Linear Forms in
Logarithms. Starting with some classical Diophantine approximation theorems,
her course focuses on Alan Baker’s celebrated results from 1966 on effective
lower bounds for the absolute value of a nonzero linear form in logarithms of
algebraic numbers (another Fields Medal). His pathbreaking approach goes
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beyond the classical results and allows many interesting applications. In the
course notes, which is joint work with Alan Filipin (University of Zagreb,
Croatia), it is shown how to solve the system of two simultaneous Pellian
equations (a classical application due to Baker and Davenport), how to find all
repdigit Fibonacci numbers (a theorem by Florian Luca from 2000), how to
determine the bound of the number of perfect powers in a binary recurrence
sequence, etc.

• In the course of Simon Kristensen (Aarhus University, Denmark) on Metric
Diophantine Approximation—From Continued Fractions to Fractals, the clas-
sical Khintchine theorems on metric Diophantine approximation are considered
(by studying continued fractions by means of a dynamical system). After a crash
course in fractal geometry, the notes outline the major topics of recent research
as, e.g., Schmidt’s game, the question whether the Cantor middle third set
contains an algebraic irrational, and a discussion of badly approximable num-
bers. One of the highlights is the proof that the set of badly approximable fl for
which the pair ðfi;flÞ satisfies the Littlewood conjecture has Hausdorff dimen-
sion one; here, fi may even be substituted by any countable set of badly
approximable numbers (which is a new result due to Haynes, Jensen, and
Kristensen).

• Tapani Matala-aho (University of Oulu, Finland) examines in A Geometric Face
of Diophantine Analysis the so-called geometry of numbers. Building on the
notions of convex sets and lattices as well as Hermann Minkowski’s funda-
mental theorems, classical Diophantine inequalities are deduced. Also, some
Diophantine inequalities over complex numbers are discussed. Then, he presents
some variations of Siegel’s lemma over rational and imaginary quadratic fields
supplementing Enrico Bombieri’s works. Moreover, building on Wolfgang
Schmidt’s work, it is proved that the heights of a rational subspace and its
orthogonal complement are equal (by the use of Grassmann algebras). His
lectures end with a proof of the Bombieri–Vaaler version of Siegel’s lemma.

• In her course Historical Face of Number Theory(ists) at the Turn of the 19th
Century, Nicola Oswald (University of Würzburg, Germany) describes the lives
and mathematical works of the famous Adolf Hurwitz and his unknown elder
brother Julius around the turn of the nineteenth/twentieth century. A careful
discussion of the mathematical diaries of Adolf Hurwitz (or at least some of its
aspects) provides an understanding of his mathematics on behalf of historical
documents; a particular emphasis is put on his relation to David Hilbert.
Moreover, Julius Hurwitz’ work on complex continued fractions is investigated
and further analysed with modern tools from ergodic theory.

This volume presents the lecture notes of these four summer school courses
(some of them with additional material). Each of these notes serves as an essentially
self-contained introduction. (Of course, a background in number theory might be
useful.) Altogether, the reader gets a thorough impression of Diophantine analysis
by its central results, relevant applications, and big open problems. The notes are
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complemented with many references and an extensive register which makes it easy
to navigate through the book.

The authors and the editor are grateful to the anonymous referees for their
valuable suggestions and remarks that have improved the book. They also thank
Springer for making the collection of lecture notes a book and, in particular,
Clemens Heine for his encouragement.

When turning the pages, it is impressive to see how one can approach frontiers
of current research in this direction of number theory quickly by only elementary
and basic analytic methods. We wish to take much pleasure in reading.

Würzburg, Germany Jörn Steuding
July 2016
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Linear Forms in Logarithms

Sanda Bujačić and Alan Filipin

2000 Mathematics Subject Classification 11J13 · 11J81 · 11J86 · 11K60

Introduction

These lecture notes cover the course Linear Forms in Logarithms created for the
Summer School Diophantine Analysis organized in Würzburg, Germany in 2014.
The notes intend to be an introduction to Diophantine approximation and linear
forms in logarithms.

We begin with the theory of Diophantine approximation which has an extremely
important application in the study of Diophantine equations. One of the main topics
is the question how well a given real number α can be approximated by rational
numbers. By placing certain constraints on the rational numbers used in the approxi-
mation, we are able to classify the real number α as either a rational or an irrational
number, or as an algebraic or a transcendental number. Diophantine approximation
and transcendence theory are very close areas that share many theorems andmethods
which will be useful in the second part of these lecture notes.

There,we introduce linear forms in logarithms and provide lower bounds for linear
forms in logarithms of algebraic numbers due to Alan Baker, one of the most famous
mathematician in this field of mathematics. Baker was awarded the Fields Medal
in 1970 because of his profound and significant contributions to number theory. To
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2 S. Bujačić and A. Filipin

illustrate the importance of his machinery, many useful and interesting applications
of the introduced concepts are presented.

1 Diophantine Approximation

Rational numbers are in every interval of the real line, no matter how small that
interval is because the set of rational numbers is dense in the set of real numbers. As
a consequence, for any given real number α, we are able to find a rational number
as close as we like to α.

Approximating a real number by rational numbers helps us to better understand the
set of real numbers and gives us a surprising insight in the properties of real numbers.
By placing certain constraints on the rational numbers used in the approximation of
the real number α, properties of the real number α can be observed such that classify
it as either a rational or an irrational number, or as an algebraic or a transcendental
number.

As rational numbers approach a fixed real number, their denominators grow arbi-
trarily large. We study how closely real numbers can be approximated by rational
numbers that have a fixed bound on the growth of their denominators.

1.1 Dirichlet’s Theorem

One of the main questions in Diophantine approximation is whether there exists any
rational number p

q satisfying the inequality

∣
∣
∣
∣

a

b
− p

q

∣
∣
∣
∣
<

1

q2
.

The affirmative answer follows from the fundamental result due to Dirichlet1 on
rational approximation of real numbers.

Theorem 1.1.1 (Dirichlet 1842) Let α be a real number and n a positive integer.
There exists a rational number p

q , 0 < q ≤ n, satisfying the inequality

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

(n + 1)q
. (1.1)

Proof For n = 1, p
q = �α�

1 or p
q = �α�+1

1 satisfies

1Peter Gustav Lejeune Dirichlet (1805–1859), a German mathematician.
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∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

2
,

where � � stands for floor function. For n ≥ 2, we consider n + 2 elements

0, α − �α�, 2α − �2α�, . . . , nα − �nα�, 1,

of the interval [0, 1].
Assume first that these elements are distinct as they are in the caseα is an irrational

number. The interval [0, 1] can be subdivided into n + 1 subintervals of the length
1

n+1 and the pigeonhole principle guarantees that two of these numbers differ in
absolute value by at most 1

n+1 . If one of the numbers is 0 and the other is iα − �iα�,
then i ≤ n, |iα − �iα�| < 1

n+1 and

∣
∣
∣
∣
α − �iα�

i

∣
∣
∣
∣
≤ 1

(n + 1)i
.

After �iα�
i is reduced to lowest terms p

q , the rational number p
q satisfies (1.1). Similarly,

if the two numbers in question are jα − � jα� and 1, then j ≤ n and reducing � jα�+1
j

to lowest terms p
q , we have that p

q satisfies (1.1). Finally, if the two numbers are
iα − �iα� and jα − � jα� with i < j , then

| jα − � jα� − (iα − �iα�)| = |( j − i)α − (� jα� − �iα�)| ≤ 1

n + 1
.

Consequently, j − i < n and

∣
∣
∣
∣
α − � jα� − �iα�

j − i

∣
∣
∣
∣
≤ 1

(n + 1)( j − i)
.

Thus, after � jα�−�iα�
j−i is reduced to lowest terms p

q , the rational number p
q satisfies

(1.1).
If the n + 2 numbers from the beginning are not distinct, then α itself is a rational

number with denominator at most n. In this case, there exist i < j so that α is equal
to one of the following fractions

�iα�
i

,
� jα� − �iα�

j − i

reduced to lowest terms. If the numbers are not distinct, the required inequality (1.1)
is trivially satisfied by α itself.

Corollary 1.1.2 For α irrational, there exist infinitely many relatively prime num-
bers p, q such that
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∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

q2
. (1.2)

Proof Suppose there are only finitely many rationals

p1
q1

,
p2
q2

, . . . ,
pk
qk

satisfying (1.2). In this case,
∣
∣
∣
∣
α − pi

qi

∣
∣
∣
∣
> 0

for 1 ≤ i ≤ k. Consequently, since α is irrational, there exists a positive integer n
such that the inequality

∣
∣
∣
∣
α − pi

qi

∣
∣
∣
∣
>

1

n + 1

holds for 1 ≤ i ≤ k. However, this contradicts Dirichlet’s Theorem 1.1.1 which
asserts that, for this n, there exists a rational number p

q with q ≤ n such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

(n + 1)q
<

1

q2
.

Remark 1.1.3 Corollary1.1.2 does not hold for α rational. Assume α = u
v
. For p

q �=
α, we have ∣

∣
∣
∣
α − p

q

∣
∣
∣
∣
=

∣
∣
∣
∣

u

v
− p

q

∣
∣
∣
∣
≥ 1

vq
,

so (1.1) implies q < v, hence the inequality (1.1) can be satisfied only for finitely
many relatively prime integers p, q.

Corollary 1.1.4 A real number α is irrational if and only if there are infinitely many
rational numbers p

q such that
∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2
.

A proof can be found in [44]. It appears that irrational numbers can be distinguished
from rational numbers by the fact that they can be approximated by infinitely many
rational numbers p

q with an error less than 1
q2 .

We may ask for the best possible value C > 0 such that the statement of the
Corollary 1.1.4 holds with 1

Cq2 in place of 1
q2 ? The answer will be given in Hurwitz’s2

Theorem 1.3.5 which characterizes the best Dirichlet-type inequality.

2Adolf Hurwitz (1859–1919), a German mathematician.
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1.2 Continued Fractions

Definition 1.2.1 • An infinite generalized continued fraction is an expression of
the form

a0 + b1

a1 + b2

a2 + b3
...

, (1.3)

where a0, a1, a2, . . . and b1, b2, . . . are either rational, real or complex numbers
or functions of such variables.

• For bi = 1, i ∈ N, (1.3) is called an infinite simple continued fraction. Its abbre-
viated notation is

[a0, a1, a2, . . . ].

• An expression

[a0, a1, . . . , an] = a0 + 1

a1 + 1

a2 + · · · + 1

an−1 + 1

an

is called a finite simple continued fraction with ai ≥ 1, i = 1, . . . , n and an ≥ 2
integers that are called partial quotients. The rational numbers

p0
q0

= [a0], p1
q1

= [a0, a1], p2
q2

= [a0, a1, a2], . . . ,
pn
qn

= [a0, a1, a2, . . . , an]

are called the convergents of p
q and n is its length.

Remark 1.2.2 We set p−2 := 0, p−1 := 1, q−2 := 1, q−1 = 0.

Lemma 1.2.3 (Law of formation of the convergents) For n ≥ 0,

pn = an pn−1 + pn−2, qn = anqn−1 + qn−2. (1.4)

Proof The equalities (1.4) are satisfied for n = 0. We assume that (1.4) is satisfied
for n − 1, i.e.,

pn−1 = an−1 pn−2 + pn−3, qn−1 = an−1qn−2 + qn−3.

Then we get
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pn
qn

= [a0, a1, . . . , an−1 + 1/an]

= (an−1 + 1
an

)pn−1 + pn−2

(an−1 + 1
an

)qn−1 + qn−2

= (anan−1 + 1)pn−2 + an pn−1

(anan−1 + 1)qn−2 + anqn−1
= an pn−1 + pn−2

anqn−1 + qn−2
.

Lemma 1.2.4 For n ≥ −1,

qn pn−1 − pnqn−1 = (−1)n. (1.5)

Proof Let n = −1. We observe that q−1 p−2 − p−1q−2 = (−1)−1. We assume that
(1.5) is satisfied for n − 1. Using Lemma 1.2.3, we find

qn pn−1 − pnqn−1 = (anqn−1 + qn−2)pn−1 − (an pn−1 + pn−2)qn−1 =
= −(qn−1 pn−2 − pn−1qn−2) = (−1)n.

Lemma 1.2.5 For n ≥ 0,

qn pn−2 − pnqn−2 = (−1)n−1an.

Proof It follows from Lemmas 1.2.3 and 1.2.4 that

qn pn−2 − pnqn−2 = (anqn−1 + qn−2)pn−2 − (an pn−1 + pn−2)qn−2 =
= an(qn−1 pn−2 − pn−1qn−2) = (−1)n−1an.

Theorem 1.2.6 The convergents pk
qk

satisfy the following inequalities:

(i) p0
q0

<
p2
q2

<
p4
q4

< . . . ,

(ii) p1
q1

>
p3
q3

>
p5
q5

> . . . ,

(iii) for n even and m odd,
pn
qn

<
pm
qm

.

Proof Using Lemma 1.2.5, we find

pn−2

qn−2
− pn

qn
= (−1)n−1an

qn−2qn
.

For n ≥ 2 and n even, we obtain pn−2

qn−2
<

pn
qn
, while pn−2

qn−2
>

pn
qn
, for n ≥ 3 and n odd.
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It remains to prove the last inequality. Let n < m. Since pn
qn

≤ pm−1

qm−1
, it is sufficient

to prove pm−1

qm−1
<

pm
qm

, which is satisfied by Lemma 1.2.4,

qm pm−1 − pmqm−1 = (−1)m = −1 < 0.

The proof for n > m follows analogously.

Lemma 1.2.7 For an integer a0 and positive integers a1, a2, . . . , an, the continued
fraction [a0, a1, . . . , an] is rational. Conversely, for every rational number u

v
there

exist n ≥ 0, an integer a0 and positive integers a1, a2, . . . , an such that

u

v
= [a0, a1, . . . , an].

For u
v

≥ 1, we have a0 ≥ 1.

Proof Using Lemma 1.2.3, we find

[a0, a1, . . . , an] = [a0, a1, . . . , ak−1, [ak, ak+1, . . . , an]] = pk−1rk + pk−2

qk−1rk + qk−2
,

where rk := [ak, ak+1, . . . , an].
Conversely, let v > 0 and gcd(u, v) = 1. For v = 1, clearly u

v
∈ Z, hence, setting

a0 = u
v
, we obtain u

v
= [a0].

If v > 1, then there exist q, r ∈ Z such that u = vq + r, 1 ≤ r < v. We assume
v
r = [a1, . . . , an]. Since v

r > 1, we conclude that a1, . . . , an ∈ N. Hence,

u

v
= q + 1

v
r

= q + 1

[a1, . . . , an] = [q, a1, . . . , an],

where a0 = q. Clearly, if u
v

≥ 1, then a0 = q ≥ 1.

Remark 1.2.8 There is a one-to-one correspondence between rational numbers and
finite simple continued fractions.

Remark 1.2.9 Let u
v
be rational, gcd(u, v) = 1 and u > v > 0. It follows from

Euclid’s algorithm that

u = vq1 + r1, v = r1q2 + r2, . . . , r j−1 = r jq j+1,

hence
u

v
= q1 + 1

c
r1

= q1 + 1

q2 + 1
r1
r2

= · · · = [q1, q2, . . . , q j+1].
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Example 1.2.10

7

11
= 0 + 1

11

7

= 0 + 1

1 + 4

7

= 0 + 1

1 + 1

7

4

=

= 0 + 1

1 + 1

1 + 3

4

= 0 + 1

1 + 1

1 + 1

4

3

= 0 + 1

1 + 1

1 + 1

1 + 1

3

,

which can be written as
7

11
= [0, 1, 1, 1, 3].

Example 1.2.11 The number e is irrational.
The proof goes as follows: if we assume that e is rational, then it can be represented
as

e =
∞

∑

i=0

1

i ! = u

v
.

Let n be an integer such that n > v. We define p
q = ∑n

i=0
1
i ! , with q = n!. Using

Remark 1.2.9, we get

1

v
≤ q

∣
∣
∣
∣
e − p

q

∣
∣
∣
∣
= n!

∞
∑

j=1

1

(n + j)!

< n!
∞

∑

k=0

1

(n + 1)!
1

(n + 1)k
≤ 1

n + 1

1

1 − 1
n+1

= 1

n
,

a contradiction to n > v.

Lemma 1.2.12 For every integer r , there exist exactly two different simple continued
fraction expansions representingr , namely r = [r ]andr = [r − 1, 1]. For r rational,
there exist exactly two different simple continued fraction expansions representing
r , namely [a0, a1, . . . , an] with an ≥ 2 and [a0, a1, . . . , an−1, an − 1, 1].
Proof Every r ∈ Q can be represented as a finite simple continued fraction, namely

r = [a0, a1, . . . , an], a0 ∈ Z, a1, a2, . . . , an ∈ N.

If r ∈ Z, then n = 0 and r = [a0] = a0, resp. r = [r ]. Otherwise, when n > 0, then
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r = a0 + 1

[a1, . . . , an] ,

with [a1, . . . , an] ≥ 1. In view of r − a0 ∈ Z, we conclude that [a1, . . . , an] = 1.
Since a1 ≥ 1, we get a1 = 1, n = 1, so a0 = r − 1 and r = [r − 1, 1].

Now consider r = u
v
, gcd(u, v) = 1, v > 0. We use induction on v in order

to prove the second claim. The case when v = 1 has already been considered.
If v > 1, we get u

v
= a0 + u1

v
, where u1 < v. Let α1 := u1

v
. Using the hypothe-

sis of the induction, we conclude that α1 has two continued fraction expansions
[a1, a2, . . . , an−1, an], an ≥ 2 and [a1, a2, . . . , an − 1, 1].
Lemma 1.2.13 Let a0 be an integer and a1, a2, . . . , be positive integers. Then,
the limit limn→∞ pn

qn
exists and its value is irrational. Conversely, for α irrational,

there exist a unique integer a0 and unique positive integers a1, a2, . . . such that
α = limn→∞ pn

qn
.

Proof In view of p0
q0

<
p2
q2

< · · · <
p1
q1
, it is clear that both limits

lim
n→∞
n even

pn
qn

and lim
n→∞
n odd

pn
qn

exist, and it is easily shown that both limits are equal. We put α = limn→∞ pn
qn

and
compute

∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
<

∣
∣
∣
∣

pn+1

qn+1
− pn

qn

∣
∣
∣
∣
= 1

qnqn+1
<

1

q2
n

.

Since pn, qn are relatively prime, there exist infinitely many rational numbers p
q such

that |α − p
q | < 1

q2 , so α is irrational.

Conversely, let α be irrational, a0 = �α�, and let α1 := a0 + 1
α1

. We notice that

α1 > 1 is irrational. For k ≥ 1 let ak = �αk� and αk = ak + 1
αk+1

. We observe that
ak ≥ 1, αk+1 > 1, and αk+1 is irrational. Our goal is to show

α = [a0, a1, a2, . . . ].

Using Lemmas 1.2.3 and 1.2.4 with α = [a0, a1, . . . ,αn+1], we find

qnα − pn = qn
αn+1 pn + pn−1

αn+1qn + qn−1
− pn

= qn(αn+1 pn + pn−1) − pn(αn+1qn + qn−1)

αn+1qn + qn−1
= (−1)n

αn+1qn + qn−1
.

Hence, ∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
<

1

q2
n

, (1.6)
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which implies limn→∞ pn
qn

= α. Finally, it remains to prove that the integers
a0, a1 ≥ 1, a2 ≥ 1, . . . are uniquely determined. In view of

α = [a0, a1, a2, . . . ] = a0 + 1

[a1, a2, . . . ] ,

and 0 ≤ α − a0 < 1, we find a0 = �α� which implies that a0 is unique and α1 =
[a1, a2, . . . ] is uniquely determined by α. Because a1 = �α1�, a1 is unique, etc. This
proves the lemma.

1.3 Hurwitz’s Theorem

In the sequel we assume α to be irrational. According to (1.6), we conclude that each
convergent of α satisfies the inequality

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

q2
.

Vahlen3 and Borel4 have proved the following theorems that deal with approximation
properties of two and three consecutive convergents, respectively.

Theorem 1.3.1 (Vahlen 1895, [48]) Let α be an irrational number and denote by
pn−1

qn−1
,
pn
qn

two consecutive convergents of α. Then, at least one of them satisfies

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

2q2
.

Proof We observe that

∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
+

∣
∣
∣
∣
α − pn−1

qn−1

∣
∣
∣
∣
=

∣
∣
∣
∣

pn
qn

− pn−1

qn−1

∣
∣
∣
∣
= 1

qnqn−1
<

1

2q2
n

+ 1

2q2
n−1

.

Thus, ∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
<

1

2q2
n

or

∣
∣
∣
∣
α − pn−1

qn−1

∣
∣
∣
∣
<

1

2q2
n−1

.

Theorem 1.3.2 (Borel 1903, [9]) Let α be an irrational number and denote by
pn−1

qn−1
,
pn
qn

,
pn+1

qn+1
three consecutive convergents of α. Then at least one of them satisfies

the inequality ∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1√
5q2

.

3Theodor Vahlen (1869–1945), an Austrian mathematician.
4Émile Borel (1871–1956), a French mathematician.
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Proof Letα = [a0, a1, . . . ], αi = [ai , ai+1, . . . ], βi = qi−2

qi−1
, q ≥ 1. It is not difficult

to deduce that ∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
= 1

q2
n (αn+1 + βn+1)

.

We show that there does not exist a positive integer n satisfying

αi + βi <
√
5 (1.7)

for i = n − 1, n, n + 1. Our reasoning is indirect. We assume that (1.7) is satisfied
for i = n − 1, n. It follows from

αn−1 = an−1 + 1

αn
,

1

βn
= qn−1

qn−2
= an−1 + qn−3

qn−2
= an−1 + βn−1

that
1

αn
+ 1

βn
= αn−1 + βn−1 ≤ √

5.

Hence, 1 = αn · 1
αn

≤ (
√
5 − βn)(

√
5 − 1

βn
) or, equivalently, β2

n − √
5βn + 1 ≤ 0

which implies βn ≥
√
5−1
2 . For βn rational, we conclude that βn >

√
5−1
2 . Now, if

(1.7) is satisfied for i = n, n + 1, then again βn+1 >
√
5−1
2 , so we deduce

1 ≤ an = qn
qn−1

− qn−2

qn−1
= 1

βn+1
− βn <

2√
5 − 1

−
√
5 − 1

2
< 1,

the desired contradiction.

Legendre5 provedwith the following important theorem a converse to the previous
results.

Theorem 1.3.3 (Legendre, [32]) Let p, q be integers such that q ≥ 1 and

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

2q2
.

Then p
q is a convergent of α.

Proof Let α − p
q = εν

q2 with 0 < ν < 1
2 and ε = ±1. In view of Lemma 1.2.12 there

exists a simple continued fraction

p

q
= [b0, b1, . . . , bn−1]

5Adrien-Marie Legendre (1752–1833), a French matheamtician.
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satisfying (−1)n−1 = ε. We define ω by

α = ω pn−1 + pn−2

ωqn−1 + qn−2
,

such that α = [b0, b1, . . . , bn−1,ω]. Hence,

εν

q2
= α − p

q
= 1

qn−1
(αqn−1 − pn−1) = 1

qn−1
· (−1)n−1

ωqn−1 + qn−2
,

giving ν = qn−1

ωqn−1+qn−2
and ω = 1

ν
− qn−2

qn−1
> 1. Next we consider the finite or infinite

continued fraction of ω,
ω = [bn, bn+1, bn+2, . . . ].

Since ω > 1, we conclude b j ∈ N, j = n, n + 1, n + 2, . . . . Consequently,

α = [b0, b1, . . . , bn−1, bn, bn+1, . . . ]

which is the continued fraction expansion for α and

p

q
= pn−1

qn−1
= [b0, b1, . . . , bn−1]

is indeed a convergent to α.

Lemma 1.3.4 Assume the continued fraction expansion for α is given by

α = [a0, a1, . . . , aN , 1, 1, . . . ]. (1.8)

Then

lim
n→∞ q2

n

∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
= 1√

5
.

A proof can be found in [45].

Theorem 1.3.5 (Hurwitz, [31]) Let α be an irrational number.

(i) Then there are infinitely many rational numbers p
q such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1√
5q2

.

(ii) If
√
5 is replaced by C >

√
5, then there are irrational numbers α for which

statement (i) does not hold.

Proof Claim (i) follows directly from Theorem 1.3.2, while claim (ii) follows from
Theorem 1.3.3 and Lemma 1.3.4. Namely, if α is irrational and of the form (1.8),
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then according to Theorem 1.3.3, all solutions of |α − p
q | < 1

Cq2 withC >
√
5 can be

found among the convergents to α, however, in view of Lemma 1.3.4 this inequality
is satisfied by only finitely many convergents to α.

Definition 1.3.6 An irrational number α is said to be a quadratic irrational number
if it is the solution of some quadratic equation with rational coefficients.

Definition 1.3.7 The continued fraction expansion [a0, a1, . . . ] of a real number α
is said to be eventually periodic if there exist integers m ≥ 0 and h > 0 such that

an = an+h, for all n ≥ m.

In this case the continued fraction expansion is denoted by

[a0, a1, . . . , am−1, am, am+1, . . . , am+h−1].

The continued fraction expansion is said to be periodic if it is eventually periodic
with m = 0.

Euler6 and Lagrange7 have proved an important characterization of quadratic
irrationals in terms of their continued fraction expansion:

Theorem 1.3.8 (Euler 1737; Lagrange 1770) A real number α is quadratic irra-
tional if and only if its continued fraction expansion is eventually periodic.

A proof can be found in [46].

Theorem 1.3.9 Let d > 1 be an integer which is not a perfect square. Then the
continued fraction expansion of

√
d is of the form

[a0, a1, . . . , an−1, 2a0]

with a0 = �√d�, a1 = an−1, a2 = an−2, . . . .

A proof can be found in [41].

Remark 1.3.10 Let E > 1 be an integer which is not a perfect square. Let

α0 = s0 + √
E

t0

be a quadratic irrational with s0, t0 ∈ Z, t0 �= 0 such that t0 | (E − s20 ). Then the
partial quotients ai are given by the recursion

ai = �√αi�, si+1 = ai ti − si , ti+1 = E − s2i+1

ti
, αi+1 =

⌊ si+1 + √
E

ti+1

⌋

.

6Leonhard Euler (1707–1783), a Swiss mathematician.
7Joseph-Louis Lagrange (1736–1813), an Italian-French mathematician.
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Example 1.3.11 For d ∈ N,

√

2d(2d − 1) = [2d − 1; 2, 4d − 2],
√

2d(8d − 1) = [4d − 1; 1, 2, 1, 8d − 2].

Definition 1.3.12 An irrational number α is said to be badly approximable if there
is a real number c(α) > 0, depending only on α, such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
>

c(α)

q2

for all rational numbers p
q .

Proposition 1.3.13 If an irrational number α is badly approximable, then for every
ε > 0, there are only finitely many rational numbers p

q satisfying

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2+ε
.

Proof Let c(α) be a positive real number such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
>

c(α)

q2

for all rational numbers p
q . Now suppose that there are infinitely many rational num-

bers p
q satisfying

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2+ε
.

Consequently, there exists a rational number p1
q1

for which the inequality

qε
1 >

1

c(α)

holds. It follows that ∣
∣
∣
∣
α − p1

q1

∣
∣
∣
∣
≤ 1

q2
1q

ε
1

<
c(α)

q2
1

,

which is a contradiction.

Corollary 1.3.14 For quadratic irrational numbers α and any ε > 0, there are only
finitely many rational numbers p

q satisfying
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∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2+ε
.

Aproof can be found in [44]. Hence, the exponent in the upper bound 1
q2 inDirichlet’s

Theorem 1.1.1 cannot be improved for real quadratic irrational numbers.
More on Diophantine approximation can be found in [13, 19, 20, 44, 45].

1.4 Algebraic and Transcendental Numbers

1.4.1 Basic Theorems and Definitions

Definition 1.4.1 Givenfields F and E such that F ⊆ E , then E is called an extension
of F , denoted by F ≤ E or E/F. The dimension of the extension is called the degree
of the extension and it is abbreviated by [E : F]. If [E : F] = n < ∞, E is said to
be a finite extension of F .

Remark 1.4.2 It can be shown that, if f is a nonconstant polynomial over the field
F , then there is an extension E of the field F and α ∈ E such that

f (α) = 0.

Hence, the field extension of the initial field F is often obtained from the field F by
adjoining a root α of a nonconstant polynomial f over the field F ; in this case the
minimal field containing α and F is denoted by F(α).

Definition 1.4.3 A real number α is called algebraic over Q if it is a root of a
polynomial equationwith coefficients inQ.A real number is said to be transcendental
if it is not algebraic.

Definition 1.4.4 The minimal polynomial p of an algebraic number α overQ is the
uniquely determined irreducible monic polynomial of minimal degree with rational
coefficients satisfying

p(α) = 0.

Elements that are algebraic overQ and have the same minimal polynomial are called
conjugates over Q.

Definition 1.4.5 Let α be an algebraic number. Then the degree of α is the degree
of the minimal polynomial of α over Q.

Remark 1.4.6 If
Xd + rd−1X

d−1 + · · · + r1X + r0

is the minimal polynomial of an algebraic number α over Q, then multiplication by
the least common multiple of the denominators of the coefficients ri , i = 0, . . . ,
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d − 1, produces a unique polynomial P with P(α) = 0 having the form

P(X) = ad X
d + ad−1X

d−1 + · · · + a1X + a0,

where the coefficients ai , i = 0, . . . , d, are relatively prime integers and ad > 0.
We will call this polynomial the minimal polynomial of α over Z.

Example 1.4.7 A real number is rational if and only if it is an algebraic number of
degree 1.

Example 1.4.8 We shall show that

x = 10
2
3 − 1√−3

is an algebraic number.

To see that, we write
√−3x + 1 = 102/3 and get (

√−3x + 1)3 = 100. Expanding
the left-hand side, it follows that

3
√−3x3 + 9x2 − 3

√−3x + 99 = 0.

Dividing by 3
√−3, we get

x3 − √−3x2 − x − 11
√−3 = 0.

From this we deduce the minimal polynomial of x as

P(x) =
(

(x3 − x) − √−3(x2 + 11)
)(

(x3 − x) + √−3(x2 + 11)
)

=
= x6 + x4 + 67x2 + 363.

1.4.2 Liouville’s Theorem

The main task in Diophantine approximation is to figure out how well a real number
α can be approximated by rational numbers. In view of this problem, as we have
mentioned earlier, a rational number p

q is considered to be a “good” approximation
of a real number α if the absolute value of the difference between p

q and α may not
decrease when p

q is replaced by another rational number with a smaller denominator.
This problem was solved during the 18th century by means of continued fractions.

Knowing the “best” approximation of a given number, the main problem is to find
sharp upper and lower bounds of the mentioned difference, expressed as a function
of the denominator.

It appears that these bounds depend on the nature of the real numbers to be
approximated: the lower bound for the approximation of a rational number by another
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rational number is larger than the lower bound for algebraic numbers, which is itself
larger than the lower bound for all real numbers. Thus, a real number that may be
better approximated than an algebraic number is certainly a transcendental number.
This statement had been proved by Liouville8 in 1844, and it produced the first
explicit transcendental numbers. The later proofs on the transcendency of π and e
were obtained by a similar idea.

Theorem 1.4.9 (Liouville 1844) Let α be a real algebraic number of degree d ≥ 2.
Then there exists a constant c(α) > 0, depending only on α, such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α)

qd

for all rational numbers p
q .

There are a few ways of proving Liouville’s Theorem 1.4.9: one can be found in
[12]; a second, and maybe the most familiar one, uses the mean value theorem, an
interesting variant concerning the constant c(α) is given in [45].

Corollary 1.4.10 Letα be a real algebraic number of degree d ≥ 2. For every δ > 0,
there are only finitely many rational numbers p

q satisfying the inequality

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

qd+δ
.

A proof can be found in [44].
We observe that the denominators of rational numbers which are getting closer

and closer to a fixed real number α grow arbitrarily large. Liouville’s Theorem
1.4.9 proves that this is indeed the case for real algebraic numbers α. For example,
Liouville’s Theorem 1.4.9 implies that, if p

q is within a distance 1
1010 of α, then

qd ≥ 1010c(α).

Remark 1.4.11 Consider the rational numbers p
q and p′

q ′ satisfying

q

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
< q ′

∣
∣
∣
∣
α − p′

q ′

∣
∣
∣
∣
.

The theory of continued fractions provides an efficient algorithm for constructing
the best approximations to α in this case.

Liouville’s Theorem 1.4.9 can be used to find transcendental numbers explicitly.
His construction of transcendental numbers (1844) predates Cantor’s9 proof (1874)
of their existence.

8Joseph Liouville (1809–1882), a French mathematician.
9Georg Ferdinand Ludwig Philipp Cantor (1845–1918), a German mathematician.
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Example 1.4.12 Let

α =
∞

∑

n=1

1

10n! = 0.1100010000000000000000001000....

The digit 1 appears in the 1st, 2nd, 6th, 24th, ..., (n!)th,... decimal place. For k ≥ 1, let
q(k) = 10k! and p(k) = 10k!

∑k
n=1

1
10n! . We notice that p(k) and q(k) are relatively

prime integers, pk
qk

= ∑k
n=1

1
10n! and

∣
∣
∣
∣
α − p(k)

q(k)

∣
∣
∣
∣
=

∞
∑

n=k+1

1

10n! .

Comparing with a geometric series, we find

∞
∑

n=k+1

1

10n! <
1

10(k+1)!

∞
∑

n=0

1

10n
= 10

9

1

q(k)k+1
,

and ∣
∣
∣
∣
α − p(k)

q(k)

∣
∣
∣
∣
<

10
9

q(k)k+1
.

Finally, we observe that α does not satisfy Liouville’s Theorem 1.4.9. It follows
from the calculations above that for any c > 0 and any d > 0, selecting k such that
10
9 < c · q(k)k+1−d , leads to

∣
∣
∣
∣
α − p(k)

q(k)

∣
∣
∣
∣
<

c

q(k)d

for large k. Thus, α must be a transcendental number.

In 1873, Charles Hermite10 proved that e is transcendental and nine years later
Ferdinand von Lindemann11 proved the transcendence of π. Hermite even showed
that ea is transcendental when a is algebraic and nonzero. This approach was gener-
alized by Weierstrass12 to the Lindemann-Weierstrass theorem.

Theorem 1.4.13 (Hermite) e is transcendental.

A proof can be found in [4, 28].

10Charles Hermite (1822–1901), a French mathematician.
11Ferdinand von Lindemann (1852–1939), a German mathematician.
12Karl Weierstrass (1815–1897), a German mathematician.
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Theorem 1.4.14 (Lindemann) π is transcendental.

A proof can be found in [34].

Theorem 1.4.15 (Lindemann, Weierstrass) Let β1, . . . ,βn be nonzero algebraic
numbers and α1, . . . ,αn distinct algebraic numbers. Then

β1e
α1 + · · · + βne

αn �= 0.

A proof can be found in [4].

Corollary 1.4.16 If α is a nonzero algebraic integer, then

eα, sinα, cosα

are transcendental numbers.

Definition 1.4.17 A real numberα is a Liouville number if for every positive integer
n, there exist integers p, q with q > 1 such that

0 <

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

qn
.

Remark 1.4.18 It is known that π and e are not Liouville numbers (see [37, 41],
respectively). Mahler [38] found conditions on the expansion of a real number α
in base g that imply that α is transcendental but not a Liouville number. One such
example is the decimal number called Champernowne’s constant (Mahler’s number).

Theorem 1.4.19 All Liouville numbers are transcendental.

A proof can be found in [46].

Example 1.4.20 We show that

α =
∞

∑

j=0

1

2 j !

is a Liouville number.
First, we observe that the binary expansion of α has arbitrarily long strings of 0’s,

so it cannot be rational. Fix a positive integer n and consider p
q = ∑n

j=0
1
2 j ! with p

and q = 2 j ! > 1 integers. Then

0 <

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
=

∞
∑

j=n+1

1

2 j ! <

∞
∑

j=(n+1)!

1

2 j ! = 1

2(n+1)!−1
≤ 1

2n(n!) = 1

qn
,

which proves that α is indeed a Liouville number.
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1.4.3 Roth’s Theorem

It is natural to ask for stronger versions of Liouville’s Theorem 1.4.9. First improve-
ments were made by Thue,13 Siegel14 and Dyson.15 In 1955, K.F. Roth16 proved the
most far-reaching extension, now known as the Thue-Siegel-Roth theorem, but also
just as Roth’s theorem, for which he was awarded a Fields Medal in 1958. We quote
from Roth’s paper [43].

Theorem 1.4.21 (Roth 1955) Let α be a real algebraic number of degree d ≥ 2.
Then, for every δ > 0, the inequality

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2+δ

has only finitely many rational solutions p
q .

Acomplete proof ofRoth’sTheorem1.4.21 canbe found in [45], and for a generalized
version we refer to [30].

Corollary 1.4.22 Let α be an algebraic number of degree d ≥ 2. Then, for every
δ > 0, there is a constant c(α, δ) > 0 such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α, δ)

q2+δ

for all rational numbers p
q .

A proof can be found in [44]. Note that, if α is a real algebraic number of degree
2, then Liouville’s Theorem 1.4.9 is stronger than Roth’s Theorem 1.4.21. Whereas
the latter one gives the estimate

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α, δ)

q2+δ

for every δ > 0, Liouville’s Theorem 1.4.9 states that there is a constant c(α) > 0
such that ∣

∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α)

q2

for all rational numbers p
q . The analogous result for real algebraic numbers α of

degree ≥3, namely, that there is a constant c(α) > 0 such that an inequality of the
form

13Axel Thue (1863–1922), a Norwegian mathematician.
14Carl Ludwig Siegel (1896–1981), a German mathematician.
15Freeman Dyson (1923), an English-born American mathematician.
16Klaus Friedrich Roth (1925–2015), a German-born British mathematician.
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∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α)

q2

holds for all rational numbers p
q , is conjectured to be false for all such α. However,

this is not known at the present time to be false for a single real algebraic number.

Champernowne’s Constant

The transcendental numbers (except e and π) we have encountered so far are tran-
scendental because their decimal (or dyadic) expansions have infinitely many runs
of zeros whose lengths grow so quickly that the simple truncation of the decimal
(or dyadic) expansion before each run of zeros leads to amazingly good approxima-
tions. However, for most numbers a collection of best rational approximations is not
so easily detected from their decimal expansions. For most numbers even the best
rational approximations are not close enough to allow us to conclude transcendency.

As an illustration of the difficulty of finding suitable rational approximations in
general, we consider Champernowne’s constant (resp. Mahler’s17 number).

Definition 1.4.23 Champernowne’s constant (Mahler’s number)

M = 0.123456789101112131415161718192021 . . .

is18 the number obtained by concatenating the positive integers in base 10 and inter-
preting them as decimal digits to the right of a the decimal point.

Wemention amethodworked out in detail in [11]. Firstly, rational approximations
created by long runs of zeros are used, andM is truncated just after the 1 that appears
whenever a power of 10 is reached. Following this truncation procedure, we see that
the number of decimal digits before each run of zeros exceeds the length of that run
by far. For example, to get a run of just one zero,M has to be truncated after 10 digits,
i.e., 0.123456789. In general, if we want to come across a run of k zeros, we have to
travel on the order of k · 10k digits from the previous run of k − 1 zeros. Thus, this
truncation method cannot generate rational approximations having relatively small
denominators that are sufficiently close to M in order to prove transcendence via
Liouville’s Theorem 1.4.9.

Using amore clever construction to build rational approximations toM, described
in [11], one can find approximations all having relatively small denominators that
allow to apply Liouville’s Theorem 1.4.9 to derive the following partial result.

Theorem 1.4.24 (Mahler 1937) The number

M = 0.123456789101112131415161718192021 . . .

is either a transcendental number or an algebraic number of a degree at least 5.

17Kurt Mahler (1903–1988), a German/British mathematician.
18OEIS A033307.
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A proof can be found in [11, 38]. Theorem 1.4.24 does not guarantee thatM is tran-
scendental, however, it does imply thatM is neither a quadratic irrational, nor a cubic
or even quartic algebraic number. A more advanced analysis building on Liouville’s
Theorem 1.4.9 and Roth’s Theorem 1.4.21 would ensure that M is transcendental.

Theorem 1.4.25 (Mahler 1937) Champernowne’s constant M is a transcendental
number.

A proof can be found in [11, 38].

1.4.4 Thue’s Theorem

Thue’s work was already a major breakthrough for those kind of questions:

Theorem 1.4.26 (Thue) Let α be a real algebraic number of degree d. Then, for
every δ > 0, the inequality ∣

∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q
1
2 d+1+δ

has only finitely many rational solutions p
q .

A proof can be found in [44].

Corollary 1.4.27 Let α be a real algebraic number of degree d. Then, for every
δ > 0, there is a constant c(α, δ) > 0 such that

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≥ c(α, δ)

q
1
2 d+1+δ

for all rational numbers p
q .

A proof can be found in [44].
The proof of Roth’s Theorem 1.4.21 is immensely more complex than those for

the theorems of Liouville and Thue, even though, the framework is in essence the
same. The proof of Roth’s Theorem 1.4.21 is not effective, that is, as noted in [30],
for a given α, the proof does not provide a method that guarantees to find the finitely
many rational numbers p

q satisfying

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ 1

q2+δ
.

In other words, the proof does not give a lower bound on c(α, δ). It is with respect
to the work of Thue and Siegel that Roth’s Theorem 1.4.21 is often named the Thue-
Siegel-Roth theorem.

We give an application of the Thue–Siegel–Roth theorem to Diophantine equa-
tions. It follows from the fact that the approximation exponent of an algebraic
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number α of degree d ≥ 3 is strictly less than d. It appears that the full force of
Roth’s Theorem 1.4.21 is not needed, Thue’s Theorem 1.4.26 is sufficient.

Theorem 1.4.28 Let

ad X
d + ad−1X

d−1 + · · · + a1X + a0 ∈ Z[X ] (1.9)

be an irreducible polynomial overQ of degree d ≥ 3. Then, for every nonzero integer
m, the Diophantine equation

ad X
d + ad−1X

d−1Y + · · · + a1XY
d−1 + a0Y

d = m (1.10)

has only finitely many integer solutions (p, q).

A proof can be found in [47]. An equation of the form (1.10) is called a Thue
equation. It is interesting to note that equations of the form X2 − dY 2 = 1, where d
is a positive and a square free integer, the so called Pellian equations, have infinitely
many integer solutions, but equations of the form X3 − dY 3 = 1 with an arbitrary
integer d have at most finitely many integer solutions. The books [11, 46] provide
nice introductions to various aspects of Diophantine approximation, transcendence
theory and Diophantine equations.

2 Linear Forms in Logarithms

2.1 Introduction

Hilbert’s problems form a list of twenty-three major problems in mathematics col-
lected, proposed and published by D. Hilbert19 in 1900. The problems were all
unsolved at the time and several of them turned out to be very influential for 20th
century mathematics. Hilbert believed that newmachinery andmethods were needed
for solving these problems. He presented ten of them at the International Congress
of Mathematicians in Paris in 1900. The complete list of his 23 problems was pub-
lished later, most notably an English translation appeared 1902 in the Bulletin of the
American Mathematical Society.

Hilbert’s seventh problem, entitled “irrationality and transcendence of certain
numbers”, is dealing with the transcendence of the number

αβ

for algebraic α �= 0, 1 and irrational algebraic β. He believed that the proof of this
problemwould only be given inmore distant future than proofs of Riemann’s hypoth-
esis or Fermat’s last theorem. Even thoughHilbert wasmistaken, hewas correctwhen

19David Hilbert (1862–1943), a German mathematician.
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he expressed his belief that the proof of that problem would be extremely intriguing
and influential for 20th century mathematics. The seventh problem was solved inde-
pendently by Gelfond20 and Schneider21 in 1935. They proved that, if α1,α2 �= 0
are algebraic numbers such that logα1, logα2 are linearly independent overQ, then

β1 logα1 + β2 logα2 �= 0

for all algebraic numbers β1,β2.
In 1935, Gelfond found a lower bound for the absolute value of the linear form

Λ = β1 logα1 + β2 logα2 �= 0.

He proved that
log |Λ|  −h(Λ)κ,

where h(Λ) is the logarithmic height of the linear form Λ, κ > 5 and  is
Vinogradov’s notation for an inequality that is valid up to an unspecified constant
factor. Gelfond also noticed that generalization of his results would lead to a pow-
erful new analytic method by which mathematicians could prove a huge amount of
unsolved problems in number theory.

2.2 Basic Theorems and Definitions

In 1966 in 1967, A. Baker22 gave in his papers “Linear forms in logarithms of
algebraic numbers I, II, III”, [1–3] an effective lower bound on the absolute value
of a nonzero linear form in logarithms of algebraic numbers, that is, for a nonzero
expression of the form

n
∑

i=1

bi logαi ,

where α1, . . . ,αn are algebraic numbers and b1, . . . , bn are integers. This result ini-
tiated the era of effective resolution of Diophantine equations that can be reduced to
exponential ones (where the unknown variables are in the exponents). The general-
ization of the Gelfond-Schneider theorem was only the beginning of a new and very
interesting branch in number theory called Baker’s theory.

Definition 2.2.1 Let α1,α2, . . . ,αn be n (real or complex) numbers. We call
α1,α2, . . . ,αn linearly dependent over the rationals (equivalently integers) if there
are rational numbers (integer numbers) r1, r2, . . . , rn , not all zero, such that

20Alexander Osipovich Gelfond (1906–1968), a Soviet mathematician.
21Theodor Schneider (1911–1988), a German mathematician.
22Alan Baker (1939), an English mathematician.
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r1α1 + r2α2 + · · · + rnαn = 0.

If α1,α2, . . . ,αn are not linearly dependent over the rationals (integers), they are
linearly independent over the rationals (integers).

Definition 2.2.2 A linear form in logarithms of algebraic numbers is an expression
of the form

Λ = β0 + β1 logα1 + β2 logα2 + · · · + βn logαn,

where αi , i = 1, . . . , n and βi , i = 0, . . . , n are complex algebraic numbers and
log denotes any determination of the logarithm.

Remark 2.2.3 Weare interested in the degenerate casewhenβ0 = 0 andβi ∈ Z, i =
1, . . . , n. In the sequel we write βi = bi , i = 1, . . . , n and log always represents the
principal value of the complex logarithm.

A generalization of theGelfond-Schneider theorem to arbitrarilymany logarithms
was obtained by Baker in 1966 [1]. In 1970, he was awarded the Fields Medal for
his work in number theory, especially in the areas of transcendence and Diophantine
geometry. One of his major contributions is the following

Theorem 2.2.4 (Baker 1966) If α1,α2, . . . ,αn �= 0, 1 are algebraic numbers such
that logα1, logα2, . . . , logαn, 2πi are linearly independent over the rationals, then

β0 + β1 logα1 + · · · + βn logαn �= 0

for any algebraic numbers β0,β1, . . . ,βn that are not all zero.

A proof can be found in [1].

Remark 2.2.5 Linear independence over the rationals implies linear independence
over the algebraic numbers (see [4]).

Theorem 2.2.6 (Baker 1967) The number eβ0α
β1
1 . . . α

βn
n is transcendental for all

nonzero algebraic numbers αi , i = 1, . . . , n and βi , i = 0, . . . , n. Furthermore,
the number α

β1
1 . . . α

βn
n is transcendental if 1,β1, . . . ,βn are linearly independent

over the rationals.

A proof can be found in [3].

Definition 2.2.7 The height H of a rational number p
q is defined by

H

(
p

q

)

= max{|p|, |q|}.

Definition 2.2.8 LetL be a number field of the degree D,α ∈ L an algebraic number
of degree d | D and let

∑

0≤k≤d ak X
k be itsminimal polynomial inZ[X ]with ad �= 0.

We define the absolute logarithmic height h(α) by
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h(α) = 1

d

(

log(|ad |) +
∑

1≤i≤d

max{log(|αi |, 0)}
)

, (2.1)

where αi are the conjugates of α.

Example 2.2.9 The absolute logarithmic height h of a rational number p
q is

h

(
p

q

)

= logmax{|p|, |q|}.

Example 2.2.10 Let α = √
2. The absolute logarithmic height of α is

h(α) = h(
√
2) = 1

2

(

log |√2| + log | − √
2|

)

= 1

2
log 2.

Example 2.2.11 Let

α1 = 1√
3 + √

5
.

Before calculating the absolute logarithmic height of α1, we compute the degree of

the field extension Q

(
1√

3+√
5

)

over Q as

[

Q

(
1√

3 + √
5

)

: Q
]

= 4,

so the degree of the algebraic number α1 = 1√
3+√

5
over Q is 4.

The minimal polynomial of α1 is given by

Pα1(x) =
(

x − 1√
3 + √

5

) (

x − 1

−√
3 − √

5

)

×

×
(

x − 1

−√
3 + √

5

) (

x − 1√
3 − √

5

)

= x4 − 4x2 + 1

4
,

over the rationals, and
Pα1(x) = 4x4 − 16x2 + 1

over the integers. The conjugates of α1 are

α1 = 1√
3 + √

5
, α2 = 1

−√
3 + √

5
, α3 = 1√

3 − √
5
, α4 = 1

−√
3 − √

5
.

Hence, using (2.1), the absolute logarithmic height of α1 is equal to
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h(α1) = h

(
1√

3 + √
5

)

= 1

4

(

log |4| + max

{

log

∣
∣
∣
∣

1√
3 + √

5

∣
∣
∣
∣
, 0

}

+ max

{

log

∣
∣
∣
∣

1

−√
3 + √

5

∣
∣
∣
∣
, 0

}

+

+ max

{

log

∣
∣
∣
∣

1√
3 − √

5

∣
∣
∣
∣
, 0

}

+ max

{

log

∣
∣
∣
∣

1

−√
3 − √

5

∣
∣
∣
∣
, 0

})

= 0.689146.

Let L be a number field of degree D, α1,α2, . . . ,αn nonzero elements of L and
let b1, b2, . . . , bn be integers. We define

B = max{|b1|, |b2|, . . . , |bn|}

and
Λ∗ = αb1

1 αb2
2 . . . αbn

n − 1.

We wish to bound |Λ∗| from below, assuming that it is nonzero.
Since log(1 + x) is asymptotically equal to x as |x | tends to 0, our problemconsists

of finding a lower bound for the linear form in logarithms

Λ = b1 logα1 + · · · + bn logαn + bn+1 log(−1),

where bn+1 = 0 if L is real and |bn+1| ≤ nB, otherwise.

Definition 2.2.12 Let A1, A2, . . . , An be real numbers such that

A j ≥ h′(α j ) := max{Dh(α j ), | logα j |, 0.16}, 1 ≤ j ≤ n.

Then h′ is called the modified height with respect to the field L.

A. Baker, E.M. Matveev23 and G. Wüstholz24 proved the following theorems.

Theorem 2.2.13 (Baker–Wüstholz 1993) Assume that

Λ = b1 logα1 + · · · + bn logαn �= 0

for algebraic αi and integers bi , i = 1, . . . , n. Then

log |Λ| ≥ −18(n + 1)!nn+1(32D)n+2 log(2nD)h′′(α1) . . . h′′(αn) log B,

where D is the degree of the extensionQ(α1, . . . ,αn), B = max{|bi |, i = 1, . . . , n}
and h′′(α) = max{h(α), 1

D | log(α)|, 1
D }.

23Eugene Mikhailovich Mateveev (1955), a Russian mathematician.
24Gisbert Wüstholz (1948), a German mathematician.
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A proof can be found in [6].

Theorem 2.2.14 (Matveev 2001) Assume that Λ∗ is nonzero. Then

|Λ∗| > −3 · 30n+4(n + 1)5.5D2A1 . . . An(1 + log D)(1 + log nB).

If L is real, then

log |Λ∗| > −1.4 · 30n+3(n + 1)4.5D2A1 . . . An(1 + log D)(1 + log B).

Theorem 2.2.15 (Matveev 2001) Assume that

Λ = b1 logα1 + · · · + bn logαn �= 0

for algebraic αi and integers bi , i = 1, . . . , n. Then

log |Λ| > −2 · 30n+4(n + 1)6D2A1 . . . An(1 + log D)(1 + log B),

where B = max{|bi |, 1 ≤ i ≤ n}.
Proofs for Matveev’s theorems can be found in [39].

2.3 A Variation of Baker–Davenport Lemma

For a real number x we introduce the notation

||x || = min{|x − n| : n ∈ Z}

for the distance from x to the nearest integer.
The following result is a variation of a lemma of Baker and Davenport25 [5], it is

due to Dujella26 and Pethő,27 [22].

Lemma 2.3.1 Let N be a positive integer, p
q a convergent of the continued fraction

expansion of an irrational numberκ such that q > 6N and letμ be some real number.
Let ε = ||μq|| − N ||κq||. If ε > 0, then there is no solution to the inequality

0 < mκ − n + μ < AB−m

in positive integers m and n with

25Harold Davenport (1907–1969), an English mathematician.
26Andrej Dujella (1966), a Croatian mathematician.
27Attila Pethő (1950), a Hungarian mathematician.
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log(Aq/ε)

log B
≤ m ≤ N .

Proof Suppose that 0 ≤ m ≤ N . Then

m(κq − p) + mp − nq + μq < q AB−m .

Thus,

q AB−m > |μq − (nq − mp)| − m||κq|| ≥ ||μq|| − N ||κq|| := ε,

from where we deduce that

m <
log(Aq/ε)

log B
.

Remark 2.3.2 The method from Lemma 2.3.1 is called Baker–Davenport reduction.

Example 2.3.3 Find all nonnegative integers that satisfy

0 < |x1 log 2 − x2 log 3 + log 5| < 40e−X , (2.2)

where X = max{x1, x2} ≤ 1030.
Let

x1 log 2 − x2 log 3 + log 5 > 0.

First, we divide (2.2) by log 3, in order to get inequalities of the form as in Lemma
2.3.1. We get

0 < x1
log 2

log 3
− x2 + log 5

log 3
<

40

log 3
e−X .

Now, we define

κ = log 2

log 3
, μ = log 5

log 3
, A = 40

log 3
, B = e.

We observe that the inequalities A > 0, B > 1 are satisfied.
We shall try to find a convergent p

q of the continued fraction expansion of κ that
satisfies the condition q > 6N . Since κ does not have a finite or periodic continued
fraction expansion, we give only the first 25 terms of its continued fraction expansion:

κ = [0, 1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, 1, 15, 1, 9, 2, . . . ].

The first convergent p
q that satisfies the inequality q > 6N is

p

q
= 35270892459770675836042178475339

55903041915705101922536695520222
.



30 S. Bujačić and A. Filipin

We therefore obtain

||κq||N ≈ 0.007651391, ||μq|| ≈ 0.466714899.

Hence,
ε = ||μq|| − ||κq||N = 0.4590635078 > 0.

The given inequality does not have any solution in integers m such that

ln
(

40
log 3 · q · 1

0.4590635

)

ln e
≤ m ≤ N .

We observe that m ≤ 77.4746, so N = 77. Repeating Baker–Davenport reduction
onemore time, but nowwith N = 77, we find convergents p

q of the continued fraction
expansion of κ that satisfies the condition > 6N , N = 77. The first such convergent
is

p

q
= 306

485
.

We get
||κq||N ≈ 0.071647126, ||μq|| ≈ 0.487842451.

Finally, we obtain
ε ≈ 0.4161953257.

After applying Baker–Davenport reduction, we get m ≤ 10.6556, resp. N = 10.
Therefore, we can find pairs (x1, x2) satisfying the introduced inequalities. Using a
simple computer algorithm, it turns out that the following pairs

(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3), (4, 3)

satisfy (2.2).
For

x1 log 2 − x2 log 3 + log 5 < 0,

we have

0 < x2
log 3

log 2
− x1 − log 5

log 2
<

40

log 2
e−X .

We define

κ = log 3

log 2
, μ = − log 5

log 2
, A = 40

log 2
, B = e.

Then the inequalities A > 0, B > 1 are satisfied. The next step is to find a convergent
p
q of the continued fraction expansion of κ satisfying q > 6N . For
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p

q
= 1522076097743333607781100045449522888

960323097266207036440783078900790949

we get
ε = 0.124406274 > 0.

Analogously, we find N = 89 after the first reduction and N = 13 after the second
one. Finally, we get that the following pairs

(0, 2), (0, 3), (1, 3), (2, 3), (2, 4), (3, 4), (4, 4), (5, 5).

that satisfy (2.2), as well.

2.4 Applications

For the applications of linear forms in logarithms to Diophantine equations, the
strategy is as follows: first, we use various algebraic manipulations to associate
“relatively big” solutions of the equations to a “very small” value of the specific
linear form in logarithms which implies that we are able to find upper bound for
values of the linear form in the logarithms that corresponds to a solution of the
equation. If we compare that upper bound with the lower bound (using the Baker–
Wüstholz Theorem 2.2.13 or Matveev’s Theorems 2.2.14 and 2.2.15), we get an
absolute upper bound M for the absolute values of the unknowns of the equations.

It often happens that the upper boundM is not too large and using variousmethods,
including reductions and sieves, we can find the complete set of solutions below
M . In order to realize this, it is crucial to get a reasonably small value for M .
Its size is directly related to the size of the “numerical constant” that appears in
Matveev’s Theorem 2.2.14 which is 1.4 · 30n+3n4.5. Many celebrated Diophantine
equations lead to estimates of linear forms in two or three logarithms and in these
cases Matveev’s Theorem 2.2.14 gives numerical constants around 1012 and 1014,
respectively.

2.4.1 A Lower Bound for |2m − 3n|

One of the simplest applications of linear forms in logarithms is to prove that
|2m − 3n| tends to infinity with m + n; in addition one can even get an explicit
lower bound for this quantity. The following material is presented in detail in [14].

Let n ≥ 2 be an integer and m and m ′ are defined by the conditions

2m
′
< 3n < 2m

′+1, |3n − 2m | = min{3n − 2m
′
, 2m

′+1 − 3n}.

Then
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|2m − 3n| < 2m, (m − 1) log 2 < n log 3 < (m + 1) log 2,

and the problem of finding a lower bound for |2m − 3n| clearly reduces to this special
case.

Consider the linear form
Λ = 3n2−m − 1.

Applying Matveev’s Theorem 2.2.14, we get

log |Λ| > −c0(1 + logm).

It is easy to verify that we can take c0 = 5.87 · 108. Hence, the following theorem is
proved.

Theorem 2.4.1 Let m, n be positive integers. Then

|2m − 3n| > 2m(em)−5.87·108

This theorem enables us to find the list of all powers of 3 that increased by 5 give
a power of 2.

Corollary 2.4.2 The only integer solutions to the Diophantine equation

2m − 3n = 5

are (m, n) = (3, 1), (5, 3).

Applying Theorem 2.4.1, we get

5 > 2m(em)−5.87·108 ,

which implies
log 5 > m log 2 − 5.87 · 108(1 + logm),

so that m < 2.1 · 1010 and n < m log 2
log 3 < 1.4 · 1010. Moreover, the equality 2m −

3n = 5 implies
∣
∣
∣
∣
m − n

log 3

log 2

∣
∣
∣
∣
<

5

log 2
3−n .

Since
5

log 2
· 3−n <

1

2n

for n ≥ 4, we observe that, if (m, n) is a solution to our problem with n ≥ 4, then m
n

is a convergent of the continued fraction expansion of ξ = log 3
log 2 . Also, for n < N =
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1.4 · 1010 the smallest value of |m − nξ| is obtained for the largest convergent of the
continued fraction expansion of ξ with the denominator less then N . We thus get

5

log 2
· 3−n >

∣
∣
∣
∣
m − n

log 3

log 2

∣
∣
∣
∣
> 10−11, 0 < n < 1.4 · 1010.

Hence, n ≤ 24. Now, it is very easy to prove the initial statement.
More generally, the following result can be obtained.

Theorem 2.4.3 (Bennett, [7]) For given nonzero integers a, b, c the equation

am − bn = c

has at most two integer solutions.

2.4.2 Rep-Digit of Fibonacci Numbers

The Fibonacci sequence (Fn)n≥0 is given by

F0 = 0, F1 = 1, . . . , Fn+2 = Fn+1 + Fn, n ≥ 0.

Its characteristic equation is

f (X) = X2 − X − 1 = (X − α)(X − β),

where α = 1+√
5

2 and β = 1−√
5

2 . We can also write

Fn = αn − βn

α − β
, n ≥ 0.

In this subsection we are concerned with those Fibonacci numbers Fn that have
equal digits in base 10. Putting d for the repeated digit and assuming that Fn has m
digits, the problem reduces to finding all solutions of the Diophantine equation

Fn = dd . . . d(10) = d10m−1 + d10m−1 + · · · + d = d
10m − 1

10 − 1
, d ∈ {1, 2, . . . 9}.

(2.3)

Theorem 2.4.4 The largest solution of Eq. (2.3) is F10 = 55.

Proof Suppose that n > 1000. We start by proving something weaker. Our goal is
to obtain some bound on n. We rewrite Eq. (2.3) as

αn − βn

√
5

= d
10m − 1

9
.
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Next we separate large and small terms on both sides of the equation. It is easy to
obtain α = −1

β
or β = −1

α
which implies

∣
∣
∣
∣
∣
αn − d

√
5

9
10m

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
βn − d

√
5

9

∣
∣
∣
∣
∣
≤ |βn| +

∣
∣
∣
∣
∣

d
√
5

9

∣
∣
∣
∣
∣
≤ α−1000 + √

5 < 2.5. (2.4)

Our goal is to get some estimates form in terms of n. By induction on n, it is easy
to prove that

αn−2 < Fn < αn−1, n ≥ 3.

Thus,

αn−2 < Fn < 10m or n < m
log 10

logα
+ 2,

and
10m−1 < Fn < αn−1.

On the other hand,

n >
log 10

logα
(m − 1) + 1 = log 10

logα
m −

(
log 10

logα
− 1

)

>
log 10

logα
m − 4.

We deduce that

n ∈ [c1m − 4, c1m + 2], c1 = log 10

logα
= 4.78497..

Since c1 > 4, for n > 1000, we have n ≥ m. Hence,

|Λ| =
∣
∣
∣
∣
∣

d
√
5

9
α−n10m − 1

∣
∣
∣
∣
∣
<

2.5

αn
<

1

αn−2
,

which leads to

log |Λ| = log
d
√
5

9
− n logα + m log 10 < −(n − 2) logα.

Let

α1 = d
√
5

9
, α2 = α, α3 = 10, b1 = 1, b2 = −n, b3 = m,

as well as L = Q(α1,α2,α3) = Q(
√
5), so D = 2 and B = n. The minimal poly-

nomial of α1 over Z is
Pα1(X) = 81X2 − 5d2.
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Hence,

h(α1) <
1

2

(

log 81 + 2 log
√
5
)

= 1

2
log 405 < 3.01,

and

h(α2) = 1

2
(logα + 1) < 0.75, h(α3) = log 10 < 2.31.

We may take
A1 = 6.02, A2 = 1.5, A3 = 4.62.

Then Matveev’s Theorem 2.2.14 gives us a lower bound for Λ, namely

logΛ > −1.4 · 306 · 34.5 · 4(1 + log 4)6.02 · 1.5 · 4.62(1 + log n).

Comparing the above inequality with

logΛ < −(n − 2) logα,

we get

(n − 2) logα < 1.41 · 306 · 34.5 · 4(1 + log 4)6.02 · 1.5 · 4.62(1 + log n),

and
n < 4.5 · 1015.

Reducing the bound. Observe that the right-hand side of the inequality

1 − d
√
5

9
α−n10m ≤ 1

αn

(

βn − d
√
5

9

)

is negative. Writing
z = logα1 − n logα2 + m logα3,

we get that

−2.5

αn
< 1 − ez < 0.

In particular, z > 0. Furthermore, we have ez < 1.5 for n > 1000. Thus,

0 < ez − 1 <
2.5ez

αn
<

4

αn
.

Since ez − 1 > z, we get
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0 < m

(
logα3

logα2

)

− n +
(
logα1

logα2

)

<
4

αn logα2
<

9

αn
.

We notice that (

10md
√
5

αn

)

< 2

and therefore

αn >
10md

√
5

2
> 10m .

Hence,

0 < m

(
logα3

logα2

)

− n +
(
logα1

logα2

)

<
9

10m
.

Since n < 4.5 · 1015, the previous inequality implies m < 9.5 · 1014. With

κ = logα3

logα2
, μ = logα1

logα2
, A = 9, B = 10

we get

0 < κm − n + μ <
A

Bm
,

where m < N := 1015. Observe that

p35
q35

= C35 = 970939497358931987

202914354378543655

and q35 > 202914354378543655 > 2 · 1017 > 6N .

For each one of the values of d ∈ {1, . . . , 9}, we compute ||q35μ||. The minimal
value of this expression is obtained when d = 5 and is

0.029... > 0.02.

Thus, we can take ε = 0.01 < 0.02 − 0.01 < ||q35μ|| − N ||q35κ||. Since
log(Aq35/ε)

log B
= 21.2313...,

we observe that there is no solution in the range m ∈ [

22, 1015
]

. Thus, m ≤ 21,
and n ≤ 102. However, we have assumed that n > 1000. To finish, we compute the
values of all Fibonacci numbers modulo 10000 (their last four digits) and convince
ourselves that there are no Fibonacci numbers with the desired pattern in the range
11 ≤ n ≤ 1000. This example stems from [25, 36].
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2.4.3 Simultaneous Pellian Equations

The following result is due to Baker and Davenport and was historically the first
example of a successful use of lower bounds for linear forms in logarithms of alge-
braic numbers; it actually allowed the effective computation of all commonmembers
of two binary recurrent sequences with real roots; for more details see [19, 25, 36].

Theorem 2.4.5 The only positive integer d such that d + 1, 3d + 1, 8d + 1 are all
perfect squares is d = 120.

Proof If d + 1, 3d + 1, 8d + 1 are all perfect squares, then we write

d + 1 = x2, 3d + 1 = y2, 8d + 1 = z2.

Eliminating d from the above equations, we get

3x2 − y2 = 2, 8x2 − z2 = 7,

which is a system of simultaneous Pellian equations since it consists of two Pellian
equations with a component in common. If we want x to be positive, the solutions
of the above system are

y + x
√
3 = (1 + √

3)(2 + √
3)m,

z + x
√
8 = (±1 + √

8)(3 + √
8)n,

wherem, n are nonnegative integers. Let the sequence (vm) be given by the recursion
formula

v0 = 1, v1 = 3, vm+2 = 4vm+1 − vm,

and put x = w+,−
n , for some n ≥ 0, where the sequences (w+

n ), (w−
n ) are defined by

w+
0 = 1, w+

1 = 4, w+
n+2 = 6w+

n+1 − w+
n , n ∈ N,

w−
0 = 1, w−

1 = 2, w−
n+2 = 6w−

n+1 − w−
n , n ∈ N.

We want to solve the equation
vm = w+,−

n .

For this aim we shall use the following lemmas.

Lemma 2.4.6 If vm = w+,−
n , m, n > 2, then

0 < |Λ| < 7.3(2 + √
3)−2m,

where Λ is
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Λ = m log(2 + √
3) − n log(3 + 2

√
2) + log

2
√
2(1 + √

3)√
3(2

√
2 ± 1)

.

Proof The expression vm = w+,−
n implies

(1 + √
3)(2 + √

3)m − (1 − √
3)(2 − √

3)m

2
√
3

= (2
√
2 ± 1)(3 + 2

√
2)n + (2

√
2 ∓ 1)(3 − 2

√
2)n

4
√
2

. (2.5)

Obviously,

vm >
(1 + √

3)(2 + √
3)m

2
√
3

,

w+,−
n <

(2
√
2 + 1)(3 + 2

√
2)n

2
√
2

,

hence
(1 + √

3)(2 + √
3)m

2
√
3

<
(2

√
2 + 1)(3 + 2

√
2)n

2
√
2

,

(3 − 2
√
2)n <

√
3(2

√
2 + 1)√

2(
√
3 + 1)

(2 − √
3)m < 1.7163(2 − √

3)m .

Dividing (2.5) by 2
√
2±1

4
√
2

(3 + 2
√
2)n , we obtain

∣
∣
∣
∣
∣

2
√
2(1 + √

3)√
3(2

√
2 ± 1)

· (2 + √
3)m

(3 + 2
√
2)n

− 1

∣
∣
∣
∣
∣

≤ 2
√
2 + 1

2
√
2 − 1

(3 − 2
√
2)2n + 2

√
2(

√
3 − 1)√

3(2
√
2 − 1)

(2 − √
3)m(3 − 2

√
2)n

<
2
√
2 + 1

2
√
2 − 1

· 1.71632(2 − √
3)2m + 2

√
2(

√
3 − 1)√

3(2
√
2 − 1)

· 1.7163(2 − √
3)2m

< 7.29(2 − √
3)2m,

which proves Lemma 2.4.6.

Lemma 2.4.7 Let a ∈ R\{0}, a > 1. If |x | < a, then

| log(1 + x)| <
− log(1 − a)

a
|x |. (2.6)

Proof We observe that the function
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log(1 + x)

x

is positive and strictly decreasing for |x | < 1. Consequently, for |x | < a, Inequality
(2.6) holds for x = −a.

We shall investigate the following linear form in three logarithms:

Λ = m log(2 + √
3) − n log(2

√
2 + 3) + log

2
√
2(

√
3 + 1)√

3(2
√
2 ± 1)

.

Let

α1 = 2 + √
3, α2 = 3 + 2

√
2, α3 = 2

√
2(1 + √

3)√
3(2

√
2 ± 1)

,

b1 = m, b2 = −n, b3 = 1, D = [Q(α1,α2,α3) : Q] = 4.

The minimal polynomials over Z are

Pα1(x) = x2 − 4x + 1,

Pα2(x) = x2 − 6x + 1,

Pα3(x) = 441x4 − 2016x3 + 2880x2 − 1536x + 256,

hence

h′′(α1) = 1

2
log(2 + √

3) < 0.6585,

h′′(α2) = 1

2
log(3 + 2

√
2) < 0.8814,

and

h′′(α3) = 1

4
log

(

441
2(4 + √

2)(3 + √
3)

21

2(4 − √
2)(3 + √

3)

21

)

< 1.7836.

Applying the Baker–Wüstholz Theorem 2.2.13, we get a lower bound for Λ, namely

log |Λ| ≥ −3.96 · 1015 logm.

According to Lemma 2.4.6, we may conclude that

m < 6 · 1016.

This upper bound is rather big so we reduce it using Baker–Davenport reduction.
Applying Lemma 2.4.6, we get the upper bound
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Λ = m log(2 + √
3) − n log(2

√
2 + 3) + log

2
√
2(

√
3 + 1)√

3(2
√
2 ± 1)

< 7.29(2 + √
3)−2m .

Let

N = 6 · 1016, κ = logα1

logα2
, μ = logα3

logα2
, A = 7.3

logα2
, B = (2 + √

3)2.

The next step is to find a convergent p
q of the continued fraction expansion of κ =

logα1

logα2
such that q > 6N . The first such convergent is

p

q
= 742265900639684111

993522360732597120
.

Before calculating ε, we observe that

||κq||N ≈ 0.0187822, ||μq|| ≈ 0.00762577.

Unfortunately,
ε = ||μq|| − ||κq||N < 0.

If we want to use Baker–Davenport reduction, we have to find another convergent p
q

of the continued fraction expansion for which the condition ε > 0 is satisfied.
The next convergent p

q of κ that satisfies condition q > 6N is

p

q
= 2297570640187354392

3075296607888933649
.

It follows that
ε = ||μq|| − ||κq||N ≈ 0.296651 > 0.

The given inequality does not have any solutions in integers m such that

log
(

Aq
ε

)

log B
≤ m < N .

Thus, the new upper bound for m is 17. Repeating the procedure once again, we get
m ≤ 4, and there are only two solutions, namely

v0 = w
+,−
0 = 1,

which is the trivial solutions of our Diophantine equation with d = 0, and

v2 = w−
2 = 11,

which suits the case when d = 120.
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2.4.4 Fibonacci Numbers and the Property of Diophantus

The next result is due to Dujella [17]. He proved that, if k and d are positive integers
such that the set

{F2k, F2k+2, F2k+4, d}

is a D(1)-quadruple, then d = 4F2k+1F2k+2F2k+3, where Fk is k-th Fibonacci num-
ber. This is a generalization of the Theorem 2.4.5 of Baker and Davenport for k = 1.
Here a set {a1, a2, a3, a4} of distinct positive integers is called a D(1)-quadruple, if
aia j + n is a perfect square for every i, j with 1 ≤ i < j ≤ 4.

Proof (Sketch) Let k ≥ 2 be a positive integer and

a = F2k, b = F2k+2, c = F2k+4.

Then c = 3b − a. Furthermore,

ab + 1 = (b − a)2, ac + 1 = b2, bc + 1 = (a + b)2.

If we assume that d is a positive number such that {a, b, c, d} has the property D(1)
of Diophantus, it implies that there exist positive integers x, y, z such that

ad + 1 = x2, bd + 1 = y2, (3b − a)d + 1 = z2.

Eliminating d, we get a system of Pellian equations

ay2 − bx2 = a − b, az2 − (3b − a)x2 = 2a − 3b. (2.7)

Dujella proved the following lemmas.

Lemma 2.4.8 Let x, y, z be positive integer solutions of the system of Pellian equa-
tions (2.7). Then there exist integers m and n such that

x = vm = wn,

where (vm) is given by

v0 = 1, v1 = b, vm+2 = 2(b − a)vm+1 − vm, m ∈ Z,

and the two-sided sequence (wn) is defined by

w0 = 1, w1 = a + b, wn+2 = 2bwn+1 − wn, n ∈ Z.
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In order to apply Baker’s method, it is convenient to consider the two-sided
sequence as two ordinary sequences. Therefore, instead of the sequence (vm)m∈Z,
Dujella considered two sequences (vm)m≥0 and (vm)m≤0 and applied the samemethod
for the sequence (wn)n∈Z. Thus, four equations of the form

vm = wn

have to be considered.

Lemma 2.4.9 If vm = wn, and m �= 0, then

0 < m log(b − a + √
ab) − n log(b + √

ac) +
+ log

√
c(±√

a + √
b)√

b(±√
a + √

c)
< 4(b − a + √

ab)−2m .

In the present situation, l = 3, d = 4, B = m and

α1 = b − a + √
ab, α2 = b + √

ac, α3 =
√
c(±√

a + √
b)√

b(±√
a + √

c)
,

h′(α1) = 1

2
logα1 < 1.05 log, h′(α2) = 1

2
logα2 < 1.27 log a,

h′(α3) = 1

4
log(bc(c − a)(

√
a + √

b)2) < 2.52 log a,

log 4(b − a + √
ab)−2m < log a−2m = −2m log a.

Hence,
2m log a < 3.822 · 1015 · 3.361 log3 a logm,

and m

logm
< 6.423 · 1015 log2 a. (2.8)

Applying Lemma 2.4.8, we get

|m| ≥ 2b − 2 > 4a. (2.9)

Comparing (2.8) and (2.9), we obtain

m

log3 m
< 6.423 · 1015,

which impliesm < 8 · 1020, a = F2k < 2 · 1020. The author has proved the theorem
for k ≥ 49.



Linear Forms in Logarithms 43

It remains to prove the theorem for 2 ≤ k ≤ 48. Dujella used Lemma 2.3.1 with

κ = logα1

logα2
, μ = logα3

logα2
, A = 4

logα3
, B = (b − a + √

ab)2

as well as N = 8 · 1020 and gets a new bound m ≤ N0, where N0 ≤ 12. Repeating
the method one more time, he obtained a new upper bound m ≤ 2 which completes
the proof.

2.4.5 The Non-extendibility of Some Parametric Families
of D(−1)-Triples

Definition 2.1 Let n be a nonzero integer. A set {a1, . . . , am} of m distinct positive
integers is called a Diophantine m-tuple with the property D(n), or simply a D(n)-
m-tuple, if aia j + n is a perfect square for any i, j with 1 ≤ i < j ≤ m.

The set {1, 3, 8, 120} considered in the previous Sect. 2.4.3 is known as the first
example of a D(1)-quadruple found by Fermat.28 In 1969, Baker and Davenport
proved that {1, 3, 8} cannot be extended to a D(1)-quintuple (see [5]). This result
was generalized by Dujella [15], who showed that the D(1)-triple {k − 1, k + 1, 4k}
for an integer k cannot be extended to a D(1)-quintuple, and by Dujella and Pethő
[22], who proved that the D(1)-pair {1, 3} cannot be extended to a D(1)-quintuple. It
is a conjectured that there does not exist a D(1)-quintuple. The most general results
on this conjecture are due to Dujella [18] who proved that there does not exist a D(1)-
sextuple and that there exist at most finitely many D(1)-quintuples. There have been
some improvements on those results recently, but the conjecture still remains open.

In contrast to the case n = 1, it is conjectured that there does not exist a
D(−1)-quadruple (see [16]). The first important step in this direction was done by
Dujella and Fuchs [21] who showed that, if {a, b, c, d} is a D(−1)-quadruple with
a < b < c < d, then a = 1. Later Dujella, Filipin and Fuchs [23] showed that there
exist at most finitely many D(−1)-quadruples. The number of D(−1)-quadruples
is now known to be bounded by 5 · 1060 (see [24]). However, this bound is too
large for verifying the conjecture by present day computers. Recently, He and Togbé
[29] proved that the D(−1)-triple {1, k2 + 1, k2 + 2k + 2} cannot be extended to a
D(−1)-quadruple. Their result and the proof appears to be very important because
of their use of a linear form in two logarithms (instead of three) for the first time; this
leads to a much better upper bound for the solutions which shortens the reduction
time significantly. In this subsection, we extend their method and apply it to several
other families of D(−1)-triples. Let us also mention that it is not always possible to
use linear forms in two logarithms. In the sequel we only explain the idea and give
a sketch of the proofs; more details can be found in [26].

28Pierre de Fermat (1601–1665), a French mathematician.
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Introduction

Let {1, b, c} be a D(−1)-triple with b < c. We define positive integers r , s and t by

b − 1 = r2, c − 1 = s2, bc − 1 = t2.

Then, s and t satisfy

t2 − bs2 = r2. (2.10)

It can be proven thatDiophantine equation (2.10) has at least three classes of solutions
belonging to

(t0, s0) = (r, 0), (b − r,±(r − 1))

(see [27, p. 111]). We call a positive solution (t, s) of (2.10) regular if (t, s) belongs
to one of these three classes. However, it is possible for a solution (t, s) not to be
regular. In general, we do not know in advance how many classes of solutions we
have, except for some special type of b.

Remark 2.4.10 An example having non-regular solutions can be found in the case of
r = 2q2, where q is a positive integer. Then (2.10) has two more classes of solutions
belonging to

(t ′0, s
′
0) = (2q3 + q,±q).

Our goal is to prove the following theorem.

Theorem 2.2 Let (t, s) be a regular solution of (2.10) and let c = s2 + 1. Then, the
system of Diophantine equations

y2 − bx2 = r2,

z2 − cx2 = s2

has only trivial solutions (x, y, z) = (0,±r,±s). Furthermore, if r = 2q2 for some
positive integer q, then the same is true for any positive solution (t, s) of (2.10)
belonging to the same class as one of (2q3 + q,±q).

By [23, Theorem 1] we have that c < 11b6 (using the hyper-geometric method),
hence the above-mentioned result of He and Togbé shows that it is enough to prove
Theorem 2.2 for c = ci with 2 ≤ i ≤ 7, where
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c2 = 4r4 + 1,

c3 = (4r3 − 4r2 + 3r − 1)2 + 1,

c4 = (4r3 + 4r2 + 3r + 1)2 + 1,

c5 = (8r4 + 4r2)2 + 1,

c6 = (16r5 − 16r4 + 20r3 − 12r2 + 5r − 1)2 + 1,

c7 = (16r5 + 16r4 + 20r3 + 12r2 + 5r + 1)2 + 1

(see [27, p. 111]), and in the case of r = 2q2, additionally for c = c′
i with 1 ≤ i ≤ 5,

where

c′
1 = (4q3 − q)2 + 1,

c′
2 = (16q5 + 4q3 + q)2 + 1,

c′
3 = (64q7 − 16q5 + 8q3 − q)2 + 1,

c′
4 = (256q9 + 64q7 + 48q5 + 8q3 + q)2 + 1,

c′
5 = (1024q11 − 256q9 + 256q7 − 48q5 + 12q3 − q)2 + 1.

It is easy to see that Theorem 2.2 immediately implies

Corollary 2.4.11 Let (t, s) be either a regular solution of (2.10) or, in the case of
r = 2q2 for some positive integer q, a regular solution or a positive solution of
(2.10) belonging to the same class as one of (2q3 + q,±q). Let c = s2 + 1. Then,
the D(−1)-triple {1, b, c} cannot be extended to a D(−1)-quadruple.

It was proven in [27, p. 111], that if r is prime, then (2.10) has only regular
solutions. We can generalize this to find that, if r = pk or 2pk for an odd prime p
and a positive integer k, then (2.10) has only regular solutions, except in the case of
r = 2pk with k even. In the latter case, there are exactly five classes of solutions.
Furthermore, if b = p or 2pk , then (2.10) has only regular solutions (b = pk can
occur only if k = 1, since b = r2 + 1; [35]). Hence, we get another corollary of the
Theorem 2.2.

Corollary 2.4.12 Let r be a positive integer and let b = r2 + 1. Suppose that one
of the following assumptions holds for an odd prime p and a positive integer k:

(i) b = p; (ii) b = 2pk; (iii) r = pk; (iv) r = 2pk.
Then, the system of Diophantine equations

y2 − bx2 = r2,

z2 − cx2 = s2

has only the trivial solutions (x, y, z) = (0,±r,±s), where (t, s) is a positive solu-
tion of (2.10) and c = s2 + 1. Moreover, the D(−1)-pair {1, b} cannot be extended
to a D(−1)-quadruple.
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The System of Pellian Equations

Let {1, b, c}be a D(−1)-triplewithb < c, and let r , s, t bepositive integers definedby
b − 1 = r2, c − 1 = s2, bc − 1 = t2. Suppose that we can extend the triple {1, b, c}
to a D(−1)-quadruple with element d. Then, there exist integers x, y, z such that

d − 1 = x2, bd − 1 = y2, cd − 1 = z2.

Eliminating d, we obtain the system of simultaneous Diophantine equations

z2 − cx2 = s2, (2.11)

bz2 − cy2 = c − b, (2.12)

y2 − bx2 = r2. (2.13)

Wemay assume that c < 11b6 (according to Theorem 1, [23]). The positive solutions
(z, x) of Eq. (2.11) and (z, y) of Eq. (2.12) are respectively given by

z + x
√
c = s(s + √

c)2m (m ≥ 0),

z
√
b + y

√
c = (s

√
b ± r

√
c)(t + √

bc)2n (n ≥ 0)

(see Lemmas 1 and 5 in [23]). Using that y is a common solution of Eqs. (2.12) and
(2.13), He and Togbé proved that the positive solutions (y, x) of Eq. (2.13) are given
by

y + x
√
b = r(r + √

b)2l , l ≥ 0,

and, moreover, they proved the following proposition.

Proposition 2.4.13 ([29, Proposition 2.1]) The D(−1)-triple {1, b, c} can be
extended to a D(−1)-quadruple if and only if the system of simultaneous Pellian
equations

(z/s)2 − c(x/s)2 = 1,

(y/r)2 − b(x/r)2 = 1

has a positive integer solution (x, y, z).

Proposition 2.4.13 implies that we can write x = svm = rul , where

vm = α2m − α−2m

2
√
c

and ul = β2l − β−2l

2
√
b

are positive solutions of the Pellian equations Z2 − cX2 = 1 and Y 2 − bW 2 = 1,
respectively, where α = s + √

c and β = r + √
b. We have mentioned before that

we cannot always use linear forms in two logarithms.Moreprecisely, for our approach
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α and β should be near to each other or one of them has to be near to a power of the
other one.

Gap Principles

We next consider the extension of D(−1)-triples {1, b, c} with

c = c2, c3, c4, c5, c6, c7, c
′
1, c

′
2, c

′
3, c

′
4, c

′
5

from above. We shall establish gap principles for these special cases.
Let us define the linear form Λ in three logarithms

Λ = 2m logα − 2l logβ + log
s
√
b

r
√
c
.

The proofs of the following lemmas can be found in [29]; the results rely on Baker’s
theory of linear forms in logarithms.

Lemma 2.4.14 ([29, Lemma 3.1]) If svm = rul has a solution with m �= 0, then

0 < Λ <
b

b − 1
· β−4l .

Lemma 2.4.15 ([29, Lemma 3.3]) If svm = rul has a solution with m �= 0, then
m logα < l logβ.

The proofs of the following lemmas can be found in [26]; these results are based
on the property that an algebraic number α is close to some power of β.

Lemma 2.4.16 Let c = c2 = 4r4 + 1. If the equation svm = rul has a solution with
m �= 0, then

m >
Δ

2
· α logβ,

where Δ is a positive integer.

Lemma 2.4.17 Let c = c3 = (4r3 − 4r2 + 3r − 1)2 + 1or c = c4 = (4r3 + 4r2 +
3r + 1)2 + 1. If the equation svm = rul has a solution with m �= 0, then

m >
3Δ − 1

3
· 8r
9

logβ,

where Δ is a positive integer.

Lemma 2.4.18 Let c = c′
1 = (4q3 − q)2 + 1. If the equation svm = rul has a solu-

tion with m �= 0, then

m >
Δ

6
· α logβ,
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where Δ is a positive integer.

Similar lemmas for other choices of c can be obtained. The following table contains
information how to choose Δ and a lower bound for m.

c Δ a lower bound for m

c5 4m − l m > Δ · 8r4

4r2+1
logβ

c6 5m − l m > 5Δ−1
5 · 32r

33 logβ

c7 l − 5m m > 5Δ−1
5 · 32r

33 logβ

c′
2 2l − 5m m > 10Δ−4

5 · q2 logβ

c′
3 7m − 2l m > 3Δ

2 · q2 logβ

c′
4 2l − 9m m > 18Δ−4

9 · q2 logβ

c′
5 11m − 2l m > 3Δ

2 · q2 logβ

Linear Forms in Two Logarithms

Next we shall apply the following result due to Laurent,29 M. Mignotte30 and
Y. Nesterenko31 to our linear form Λ.

Lemma 2.4.19 ([33, Corollary 2]) Let γ1 and γ2 be multiplicatively independent,
positive algebraic numbers, b1, b2 ∈ Z and

Λ = b1 log γ1 + b2 log γ2.

Let D := [Q(γ1, γ2) : Q], for i = 1, 2 let

hi ≥ max

{

h(γi ),
| log γi |

D
,
1

D

}

,

where h(γ) is the absolute logarithmic height of γ, and

b′ ≥ |b1|
Dh2

+ |b2|
Dh1

.

If Λ �= 0, then

log |Λ| ≥ −24.34 · D4

(

max

{

log b′ + 0.14,
21

D
,
1

2

})2

h1h2.

29Michel Laurent, a French mathematician.
30Maurice Mignotte, a French mathematician.
31Yuri Valentinovich Nesterenko (1946), a Soviet and Russian mathematician.
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This lemma has also been used by He and Togbé in [29]. We are dealing with the
same linear form, but only with a different c. Using the same method to trans-
form our form to a linear form in two logarithms, then applying Lemma 2.4.19 for
c = c2, c3, . . . , c7, c′

1, . . . , c
′
5, and combining the lower bound for |Λ| together with

the gap principles, we can prove Theorem 2.2 for large values of r. That γ1 and γ2 are
multiplicatively independent follows from the fact that α and β are multiplicatively
independent algebraic units and r

√
c

s
√
b
is not an algebraic unit.

As an example we consider the case c = c2 = 4r4 + 1. We can write

Λ = 2m log

(
α

β2

)

− log

(

β−2Δ · r
√
c

s
√
r2 + 1

)

,

where Δ = 2m − l is defined as in Lemma 2.4.16. In the notation of Lemma 2.4.19
we have

D = 4, b1 = 2m, b2 = −1, γ1 = α

β2
, γ2 = β−2Δ · r

√
c

s
√
b
.

Furthermore,

h(γ1) ≤ h

(
α

β

)

+ h(β) = 1

2
logα + 1

2
logβ < logα,

hence, for h1, we can take h1 = logα. Moreover,

h

(
r
√
c

s
√
b

)

= 1

2
log((c − 1)b) <

1

2
logβ6 = 3 logβ,

which yields
h(γ2) < (Δ + 3) logβ =: h2.

For r ≥ 10, we find |b2|
Dh1

= 1

4 logα
< 0.042,

and then
b′ = m

2(Δ + 3) logβ
+ 0.042.

Now Lemma 2.4.16 implies

m

2(Δ + 3) logβ
>

Δ

4(Δ + 3)
· α ≥ α

16
> 169

for r ≥ 26. Thus, for r ≥ 26, we get log b′ + 0.14 > 21
D and applying Lemma 2.4.19

we conclude
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log |Λ| ≥ −24.34 · 44 · (log b′ + 0.14)2 · logα · (Δ + 3) logβ.

On the other hand, Lemma 2.4.14 yields

log |Λ| < 0.002 − 4l logβ.

Combining these lower and upper bounds for Λ, we obtain

l

logα
<

0.002

4 logα logβ
+ 24.34 · 64(log b′ + 0.14)2(Δ + 3).

Furthermore, m logα < l logβ gives us

m

2(Δ + 3) logβ
< 0.0001 + 24.34 · 32(log b′ + 0.14)2

and finally
b′ < 0.042 + 778.88(log b′ + 0.14)2,

which implies b′ < 106996. It furthermore gives m < 213992(Δ + 3) logβ and

α <
2m

Δ logβ
< 427983 · Δ + 3

Δ
< 1.72 · 106,

from which we deduce r < 656. Thus, we have proved Theorem 2.2 for c = c2 and
r ≥ 656.

The cases c = c3, c4 = (4r3 ∓ 4r2 + 3r ∓ 1)2 + 1 are described in details in [26].
The upper bounds for r and q in the remaining cases are given in the following table.

c an upper bound for r or q
c3 r < 1.81 · 106
c4 r < 1.81 · 106
c5 r < 802
c6 r < 1.94 · 106
c7 r < 1.94 · 106
c′
2 q < 846
c′
3 q < 846
c′
4 q < 949
c′
5 q < 1000

The Reduction Method and the Proof of Theorem2.2

We have just proven Theorem 2.2 for large parameters r and q.We are left to consider
the cases of small r and q. Using Baker–Davenport reduction, it turns out that in all
remaining cases there is no extension of the triple {1, b, c} to a quadruple {1, b, c, d}.
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Some useful results from [23] can be used.We know that, if we have the extension
of our triple with the element d, then cd − 1 = z2, where z = Vm = Wn such that

V0 = s, V1 = (2c − 1)s, Vm+2 = (4c − 2)Vm+1 − Vm

and
W0 = s, W1 = (2bc − 1)s ± 2r tc, Wn+2 = (4bc − 2)Wn+1 − Wn.

We use the following lemmas.

Lemma 2.4.20 ([23, Lemma 11]) If Vm = Wn, n �= 0, then

0 < 2n log(t + √
bc) − 2m log(s + √

c) + log
s
√
b ± r

√
c

2
√
b

< (3.96bc)−n+1.

From the proofs of Propositions 2, 3, 4 in [23] we know that n < 1020 in all cases.
Applying Baker–Davenport reduction with

κ = log(t + √
bc)

log(s + √
c)

, μ =
log s

√
b±r

√
c

2
√
b

2 log(s + √
c)

, A = 3.96bc

2 log(s + √
c)

, B = 3.96bc

and N = 1021 with any choice of r and c left, we get after two steps that n < 2.Here,
one may also use that D(−1)-triples {1, b, c} cannot be extended to a quadruple for
r ≤ 143000, which was verified by computer. Hence, in some cases one can avoid
to use reduction at all.

We are still left to deal with the cases of small indices m and n in the equation
z = Vm = Wn. From [21] we know that n ≥ 3; otherwise we have only the trivial
solution (corresponding with an extension with d = 1, which is no real extension,
because we ask for elements in D(n)-m-tuple to be distinct).

The following lemma, which was proved in [26], and which examines the fun-
damental solutions of (2.10) in the cases of b = p, 2pk and r = pk, 2pk , together
with Theorem 2.2 implies Corollary 2.4.12.

Lemma 2.4.21

(1) If b = p or 2pk for an odd prime p and a positive integer k, then Diophantine
Equation (2.10) has only regular solutions.

(2) If r = pk or 2pk for an odd prime p and a positive integer k, then Diophantine
Equation (2.10) has only regular solutions, except in the case of r = 2p2i with
i a positive integer, where it in addition has exactly two classes of solutions
belonging to (2p3i + pi ,±pi ).

2.4.6 Pure Powers in Binary Recurrent Sequences

The Lucas numbers (Ln)n≥0 are given by
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L0 = 2, L1 = 1, . . . , Ln+2 = Ln+1 + Ln, n ≥ 0.

Recall that Fibonacci numbers (Fn) as well as Lucas numbers (Ln) are defined by

Fn = αn − βn

√
5

, Ln = αn + βn, α = 1 + √
5

2
, β = 1 − √

5

2
,

respectively. Now suppose
Fn = y p

is a pure power. Since
αn − √

5y p = O(α−n),

we find
Λ = n logα − p log y − log

√
5 = O(α−2n) = O(y−2p).

There exist integers k, r such that n = kp + r with |r | ≤ p
2 , hence we have

Λ = p log

(
αk

y

)

+ r logα − log
√
5

which is a linear form in three logarithms. If we apply Matveev’s Theorem 2.2.14,
we get

log |Λ| ≥ −c∗ log y log p.

Comparing both estimates of |Λ|, we see that the exponent p is bounded. Matveev’s
Theorem 2.2.14 implies p < 3 · 1013, but a special estimate for linear forms in three
logarithms implies the sharper upper bound is p < 2 · 108 which is suitable for
computer calculations.

For Lucas numbers a similar study leads to a linear form in two logarithms and
p < 300 provided that Ln = y p. By this reasoning, it can be proved [10] that all
perfect powers in the Fibonacci and Lucas sequences are

F0 = 0, F1 = F2 = 1, F6 = 8 = 23, F12 = 144 = 122;

L1 = 1, L3 = 4 = 22.

Using this method we can solve many similar problems, for example, all Pell
numbers for which Pn + 4 is a perfect square are given by P0 = 0, P3 = 5 and
P4 = 12. Recall that the Pell numbers are given by the recursion

P0 = 0, P1 = 1, . . . , Pn+2 = 2Pn+1 + Pn, n ≥ 0.
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2.4.7 Lucas Numbers and the Biggest Prime Factor

Next we are interested in finding all Lucas numbers for which the biggest prime
factor is less than or equal to 5.

We may express Lucas numbers as

Ln =
(

1 + √
5

2

)n

+
(

1 − √
5

2

)n

, n ∈ N.

For Lucas numbers the length of the period of the sequence (Ln mod 5) is equal to
4 with the cycle {1, 3, 4, 2}; therefore 5 can never be a divisor of any Lucas number.
We want to find all Lucas numbers such that

2k3l =
(

1 + √
5

2

)n

+
(

1 − √
5

2

)n

, n, k, l,m ∈ N.

Let α = 1+√
5

2 , so the previous expression can be rewritten as

2k3l = αn − α−n, k, l, n ∈ N.

Thus the corresponding linear form in logarithms is

Λ = 2n logα − k log 2 − l log 3.

Now, applying Matveev’s Theorem 2.2.14, we have n = 3, D = 2, and

A1 ≥ h′(2) = max{2 log 2, | log 2|, 0.16} = 1.38 < 2,

A2 ≥ h′(3) = max{2 log 3, | log 3|, 0.16} = 2.19 < 3,

A3 ≥ h′
(

1 + √
5

2

)

= max{2 log 1 + √
5

2
,

∣
∣
∣
∣
∣
log

1 + √
5

2

∣
∣
∣
∣
∣
, 0.16} = 0.48 < 1.

We get
log |Λ| ≥ −7.28022 · 1015(1 + log 2n).

After finding the upper bound from the expression

Ln

αn
− 1 = −α−2n,

and

log |Λ| < −2n log
1 + √

5

2
,
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we find that n < 3.17654 · 1017. After applying Baker–Davenport reduction, we get
n < 14, so we may conclude that the Lucas numbers for which the biggest prime
factors are less or equal to 5 are

L0 = 2, L2 = 3, L4 = 4 = 22, L6 = 18 = 2 · 32.

2.4.8 Pillai’s Equation

Given positive integers a > b > 1, Pillai32 [42] proved that there are only finitely
many integers c �= 0 admitting more than one representation of the form

c = ax − by

in nonnegative integers x, y. In particular, the equation

ax − by = ax1 − by1 , with (x, y) �= (x1, y1) (2.14)

has only finitelymany integer solutions.We shall apply the technique of lower bounds
for linear forms in logarithms of algebraic numbers to find all the solutions for

(a, b) = (3, 2).

Proposition 2.4.22 The only nontrivial solutions of Eq. (2.14) with (a, b) = (3, 2)
are

31 − 22 = 30 − 21, 32 − 24 = 30 − 23, 32 − 23 = 31 − 21,

33 − 25 = 31 − 23, 35 − 28 = 31 − 24.

Proof The initial equation can be rewritten as

3x − 3x1 = 2y − 2y1 .

After relabeling the variables, we may assume that x > x1. Consequently, y > y1.
Since

2 · 3x−1 = 3x − 3x−1 ≤ 3x − 3x1 = 2y − 2y1 < 2y,

we get x < y. Let B = y. Now,

3x1 | (2y − 2y1) = 2y1(2y−y1 − 1).

We observe that 3m | (2n − 1) if and only if 2 · 3m−1 | n. In particular,

32Subbayya Sivasankaranarayana Pillai (1901–1950), an Indian mathematician.
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x1 ≤ 1 + log((y − y1)/2)

log 3
≤ log(3B/2)

log 3
, (2.15)

therefore,

3x1 <
3B

2
< 2B.

Similarly,
2y1 | (3x − 3x1) = 3x1(3x−x1 − 1).

Analogously, if m ≥ 3, then 2m | (3n − 1) if and only if 2m−2 | n. Thus,

y1 ≤ 2 + log(x − x1)

log 2
<

log(4B)

log 2
, (2.16)

and therefore
2y1 ≤ 4B.

The original equation may be rewritten in such a way that the large parts are on one
side and the small parts are on the other, namely

|3x − 2y | = |3x1 − 2y1 | < 2B,

which in turn gives an inequality of the form

|1 − 3x2−y| <
2B

2B
.

Thus the linear form Λ to study is given by

Λ = x log 3 − y log 2.

If Λ > 0, then

eΛ − 1 <
2B

2B
.

IfΛ < 0, assuming that B > 10, we find 2B
2B < 1

2 and therefore, |1 − eΛ| < 1
2 , which

implies e|Λ| < 2. In particular,

|Λ| <
4B

2B
. (2.17)

The last inequality holds independent of the sign ofΛ. We observe thatΛ �= 0, since
in the opposite case, we would get 3x = 2y which, by unique factorization, implies
x = y = 0, a contradiction. Put

α1 = 2, α2 = 3, b1 = y, b2 = x, B = y, A1 = 1, A2 = log 3
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and

b′ = y

log 3
+ x < B

(
1

log 3
+ 1

)

< 2B.

Since log 2 and log 3 are linearly independent, real and positive, Lemma 2.4.19 yields
the estimate

log |Λ| > −23.34(max{log(2B) + 0.14, 21})2 · log 3.

Comparing the last inequality with (2.17), we get

B log 2 − log(4B) < 23.34 · 3 · (max{log(2B) + 0.14, 21})2.

If the above maximum is 21, we get

B log 2 − log(4B) < 25.7 · 212,

hence B < 17000. Otherwise, we have

B log 2 − log(4B) < 25.7(log(2B) + 0.14)2,

yielding B < 2900. Thus, we consider the inequality B < 17000. From (2.15) and
(2.16), we get x1 ≤ 9 and y1 ≤ 16. Hence,

x − 1 ≤ (y − 1)
log 2

log 3
< B

log 2

log 3
< 11000.

Now, we reduce this bound. Suppose that B ≥ 30, then we get

3x > 3x − 3x1 = 2y − 2y1 ≥ 2B−1 ≥ 229,

which implies x ≥ 19. We check that the congruence

3x − 3x1 − 2y1 ≡ 0 (mod 230)

does not hold for any triple (x, x1, y1) with 11 ≤ x ≤ 1100, 0 ≤ x1 ≤ 9, and 0 ≤
y1 ≤ 16. This gives B ≤ 29.Since 3x−1 < 2y−1 ≤ 228, we get x ≤ 18.Now, it is easy
to show that there are no solutions beyond those in the statement of the proposition.
For details see [36].

2.4.9 The Diophantine Equation axn − byn = c

We consider
axn − byn = c,
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where a, b are strictly positive and x, y, n are unknowns. If for some exponent n
there exists a solution (x, y) with |y| > 1, then

Λ = log
∣
∣
∣
a

b

∣
∣
∣ − n log

∣
∣
∣
∣

x

y

∣
∣
∣
∣
= O(|y|−n).

In the other direction, Matveev’s Theorem 2.2.14 implies

log |Λ| ≥ −c∗ log |y| log n.

Comparing both estimates, we get n < c∗∗, where c∗∗ depends only on a, b, c.
The following theorems give us explicit results.

Theorem 2.4.23 (Mignotte, [40])Assume that the exponentialDiophantine inequal-
ity

|axn − byn| ≤ c, a, b, c ∈ Z+, a �= b

has a solution in positive integers x, y with max{x, y} > 1. Then

n ≤ max

{

3 log(1.5|c/b|), 7400
log A

log(1 + (log A)/ log |a/b|)
}

, A = max{a, b, 3}.

Bennett obtained the following definitive result for c = ±1.

Theorem 2.4.24 (Bennett, [8]) For n ≥ 3, the equation

|axn − byn| = 1, a, b ∈ Z+

has at most one solution in positive integers x, y.

For more examples of applications of linear forms in logarithms we refer to
[25, 36] which are highly recommended for this purpose.
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Continued Fractions to Fractals
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Introduction

How does one prove the existence of a real number with certain desired Diophantine
properties without knowing a procedure to construct it? And if one also requires the
digits in the decimal expansion, say, of this number to be special in some way, is
the task then completely impossible? The present notes aim at introducing a number
of methods for accomplishing this. Our main tools will be methods from classical
Diophantine approximation, from dynamical systems and not least from measure
theory. We will assume an acquaintance with basic measure and probability theory
and some elementary number theory, but otherwise the notes aim at being self-
contained.

The notes are structured as followed. We begin in Sect. 1 with some first and
elementary observations on Diophantine approximation and recall some results on
continued fractions. Here, we set the scene for the following sections and deduce
some first metrical results. In Sect. 2, we relate the machinery of continued fractions
to that of ergodic theory. We will use this machinery to deduce Khintchine’s the-
orem in metric Diophantine approximation, which can be seen as a starting point
for the metric theory of Diophantine approximation. In Sect. 3, we introduce several
notions from fractal geometry. We will discuss Hausdorff measures and Hausdorff
dimension, box counting dimension and Fourier dimension. We relate these to sets
of arithmetical interest arising both from Diophantine approximation and from rep-
resentations of real numbers in some integer base. In Sect. 4, we turn our attention
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to higher dimensional problems. The underlying reason for this is two-fold. In a
first instance, approximation of real numbers by real algebraic numbers is a higher
dimensional problem. A full description of this is unfortunately beyond the scope
of these notes, but we briefly outline some results and dwell a little on a conjecture
on digit distribution for algebraic irrational numbers. We then turn to our second
objective. Here, we study simultaneous and dual approximation of vectors of real
numbers and their relation. We will also outline a proof of a higher dimensional
variant of Khintchine’s theorem. This will be used as a stepping stone for discussing
some famous open problems in Diophantine approximation: the Duffin–Schaeffer
conjecture and the Littlewood conjecture.

Several null sets of interest arise from the Khintchine type results described. One
is the set of elements for which the simple approximation properties which may
be derived from variants of the pigeon hole principle cannot be improved beyond
a constant. In Sect. 5, we will give a general framework for studying the fractal
structure of sets of such elements. In Sect. 6, we discuss the other interesting null
sets arising from the Khintchine type theorems. We will outline methods for getting
theHausdorff dimension of these null sets,wewill discuss approximation of elements
in the ternary Cantor set by algebraic numbers, and finally we will give some results
on Littlewood’s conjecture. In this final part, ideas from continued fractions, uniform
distribution theory, Hausdorff dimension and Fourier analysis come together in a nice
blend.

1 Beginnings

Any course on Diophantine approximation should begin with the celebrated result
of Dirichlet [18]:

Theorem 1.1 Let x ∈ R and let N be a positive integer. There exist numbers p ∈ Z

and q ∈ N with q ≤ N such that

∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
<

1

qN
.

Proof Let [x] denote the integer part of x and {x} its fractional part, so that x =
[x] + {x}. Divide the interval [0, 1) into N subintervals [k/N, (k + 1)/N), where
k = 0, 1, . . . ,N − 1, of length 1/N . The N + 1 numbers {rx}, r = 0, 1, . . . ,N , fall
into the interval [0,1) and so two, {rx} and {r′x} say,must fall into the same subinterval,
[k/N, (k + 1)/N) say. Suppose without loss of generality that r > r′. Then

∣
∣{rx} − {r′x}∣∣ = ∣

∣rx − [rx] − r′x + [r′x]∣∣ = |qx − p| <
1

N
,

where q = r − r′, p = [rx] − [r′x] ∈ Z and 1 ≤ q ≤ N . Dividing by q finishes the
proof.



Metric Diophantine Approximation … 63

As an immediate corollary of Dirichlet’s theorem, we obtain a non-uniform esti-
mate.

Corollary 1.2 Let x ∈ R. For infinitely many pairs (p, q) with p ∈ Z and q ∈ N,

∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
<

1

q2
. (1.1)

Proof If x ∈ Q, the result is trivial, as we do not require the rationals p/q to be on
lowest terms. Suppose now that x ∈ R \ Q. Fix some N1 ∈ N and choose (p1, q1) as
in Dirichlet’s theorem. By this theorem,

∣
∣
∣
∣
x − p1

q1

∣
∣
∣
∣
<

1

q1N1
≤ 1

q21
.

As x is irrational, the left hand side must be non-zero. Consequently, it is possible to
choose an integer N2 such that

1

N2
< q1

∣
∣
∣
∣
x − p1

q1

∣
∣
∣
∣
. (1.2)

Taking this value for N in Dirichlet’s Theorem gives a pair of points (p2, q2)with the
desired approximation property. Furthermore, (p1, q1) �= (p2, q2) since otherwise
(1.2) would contradict the choice of p2, q2. Continuing in this way, we obtain a
sequence of pairs pn, qn satisfying (1.1).

A first natural question in view of the corollary of Dirichlet’s theorem is the
following: Can the rate of approximation on the right hand side be improved? In
general, the answer is negative due to a measure theoretical result. The following is
the easy half of Khintchine’s theorem, which is our first example of a metric result: it
gives a condition for a certain set to be a null-set, so that almost all numbers will lie
in its complement. Throughout these notes, for a Borel set E ⊆ R

n, we will denote
the Lebesgue measure of E by |E|. We will need the notion of a limsup-set. Recall
that given a sequence of sets En, we define the associated limsup set,

lim supEn =
⋂

k≥1

⋃

n≥k

En.

Theorem 1.3 Let ψ : N → R≥0 be some function with
∑∞

q=1 qψ(q) < ∞. Then,

∣
∣
∣
∣

{

x ∈ R :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
< ψ(q) for infinitely many (p, q) ∈ Z × N

}∣
∣
∣
∣
= 0,

i.e. the set is a null-set with respect to the Lebesgue measure on the real line.
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Proof Note first that the set is invariant under translation by integers. Hence, it
suffices to prove that the set has Lebesgue measure 0 when intersected with the unit
interval [0, 1]. Now, note that this set may be expressed as a limsup-set as follows,

{

x ∈ [0, 1] :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
< ψ(q) for infinitely many (p, q) ∈ Z × N

}

= ⋂

N≥1

⋃

q≥N

q⋃

p=0

(
p

q
− ψ(q),

p

q
+ ψ(q)

)

∩ [0, 1].

In other words, for each N ∈ N, the set is covered by

⋃

q≥N

q
⋃

p=0

(
p

q
− ψ(q),

p

q
+ ψ(q)

)

,

so using σ-sub-additivity of the Lebesgue measure,

∣
∣
∣
∣

{

x ∈ [0, 1] :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
< ψ(q) for infinitely many (p, q) ∈ Z × N

}∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

⎛

⎝
⋃

q≥N

q
⋃

p=0

(
p

q
− ψ(q),

p

q
+ ψ(q)

)
⎞

⎠

∣
∣
∣
∣
∣
∣

≤
∑

q≥N

q
∑

p=0

∣
∣
∣
∣

(
p

q
− ψ(q),

p

q
+ ψ(q)

)∣
∣
∣
∣

= 2
∑

q≥N

(q + 1)ψ(q) ≤ 4
∑

q≥N

qψ(q).

The latter is the tail of a convergent series, and so will tend to zero as N tends to
infinity.

The connoisseur will recognise this as an application of the Borel–Cantelli lemma
from probability theory. Again, the result raises more questions. Are the null-sets in
fact empty? If not, what makes the elements of these sets so special? And how does
one generate the infinitely many good approximants?

The usual strategy is to go via continued fractions, see e.g. [49]. There are many
ways to get to these. We will go via an avenue inspired by dynamical systems (for
reasons which will become clearer as we progress).

Let x ∈ R and define a0 = [x] and r0 = {x}. If r0 = 0, we stop. Otherwise, we see
that 1/r0 > 1. Let x1 = 1/r0 and let a1 = [x1] and r1 = {x1}. Continuing in this way,
we define a (possibly finite) sequence {an}, where a0 ∈ Z and ai ∈ N. We define a
sequence of rational numbers {pn/qn} by

pn
qn

= a0 + 1

a1 + 1
a2+ 1

···+ 1
an

= [a0; a1, . . . , an]. (1.3)
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Wecall the rationalspn/qn the convergents to x and the integersai thepartial quotients
of x. We assume that the procedure and that the following elementary properties are
well-known. When a0 = 0 so that x ∈ [0, 1), we will omit this partial quotient and
the semi-colon from the latter notation and write x = [a1, a2, . . . ].
Proposition 1.4 The continued fraction algorithm has the following properties:

(i) The convergents may be calculated from the following recurrence formulae:
Let p−1 = 1, q−1 = 0, p0 = a0 and q0 = 1. For any n ≥ 1,

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2.

Consequently, qn ≥ 2(n−1)/2.
(ii) For any n ≥ 0

qnpn−1 − qn−1pn = (−1)n,

and for any n ≥ 1,
qnpn−2 − qn−2pn = (−1)n−1an

(iii) For an irrational number x, x − pn/qn is positive if and only if n is even.
(iv) Any real irrational number x has an expansion as a continued fraction. The

sequence of convergents of x converges to x, with the even (resp. odd) order
convergents forming a strictly increasing (resp. decreasing) sequence. This
expansion is unique, and we write x = [a0; a1, . . . ].

(v) Given a sequence {an}∞n=0 with a0 ∈ Z and ai ∈ N for i ≥ 1, the sequence
[a0; a1, . . . , an] converges to a number having the sequence {an} as its sequence
of partial quotients.

(vi) The convergents satisfy

1

qn(qn + qn+1)
<

∣
∣
∣
∣
x − pn

qn

∣
∣
∣
∣
<

1

qnqn+1
<

1

q2n
.

From Proposition1.4 it is straightforward to construct numbers for which
Corollary1.2 can be improved. Indeed, suppose that we have the ai for i ≤ n given,
and let an+1 = qn where qn is given by the recursion (i). By (vi), we get

∣
∣
∣
∣
x − pn

qn

∣
∣
∣
∣
<

1

qnqn+1
= 1

qn(qnqn + qn−1)
<

1

q3n
. (1.4)

By (v), the sequence {an} defines an irrational number for which the exponent of
Corollary1.2 can be improved to 3 by (1.4). It is easy to modify this construction to
produce an uncountable set numbers approximable with any given exponent on the
right hand side.

This gives a somewhat satisfactory answer to the questions posed about the null-
sets arising from Theorem1.3. The null-sets are not empty, and the special feature of
the elements of the sets is the existence of large partial quotients. Of course, the term
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‘large partial quotients’ should now be quantified, which is where the metrical theory
and the use of dynamical systems kicks in. To quantify these notions, we should ask
whether there is a typical behaviour of the partial quotients, which is violated for the
exceptional numbers.

2 Dynamical Methods

We consider x ∈ [0, 1) and formalise the continued fraction algorithm in the form of
a self-mapping of the unit interval.

Definition 2.1 The Gauss map T : [0, 1) → [0, 1) is defined by

Tx =
{

{1/x} for x �= 0

0 for x = 0.

In the notation of our description of the continued fraction algorithm, we note that
the Gauss map of a number x ∈ [0, 1) extracts exactly the number 1/r1. Applying the
Gauss map a second time, we get T 2x = 1/r2 and so on. It would seem that the Gauss
map is an appropriate dynamical description of the continued fractions expansion.
All we need is to get the partial quotients out of the ri. But this can easily be done
by defining the axillary function

a(x) =
{

[1/x] for x �= 0

∞ for x = 0.
(2.1)

We now see that
an(x) = a(Tn−1x), (2.2)

where an(x) denotes the n’th partial quotient in the continued fraction expansion of
x, so iterates of the Gauss map are the natural object to study.

Having established that the Gauss map encodes the behaviour of the partial quo-
tients, it is natural to ask for the statistical behaviour of this map – especially as we
are interested in typical and a-typical behaviour of the sequence of partial quotients.
A tool for this is ergodic theory. We will say that a map T : [0, 1) → [0, 1) preserves
the measure μ if it is a measurable map such that for any measurable set B ⊆ [0, 1),
μ(T−1B) = μ(B). TheBirkhoff (or pointwise) ergodic theorem is the following result
(see e.g. [22]).

Theorem 2.2 (The pointwise ergodic theorem) Let (Ω,B,μ) be a probability space
and let T : Ω → Ω be a measure preserving transformation. Let f ∈ L1(Ω). Then
the limit

lim
N→∞

1

N

N−1
∑

n=0

f (Tnx) = f (x)
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exists for almost every x ∈ Ω as well as in L1(Ω). If the transformation is ergodic,
i.e. T−1B = B ⇒ μ(B) ∈ {0, 1}, the function f is constant and equal to

∫

fdμ.

We will not prove the theorem here, but we will apply it to the Gauss map. Our
approach is more or less that of [11]. The statement about the map T requires it to be
measure preserving, and it is more or less self-evident that the Gauss map does not
preserve the Lebesgue measure. However, there is a measure, which is absolutely
continuous with respect to Lebesgue measure and with which the Gauss map is
ergodic. There are good reasons why this is the correct measure, although it looks
slightly mysterious at first sight. For now, we will pull the measure out of a hat and
continue to work with it. Later on, we will give some indication of the origins of the
measure.

Definition 2.3 Let B be the Borel σ-algebra in [0, 1). TheGauss measure is defined
to be the function μ : B → [0, 1] defined by

μ(A) = 1

log 2

∫

A

1

1 + t
dt = 1

log 2

∫ 1

0
χA(t)

1

1 + t
dt.

Theorem 2.4 The Gauss measure is preserved under the Gauss map, i.e. for any
measurable set A, we have μ(T−1A) = μ(A).

Proof We note that it is sufficient to prove that μ(T−1[0, y)) = μ([0, y)), as we can
build any other set from basic set operations on these sets. If one considers the graph
of the Gauss map (try drawing it), it is easy to see that

T−1([0, y)) = {x ∈ [0, 1) : 0 ≤ T(x) < y} =
∞
⋃

k=1

[
1

k + y
,
1

k

)

. (2.3)

Thus,

μ
(

T−1[0, y)) =
∞
∑

k=1

μ

([
1

k + y
,
1

k

))

=
∞
∑

k=1

1

log 2

∫ 1/k

1/(k+y)

1

1 + x
dx

=
∞
∑

k=1

1

log 2

[

log

(

1 + 1

k

)

− log

(

1 + 1

k + y

)]

=
∞
∑

k=1

1

log 2
log

(
k + 1

k
· k + y

k + y + 1

)

.

This is completely incomprehensible, so we try to get to the same incomprehensible
expression from the other side. Cunningly, we make an appropriate partition and get
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μ([0, y)) = 1

log 2

∫ y

0

1

1 + x
dx =

∞
∑

k=1

1

log 2

∫ y/k

y/(k+1)

1

1 + x
dx

=
∞
∑

k=1

1

log 2

[

log
(

1 + y

k

)

− log

(

1 + y

k + 1

)]

=
∞
∑

k=1

1

log 2
log

(
k + 1

k
· k + y

k + y + 1

)

.

Luckily, this is the same incomprehensible mess that we have before, so the proof is
complete.

Note that the density of the Gauss measure with respect to the Lebesgue mea-
sure is continuous, non-negative and in fact invertible. Hence, the two measures are
absolutely continuous with respect to each other, and the property of being null or
full with respect to one measure automatically implies the same for the other.

We have turned the study of the typical behaviour of continued fractions into a
matter of studying the measure preserving system ([0, 1),B,μ,T), where B is the
Borel σ-algebra, μ is the Gauss measure and T is the Gauss map. We have also seen
that the pointwise ergodic theorem is a nice way of studying the almost everywhere
behaviour of such maps. It would be desirable if the measure preserving system we
have obtained turned out to be ergodic. It turns out that this is in fact the case. We
will prove this now.

First, let us see what the Gauss map does to a continued fraction.

Proposition 2.5 Let x = [a1, a2, . . . ] ∈ [0, 1). Then

Tx = T [a1, a2, . . . ] = [a2, a3, . . . ].

Proof We see that

T [a1, a2, . . . ] = T

⎛

⎜
⎜
⎜
⎝

1

a1 + 1

a2 + 1
a3+···

⎞

⎟
⎟
⎟
⎠

=
{

a1 + 1

a2 + 1
a3+···

}

= 1

a2 + 1
a3+···

= [a2, a3, . . . ]

This is of course obvious from the construction. But in the light of the measure
theoretic considerations, it does actually contain information. We define some sets
to make life easier.

Definition 2.6 Let a1, . . . , an ∈ N. Define the fundamental interval or fundamental
cylinder
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In(a1, . . . , an) = {[a1, . . . , an, bn+1, bn+2, . . . ] : bn+i ∈ N for all i ∈ N} .

Note that by Proposition2.5, the n’th iterate under the Gauss map of any fundamental
cylinder In is in fact [0, 1) \ Q. This reflects the chaotic (or ergodic) nature of the
Gauss map. Also note that the cylinders do not include the rational points. This is
of little concern to us, as the rationals form a set of measure zero. It does however
mean that we have to be extra careful with our bookkeeping.

In the following, let n ∈ N and a1, . . . , an ∈ N be fixed. Denote by In the funda-
mental interval In(a1, . . . , an). We make a few preliminary observations.

Lemma 2.7 We have x ∈ In if and only if there exists θn(x) ∈ (0, 1) \ Q such that

x = 1

a1 + 1

. . . + 1
an+θn(x)

.

Proof By definition, x ∈ In if and only if x = [a1, . . . , an, bn+1, . . . ]. Applying the
Gauss map n times, we get

θn(x) := Tnx = [bn+1, bn+2, . . . ].

But this is rational if and only if the sequence of partial quotients bn+i terminates.

The above lemma defines a function on the irrational points in the unit interval
θn : [0, 1) \ Q → [0, 1) \ Q.

Lemma 2.8 Let u, v ∈ [0, 1) \ Q, u ≤ v. Then

∣
∣In ∩ T−n[u, v]∣∣ = ∣

∣θ−1
n (v) − θ−1

n (u)
∣
∣ .

Proof We see that

In ∩ T−n[u, v] = {x ∈ [0, 1) \ Q : x = [a1, . . . , an; θ]}

where θ ∈ [u, v] and [a1, . . . , an; θ] denotes the continued fraction

x = 1

a1 + 1

. . . + 1
an+θ

. (2.4)

That is, for any x ∈ In ∩ T−n[u, v], θn(x) ∈ [u, v], so

In ∩ T−n[u, v] ⊆ θ−1
n [u, v].
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Furthermore, any value of θ in [u, v] inserted in (2.4) will give rise to an element in
In ∩ T−n[u, v], so the converse inclusion holds. Finally, it is an easy exercise left to
the reader to see that θ−1

n is monotonic, so this proves the lemma.

It would seem a good idea to find a precise expression for θ−1
n (x). This may be

done from the recursive formulae for the convergents of x.

Lemma 2.9 We have

θ−1
n (x) = pn + xpn−1

qn + xqn−1
.

Proof We prove this by induction in n. For n = 1, using Proposition1.4

p1 + xp0
q1 + xq0

= a1p0 + p−1 + xp0
a1q0 + q−1 + xq0

= 0 + 1 + x · 0
a1 + 0 + x

= 1

a1 + x

so θ−1
1 (x) = (p1 + xp0)/(q1 + xq0).
Now, we consider n + 1. We let y = 1/(an+1 + x). We know that

θ−1
n+1(x) = 1

a1 + 1

. . . + 1

an+ 1
an+1+x

= 1

a1 + 1

. . . + 1
an+y

= θ−1
n (y).

By induction hypothesis and Proposition1.4 again,

θ−1
n (y) = pn + ypn−1

qn + yqn−1
=

pn +
(

1
an+1+x

)

pn−1

qn +
(

1
an+1+x

)

qn−1

= an+1pn + pn−1 + xpn
an+1qn + qn−1 + xqn

= pn+1 + xpn
qn+1 + xqn

.

This completes the proof.

Note that θ−1
n is continuous, so we may extend it to all of [0, 1] and still have

Lemma2.8. We now introduce the so-called Vinogradov notation to make our nota-
tion less cumbersome.

Definition 2.10 For two real expressions x and y, we say that x � y if there exists
a constant c > 0 such that x ≤ cy. If x � y and y � x we write x  y.

Lemma 2.11 Let u, v ∈ [0, 1) with u ≤ v. Then

∣
∣T−n[u, v] ∩ In

∣
∣

|In|  |[u, v]| ,

where the implied constants in  do not depend on the sequence (an) defining the In.
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Proof We use Lemma2.8 to obtain

∣
∣T−n[u, v] ∩ In

∣
∣

|In| =
∣
∣
∣
∣

θ−1
n (v) − θ−1

n (u)

θ−1
n (1) − θ−1

n (0)

∣
∣
∣
∣
=
∣
∣
∣
∣
∣

pn+vpn−1

qn+vqn−1
− pn+upn−1

qn+uqn−1

pn+pn−1

qn+qn−1
− pn

qn

∣
∣
∣
∣
∣

= (v − u)

∣
∣
∣
∣

qn(qn + qn−1)

(qn + vqn−1)(qn + uqn−1)

∣
∣
∣
∣
.

The last reduction requires substantial, but completely elementary calculations using
Proposition1.4.

Now, the denominators of the convergents qn satisfy qn−1/qn < 1, so it is easy to
see by Proposition1.4 (i) that

∣
∣
∣
∣

qn(qn + qn−1)

(qn + vqn−1)(qn + uqn−1)

∣
∣
∣
∣
 1.

As |[u, v]| = v − u, the proof is completed.

Lemma 2.12 For every A ∈ B,

μ(T−nA ∩ In)

μ(In)
 μ(A).

Proof As the Borel σ-algebra is generated by intervals, by Lemma2.11 for any
A ∈ B, ∣

∣T−nA ∩ In
∣
∣

|In|  |A| . (2.5)

Also, since 1/2 < 1/(1 + t) ≤ 1 for t ∈ [0, 1), we have for any A ∈ B,

1

2
|A| =

∫

A

1

2
dt ≤

∫

A

1

1 + t
dt = μ(A)

and

μ(A) =
∫

A

1

1 + t
dt ≤

∫

A
1dt = |A| .

Hence, μ(A)  |A|, so the Lemma follows from (2.5).

Theorem 2.13 The Gauss map is ergodic with respect to the Gauss measure.

Proof Suppose that T−1A = A and that μ(A) > 0. It suffices to prove that μ(A) = 1.
Any Borel set can be generated by the In, as these intervals are essentially disjoint
with lengths tending to zero. Hence, by generating a set B by In’s of the same level
(up to an arbitrarily small error), Lemma2.12 implies that

μ(T−nA ∩ B)  μ(A)μ(B)
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for any B ∈ B. On the other hand, as T−1A = A,

μ(T−nA ∩ B) = μ(A ∩ B)

Letting B = Ac, we see that μ(A ∩ B) = 0, so that μ(B)  0. This clearly implies
that μ(B) = μ(Ac) = 0, so that μ(A) = 1.

We specify the following corollary of the Pointwise Ergodic Theorem and
Theorem2.13:

Corollary 2.14 Let f be an integrable function on [0, 1). Then

lim
N→∞

1

N

N−1
∑

n=0

f (Tnx) = 1

log 2

∫ 1

0

f (t)

1 + t
dt

for almost every x ∈ [0, 1).
Many things follow from the ergodicity of the Gauss map. For instance, almost all

numbers have an unbounded sequence of partial quotients, and in fact the arithmetic
mean of the partial quotients is infinite almost surely.On the other hand, the geometric
mean does have a limiting value almost surely. Calculating the typical frequency of
any prescribed partial quotient is an easy exercise in integration, and combining these
results with themachinery of continued fractions give a unifiedway inwhich to prove
many of the classical metrical results in Diophantine approximation. An example is
Lévy’s theorem.

Theorem 2.15 For almost every x ∈ [0, 1),

lim
n→∞

1

n
log qn(x) = π2

12 log 2
.

We will not derive this theorem here, although we will be appealing to it later.
Instead, let us derive a partial converse to Theorem1.3 due to Khintchine [49].

Theorem 2.16 Letψ : N → R≥0 be some function with
∑∞

q=1 qψ(q) = ∞ and with
qψ(q) non-increasing. Then,

∣
∣
∣
∣

{

x ∈ [0, 1] :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
< ψ(q) for infinitely many (p, q) ∈ Z × N

}∣
∣
∣
∣
= 1.

This is the difficult half of Khintchine’s theorem, which in its totality consists
of Theorem1.3 and Theorem2.16. It should be noted that there is an additional
assumption on the function ψ. This is strictly needed. We will discuss this later in
these notes.

Lemma 2.17 Let (αn)n∈N be a sequence of positive numbers. Suppose that
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∞
∑

n=1

1
αn

= ∞.

Then,
|{x ∈ [0, 1) : an(x) > αn for infinitely many n ∈ N}| = 1.

Proof We fix arbitrary a1, . . . , an ∈ N and let In denote the fundamental interval
corresponding to these partial quotients. We let En = {x ∈ [0, 1) : an(x) > αn}. We
first prove that

μ(En+1 ∩ In)

μ(In)
� 1

αn+1 + 1
. (2.6)

In fact, all we need to do is to note that

En+1 = T−n
{

x ∈ [0, 1) : x = [ân+1, . . . ] where ân+1 > αn+1
}

.

Thus, by Lemma2.12,

μ(En+1 ∩ In)

μ(In)
 μ

({

x ∈ [0, 1) : x = [ân+1, . . . ] where ân+1 > αn+1
})

.

But since the Gauss measure and the Lebesgue measure are absolutely continuous
with respect to each other, the above quantity is

 ∣
∣
{

x ∈ [0, 1) : x = [ân+1, . . . ] where ân+1 > αn+1
}∣
∣

=
∑

k>αn+1

(
1

k
− 1

k + 1

)

� 1

αn+1 + 1

Repeatedly using (2.6), we get for some universal C′ > 0,

μ(Ec
m ∩ · · · ∩ Ec

m+k) ≤
k
∏

i=1

(

1 − 1

C′αm+i + 1

)

.

This holds for any m, k ∈ N. To see this, note that we can express the property of
being in Ec

m as being in some union of disjoint fundamental intervals. We leave the
formalism as an exercise for the interested reader.

Finally,

μ

( ∞
⋂

i=m

Ec
m+i

)

≤
∞
∏

i=1

(

1 − 1

C′αm+i + 1

)

.

As 1 − x ≤ e−x whenever 0 ≤ x < 1, we have
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n
∏

i=1

(

1 − 1

C′αm+i + 1

)

≤
n
∏

i=1

e
− 1

C′αm+i+1 = e
−∑n

i=1
1

C′αm+i+1 .

But this tends to 0, as
∑

1/αi is assumed to diverge. Thus, the probability that
an > αn only occurs finitely many times is zero, which proves the lemma.

We are now ready to prove Khintchine’s Theorem.

Proof (Part II (the divergence case)) We let N be a fixed integer such that logN >

π2/12 log 2 (N = 4 will do nicely). By Theorem2.15, for all but finitely many values
of n,

1

n
log qn(x) < logN (2.7)

for almost all x ∈ [0, 1).
Let f (q) = qψ(q). Define a function φ(n) = Nnf (Nn). Since f (q) = qψ(q) is

non-increasing,

Nn+1−1
∑

q=Nn

f (q) ≤ (Nn+1 − Nn)f (Nn) = (N − 1)φ(n),

so as
∑

f (q) diverges, this will also be the case for
∑

φ(n). Therefore, by
Lemma2.17, for almost every x ∈ [0, 1),

an+1(x) >
1

φ(n)

holds for infinitely many n.
Now, we apply our classical estimates:

∣
∣
∣
∣
x − pn

qn

∣
∣
∣
∣
≤ 1

qn(x)qn+1(x)
<

1

an+1qn(x)2
<

φ(n)

qn(x)2

for infinitely many n for almost all x. But by (2.7), qn(x) < Nn, and as qf (q) is
non-increasing, we get

φ(n) = Nnf (Nn) ≤ qn(x)f (qn(x)).

Hence, for infinitely many n,

∣
∣
∣
∣
x − pn

qn

∣
∣
∣
∣
<

qn(x)f (qn(x))

qn(x)2
= ψ(qn(x)).

This proves the theorem.
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We conclude the second section with an informal discussion of a different – and
somewhat more modern – view on the Gauss map. Let us ‘decompose’ the action of
the Gauss map into new maps. To apply the map x �→ {1/x}, we first apply the map
x �→ 1/x and continue to apply the map x �→ x − 1 until we finally arrive in the unit
interval again. These maps are both Möbius maps given by the matrices

(

0 1
1 0

)

and

(

1 −1
0 1

)

.

Recall that the Möbius map associated to a matrix

A =
(

a b
c d

)

is given by

x �→ ax + b

cx + d
.

Composition of such maps corresponds to taking products of matrices.
For convenience, we make some sign changes here and there and consider instead

the matrices

S =
(

0 −1
1 0

)

and T =
(

1 1
0 1

)

.

Together, these matrices generate the group SL2(Z).
It is tempting to look for a space on which this group acts naturally, and indeed

such a space exists. The hyperbolic plane is such an object. Consider the upper half
plane,

H = {x + iy ∈ C : y > 0}

with the Riemannian metric

〈v,w〉z = 1

y2
(v · w) for z = x + iy.

The groupSL2(R)/{±I} acts by isometries viaMöbiusmaps onH. The groupSL2(Z)

forms a lattice inside this group of isometries, and so we can consider the Riemann
surfaceM = H/SL2(Z). This is a surface with three singularities: two points where
it is non-smooth and a cusp. Applying the above generators roughly corresponds to
crossing the sides of the fundamental domain of the group SL2(Z).

Considering the boundary of the hyperbolic plane,R ∪ {∞}, we easily see that all
rational numbers are identified with the point at infinity under the action of SL2(Z).
This point in turn becomes the cusp of the surfaceM.

If one formalises the above discussion, one may prove that the continued fraction
of a number corresponds to a geodesic on the surfaceM. Formalising this is beyond
the scope of these notes, but the reader is referred to the paper [46] or the monograph
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[22]. The ergodicity of the Gauss map can be seen as an instance of the ergodicity
of the geodesic flow on M (or more generally on surfaces of constant negative
curvature). The geodesic flow onM is a flow in the unit tangent bundle ofM, which
may be identified with SL2(R)/SL2(Z). This can be seen as the starting point of the
use of homogeneous dynamics in Diophantine approximation, an approach which
has become tremendously important in recent years. It also gives an explanation for
the origins of the curious density of the Gauss measure, which can be induced on
the unit interval from the natural measure onM. In a sense, the hyperbolic measure
can be seen as an instance of the hat out of which we previously pulled the Gauss
measure.

3 Fractal Geometry – A Crash Course

Aswe saw in the last section, there is a nice zero–onedichotomyas far as theLebesgue
measure of the set of real numbers with prescribed approximation properties is con-
cerned. However, the null sets obtained in the convergence case of Khintchine’s
theorem are not empty. One could easily use the machinery of continued fractions
to prove that a given set is uncountable, but in fact we may discriminate even more
precisely between the sizes of the null sets using the notion of Hausdorff dimension.

Hausdorff dimension was introduced by Felix Hausdorff [27], building on the
construction of the Lebesgue measure given by Carathéodory [15]. Carathéodory
constructed the Lebesgue measure by approximating a set E by countable covers
of simple sets. The simple sets would have a volume, which could be calculated by
elementary means. On adding these countably many volumes, Carathéodory would
obtain an upper bound on the volume of the set E. To get the Lebesgue measure, one
takes the infimum over all such covers. This produces an outer measure for which
the Borel sets are measurable.

Hausdorff made the simple but far-reaching observation that if one replaces the
usual volume of the sets in the covers by an appropriate function of their diameter,
a different measure would be obtained. The usual volume of a hypercube in R

n is a
constant multiple of its diameter raised to the power n, with the constant depending
only on n, so this is an entirely natural thing to do. It turns out that an abundance of
sets supporting such a measure exist. In particular, with the added flexibility of using
different functions, one can discriminate between the sizes of Lebesgue null sets.

Let us be more concrete. For a given countable cover, C say, of E we consider the
following sum sometimes termed the s-length of the cover C, given by

�s(C) :=
∑

U∈C
(diamU)s,

where diamU = sup{|x − y| : x, y ∈ U} is the diameter of U and where s ≥ 0 is
some real number. We will also consider yet another generalisation of the above,
also considered by Hausdorff. A dimension function f : R+ → R+ is a continuous,
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monotonic functionwith f (r) → 0 as r → 0. In the above,wemay replace (diamU)s

by f (diamU) for any such function to obtain the more general notion of f -length.
For clarity of exposition, in the following we consider the special case f (r) = rs

corresponding to the s-length as defined above. This is associated with what is now
usually called the Hausdorff dimension but also sometimes called the Hausdorff–
Besicovitch dimension. The possibly infinite number �s(C) gives an indication the
‘s-dimensional volume’ of the setE inmuch the samewayCarathéodorywould think
of it. Taking yet another hint from Carathéodory, the diameter of the sets U in the
cover is now restricted to be at most δ > 0.

Let
Hs

δ(E) := inf
Cδ

∑

U∈Cδ

(diamU)s = inf
Cδ

�s(C◦),

where the infimum is taken over all covers Cδ of E by sets U with diamU ≤ δ; such
covers are called δ-covers. As δ decreases, Hs

δ can only increase as there are fewer
U’s available, i.e. if 0 < δ < δ′, then

Hs
δ′(E) ≤ Hs

δ(E).

The set functionHs
δ is an outer measure on R

n. The limitHs (which can be infinite)
as δ → 0, given by

Hs(E) = lim
δ→0

Hs
δ(E) = sup

δ>0
Hs

δ(E) ∈ [0,∞], (3.1)

is however nicer toworkwith, as it is a regular outermeasurewith respect towhich the
Borel sets are measurable. It is usually called the Hausdorff s-dimensional measure.
Hausdorff 1-dimensional measure coincides with 1-dimensional Lebesgue measure
and in higher dimensions, Hausdorff n-dimensional measure is comparable to n-
dimensional Lebesgue measure, i.e.

Hn(E)  |E|,

where |E| is the Lebesgue measure of E and the implied constants depend only on
n and not on the set E. Thus a set of positive n-dimensional Lebesgue measure has
positive Hausdorff n-measure.

As the definition depends only on the diameter of the covering sets, there is no loss
of generality in restricting to considering only covers consisting of open, closed or
convex sets. Additionally, the resulting measure is clearly invariant under isometries,
and scaling affects the measure in a completely natural way: for any r ≥ 0,

Hs(rE) = rsHs(E).
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As a function of s, the s-dimensional Hausdorff measure of a fixed set E exhibits
an interesting behaviour. For a set E,Hs(E) is either 0 or ∞, except for possibly one
value of s. To see this, the definition ofHs

δ(E) implies that there is a δ-cover Cδ of E
such that ∑

C∈Cδ

(diamC)s ≤ Hs
δ(E) + 1 ≤ Hs(E) + 1.

Suppose thatHs0 (E) is finite and s = s0 + ε, ε > 0. Then for each member C of the
cover Cδ , (diamC)s0+ε ≤ δε(diamC)s0 , so that the sum

∑

C∈Cδ

(diamC)s0+ε ≤ δε
∑

C∈Cδ

(diamC)s0 .

Hence

Hs0+ε
δ (E) ≤

∑

C∈Cδ

(diamC)s0+ε ≤ δε
∑

C∈Cδ

(diamC)s0 ≤ δε(Hs0 (E) + 1),

and so

0 ≤ Hs(E) = Hs0+ε(E) = lim
δ→0

Hs0+ε

δ (E) ≤ lim
δ→0

δε(Hs0(E) + 1) = 0.

On the other hand supposeHs0 (E) > 0. If for any ε > 0,Hs0−ε(E) were finite, then
by the above Hs0 (E) = 0, a contradiction, whence Hs−ε(E) = ∞.

To summarise, we have obtained a set functionHs associating to each infinite set
E ⊆ Rn an exponent s0 ≥ 0 for which

Hs(E) =
{

∞, 0 ≤ s < s0,

0, s0 < s < ∞.

The critical exponent

s0 = inf{s ∈ [0,∞) : Hs(E) = 0} = sup{s ∈ [0,∞) : Hs(E) = ∞}, (3.2)

where the Hausdorff s-measure crashes is called the Hausdorff dimension of the set
E and is denoted by dimHE. It is clear that if Hs(E) = 0 then dimHE ≤ s; and if
Hs(E) > 0 then dimHE ≥ s. However, nothing is revealed from the definition about
the measure at the critical exponent, and indeed it can take any value in the interval
[0,∞] with ∞ included.

The main properties of Hausdorff dimension for sets in R
n are:

(i) If E ⊆ F then dimHE ≤ dimHF.
(ii) dimHE ≤ n.
(iii) If |E| > 0, then dimHE = n.
(iv) The dimension of a point is 0.
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(v) If dimHE < n, then |E| = 0 (however dimHE = n does not imply |E| > 0).
(vi) dimH(E1 × E2) ≥ dimHE1 + dimHE2.
(vii) dimH ∪∞

j=1 Ej = sup{dimHEj : j ∈ N}.
It easily follows from the above properties that the Hausdorff dimension of any
countable set is 0 and that of any open set in R

n is n. The nature of the construction
of Hausdorff measure ensures that the Hausdorff dimension of a set is unchanged
by an invertible transformation which is bi-Lipschitz. This implies that for any set
S ⊆ R \ {0}, dimHS−1 = dimHS, where S−1 = {s−1 : s ∈ S}. To see this, we split up
the positive real axis into intervals ( 1n ,

1
n−1 ] for n ≥ 2 together with the intervals

(m,m + 1] for m ≥ 1. The negative real axis is similarly decomposed. On each
interval, the map s �→ s−1 is bi-Lipschitz, and so the statement follows by appealing
to (vii) above.

Thus on the whole, Hausdorff dimension behaves as a dimension should, although
that the natural formula dimH(E1 × E2) = dimHE1 + dimHE2 does not always hold
(it does hold for certain sets, e.g., cylinders, such as E × I , where I is an interval:
dimH(E × I) = dimHE + dimHI = dimHE + 1 by (iii), see [24]).

It is often convenient to restrict the elements in the δ-covers of a set to simpler
sets such as balls or cubes. For example, covers consisting of hypercubes

H = {x ∈ R
n : |x − a|∞ < δ},

where |x|∞ = max{|xj| : 1 ≤ j ≤ n} is the height of x ∈ R
n, centred at a ∈ R

n and
with sides of length 2δ are used extensively. While outer measures corresponding to
these more convenient restricted covers are not the same as Hausdorff measure, they
are comparable and so have the same critical exponent. Thus there is no loss as far
as dimension is concerned if the sets U are chosen to be balls or hypercubes.

Of course, the twomeasures are identical for sets with Hausdorff s-measure which
is either 0 or ∞. Such sets are said to obey a ‘0-∞’ law, this being the appropriate
analogue of the more familiar ‘0 -1’ law in probability. Sets which do not satisfy a
0-∞ law, i.e. sets which satisfy

0 < HdimHE(E) < ∞, (3.3)

are called s-sets; these occur surprisingly often and enjoy some nice properties. One
example is the Cantor set which has Hausdorff s-measure 1 when s = log 2/log 3.

However it seems that s-sets are of minor interest in Diophantine approximation
where the sets that arise naturally, such as the set of badly approximable numbers or
the set of numbers approximable to a given order (see next section), obey a 0-∞ law.
The first steps in this direction were taken by Jarník, who proved that the Hausdorff
s-measure of the set of numbers rationally approximable to order v was 0 or∞. This
result turns on an idea related to density of Hausdorff measure.

Lemma 3.1 Let E be a null set in R and let s ∈ [0, 1]. Suppose that there exists a
constant K > 0 such that for any interval (a, b) and s ∈ [0, 1],
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Hs(E ∩ (a, b)) ≤ K(b − a)Hs(E). (3.4)

Then Hs(E) = 0 or ∞.

Proof Suppose the contrary, i.e. suppose 0 < Hs(E) < ∞ and let K be as in the
statement of the theorem. Since E is null, there exists a cover of E by open intervals
(aj, bj) such that

∑

j

(bj − aj) <
1

K
.

By (3.4),

Hs(E) = Hs

⎛

⎝
⋃

j

(aj, bj) ∩ E

⎞

⎠ ≤ KHs(E)
∑

j

(bj − aj) < Hs(E),

a contradiction.

The proof for a general outer measure is essentially the same. The sets we
encounter in Diophantine approximation are generally not s-sets and some satisfy
this ‘quasi-independence’ property. For instance, it was shown in [14], using a vari-
ant of the above lemma, that there is no dimension function such that the associated
Hausdorff measure of the set of Liouville numbers (defined below) in an interval is
positive and finite. Liouville numbers are those real numbers x for which we for any
v > 0 can find a rational p/q such that

0 <

∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
<

1

qv
.

Note that in this case, the existence of a single rational p/q for each v > 0 implies the
existence of infinitly many. We prove below that this set has Hausdorff dimension
0. The result of [14] shows that even with a general Hausdorff measure Hf , we still
cannot get a positive and finite measure.

Unless some general result is available, the Hausdorff dimension dimHE of a
null set E is usually determined in two steps, with the correct upward inequality
dimHE ≤ s0 and downward inequality dimHE ≥ s0 being established separately.

For limsup sets, such as the one in Theorems1.3 and 2.16, the Hausdorff measure
version of the Borel–Cantelli lemma is often useful.

Lemma 3.2 Let (Ek) be some sequence of arbitrary sets in R
n and let

E = {x ∈ R
n : x ∈ Ek for infinitely many k ∈ N}.

If for some s > 0,
∞
∑

k=1

diam(Ek)
s < ∞, (3.5)
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then Hs(E) = 0 and dimHE ≤ s.

Proof From the definition, for each N = 1, 2, . . . ,

E ⊆
∞
⋃

k=N

Ek,

so that the family C(N) = {Ek : k ≥ N} is a cover for E. By (3.5),

lim
N→∞

∞
∑

k=N

diam(Ek)
s = 0.

Hence limk→∞ diam(Ek) = 0 and therefore given δ > 0, C(N) is a δ-cover of E for
N sufficiently large. But

Hs
δ(E) = inf

Cδ

∑

U∈C◦

(diamU)s ≤ �s(C(N)) =
∞
∑

k=N

diam(Ek)
s → 0

as N → ∞. Thus Hs
δ(E) = 0 and by (3.1),Hs(E) = 0, whence dimHE ≤ s.

This was essentially what we did in the last section to prove the easy half of
Khintchine’s theorem. It followsmutatis mutandis from that proof that the Hausdorff
dimension of the set

{

x ∈ R :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
< ψ(q) for infinitely many (p, q) ∈ Z × N

}

,

is atmost swhenever
∑∞

q=1 qψ(q)s < ∞, so that ifψ(q) = q−v , theHausdorff dimen-
sion would be at most 2/v. As with Khintchine’s theorem, this is sharp, but the
converse inequality is more difficult to prove. We return to it in the final section.

Various methods exist for establishing lower bounds on the Hausdorff dimension
of a set. Underlying most of these methods are variants of the so-called mass dis-
tribution principle. Of course, the key difficulty is the fact that to get lower bounds,
we need to consider all covers rather than just exhibiting a single cover. This is due
to the definition of the Hausdorff s-measure as the infimum over all covers of the
s-length. The mass distribution principle is the following simple result.

Lemma 3.3 Let μ be a finite and positive measure supported on a bounded subset E
of R

n. Suppose that for some s ≥ 0, there are strictly positive constants c and δ such
thatμ(B) ≤ c (diam B)s for any ball B inR

n withdiam B ≤ δ. ThenHs(E) ≥ μ(E)/c.
In particular, dimHE ≥ s.

Proof Let {Bk} be a δ-cover of E by balls Bk . Then



82 S. Kristensen

0 < μ(E) ≤ μ

(
⋃

k

Bk

)

≤
∑

k

μ(Bk) ≤ c
∑

k

(diam B)s.

Taking infima over all such covers, we see thatHs
δ(E) ≥ μ(E)/c, whence on letting

δ → 0,

Hs(E) ≥ μ(E)

c
> 0.

Thus if E supports a probability measure μ (μ(E) = 1) with μ(B) � (diam B)s for
all sufficiently small balls B, then dimHE ≥ s.

We now briefly discuss two other notions of dimension, namely box counting
dimension and Fourier dimension. Box counting dimension (see e.g. [24]) is some-
what easier to calculate from the empirical side, although it has some serious draw-
backs. Given a set E ⊆ Rn and a number δ > 0, let Nδ(E) denote the least number of
closed balls of radius δ needed to cover E. We then define the upper and lower box
counting dimensions of E as

dimB(E) = lim inf
δ→0

logNδ(E)

− log δ
, dimB(E) = lim sup

δ→0

logNδ(E)

− log δ
.

If the values agree, we call this the box counting dimension of E.
The definition is fairly flexible, and changing the counting function to any of a

number of related counting functions does not change the value. The above count-
ing function has been chosen as a similar quantity should be familiar to readers
experienced with the concept of entropy.

A major drawback of box counting dimension is that it is not associated with any
measure. As a consequence of this, it is easy to construct countable sets of positive
box counting dimension. In fact, one easily proves that the box counting dimension
is unchanged when taking the topological closure of the set in question. Hence, any
dense and countable subset of R has box counting dimension 1. This is problematic
if one would like to apply the notion to prove the existence of transcendental num-
bers with certain properties using metrical methods. Indeed, as the set of algebraic
numbers is countable and dense, the statement that a set has positive box counting
dimension does not imply that it must contain transcendental numbers. On the other
hand, proving that a set has box counting dimension zero is amuch stronger statement
than the corresponding one for Hausdorff dimension.

We will define one more notion of dimension, namely the Fourier dimension of a
set (see [38]). For a measure μ, denote by μ̂ its Fourier transform, i.e.

μ̂(x) =
∫

e−2πiξ·xdμ(ξ).

We are concerned with positive Radon probability measures, so we suppose that μ
is a positive, regular Borel measure with μ(Rn) = 1. A poor man’s version of the
uncertainty principle would state, that if the Fourier transform of μ decays as |x|
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increases, the support of the measure would be ‘smeared out’, and so be somewhat
messy.

The technical definition of the Fourier dimension of a set is as follows: Let
dimF(E) be the unique number in [0, n] such that for any s ∈ (0, dimF(E)), there is a
non-zero Radon probability measure μ with supp(μ) ⊆ E and with |μ̂(x)| ≤ |x|−s/2,
and such that for any s > dimF(E), no such measure exists.

The types of dimension mentioned here are related as follows for a set E ⊆ R
n:

dimF(E) ≤ dimH(E) ≤ dimB(E) ≤ dimB(E). (3.6)

Proving the last two inequalities is straightforward, but the first one is difficult,
and requires Frostman’s Lemma [25], a powerful converse to the mass distribution
principle of Lemma3.3.

We end this section by relating the fractal concepts discussed so far to arithmetical
issues. This will motivate the key problem considered when discussing Diophantine
approximation on fractal sets.

A classical theorem of Émile Borel [12] states that almost all real numbers with
respect to the Lebesgue measure are normal to any integer base b ≥ 2 (or absolutely
normal). In other words, for almost all numbers x, any block of digits occurs in
the base b expansion of x with the expected frequency, independently of b. In fact,
with reference to the previous section, this can be deduced from the ergodicity of
the maps Tb : [0, 1) → [0, 1) given by Tb(x) = {bx} with respect to the Lebesgue
measure. The ergodicity of these maps is much easier to prove than for the Gauss
map, and the deduction of Borel’s result is left as an exercise.

While almost all numbers are normal to any base, the only actual examples known
of such numbers are artificial and very technical to even write down (see e.g. [44]).
For well-known constants such at π, log 2 or even

√
2, very little is known about

their distribution of digits. It is a long-standing conjecture that algebraic irrational
numbers should be absolutely normal. In view of this, it seems natural to study
which Diophantine properties a number which fails to be normal in some way can
enjoy. One could hope that this would shed light on the question of the normality (or
non-normality) of algebraic numbers.

With these remarks, let us consider a specific set of non-normal numbers which
is of interest. Any such set will have Lebesgue measure zero, but in order to get
anywhere with our analysis, we will take a particularly structured example. Let

C =
{

x ∈ [0, 1] : x =
∞
∑

i=1

ai3
−i, ai ∈ {0, 2}

}

,

i.e. the set of numbers in [0, 1] which can be expressed in base 3 without using the
digit 1. Clearly, an element of C cannot be absolutely normal. Of course, this set is just
the well-known ternary Cantor set, and just looking at it would suggest approaching
the study of the set by using fractal geometry.

Proposition 3.4 The setC has dimH(C) = dimB(C) = log 2/log 3 and dimF(C) = 0.
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We will calculate the Hausdorff dimension and the box counting dimension here.
The result on the Fourier dimension is due to Kahane and Salem [31] and requires
more work. However, we will calculate the Fourier transform of a particular measure
on C and show that this does not decay.

For the upper bound on the upper box counting dimension, we will consider the
obvious coverings of C by intervals obtained by fixing the first n coordinates of
the elements in C. There are 2n such intervals, and each has length 3−n. Hence, for
3−n ≤ δ ≤ 3−n+1, we find that Nδ(C) ≤ 2n. It follows that

dimB(C) = lim sup
δ→0

logNδ(C)

− log δ
≤ lim sup

n→∞
log 2n

log 3n−1
= log 2

log 3
.

If we can get the same lower bound on the Hausdorff dimension, applying (3.6)
would give us the first two equalities immediately. For this, we will apply the mass
distribution principle, so we will need a probability measure.

Initially, we assign the mass 1 to the unit interval. We then divide the mass equally
between the two intervals [0, 1/3] and [2/3, 1], so that each has measure 1/2. We
continue in this way, at step k dividing the mass of each ‘parent’ interval equally
between the two ‘children’. The process converges to a measure supported on the
Cantor set (as a sequence ofmeasures in theweak-∗ topology, butwe skip the details).
The resulting measure μ is known as the Cantor measure.

To prove that the Cantor measure is good for applying the mass distribution
principle, we need an upper estimate on themeasure of an interval. Let I be an interval
of length <1. Pick an integer n ≥ 0 such that 3−(n+1) ≤ diam(I) < 3−n. In the n’th
step of the Cantor construction, the minimum gap size is 3−n. Hence, the interval
can intersect at most one of the level n intervals, and so, setting s = log 2/log 3,

μ(I) ≤ 2−n = 3−ns ≤ 3s diam(I)s = 2 diam(I)s.

From the mass distribution principle of Lemma3.3, it immediately follows that
Hs(C) ≥ 1/2, whence dimH C ≥ s = log 2/ log 3. This completes the proof of the
first part of the proposition.

To finish, we will calculate the Fourier transform of the specific Cantor measure
μ constructed above. Weak-∗ convergence of the auxiliary measures imply that for
any continuous function f on [0, 1],

∫ 1

0
f (x)dμ(x) = lim

n→∞ 2−n
∑

a1,...,an∈{0,2}
f (a13

−1 + · · · + an3
−n),

so in order to find the Fourier transform of the measure, we need to evaluate the
above expression for the function ft(x) = e−2πitx. On inserting, we find that

μ̂(t) = lim
n→∞ 2−n

∑

a1,...,an∈{0,2}
e−2πit(a13−1+···+an3−n). (3.7)
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Recalling Euler’s formula for the cosine function,

cos(θ) = eiθ + e−iθ

2
,

we find that

n
∏

k=1

cos(2π3−kt) =
n
∏

k=1

e2πi3
−k t + e−2πi3−k t

2

= 2−n
n
∏

k=1

e2πi3
−k t

n
∏

k=1

(

e−2πi3−k2t + 1
)

.

Taking absolute values, the first product becomes of absolute value 1. Expanding the
latter product, whatever remains becomes a partial sum from (3.7), so that letting n
tend to infinity,

|μ̂(t)| =
∣
∣
∣
∣
∣

n
∏

k=1

cos(2π3−kt)

∣
∣
∣
∣
∣
.

It should be clear that this does not decay polynomially with t, so certainly the Cantor
measure is no good if we were to believe that the Cantor set had positive Fourier
dimension. Of course, this is not the case anyway.

We conclude this chapter with some remarks connecting dynamics, fractals, mea-
sures, Diophantine approximation and numeration systems. This requires a bit of
functional analysis. We refer the reader to [41] for an excellent textbook on the topic.

As we have seen, to both Diophantine properties and to base b expansions, we
may associate dynamical systems on the unit interval. In the former case, this was the
Gauss map, and in the latter the base b map. Both of these are ergodic with respect
to measures which are absolutely continuous with respect to the Lebesgue measure,
so almost all numbers are typical with respect to both of these measures. Our main
problem is to take an atypical property from one and prove that this forces the other
to be typical.

In terms of measures, invariant sets such as the ternary Cantor set give rise to
other preserved measures than the Lebesgue measure (and similarly for sets invariant
under the Gauss map). A quick-and-dirty way of constructing such measures is
to take a point, look at its backward orbit and take a weak limit of averages of
point measures along the orbit. By the Riesz representation theorem, these measures
correspond to linear functionals in the unit ball of C([0, 1])∗, the dual space to the
continuous functions on the interval with the topology of uniform convergence. The
Banach-Alaoglu theorem ensures the existence of a limit point, which again by Riesz
corresponds to a measure with its support on the orbit closure of the initial point. In
this way, onemay construct many invariant measures for a continuous transformation
of the interval.
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The set of invariantmeasures can easily be shown to be closed (hence compact) and
convex. As such, it is spanned by its extremal points, and it is again an easy exercise to
prove that these are exactly the measures with respect to which the transformation is
ergodic. It then follows from the pointwise ergodic theorem that such measures must
be mutually singular. In the cases considered above, the space of ergodic measures
has an element which is absolutely continuous with respect to Lebesgue and a whole
bunch of ‘fractal’ measures such as the Cantor measure.

In view of this, it would seem that our problems should boil down to considering
nice, convex subsets of the Banach space C([0, 1])∗, and subsequently study the
support of elements in their intersections, when interpreted as measures by the Riesz
representation theorem. However easy this may sound, it really is horrible! Indeed,
one can construct a simplex in an infinite dimensional space whose extremal points
are dense within it (the Poulsen simplex [43]). Evidently, the existence of such
monstrous sets makes life harder for us, but it also puts the study of Diophantine
approximation into a much broader context with connections all over mathematics.

4 Higher Dimensional Problems

In the last section, we mentioned a major open problem in Diophantine approxi-
mation: Are algebraic irrational numbers absolutely normal? In order to approach
this problem, we should address the concept of approximation by algebraic num-
bers. This is a higher dimensional problem, and we will approach it by considering
rational approximation in higher dimensional spaces. The added flexibility of having
more than one variable allows us to come up with new problems as well as to state
analogues of old ones in higher dimension. As it turns out, some of the unsolved prob-
lems in one dimension can be resolved in higher dimension, while some problems
which naturally live in higher dimensions remain unsolved.

As our starting point, we will derive some elementary results from the geometry
of numbers (see [17, 39]). Let S ⊆ R

n be a centrally symmetric convex set, i.e. a
set S such that if x, y ∈ S then the line segment joining x and y is fully contained in
S, and so that if x ∈ S, then −x ∈ S. Of course, such sets need not be Borel, as is
easily seen by taking the open unit ball in R

2 together with a non-measurable subset
of the unit sphere. However convex sets do belong to the larger class of Lebesgue
measurable sets and so have a well defined volume. A first question is, how large
this volume can get before we are guaranteed the existence of a point different from
the origin with integer coordinates in S. Clearly, 2n is a lower bound, as is seen by
considering the cube. As it turns out, this is best possible.

Theorem 4.1 Let S be a convex, centrally symmetric body of volume strictly greater
than 2n. Then, S contains a point from Z

n \ {0}.
Proof First, consider the set S′ = 1

2S, i.e.

S′ = {x ∈ R
n : 2x ∈ S}.
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This set has volume strictly greater than 1. We divide the set up into disjoint bits

S′
u = {x ∈ R

n : ui ≤ xi < ui + 1} ∩ S′, where u = (u1, . . . , un) ∈ Z
n.

Now, consider the sets S′′
u = S′

u − u ⊆ [0, 1)n. The sum of the volumes of the S′′
u

is strictly greater than 1, so two of the sets must overlap. Hence, there are distinct
points x′, x′′ ∈ S′ and distinct points u′, u′′ ∈ Z

n, such that x′ − x′′ = u′ − u′′ = u ∈
Z
n \ {0}. But by convexity and central symmetry,

1
2x

′ − 1
2x

′′ = 1
2u ∈ S′ = 1

2S,

so that u ∈ S.

Note that if we further assume that S is closed, the inequality of the above theorem
can be weakened to vol(S) ≥ 2n by a simple compactness argument. We can use
Theorem4.1 to provide solutions to systems of Diophantine inequalities.

Theorem 4.2 Let (aij) ∈ GL(n, R) be some invertible matrix, let c1, . . . , cn > 0,
and consider the system of inequalities

∣
∣
∣
∣
∣
∣

n
∑

j=1

a1jxj

∣
∣
∣
∣
∣
∣

≤ c1

∣
∣
∣
∣
∣
∣

n
∑

j=1

aijxj

∣
∣
∣
∣
∣
∣

< ci, 2 ≤ i ≤ n.

If c1 · · · cn ≥ ∣
∣det(aij)

∣
∣, this system has a non-trivial integer solution.

Proof It is straightforward to verify that the system of inequalities define a cen-
trally symmetric convex set of volume 2nc1 · · · cn

∣
∣det(aij)

∣
∣
−1
. Thus, if c1 · · · cn >

∣
∣det(aij)

∣
∣, the theorem is immediately implied by Theorem4.1.

To get the full theorem, we first replace c1 by c1 + ε for some arbitrary ε ∈
(0, 1). By the above argument, there is an integer solution x(ε) ∈ Z

n for each ε, and
furthermore, the corresponding convex sets are all bounded by a constant independent
of ε. Consequently, there are only finitely many possible integer solutions to the
system of equations, so one must occur for all εk in some sequence with εk → 0.
This is the point we are looking for.

Now, let x1, . . . , xn ∈ R, let N ∈ N and define the matrix

(aij) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 1
1 0 · · · 0 −x1
0 1 · · · 0 −x2
...

...
...

...

0 0 · · · 1 −xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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Taking c1 = Nn and c2 = · · · = cn+1 = 1/N , the conditions of Theorem4.2 are
clearly satisfied. We have shown the following extension of Dirichlet’s theorem.

Corollary 4.3 Let x1, . . . , xn ∈ R, let N ∈ N. There are integers p1, . . . , pn and q,
0 < q ≤ Nn such that

∣
∣
∣
∣
xi − pi

q

∣
∣
∣
∣
<

1

qN
, 1 ≤ i ≤ n.

Just as we did in the case of Dirichlet’s theorem, we can derive a non-uniform
version.

Corollary 4.4 Let x1, . . . , xn ∈ R. There are infinitely many tuples (p1, . . . , pn) ∈
Z
n and integers q ∈ Z \ {0}, such that

∣
∣
∣
∣
xi − pi

q

∣
∣
∣
∣
<

1

q1+1/n
, 1 ≤ i ≤ n.

Considering instead the transpose of the above matrix,

(aij) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0
0 0 · · · 0 1
1 −xn · · · −x2 −x1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

with c1 = · · · cn = N and cn+1 = N−n, we get another corollary.

Corollary 4.5 Let x1, . . . , xn ∈ R, let N ∈ N. There are integers p and q1, . . . , qn,
0 < max{|qi|} ≤ N such that

|q · x − p| <
1

Nn
.

Here and elsewhere, x denotes the vector with coordinates (x1, . . . , xn).

Writing, as is usual in number theory, ‖ · ‖ for the distance to the nearest integer
(or nearest vector with integer coordinates in sup-norm in higher dimension) and
letting |q| = max{|qi|}, the L∞-norm of the vector q, we get the following corollary.

Corollary 4.6 Let x ∈ R
n. There are infinitely many q ∈ Z

n \ {0}, such that

‖q · x‖ < |q|−n.

Several things stand out here. One is the duality between the two forms of
Diophantine approximation, the simultaneous approximation and the ‘linear form’
approximation. Another is a little better hidden. Let ξ ∈ R and consider the vector
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x = (ξ, ξ2, . . . , ξn). Feeding this vector into Corollary4.6 gives us infinitely many
integer polynomials taking small values at ξ.

The curve given by Γ = {(x1, . . . , xn) ∈ R
n : xi = ξi, ξ ∈ R} is known as a

Veronese curve, and much of the field known as Diophantine approximation on
manifolds has its genesis in an attempt to understand the Diophantine properties
of points on these curves and so the approximation properties of real numbers by
algebraic numbers. This is a natural extension of the usual approximation by rational
numbers, which is the case n = 1. Indeed, here a linear form has just one variable,
so that one considers the quantity ‖qξ‖, which on dividing by q gives a rational
approximation to the real number ξ.

For completeness, we should mention the two alternative ways of studying alge-
braic approximation (the book of Bugeaud [13] is an excellent resource). For this
purpose, we introduce a little notation. Let An denote the set of real, algebraic num-
bers of degree at most n. For an integer polynomial P, let H(P) denote the naive
height of P, i.e. the maximum among the absolute values of the coefficients of P.
Finally, for α ∈ An, letH(α) denote the height of the minimal integer polynomial of
α. With these definitions, we introduce two families of Diophantine exponents,

wn(ξ) = sup{w > 0 : 0 < |P(ξ)| < H(P)−w for infinitely many

P ∈ Z[X], degP ≤ n},

and

w∗
n(ξ) = sup{w > 0 : 0 < |ξ − α| < H(α)−w−1 for infinitely many α ∈ An}.

The two exponents were introduced in order to classify the transcendental num-
bers, a topic which we will not discuss in these notes. The first should be compared
with Corollary4.6, which almost immediately tells us that unless ξ is algebraic,
wn(ξ) ≥ n for all ξ ∈ R. Indeed, we just apply the corollary directly to the vector
(ξ, ξ2, . . . , ξn). The only additional thing to take care of is the fact that |q| is not
equal to H(P), as the latter takes the constant term of P into account where the for-
mer does not. However, with ξ restricted to some bounded subset of R, the two are
comparable, and the resulting difference in definitions is absorbed by the supremum
in the definition of wn(ξ). The two exponents are related, which is to be expected: if
a polynomial takes a small value at ξ, it is not too unlikely that there is a root nearby,
and conversely if α is an algebraic number close to ξ, then the minimal polynomial
of α probably takes a small value at ξ.

We summarise some relations due to Wirsing [48] between the exponents in the
following proposition.

Proposition 4.7 For any n and any ξ, wn(ξ) ≥ w∗
n(ξ). Furthermore, if ξ is not alge-

braic of degree at most n, the following inequalities hold:
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w∗
n(ξ) ≥ wn(ξ) − n + 1

w∗
n(ξ) ≥ wn(ξ) + 1

2

w∗
n(ξ) ≥ wn(ξ)

wn(ξ) − n + 1
(4.1)

w∗
n(ξ) ≥ n

4
+

√
n2 + 16n − 8

4
.

The two exponents need not be the same.

We will not prove the proposition here. However, there is an interesting point to
be made. The relation between the exponents takes us into the world of transfer-
ence theorems, which underlies the duality between simultaneous and linear forms
approximation. We give a very general transference principle, from which many
others can be derived (see [16]).

Theorem 4.8 Consider two systems of l linearly independent linear forms, (fk(z))
and (gk(w)), all in l variables. Let d = |det(gk)|. Suppose the function

Φ(z, w) =
∑

k

fk(z)gk(w),

has integer coefficients in all products of variables ziwj . If the system of inequalities

max |fk(z)| ≤ λ

can be solved with z ∈ Z
l \ {0}, then so can the system of inequalities

max |gk(w)| ≤ (l − 1)(λd)1/(l−1). (4.2)

Proof As the forms (fk) are linearly independent, the associated homogeneous sys-
temof equations only has the zero solution.Hence, for any solution to the first system,
z ∈ Z

n \ {0},
0 < max |fk(z)| ≤ λ.

Since the right hand side of (4.2) decreases with λ, we may suppose that the last
inequality above is actually an equality. Finally, we can permute the forms in order
to make sure that the maximum is attained for the last form and change signs to
remove the absolute value. In other words, we suppose without loss of generality
that z ∈ Z

l \ {0} is a solution to the initial system of inequalities with

max |fk(z)| = fl(z) = λ.

Filling these numbers into the expression for Φ, we get a linear form in the
variables w, which together with the first l − 1 forms of the system (gk(w)) forms
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a system of linear forms. We may calculate its determinant, which turns out to be
fl(z)d = λd. Using Theorem4.2, the system

|Φ(z, w)| < 1, |gk(w)| < (λd)1/(l−1), 1 ≤ k ≤ l − 1,

has a non-zero integer solution w. This certainly gives us the first l − 1 inequalities
of (4.2).

To get the final inequality, |gl(w)| < (l − 1)(λd)1/(l−i), note that Φ(z, w) is an
integer by assumption, and so must be = 0. Hence,

|λgl(w)| = |fl(z)gl(w)| =
∣
∣
∣
∣
∣
−

l−1
∑

k=1

fk(z)gk(w)

∣
∣
∣
∣
∣
≤ λ(l − 1)(λd)1/(l−1),

by the triangle inequality. This completes the proof.

This theorem explains why there is a relation between a system of inequalities
given by a matrix and that given by its transpose, as seen in the following theorem.

Theorem 4.9 Let (Li) denote a system of n linear forms in m variables and let (Mj)

denote the transposed system of m linear forms in n variables. Suppose that there is
an integer solution x �= 0 to the inequalities

‖Li(x)‖ ≤ C,
∣
∣xj
∣
∣ ≤ X,

where 0 < C < 1 ≤ X. Then the system

∥
∥Mj(u)

∥
∥ ≤ D, |ui| ≤ U,

has a non-zero integer solution, where

D = (l − 1)X(1−n)/(l−1)Cn/(l−1), U = (l − 1)Xm/(l−1)C(1−m)/(l−1), l = m + n.

Proof We introduce new variables y = (y1, . . . , yn) and v = (v1, . . . , vm) to capture
the nearest integers in the systems. Hence, we define two new systems of l linear
forms in l variables

fk(x, y) =
{

C−1(Lk(x) + yk) 1 ≤ k ≤ n

X−1xk−n n < k ≤ l

and

gk(u, v) =
{

Cuk 1 ≤ k ≤ n

X(−Mk−n(u) + vk−n) nk <≤ l
.

It is easily checked that the conditions of Theorem4.8 hold true with d = CnXm.
Applying this theorem gives a non-zero integer solution ((u), (v)).
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It remains for us to check that u �= 0, but this is easy: If D < 1 and u = 0, the
inequalities resulting from Theorem4.8 would force v = 0, which contradicts the
initial conclusion. Hence, u �= 0 as required or D ≥ 1, in which case it is trivial to
solve the inequalities.

At this point, let us define some sets which will be of great importance in the next
section. The set of badly approximable numbers is the set

Bad =
{

x ∈ R : For some C(x) > 0,

∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
≥ C(x)

q2
for all

p

q
∈ Q

}

.

From Khintchine’s theorem, this set is Lebesgue null. From the theory of continued
fractions, it is also the set of numbers with bounded partial quotients, so the same
conclusion follows immediately from the ergodicity of the Gauss map.

Similarly to the one dimensional case, one can define the sets (also denoted Bad
by abuse of notation),

Bad =
{

x ∈ R
n : for some C(x) > 0, ‖qx‖ ≥ C(x)

q1/n
for all q ∈ Z \ {0}

}

.

Or the corresponding linear forms version,

Bad∗ =
{

x ∈ R
n : for some C(x) > 0, ‖q · x‖ ≥ C(x)

|q|n for all q ∈ Z
n \ {0}

}

.

Corollary 4.10 The sets Bad and Bad∗ are the same.

Proof The proof is just an application of Theorem4.9. For x ∈ R
n, define the linear

formM(t) = x · t in n variables, and let Li(u) = tiu denote the transposed system of
n linear forms in 1 variable. Clearly, x ∈ Bad∗ if and only if

‖M(t)max{|ti|}n ≥ c∗, (4.3)

where c∗ > 0 depends only on x for all non-zero integer vectors t. Similarly, x ∈ Bad
if and only if

max{‖Li(u)‖}n|u| ≥ c,

where c > 0 depends only on x for all non-zero integers u.
Suppose x ∈ Bad∗.Wewill prove that x ∈ Bad, so let u �= 0 be an integer. LetX =

U and C ≥ max{‖Li(u)‖} with 0 < C < 1, as otherwise there is nothing to prove.
As x ∈ Bad∗, the values of D and U of Theorem4.9 must satisfy that DUn ≥ c∗, as
otherwise we would have a contradiction to (4.3). However, with the relations of the
theorem,

DUn = nX(1−n)/nC
(

nX1/n
)n = nn+1CX1/n,
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so that
CnX = (

n−(n+1)DUn
)n ≥ n−n(n+1)c∗n.

This shows that if c∗ is positive and exists, then c = n−n(n+1)c∗n will work as a
constant to prove that x ∈ Bad. The converse is symmetrical.

Many other nice results follow from the transference technique. It is of interest
to note that the above transference inequalities become equalities only at the critical
exponent derived from the Dirichlet type theorems, as seen from the above corol-
lary. This is also the case for the inequalities between the exponents of algebraic
approximation, where the critical exponent for both variants is n (see (4.1)), where
the inequalities become again become equalities. Transference theorems generally
reveal less information away from the critical exponent.

It would be natural to conjecture that results similar to the Khintchine theorem
should hold true for algebraic approximation or at least in some form for the ambient
space containing a given Veronese curve. This is in fact the case, but the lack of
a good analogue of continued fractions in higher dimensions is an obstacle for the
methods already used to be applicable. We will give a sketch of a geometrical proof
of a Khintchine type theorem for a single linear form, which is in a sense stronger
than its one-dimensional analogue, as it does not assume the approximation function
to be monotonic when the number of variables is at least 3. We will then discuss the
monotonicity assumption in one dimension.

For the purposes of the proof, we will need a converse to the Borel–Cantelli
lemma, which we state without proof. A lower bound on the measure of such a set
may be found using the following lemma (see e.g. [47])

Lemma 4.11 Let (Ω,B,μ) be a probability space and let En be a sequence of
events. Suppose that

∑
μ(En) = ∞. Then,

μ(lim supEn) ≥ lim sup
Q→∞

(
∑Q

n=1 μ(En)
)2

∑Q
n,m=1 μ(Em ∩ En)

.

In particular, if the events En are pairwise independent, μ(lim supEn) = 1.

We will consider the set

Wn(ψ) = {x ∈ R
n : ‖q · x‖ < ψ(|q|) for infinitely many q ∈ Z

n}.

In this notation, the set originally considered in the first section would be

W1(ψ) = {x ∈ R : ‖qx‖ < ψ(|q|) for infinitely many q ∈ Z},

so it is a natural generalisation. In the case of W1(ψ), we showed that the set is full
provided

∑
ψ(q) = ∞ (note the change in condition due to the change in definition),

and provided the function qψ(q) was monotonic.
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Theorem 4.12 Let ψ : N → R≥0 be some function, with qψ(q) monotonic if m =
1, 2. Then, the set Wm(ψ) is full if

∑
qm−1ψ(q) = ∞. If the series converges, the set

Wm(ψ) is null.

We will follow a proof given by Dodson [19]. As in the case of Khintchine’s
theorem, we will make some restrictions. We will consider only points in the unit
square [0, 1)m, which we will think of as a torus by identifying the edges. We will
think of Wm(ψ) ∩ [0, 1)m as a limsup-set, so for a fixed q ∈ Z

m let

Eq = {x ∈ R
n : ‖q · x‖ < ψ(|q|)},

so that
Wm(ψ) = lim supEq.

We call the sets Eq resonant sets due to a connection with physics, which we will not
explore here.

Lemma 4.13 For each q ∈ Z
m, |Eq|  ψ(|q|).

Sketch of proof. We sketch the argument for m = 2. This is a simple geometric
argument. The set Eq consists of a bunch of parallel strips. Considering only the
central lines of these, i.e. the solution curves to q1x + q2y = p in the unit square, and
matching up the sides of the square to form a torus, we obtain a closed geodesic curve
on the torus. The set Eq forms a tubular neighbourhood of this geodesic. Calculating
the length (roughly |q|) and width of this strip (roughly ψ(|q|)|q|−1), we arrive at
the conclusion.

Lemma 4.14 Suppose the vectors q, q′ ∈ Z
m are linearly independent overR. Then

the corresponding resonant sets are independent in the sense of probability, i.e.
|Eq ∩ Eq′ | = |Eq||Eq′ |.
Sketch of proof. Once more, we give a sketch for m = 2. Consider again the central
geodesics of the two resonant sets. As the vectors q and q′ are linearly indepen-
dent, these tesselate the torus into parallelograms. There will be | det(q, q′)| such
parallelograms, where (q, q′) denotes the matrix with columns q and q′.

Consider now the tubular neighbourhoods and their intersections. These will con-
sist of a union of scaled copies of the parallelograms of the tessellation. Calculating
their individual sizes as before will give the required result.

Proof of Theorem4.12. The convergence statement is easy. The setWm(ψ) is covered
by the set

⋃

n≥k

⋃

|q|≥k

Eq,

so as there are roughlyQm−1 vectors q ∈ Z
m with |q| = Q, Lemma4.13 immediately

gives us that
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∣
∣
∣
∣
∣
∣

⋃

n≥k

⋃

|q|≥k

Eq

∣
∣
∣
∣
∣
∣

�
∑

n≥k

nm−1ψ(n),

which is a tail of a convergent series.
To get the divergence half of the statement, we show that a subset has full measure.

The key is to pick a sufficiently rich collection of integer vectors forwhich the thinned
out series (the volume sum) still diverges, but for which any pair of vectors is linearly
independent. Define the sets

Sk = {q ∈ Z
m : q is primitive, qm ≥ 1, |q| = k}.

We will consider only vectors in P = ∪Sk .
If q, q′ ∈ P satisfy a linear dependence, then for some integer v, we must have

q = vq′ (or the converse). It follows that v divides all the coordinates of q, so by
primitivity, v = ±1. But since the last coordinates are positive, we must have v = 1,
whenceq = q′. In otherwords, any pair of vectorsq, q′ ∈ P are linearly independent,
and so by Lemma4.14 we have |Eq ∩ Eq′ | = |Eq||Eq′ |.

To apply Lemma4.11, we must ensure that the volume sum still diverges when
restricted to a sum over P. In order to accomplish this, we require an asymptotic
formula for the number of elements in Sk . But this is not difficult.

#Sk = ∑

|q|=k,qm≥1
(q1,...,qm)=1

1 = ∑

|q|=k,qm≥1
(q1,...,qm)=h

∑

d|h μ(d) = ∑

d|k μ(d)
∑

|r|=k/d
rm≥1

1

= 2m−2(2m − 1)
∑

d|k μ(d)
(
k
d

)m−1 + error term.

Here, μ denotes the Möbius function, and we have used the classical fact that
∑

d|n μ(d) is equal to one for n = 1 and equal to zero otherwise. For m = 2, the
main term is = 3φ(k), where φ denotes the Euler φ-function. For m ≥ 3, we have

∑

d|k
μ(d)

(
1

d

)m−1

=
∏

p|k

(

1 − 1

pm−1

)

,

which lies between ζ(m − 1)−1 and 1, where ζ denotes the Riemann ζ-function.
The upshot is that for m ≥ 3, Sk contains a constant times km−1 elements, and

the divergence of the original series implies the divergence of the restricted series
without further work. For m = 2 we need to average out the irregularities of the
Euler function, but using the classical estimate

∑

n≤N φ(n) = 3
π2N2 + O(N logN),

we may apply Cauchy condensation over 2-adic blocks to get the divergence of the
new series. This however requires the monotonicity of the function.

Quite a few remarks should be made at this point. Firstly, the result is valid
even more generally than the one stated here. The full Khintchine–Groshev theorem
concerns systems of linear forms, and states the set of matrices
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Wm,n(ψ) = {A ∈ Matm×n(R) : ‖qA‖ < ψ(|q|) for infinitely many q ∈ Z
m},

is null or full according to the convergence or divergence of the series
∑

qm−1ψ(q)n.
Secondly, the divergence assumption is not needed except for in one case. Namely,

in the case m = n = 1, an explicit counterexample to the classical Khintchine the-
orem without assumption of monotonicity can be given. However, conjectures do
exists, which tell us what to expect. It is natural in this context to impose the restric-
tion that the approximating rationals should be on lowest terms. TheDuffin–Schaeffer
conjecture [21] states that the set

{

x ∈ R :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
< ψ(q) for infinitely many coprime (p, q) ∈ Z × N

}

,

should be null or full according to the convergence or divergence of the series
∑

φ(q)ψ(q).
The convergence half is easy, and in the case of an appropriately monotonic

approximation function, the result follows immediately from condensation and
Khintchine’s theorem. The difficulty is in getting the result for non-monotonic error
functions. However, it is known that the set must be either null or full. It is hence
tempting to try to apply Lemma4.11 to get positive measure and proceed to deduce
full measure from this law. However, controlling the intersections appears to be
beyond the reach of current methods. What is clear is that it is hopeless to control
the individual intersections, and the entire sum must be considered at least in very
long blocks at a time.

Thirdly, as in the case when the above results give a null set, it is natural to
ask what the Hausdorff dimension should be. As in the case of a single number,
it is easy to get an upper bound, at least in the case ψ(q) = q−v . Just applying a
covering argument in the spirit of the convergence case, one finds that in this case,
dimH(Wm,n(q �→ q−v)) ≤ (m − 1)n + (m + n)/(1 + v). The initial integer comes
from the hyperplanes central to the resonant sets, with the fraction at the end being
the really interesting component. In fact, this is sharp, and we will return to these
types of estimates in the final section of the notes.

Fourthly, we did not answer the question we originally asked. Namely, we were
interested in points on the Veronese curves and in a final instance in points in a fractal
subset of the Veronese curve. For the full Veronese curves, these things can be done,
but with considerably more difficulty. Even the convergence case was not settled
before 1989 by Bernik [9] with the divergence case taking another 10 years before
being settled by Beresnevich [4]. By contrast, the above results about the ambient
space date back to 1938.

As a final remark on the Khintchine–Groshev theorem, in the case when one
considers simultaneous approximation or more than one linear form, similar ques-
tions can be asked when different rates of approximation are required in the different
variables. Again, the questions can be answered under some assumptions on the
approximating functions, and whether sets arising in this way are null or full depend
once again on the convergence or divergence of a certain series.
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We dwell a little on this last point. Consider again Corollary4.4, this time with
n = 2. Littlewood suggested multiplying the two inequalities instead of considering
them separately, and so to consider

∣
∣
∣
∣
x − p1

q

∣
∣
∣
∣

∣
∣
∣
∣
y − p2

q

∣
∣
∣
∣
<

1

q3

or more concisely,
q‖qx‖‖qy‖ < 1. (4.4)

By Corollary4.4, this inequality always has infinitely many solutions for any pair
(x, y), but it is a little more flexible than the original one. Indeed, one approximation
could be pretty bad indeed, just as long as the other one is very good, and the inequality
would still hold.

From the theory of continued fractions, we know that many numbers x exist which
have q ‖qx‖ > C > 0 for all q (the badly approximable numbers, or equivalently
those with bounded partial quotients), and similarly we know that there are badly
approximable pairs, i.e. pairs for which Corollary4.4 cannot be improved beyond a
positive constant (we will prove this and much more in the next section). Littlewood
asked whether there are pairs such that (4.4) cannot be improved beyond a constant.
Due to the added flexibility, he conjectured that this should not be the case, so that
for any pair (x, y),

lim inf
q→∞ q‖qx‖‖qy‖ = 0, (4.5)

where the liminf is taken over positive integers q.
Equation (4.5) is the Littlewood conjecture. Littlewood apparently did not think

that it should be too difficult, and set it as an exercise to his students in the thirties.
To date, it is an important unsolved problem in Diophantine approximation. This is a
case, where many of the known results are metric. Probably the most famous among
them is the result of Einsiedler, Katok and Lindenstrauss [23], which states that the
set of exceptions (x, y) to (4.5) must lie in a countable union of sets of box counting
dimension zero. From the elementary properties of Hausdorff dimension together
with (3.6), it follows that both the Hausdorff dimension and the Fourier dimension
are also equal to zero.

In fact, their approach follows the approach to continued fractions via the geodesic
flow outlined in the first section. There is no good analogue of continued fractions
in higher dimension, but an analogue of the geodesic flow on SL2(R)/SL2(Z) is
certainly constructible. In the classical, one-dimensional case, the geodesic flow is
given by the action of the diagonal subgroup of SL2(R), and badly approximable
numbers correspond to geodesics which remain in a compact subset of the space
SL2(R)/SL2(Z). The approachofEinsiedler,Katok andLindenstraussworks instead
with the diagonal subgroup of SL3(R), acting on SL3(R)/SL3(Z).

This action is a two-parameter flow and its dynamics is very complicated.
Nonetheless, the three authors manage to prove many things about the simplex of
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preservedmeasures described in the final section, and in particular about the extremal
points. They show that the only possible ergodic measures are the Haar measure and
measures with respect to which every one-parameter subgroup of the diagonal group
acts with zero entropy. Readers acquainted with the notion of entropy should be able
to see how this will have an impact on the box counting dimension of the support of
the measure.

The relation between the flow and the Littlewood conjecture is a little technical,
but briefly the pair (x, y) satisfies the Littlewood conjecture if and only if the orbit
of the point

⎛

⎝

1 0 0
x 1 0
y 0 1

⎞

⎠SL3(Z)

is unbounded under the action of the semigroup

A+ =
⎧

⎨

⎩

⎛

⎝

e−s−t 0 0
0 es 0
0 0 et

⎞

⎠ : s, t ∈ R+

⎫

⎬

⎭
.

Hence, the set of exceptions can be embedded into a set of points in SL3(R)/SL3(Z)

with boundedA+-orbits, and the result can be deduced from the dynamical statement.
It is very impressive work. We will say something non-trivial but somewhat easier
in the final section of these notes.

5 Badly Approximable Elements

In this section, we will discuss badly approximable numbers, and in fact do so in
higher dimensions. A consequence of our main result is Jarník’s theorem [29]: the
set of badly approximable numbers has maximal Hausdorff dimension. However
we will prove much more, including the result that badly approximable numbers
form a set of maximal dimension inside the Cantor set. The latter relates digital
properties with Diophantine properties, and although it does not resolve the question
of absolute normality of algebraic irrational numbers, it does provide information
on which Diophantine properties a number failing spectacularly at being normal to
some base can have.

The work presented in this section originated in an unfortunately failed attempt
to resolve the Schmidt conjecture with Thorn and Velani [36]. We did solve other
problems in the process, though. In order to present this, we need some new sets. For
i, j ≥ 0 with i + j = 1, denote by Bad(i, j) the set of (i, j)–badly approximable pairs
(x1, x2) ∈ R

2; that is (x1, x2) ∈ Bad(i, j) if there exists a positive constant c(x1, x2)
such that for all q ∈ N

max{‖qx1‖1/i, ‖qx2‖1/j} > c(x1, x2) q
−1.
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In the case i = j = 1/2, the set is simply the standard set of badly approximable
pairs or equivalently as we saw in the last section the set of badly approximable
linear forms in two variables. If i = 0 we identify the set Bad(0, 1) with R × Bad
where Bad is the set of badly approximable numbers. That is, Bad(0, 1) consists of
pairs (x1, x2) with x1 ∈ R and x2 ∈ Bad. The roles of x1 and x2 are reversed if j = 0.
In full generality, Schmidt’s conjecture states that Bad(i, j) ∩ Bad(i′, j′) �= ∅. It is a
simple exercise to show that if Schmidt’s conjecture is false for some pairs (i, j) and
(i′, j′) then Littlewood’s conjecture in simultaneous Diophantine approximation is
true.

The Schmidt conjecture was recently settled in the affirmative by Badziahin,
Pollington and Velani [3], who established a stronger version. An [1] subsequently
proved an even stronger result, which we remark on towards the end of this section.

We will set up a scary generalisation of the sets Bad(i, j). For the purposes of
these notes, we will consider general metric spaces. The examples to keep in mind
are nice fractal subsets of Euclidean space, such as the Cantor set or the Sierpiński
gasket. Let (X, d) be the product space of t metric spaces (Xi, di) and let (Ω, d) be
a compact subspace of X which contains the support of a non-atomic finite measure
m.

LetR = {Rα ⊆ X : α ∈ J} be a family of subsets Rα of X indexed by an infinite,
countable set J . Thus, each resonant set Rα can be split into its t components Rα,i ⊂
(Xi, di). Let β : J → R+ : α → βα be a positive function on J and assume that the
number of α ∈ J with βα bounded from above is finite. We think of these as the
resonant sets similar to the central lines of the resonant neighbourhoods considered
in the last section.

For each 1 ≤ i ≤ t, let ρi : R+ → R+ : r → ρi(r) be a real, positive function such
that ρi(r) → 0 as r → ∞ and that ρi is decreasing for r large enough. Furthermore,
assume that ρ1(r) ≥ ρ2(r) ≥ · · · ≥ ρt(r) for r large – the ordering is irrelevant. Given
a resonant set Rα, let

Fα(ρ1, . . . , ρt) = {x ∈ X: di(xi,Rα,i) ≤ ρi(βα) for all 1 ≤ i ≤ t}

denote the ‘rectangular’ (ρ1, . . . , ρt)–neighbourhood ofRα. For a real number c > 0,
we will define the scaled rectangle,

cFα(ρ1, . . . , ρt) = {x ∈ X: di(xi,Rα,i) ≤ cρi(βα) for all 1 ≤ i ≤ t},

and similarly for other rectangular regions throughout this section. Consider the set

Bad∗(R,β, ρ1, . . . , ρt)

= {x ∈ Ω : ∃ c(x) > 0 s.t. x /∈ c(x)Fα(ρ1, . . . , ρt) for all α ∈ J}.

Thus, x ∈ Bad∗(R,β, ρ1, . . . , ρt) if there exists a constant c(x) > 0 such that for all
α ∈ J ,

di(xi,Rα,i) ≥ c(k) ρi(βα) for some 1 ≤ i ≤ t.
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We wish to find a suitably general framework which gives a lower bound for the
Hausdorff dimension of Bad∗(R,β, ρ1, . . . , ρt). Without loss of generality we shall
assume that supα∈J ρi(βα) is finite for each i – otherwise Bad∗(R,β, ρ1, . . . , ρt) = ∅
and there is nothing to prove.

Given l1, . . . , lt ∈ R+ and c ∈ Ω let

F(c; l1, . . . , lt) = {x ∈ X : di(xi, ci) ≤ li for all 1 ≤ i ≤ t}

denote the closed ‘rectangle’ centred at cwith ‘sidelengths’ determined by l1, . . . , lt .
Also, for any k > 1 and n ∈ N, let Fn denote any generic rectangle intersected with
Ω , i.e. a set of the form F(c; ρ1(kn), . . . , ρt(kn)) ∩ Ω in Ω centred at a point c in
Ω . As before, B(c, r) is a closed ball with centre c and radius r. The following
conditions on the measure m and the functions ρi will play a central role in our
general framework.

(A) There exists a strictly positive constant δ such that for any c ∈ Ω

lim inf
r→0

logm(B(c, r))

log r
= δ.

It is easily verified from the Mass distribution principle of Lemma3.3 that if the
measure m supported on Ω is of this type, then dimΩ ≥ δ and so dim X ≥ δ.

(B) For k > 1 sufficiently large, any integer n ≥ 1 and any i ∈ {1, . . . , t},

λl
i(k) ≤ ρi(kn)

ρi(kn+1)
≤ λu

i (k),

where λl
i and λu

i are lower and upper bounds depending only on k but not on
n,such that λl

i(k) → ∞ as k → ∞.
(C) There exist constants 0 < a ≤ 1 ≤ b and l0 > 0 such that

a ≤ m(F(c; l1, . . . , lt))
m(F(c′; l1, . . . , lt)) ≤ b

for any c, c′ ∈ Ω and any l1, . . . , lt ≤ l0. This condition implies that rectangles
of the same size centred at points of Ω have comparable m-measure.

(D) There exist strictly positive constants D and l0 such that

m(2F(c; l1, . . . , lt))
m(F(c; l1, . . . , lt)) ≤ D

for any c ∈ Ω and any l1, . . . , lt ≤ l0. This condition simply says that the mea-
sure m is ‘doubling’ with respect to rectangles.
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(E) For k > 1 sufficiently large and any integer n ≥ 1

m(Fn)

m(Fn+1)
≥ λ(k),

where λ is a function depending only on k such that λ(k) → ∞ as k → ∞.

In terms of achieving a lower bound for dim Bad∗(R,β, ρ1, . . . ρt), the above four
conditions are rather natural. The following final condition is in some sense the only
genuine technical condition and is not particularly restrictive.

We should state at this point that if m is a product measure of measures satisfying
the decay condition that there exist strictly positive constants δ and r0 such that for
c ∈ Ω and r ≤ r0

a rδ ≤ m(B(c, r)) ≤ b rδ , (5.1)

where 0 < a ≤ 1 ≤ b are constants independent of the ball, then the product measure
satisfies all conditions above. This is extremely useful, and missing digit sets have
this property, as do all regular Cantor sets.

Theorem 5.1 Let (X, d) be the Cartesian product space of the metric spaces
(X1, d1), . . . , (Xt, dt) and let (Ω, d,m) be a compact measure subspace of X. Let
the measure m and the functions ρi satisfy conditions (A) to (E). For k ≥ k0 > 1,
suppose there exists some θ ∈ R+ so that for n ≥ 1 and any rectangle Fn there exists
a disjoint collection C(θFn) of rectangles 2θFn+1 contained within θFn satisfying

#C(θFn) ≥ κ1
m(θFn)

m(θFn+1)
(5.2)

and

#

{

2θFn+1 ⊂ C(θFn) : min
α∈J(n+1)

di(ci,Rα,i) ≤ 2θρi(k
n+1) for any 1 ≤ i ≤ t

}

≤ κ2
m(θFn)

m(θFn+1)
. (5.3)

where 0 < κ2 < κ1 are absolute constants independent of k and n. Furthermore,
suppose dimH(∪α∈JRα) < δ. Then

dimH Bad∗(R,β, ρ1, . . . , ρt) ≥ δ.

The statement of the theoremwith all its assumptions is pretty bad, and the proof is
in fact a rather dull affair. We give a short sketch. Fixing k ≥ k0, the conditions of the
theorem give us a way to construct a Cantor type set inside Bad∗(R,β, ρ1, . . . , ρt).
Namely, we begin with a rectangle θF1. In this and any subsequent step, we take out
the collection C(θFn), which is pretty big due to (5.2). The points in the rectangles
from (5.3) will have some difficulties lying in the set Bad∗(R,β, ρ1, . . . , ρt), as they
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are fairly close to a resonant set from J(n + 1). Hence, we discard them and retain
a collection Fn+1(θFn) of closed rectangles. The assumption (5.3) tells us that a
positive proportion of the collection will remain, and we continue in this way to get
a Cantor set constructed from rectangles. From the construction, this set is contained
in Bad∗(R,β, ρ1, . . . , ρt), and in fact the unspecified constant in the definition of
the set can in all cases be chosen to be c(k) = min1≤i≤t(θ/λ

u
i (k)). We call the set

Kc(k).
We now construct a probability measure on the Cantor set recursively. For any

rectangle θFn inFnweattach aweightμ(θFn)which is defined recursively as follows:
for n = 1,

μ(θF1) = 1

#F1
= 1

and for n ≥ 2,

μ(θFn) = 1

#Fn(θFn−1)
μ(θFn−1) (Fn ⊂ Fn−1).

This procedure thus defines inductively a mass on any rectangle used in the construc-
tion of Kc(k). In fact a lot more is true: μ can be further extended to all Borel subsets
A of Ω to determine μ(A) so that μ constructed as above actually defines a measure
supported on Kc(k). The probability measure μ constructed above is supported on
Kc(k) and for any Borel subset A of Ω

μ(A) = inf
∑

F∈F
μ(F),

where the infimum is taken over all coveringsF ofA by rectangles F ∈ {Fn : n ≥ 1}.
The mass distribution principle of Lemma3.3 can then be applied to this measure

to find that dim Kc(k) ≥ δ − 2ε(k), where ε(k) tends to zero as k tends to infinity. To
conclude, we let k do this, and so have constructed a subset of Bad∗(R,β, ρ1, . . . , ρt)
whose dimension is lower bounded by δ. All the technical assumptions occur natu-
rally in the process of constructing the set and applying the mass distribution princi-
ple.

The remarks preceding the statement of Theorem5.1 immediately gives us the
following version, which is of more use to us.

Theorem 5.2 For 1 ≤ i ≤ t, let (Xi, di) be a metric space and (Ωi, di,mi) be a
compact measure subspace of Xi where the measure mi satisfies (5.1) with exponent
δi. Let (X, d) be the product space of the spaces (Xi, di) and let (Ω, d,m) be the
product measure space of the measure spaces (Ωi, di,mi). Let the functions ρi satisfy
condition (B). For k ≥ k0 > 1, suppose there exists some θ ∈ R+ so that for n ≥ 1
and any rectangle Fn there exists a disjoint collection C(θFn) of rectangles 2θFn+1

contained within θFn satisfying
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#C(θFn) ≥ κ1

t
∏

i=1

(
ρi(kn)

ρi(kn+1)

)δi

(5.4)

and

#
{

2θFn+1 ⊂ C(θFn) : min
α∈J(n+1)

di(ci,Rα,i) ≤ 2θρi(k
n+1) for any 1 ≤ i ≤ t

}

≤κ2

t
∏

i=1

(
ρi(kn)

ρi(kn+1)

)δi

, (5.5)

where 0 < κ2 < κ1 are absolute constants independent of k and n. Furthermore,
suppose dimH(∪α∈JRα) <

∑t
i=1 δi. Then

dimH Bad∗(R,β, ρ1, . . . ρt) =
t
∑

i=1

δi.

Note that while Theorem5.1 will only give the lower bound on the Hausdorff
dimension in the last equation, the upper bound is a consequence of the assumptions.
Indeed, any set satisfying (5.1) will have Hausdorff dimension equal to δ, and for
these particular nice sets, the Cartesian product satisfies the expected dimensional
relation, so that the ambient space in the above result is of Hausdorff dimension
∑t

i=1 δi.
The interest in Theorem5.1 is not in its proof, but in its applications. In the

original paper, in addition to the study of Bad(i, j) and similar sets, the theorem
was applied to approximation of complex numbers by ratios of Gaussian integers, to
approximation of p-adic numbers, to function fields over a finite field, to problems
in complex dynamics and to limit sets of Kleinian groups. More applications have
occurred since then.

Initially, we use it to prove Jarník’s theorem. Let I = [0, 1] and consider the set

BadI =
{

x ∈ [0, 1] :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
> c(x)/q2 for all rationals

p

q

}

.

This is the classical set Bad of badly approximable numbers restricted to the unit
interval. Clearly, it can be expressed in the form Bad∗(R,β, ρ) with ρ(r) = r−2 and

X = Ω = [0, 1] , J = {(p, q) ∈ N × N\{0} : p ≤ q} ,

α = (p, q) ∈ J , βα = q , Rα = p

q
.

The metric d is of course the standard Euclidean metric; d(x, y) := |x − y| . Thus in
this basic example, the resonant setsRα are simply rational points p/q.With reference
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to our framework, let the measure m be one–dimensional Lebesgue measure on I .
Thus, δ = 1 and all the many conditions are easily checked.

We show that the conditions of Theorem5.1 are satisfied for this basic example.
The existence of the collection C(θBn), where Bn is an arbitrary closed interval of
length 2 k−2n follows immediately from the following simple observation. For any
two distinct rationals p/q and p′/q′ with kn ≤ q, q′ < kn+1 we have that

∣
∣
∣
∣

p

q
− p′

q′

∣
∣
∣
∣
≥ 1

qq′ > k−2n−2. (5.6)

Thus, any interval θBn with θ := 1
2k

−2 contains at most one rational p/q with
kn ≤ q < kn+1. Let C(θBn) denote the collection of intervals 2θBn+1 obtained by
subdividing θBn into intervals of length 2k−2n−4 starting from the left hand side of
θBn. Clearly

#C(θBn) ≥ [k2/2] > k2/4 = r.h.s. of (5.2) with κ1 = 1/4.

Also, in view of the above observation, for k sufficiently large

l.h.s. of (5.3) ≤ 1 < k2/8 = r.h.s. of (5.3) with κ2 = 1/8.

The upshot of this is that Theorem5.1 implies that dimH BadI ≥ 1. In turn, since
BadI is a subset of R, this implies that dimH BadI = 1.

The key feature exploited to check the conditions on the collection is the fact that
rational numbers are well spaced. In higher dimensions, the appropriate analogue is
the following lemma, the idea of which goes back to Davenport.

Lemma 5.3 Let n ≥ 1 be an integer and k > 1 be a real number. Let E ⊆ R
n be a

convex set of n–dimensional Lebesgue measure

|E| ≤ 1

n!k−(n+1)
.

Suppose that E contains n + 1 rational points (p(1)
i /qi, . . . , p

(n)
i /qi)with 1 ≤ qi < k,

where 0 ≤ i ≤ n. Then these rational points lie in some hyperplane.

Proof Suppose to the contrary that this is not the case. In that case, the rational points
(p(1)

i /qi, . . . , p
(n)
i /qi)where 0 ≤ i ≤ n are distinct. Consider the n–dimensional sim-

plex Δ subtended by them, i.e. an interval when n = 1, a triangle when n = 2, a
tetrahedron when n = 3 and so on. Clearly, Δ is a subset of E since E is convex.
The volume |Δ| of the simplex times n factorial is equal to the absolute value of the
determinant
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det =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 p(1)
0 /q0 · · · p(n)

0 /q0
1 p(1)

1 /q1 · · · p(n)
1 /q1

...
...

...

1 p(1)
n /qn · · · p(n)

n /qn

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

As this determinant is not zero, it follows from the assumption made on the qi that

n! × |Δ| = | det | ≥ 1

q0q1 · · · qn > k−(n+1) .

Consequently, |Δ| > (n! )−1k−(n+1) ≥ |E|. This contradicts the fact that Δ ⊆ E.

Of course, in one dimension this is exactly the spacing estimate used in the proof
of Jarník’s result above.

Lemma5.3 serves to ensure that not toomany rectangles are bad for the application
of Theorem5.1, but we need some way of ensuring that there are enough rectangles
to begin with. Lemma5.5 below accomplishes this and is proved using the following
simple covering lemma.

Lemma 5.4 Let (X, d) be the Cartesian product space of the metric spaces (X1, d1),
. . . , (Xt, dt) and F be a finite collection of ‘rectangles’ F = F(c; l1, . . . , lt) with
c ∈ X and l1, . . . , lt fixed. Then there exists a disjoint sub-collection {Fm} such that

⋃

F∈F
F ⊂

⋃

m

3Fm.

Proof Let S denote the set of centres c of the rectangles in F . Choose c(1) ∈ S and
for k ≥ 1,

c(k + 1) ∈ S \
k
⋃

m=1

2F(c(m); l1, . . . , lt)

as long as S \ ⋃k
m=1 2F(c(m); l1, . . . , lt) �= ∅. Since #S is finite, the process termi-

nates and there exists k1 ≤ #S such that

S ⊂
k1⋃

m=1

2F(c(m); l1, . . . , lt) .

By construction, any rectangle F(c; l1, . . . , lt) in the original collection F is con-
tained in some rectangle 3F(c(m); l1, . . . , lt) and since di(ci(m), ci(n)) > 2li for
each 1 ≤ i ≤ t the chosen rectangles F(c(m); l1, . . . , lt) are clearly disjoint.

Lemma 5.5 Let (X, d) be the Cartesian product of the metric spaces (X1, d1), . . .,
(Xt, dt) and let (Ω, d,m) be a compact measure subspace of X. Let the measure m
and the functions ρi satisfy conditions (B) to (D). Let k be sufficiently large. Then
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for any θ ∈ R+ and for any rectangle Fn (n ≥ 1) there exists a disjoint collection
C(θFn) of rectangles 2θFn+1 contained within θFn satisfying (5.2) of Theorem5.1.

Proof Begin by choosing k large enough so that for any i ∈ {1, . . . , t},
ρi(kn)

ρi(kn+1)
≥ 4. (5.7)

That this is possible follows from the fact that λl
i(k) → ∞ as k → ∞ (condi-

tion (B)). Take an arbitrary rectangle Fn and let li(n) := θρi(kn). Thus θFn :=
F(c; l1(n), . . . , lt(n)). Consider the rectangle Tn ⊂ θFn where

Tn := F(c; l1(n) − 2l1(n + 1), . . . , lt(n) − 2lt(n + 1)) .

Note that in view of (5.7) we have that Tn ⊃ 1
2θFn. Now, cover Tn by rectangles

2θFn+1 with centres in Ω ∩ Tn. By construction, these rectangles are contained in
θFn and in view of the Lemma5.4 there exists a disjoint sub-collection C(θFn) such
that

Tn ⊂
⋃

2θFn+1⊂C(θFn)

6θFn+1 .

Using the fact that rectangles of the same size centred at points of Ω have com-
parable m measure (condition (C)), it follows that

am

(
1

2
θFn

)

≤ m(Tn) ≤ #C(θFn) bm(6θFn+1) .

Using the fact that the measure m is doubling on rectangles (condition (D)), so
that m( 12θFn) ≥ D−1m(θFn) and m(6θFn+1) ≤ m(8θFn+1) ≤ D3m(θFn+1), it fol-
lows that

#C(θFn) ≥ a

bD4

m(θFn)

m(θFn+1)
.

With Theorem5.1 and the lemmas, we can intersect the sets Bad(i1, . . . , in) with
nice fractals. We begin with the case when i1 = · · · = in = 1/n.

Let Ω be a compact subset of R
n which supports a non-atomic, finite measure m.

LetL denote a generic hyperplane of R
n and letL(ε) denote its ε-neighbourhood. We

say that m is absolutely α–decaying if there exist strictly positive constants C,α, r0
such that for any hyperplane L, any ε > 0, any x ∈ Ω and any r < r0,

m
(

B(x, r) ∩ L(ε)
) ≤ C

( ε

r

)α

m(B(x, r)) .

This is a quantitative way of saying that the support of the measure does not con-
centrate on any hyperplane, and so a way of quantifying the statement that the set Ω
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is sufficiently spread out in R
n. If Ω ⊂ R is supporting a measure m which satisfies

(5.1), then it is relatively straightforward to show that m is absolutely δ–decaying.
However, in higher dimensions one need not imply the other.

Inside the set Ω , we will define sets of weighted badly approximable numbers as
follows. For 0 ≤ i1, . . . , in ≤ 1 with i1 + · · · + in = 1, let

BadΩ(i1, . . . , in)

=
{

x ∈ Ω : max
1≤j≤n

{‖qxi‖1/ij > c(x)q−1 for some c(x) > 0, for all q ∈ �

}

.

When i1 = · · · = in = 1/n, we will for brevity denote this set by BadΩ(n).

Theorem 5.6 LetΩ be a compact subset of Rn which supports a measure m satisfy-
ing condition (5.1) and which in addition is absolutely α–decaying for some α > 0.
Then

dimH BadΩ(n) = dimH Ω .

Proof The set BadΩ(n) can be expressed in the form Bad∗(R,β, ρ) with ρ(r) =
r−(1+ 1

n ) and

X = (Rn, d) , J = {((p1, . . . , pn), q) ∈ N
n × N\{0}} ,

α = ((p1, . . . , pn), q) ∈ J , βα = q , Rα = (p1/q, . . . , pn/q) .

Here d is standard sup metric on R
n; d(x, y) = max{d(x1, y1), . . . , d(xn, yn)}. Thus

balls B(c, r) in R
n are genuinely cubes of sidelength 2r.

We show that the conditions of Theorem5.1 are satisfied. Clearly the function ρ
satisfies condition (B) and we are given that the measure m supported on Ω satisfies
condition (A) Conditions (C), (D) and (E) also follow from (5.1). Since the resonant
setsRα are all points, the condition dimH(∪α∈JRα) < δ is satisfied by properties (iv)
and (vii) of Hausdorff dimension. We need to establish the existence of the disjoint
collection C(θBn) of balls (cubes) 2θBn+1 where Bn is an arbitrary ball of radius
k−n(1+ 1

n ) with centre in Ω . In view of Lemma5.5, there exists a disjoint collection
C(θBn) such that

#C(θBn) ≥ κ1 k
(1+ 1

n )δ; (5.8)

i.e. (5.2) of Theorem5.1 holds. We now verify that (5.3) is satisfied for any such
collection.

We consider two cases.

Case 1: n = 1. The trivial spacing argument of (5.6) shows that any interval θBn with
θ := 1

2k
−2 contains at most one rational p/q with kn ≤ q < kn+1; i.e. α ∈ J(n + 1).

Thus, for k sufficiently large
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l.h.s. of (5.3) ≤ 1 <
1

2
× r.h.s. of (5.8) .

Hence (5.3) is trivially satisfied and Theorem5.1 implies the desired result. As a
special case, we have shown that the badly approximable numbers in the ternary
Cantor set form a set of maximal dimension.

Case 2: n ≥ 2. We will prove the theorem in the case that n = 2. There are no
difficulties and no new ideas are required in extending the proof to higher dimensions.
One just needs to apply Lemma5.3 in higher dimensions.

Suppose that there are three or more rational points (p1/q, p2/q) with kn ≤ q <

kn+1 lying within the ball/square θBn. Now put θ = 2−1(2k3)−1/2. Then Lemma5.3
implies that the rational points must lie on a line L passing through θBn. Setting
ε = 8θk−(n+1) 3

2 , it follows that

l.h.s. of (5.3) ≤ # {2θBn+1 ⊂ C(θBn) : 2θBn+1 ∩ L �= ∅}
≤ #

{

2θBn+1 ⊂ C(θBn) : 2θBn+1 ⊂ L(ε)
}

.

Using that the balls 2θn+1 are disjoint and that the measure m is absolutely
α-decaying, this is

≤ m(θBn ∩ L(ε))

m(2θBn+1)
≤ a−1bC8α2−δk

2
3 (δ−α).

On choosing k large enough, this becomes ≤ 1
2 × r.h.s. of (5.8). Hence (5.3) is

satisfied and Theorem5.1 implies the desired result.

We now prove the result for general values of ij, but under a more restrictive
assumption on the underlying fractal.

Theorem 5.7 For 1 ≤ j ≤ n, let Ωj be a compact subset of R which supports a
measure mj satisfying (5.1) with exponent δj . Let Ω denote the product set Ω1 ×
· · · × Ωn. Then, for any n–tuple (i1, . . . , in) with ij ≥ 0 and

∑n
j=1 ij = 1,

dimH BadΩ(i1, . . . , in) = dimH Ω .

A simple application of the above theorem leads to following result.

Corollary 5.8 Let K1 and K2 be regular Cantor subsets of R. Then

dimH ((K1 × K2) ∩ Bad(i, j)) = dimH(K1 × K2) = dimH K1 + dimH K2 .

Proof of Theorem5.7. We shall restrict our attention to the case n = 2 and leave it
for the reader to extend this to higher dimensions.

A relatively straightforward argument shows that m := m1 × m2 is absolutely
α–decaying on Ω with α := min{δ1, δ2}. In fact, more generally for 2 ≤ j ≤ n, if
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each mj is absolutely αj–decaying on Ωj, then m := m1 × . . . × mn is absolutely
α–decaying on Ω = Ω1 × · · · × Ωn with α = min{α1, · · · ,αn}.

Now let us write Bad(i, j) for Bad(i1, i2) and without loss of generality assume
that i < j. The case i = j is already covered by Theorem 4 since m is absolutely
α–decaying on Ω and clearly satisfies (5.1). The set BadΩ(i, j) can be expressed in
the form Bad∗(R,β, ρ1, ρ2) with ρ1(r) = r−(1+i), ρ2(r) = r−(1+j) and

X = R
2 , Ω = Ω1 × Ω2 , J = {((p1, p2), q) ∈ N

2 × N\{0}} ,

α = ((p1, p2), q) ∈ J , βα = q , Rα = (p1/q, p2/q) .

The functions ρ1, ρ2 satisfy condition (B) and the measures m1,m2 satisfy (5.1).
Also note that dimH(∪α∈JRα) = 0 since the union in question is countable. We need
to establish the existence of the collection C(θFn), where each Fn is an arbitrary
closed rectangle of size 2k−n(1+i) × 2k−n(1+j) with centre c in Ω . By Lemma5.5,
there exists a disjoint collection C(θFn) of rectangles 2θFn+1 ⊂ θFn such that

#C(θFn) ≥ κ1 k
(1+i)δ1k(1+j)δ2; (5.9)

i.e. (5.4) of Theorem5.2 is satisfied. We now verify that (5.5) is satisfied for any such
collection. With θ = 2−1(2k3)−1/2, the Lemma5.3 implies that

l.h.s. of (5.5) ≤ #{2θFn+1 ⊂ C(θFn) : 2θFn+1 ∩ L �= ∅} , (5.10)

where L is a line passing through θFn. Consider the thickening T(L) of L obtained
by placing rectangles 4θFn+1 centred at points of L; that is, by ‘sliding’ a rectangle
4θFn+1, centred at a point ofL, alongL. Then, since the rectangles 2θFn+1 ⊂ C(θFn)

are disjoint,

#{2θFn+1 ⊂ C(θFn) : 2θFn+1 ∩ L �= ∅} (5.11)

≤ #{2θFn+1 ⊂ C(θFn) : 2θFn+1 ⊂ T(L)}
≤ m(T(L) ∩ θFn)

m(2θFn+1)
.

Without loss of generality we can assume that L passes through the centre of
θFn. To see this, suppose that m(T(L) ∩ θFn) �= 0 since otherwise there is nothing
to prove. Then, there exists a point x ∈ T(L) ∩ θFn ∩ Ω such that

T(L) ∩ θFn ⊂ 2θF ′
n ∩ T ′(L′) .

Here F ′
n is the rectangle of size k

−n(1+i) × k−n(1+j) centred at x, L′ is the line parallel
to L passing through x and T ′(L′) is the thickening obtained by ‘sliding’ a rectangle
8θFn+1 centred at x, along L′. Then the following argument works just as well on
2θF ′

n ∩ T ′(L′).
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Let Δ denote the slope of the line L and assume that Δ ≥ 0. The case Δ < 0 can
be dealt with similarly. By moving the rectangle θFn to the origin, straightforward
geometric considerations lead to the following facts:

(F1)

T(L) = L(ε) where ε = 4θ
(

k−(n+1)(1+j) + Δk−(n+1)(1+i)
)

√
1 + Δ2

,

(F2) T(L) ∩ θFn ⊂ F(c; l1, l2)where F(c; l1, l2) is the rectangle with the same cen-
tre c as Fn and of size 2l1 × 2l2 with

l1 = θ

Δ

(

k−n(1+j) + 4k−(n+1)(1+j) + Δk−(n+1)(1+i)
)

and l2 = θk−n(1+j).

The asymmetrical shape of the sliding rectangle adds tremendously to the techni-
cal calculations from now on. However, we can in fact estimate the right hand side
of (5.11) by considering two cases, depending on the magnitude of Δ. Throughout,
let ai, bi denote the constants associated with the measuremi and condition (5.1) and
let

� = 3

(
4b1b2

κ1 a1a22δ1+δ2

)1/δ1

.

Case 1: Δ ≥ �k−n(1+j)/k−n(1+i). In view of (F2) above, we trivially have that

m(θFn ∩ T(L)) ≤ m(F(c; l1, l2)) ≤ b1 b2 l
δ1
1 lδ22 .

It follows that

m(T(L) ∩ θFn)

m(2θFn+1)
≤ b1b2l

δ1
1 l

δ2
2

a1a2(2θ)δ1+δ2 k−(n+1)(1+j)δ1 k−(n+1)(1+i)δ2

≤ b1b2
a1a22δ1+δ2

(
1

�
+ 1

�k1+j
+ 1

k1+i

)δ1

k(1+j)δ1+(1+i)δ2

≤ b1b2
a1a22δ1+δ2

(
3

�

)δ1

k(1+j)δ1+(1+i)δ2 = κ1

4
k(1+j)δ1+(1+i)δ2 .

Case 2: 0 ≤ Δ < �k−n(1+j)/k−n(1+i). By Lemma5.4, there exists a collection Bn of
disjoint balls Bn with centres in θFn ∩ Ω and radii θk−n(1+j) such that

θFn ∩ Ω ⊂
⋃

Bn∈Bn

3Bn .

Since i < j, it is easily verified that the disjoint collection Bn is contained in 2θFn

and thus #Bn ≤ m(2θFn)/m(Bn). It follows that
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m(θFn ∩ T(L)) ≤ m
(∪Bn∈Bn3Bn ∩ T(L)

) ≤ #Bn m(3Bn ∩ T(L)).

Applying (F1) and subsequently the fact that m is absolutely α-decaying, this is

≤ m(2θFn)

m(Bn)
m
(

3Bn ∩ L(ε)
) ≤ m(2θFn)

m(3Bn)

m(Bn)

( ε

3θk−n(i+j)

)α

Now notice that

ε

3θk−n(i+j)
≤ 4

3
(k−(1+j) + �k−(1+i)) .

Hence, for k sufficiently large we have

m(T(L) ∩ θFn)

m(2θFn+1)
≤ κ1

4
k(1+j)δ1k(1+i)δ2 .

On combining the above two cases, we have

l.h.s. of (5.5) ≤ m(T(L) ∩ θFn)

m(2θFn+1)
≤ κ1

4
k(1+j)δ1k(1+i)δ2 = 1

4
× l.h.s. of (5.9).

Hence (5.5) is satisfied and Theorem5.2 implies the desired result.

We give a few remarks on the results above. Firstly, an alternative approach
using homogeneous dynamics is also known due to Kleinbock and Weiss [33]. This
approach is less versatile, as it only works in real, Euclidean space, but the conditions
on the measure are slightly less restrictive, so in this respect their result is stronger.

Secondly, it would be really nice if the approach could give a result on num-
bers badly approximable by algebraic numbers. Unfortunately, the known spacing
estimates for algebraic numbers are not good enough to get the naive approach to
work (more on this in the next section). One could hope that proving a result on
badly approximable vectors on the Veronese curves would work, but unfortunately
Lemma5.3 does not allow us to control the direction of the hyperplane containing
the rational points. If this hyperplane is close to tangential to the curve, the approach
used above will not work, so more input is needed. In fact, the problem has now been
resolved for the full Veronese curve in 2 dimensions by Badziahin and Velani [2]
and in higher dimensions by Beresnevich [5]. To the knowledge of the author, the
problem of intersecting the sets with fractals remain unsolved.

Thirdly, our failure in proving Schmidt’s conjecture with this approach was due to
the fact that we could not construct a measure on Bad(i, j) satisfying the conditions
of Theorem5.1. Since the publication of the paper, the conjecture has been settled,
and in fact An [1] proved that the sets Bad(i, j) are winning for the so-called Schmidt
game [45]. This implies that they are stable under countable intersection.We proceed
with a discussion of Schmidt games in one dimension and leave it as an exercise to
extend this to higher dimensions.
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Definition 5.9 Let F ⊆ R, and letα,β ∈ (0, 1). The Schmidt game is played by two
players, Black and White, according to the following rules:

1. Black picks a closed interval B1 of length r.
2. White picks a closed interval W1 ⊆ B1 of length αr.
3. Black picks a closed interval B2 ⊆ W1 of length βαr.
4. And so on…

By Banach’s fixpoint theorem, ∩iBi consists of a single point, x say. If x ∈ F, White
wins the game. Otherwise, Black wins.

By requiring that the initial ball is chosen in a particular way, we can use the
above for bounded sets without breaking the game.

We are concerned with winning strategies for the game. In particular, we will
prove that if White has a winning strategy, then the set F is large.

Definition 5.10 A set F is said to be (α,β)-winning if White can always win the
Schmidt game with these parameters. A set F is said to be α-winning if it is (α,β)-
winning for any β ∈ (0, 1).

We will prove the following theorems.

Theorem 5.11 An α-winning set F has Hausdorff dimension 1.

Theorem 5.12 If (Fi) is a sequence of α-winning sets, then ∩iFi is also α-winning.

Proof of Theorem5.11. We suppose without loss of generality that r = 1. For ease
of computation, we will also assume that β = 1/N for an integer N > 1. Given
an interval Wk in the game, we may partition this set into N (essentially) disjoint
intervals. We will restrict the possible choices that Black can make by requiring that
she picks one of these. By requiring that β was slightly smaller than 1/N , we could
ensure that the intervals were properly disjoint. We will continue our calculations
with this assumption, even though we should strictly speaking add a little more
technicality to the setup.

Given that White plays according to a winning strategy, we find disjoint paths
through the game depending on the choices made by Black. In other words, for
each possible resulting element in F, we find a unique sequence with elements in
{0, . . . ,N − 1} and vice versa, for each such sequence, we obtain a resulting element.
Hence, this particular subset of F may be mapped onto the unit interval by thinking
of the sequence from the game as a sequence of digits in the base N-expansion of a
number between 0 and 1. To sum up, we have constructed a surjective function

g : F∗ → [0, 1],

where F∗ ⊆ F. We extend this to a function on arbitrary subsets of R by setting
g(A) = g(A ∩ F∗).

Now, let {Ui} be a cover of F∗ with Ui having diameter ρi. Then, with L denoting
the outer Lebesgue measure,
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∞
∑

i=1

L(g(Ui)) ≥ L
( ∞
⋃

i=1

g(Ui)

)

≥ L([0, 1]) = 1.

Let ω > 0 be so small that any interval of length ω(αβ)k intersects at most two
of the generation k intervals chosen by Black, i.e. any of the intervals Bk(j1, . . . , jk)
where ji ∈ {0, . . . ,N − 1}. Even in higher dimensions,ω = 2/

√
3 − 1will do nicely.

Finally, define integers

ki =
[
log(2ω−1ρi)

logαβ

]

.

If ρi is sufficiently small, then ki > 0 and ρi < ω(αβ)ki . Hence, the interval Ui

intersects at most two of the generation ki-intervals chosen by Black. The image of
such an interval under g is evidently an interval of length N−ki , so since there are no
more than two of them, L(g(Ui)) ≤ 2N−ki . Summing up over i, we find that

1 ≤
∞
∑

i=1

L(g(Ui)) ≤
∞
∑

i=1

2N−ki ≤ K
∞
∑

i=1

ρ
logN

| log(αβ)|
i ,

where K > 0 is explicitly computable in terms of N,α,β and ω. Nonetheless, we
have obtained a positive lower bound on the logN

| log(αβ)| -length of an arbitrary cover of
F∗ with small enough sets. It follows that

dimH(F) ≥ logN

| log(αβ)| = | logβ|
| logα| + | logβ| .

The result now follows on letting β → 0.

Proof of Theorem5.12.White plays according to different strategies at different stages
of the game. Explicitly, forα andβ fixed, in the first, third, fifth etc.move,White plays
according to a (α,αβα;E1)-winning strategy, i.e. a strategy for the (α,αβα;E1) for
which White is guaranteed to win the game. Since ρ(Bl+1) = αβαρ(Bl−1), this is
a valid strategy, and hence the resulting x ∈ E1. Along the second, sixth, tenth etc.
move, White plays according to a (α,α(βα)3;E2)-winning strategy. This is equally
valid, and ensures that x ∈ E2.

In general, in the k’th move with k ≡ 2l−1 (mod 2)l, White moves as if he was
playing the (α,α(βα)2

l−1;El)-game. This ensures that the resulting element x is an
element of El for any l.

A positional strategy is a strategy which may be chosen by looking only at the
present state of the game without taking previous moves into account. In An’s proof,
the strategy chosen by White is not positional (at least it appears not to be). This
is a little annoying, as it was shown by Schmidt that any winning set admits a
positional strategy. Of course, this proof depends on the well-ordering principle, and
so ultimately on the axiom of choice. Describing a positional winning strategy may
hence not be that easy.
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6 Well Approximable Elements

In this section, we return to where we started, namely to Khintchine’s theorem and
to fractals arising from continued fractions. We will address three problems. The
first is the problem of the size of the exceptional sets in Khintchine’s theorem. This
will be resolved using a technique due to Beresnevich and Velani known as the mass
transference principle. The second is concerned with the ternary Cantor set and the
Diophantine properties of elements in it. We will discuss the possibility of getting a
Khintchine type theorem for this set and also give a quick-and-dirty argument, stating
that most numbers in the set are not ridiculously well approximable by algebraic
numbers. Finally, we will remark on some fractal properties which can be used in
the study of Littlewood’s conjecture.

Initially, we begin with a discussion of the exceptional sets arising from Khint-
chine’s theorem. The Hausdorff dimension of the null sets in the case of convergence
was originally calculated by Jarník [30] and independently by Besicovitch [10].
Various new methods were introduced during the last century, with the notion of
ubiquitous systems being a key concept in recent years. Ubiquity was introduced
(or at least named) by Dodson, Rynne and Vickers [20] and put in a very general
form by Beresnevich, Dickinson and Velani [8]. A complete discussion of ubiquity
will not be given here, but the reader is strongly encouraged to look up the paper
Beresnevich, Dickinson and Velani.

Even more recently (this century), it was observed by Beresnevich and Velani [7]
that under relatively mild assumptions on a limsup set, one may transfer a zero–one
law for such a set to a zero–infinity law for Hausdorff measures, at least in the case
of full measure. In the cases considered in these notes, the converse case of measure
zero is easy. Note that the measure zero case is not always the easiest! One can cook
up problems where the convergence case of a Khintchine type theorem is the difficult
part. The sets considered in these notes however all fall within the category where
divergence is the difficult problem.

At the heart of the observation of Beresnevich andVelani is the following theorem,
usually called themass transference principle. To state it,wewill need a little notation.
For a ball B = B(x, r) ⊆ R

n and a dimension function f , we define

Bf = B(x, f (r)1/n),

the ball with the same centre but with its radius adjusted according to the dimension
function and the dimension of the ambient space. As usual, for f (r) = rk , we denote
Bf by Bk .

Theorem 6.1 Let {Bi} be a sequence of balls in R
n with r(Bi) → 0 as i → ∞. Let

f be a dimension function such that r−nf (r) is monotonic. Suppose that

Hn(B ∩ lim supBf
i ) = Hn(B),

for any ball B ⊆ R
n. Then, for any ball B ⊆ R

n,
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Hf (B ∩ lim supBn
i ) = Hf (B),

Notice that the first requirement just says that the set lim supBf
i is full with respect

to Lebesgue measure, as Hn is comparable with the Lebesgue measure. Note also,
that if r−nf (r) → ∞ as r → 0, Hf (B) = ∞, so a re-statement of the conclusion
of the theorem would be as follows: Suppose that a limsup set of balls is full with
respect to Lebesgue measure. Then a limsup set of appropriately scaled balls is of
infinite Hausdorff measure.

The mass transference principle is valid in a more general setting of certain metric
spaces. As was the case in the framework of badly approximable sets, the metric
space must support a natural measure, which in this case should be a Hausdorff
measure. This is the case for the Cantor set with the Hausdorff log 2/log 3-measure,
and the mass transference principle is exactly the same if one reads log 2/log 3 for n
everywhere.

Finally, the readerwill note that themass transference principle in the present form
onlyworks for limsup sets of balls. If onewere to consider linear forms approximation
as we did in Sect. 4, the limsup set would be built from tubular neighbourhoods of
hyperplanes, and for the more general setting of systems of linear forms from tubular
neighbourhoods of lower dimensional affine subspaces. This can be overcome by a
slicing technique, also developed by Beresnevich and Velani [6].

We will not go into details on the higher dimensional variant here, nor will we
prove the mass transference principle. Instead, we will deduce the original Jarník–
Besicovitch theorem from Khintchine’s theorem.

Theorem 6.2 Let f be a dimension function and let ψ : N → R≥0 be some function
with q2f (ψ(q)) decreasing. Then,

Hf

{

x ∈ [0, 1] :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
< ψ(q) for infinitely many (p, q) ∈ Z × N

}

,

is zero or infinity according to whether the series
∑

qf (ψ(q)) converges or diverges.

Proof The convergence half is the usual covering argument, which we omit. For
the divergence part, we apply the mass transference principle. The balls are indexed
by rational numbers, with Bp/q = B(p/q,ψ(q)) and k = 1, so the limsup set of the
conclusion of Theorem6.1 is just the set from the statement of the theorem. Hence,
it suffices to prove that lim supBf

p/q is full with respect to Lebesgue measure, pro-
vided the series in question diverges. But this is just the statement of the original
Khintchine’s theorem.

An easy corollary of this statement tells us, that for ψ(q) = q−v , the upper bound
of 2/v obtained on theHausdorff dimension of the above set in Sect. 3 is sharp. In fact,
in Khintchine’s theorem, the requirement that q2ψ(q) is monotonic can be relaxed
substantially to the requirement that ψ(q) is monotonic, which in turn gives us the
Hausdorff measure at the critical dimension (it is infinite) by the above argument.
The latter result could be deduced directly from Dirichlet’s theorem, as the set of all
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numbers evidently is full, but only for the special case of the approximating function
ψ(q) = q−v .

We leave it for the reader to explore applications of themass transference principle
(there are many). The point we want to make is that once a zero–one law for a
natural measure is known (Lebesgue in the case of the real numbers), it is usually a
straightforward matter of applying the mass transference principle to get a Hausdorff
measure variant of the known result. In other words, it is natural to look for a zero–
one law for the natural measure and deduce the remainder of the metrical theory
from this result.

We now consider the ternary Cantor set. Recall that the natural measure μ con-
structed in Sect. 3 on this set has the nice decay property, that for δ = log 2/log 3 and
c1, c2 > 0,

c1r
δ ≤ μ([c − r, c + r]) ≤ c2r

δ (6.1)

for all c ∈ C and r > 0 small enough.We used this property in the preceeding section
as well. It is easy to see that any non-atomic measure supported on C satisfying
hypothesis (6.1) must also satisfy

μ([c − εr, c + εr]) ≤ c3ε
δμ([c − r, c + r]), (6.2)

for some c3 > 0, whenever r and ε are small and c ∈ R. The inequality in (6.2)
is the statement that the measure is absolutely δ-decaying, which was also used in
the preceeding section. In fact, this measure can also be seen to be the restriction
of the Hausdorff δ-measure to C, so we are within the framework where the mass
transference principle can be applied.

Levesley, Salp and Velani [37] proved a zero–one law (and deduced the corre-
sponding statement for Hausdorff measures) for the set

WC =
{

x ∈ C :
∣
∣
∣x − p

3n

∣
∣
∣ < ψ(3n) for infinitely many (p, n) ∈ Z × N

}

.

Note the restriction on the approximating rationals. They are all rationals whose
denominator is a power of 3, and so are the endpoints in the usual construction of the
set. This is of course not satisfactory, as there are other rationals in the Cantor set, e.g.
1/4.Nevertheless, we do not at present knowa full zero–one law for approximation of
elements in the Cantor set by rationals in the Cantor set. Their result is the following.

Theorem 6.3

μ(WC) =
{

0,
∑∞

n=1 (3nψ(3n))δ < ∞,

1,
∑∞

n=1 (3nψ(3n))δ = ∞.

We make a few comments on the proof, as it is a good model for many proofs of
zero–one laws for limsup sets. The convergence part is usually proved by a covering
argument as we have seen. For the divergence part, we give an outline of the method
used by Levesley, Salp and Velani. From Sect. 4, recall the converse to the Borel–
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Cantelli lemma given in Lemma4.11. By this lemma, it would suffice to prove that the
sets forming the limsup set are pairwise independent to ensure full measure. However
in general, we have no reason to suspect that these sets are pairwise independent,
which is always a problem. However, if they satisfy the weaker condition of quasi-
pairwise independence (see below), the first part of the lemma will give positive
measure. This can subsequently be inflated in a number of ways. One possibility
is to look for an underlying invariance for an ergodic transformation. Another is to
apply the following local density condition.

Lemma 6.4 Let μ be a finite, doubling Borel measure supported on a compact set
X ⊆ Rk, and let E ⊆ X be a Borel set. Suppose that there are constants r0, c > 0,
such that for any ball B = B(x, r) with x ∈ X and r < r0,

μ(E ∩ B) ≥ cμ(B).

Then E is full in X with respect to μ.

This result is a consequence of the Lebesgue density theorem.
In order to prove a zero–one law, one now attempts to verify the conditions of

Lemma6.4, with E being the limsup set, using Lemma4.11. In other words, for the
limsup set

� = lim supEn,

there is a constant c > 0, such that for any sufficiently small ball B centred in X,

μ((Em ∩ B) ∩ (En ∩ B))

μ(B)
≤ c

μ(Em ∩ B)

μ(B)

μ(En ∩ B)

μ(B)
(6.3)

whenever m �= n. The probability measure used in Lemma4.11 is the normalised
restriction of μ to B. Just inserting the above estimate proves that μ(� ∩ B) ≥
c−1μ(B), whence� is full within X. In other words, it suffices to prove local pairwise
quasi-independence of events in the above sense.

For the result of Levesley, Salp and Velani, one considers the subset of WC(ψ)

which is the limsup set of the sets

En =
⋃

0≤p≤3n

3�p

B
( p

3n
,ψ(3n)

)

∩ C.

After making some preliminary reductions, it is then possible to prove (6.3) by
splitting up into the cases when m and n are pretty close (in which case intersection
on the left hand side is empty) and the case when they are pretty far apart, where
some clever counting arguments and the specific form of the measure is needed. The
point we want to make is not in the details, but rather in the methods applied.

Of course, applying themass transference principle immediately gives a condition
for theHausdorff measure of the setWC to be infinite. Combining this with a covering
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argument for the convergence case, Levesley, Salp and Velani obtained the following
theorem in full.

Theorem 6.5 Let f be a dimension function with r−δf (r) monotonic. Then,

Hf (WC) =
{

0,
∑∞

n=1 3
δnf (ψ(3n)) < ∞.

Hf (C),
∑∞

n=1 3
δnf (ψ(3n)) = ∞.

We now consider the approximation of elements of C by elements of An, where
the quality of approximation is measured in terms of the height of the approximating
number. The present argument is from [35]. Of course, we cannot hope to get a
Khintchine type result by the methods above, as we do not expect there to be any
algebraic irrational elements in C. In fact, we can say very little, and we are only able
to get a convergence result. We proceed to give a quick argument, which is not best
possible, but relatively short.

Let ψ : R≥1 → R+. We define the set

K∗
n(ψ; C) = {x ∈ C : |x − α| < ψ(H(α)) for infinitely many α ∈ An} . (6.4)

Theorem 6.6 Let C be the ternary Cantor set and let δ = log 2/ log 3. Suppose that
ψ : R≥1 → R≥0 satisfies either

∞
∑

r=1

r2nδ−1ψ(r)δ < ∞ and ψ is non-increasing or
∞
∑

r=1

rnψ(r)δ < ∞.

Then
μ
(K∗

n(ψ; C)
) = 0.

The result is almost surely not sharp. We first prove that the convergence of the
first series ensures that the measure is zero. This is by far the most difficult part of
the proof. We will use a bound on the distance between algebraic numbers, which is
in a sense best possible. If α and β are distinct real algebraic numbers of degree at
most n, then

|α − β| ≥ c4H(α)−nH(β)−n, (6.5)

where the constant c4 > 0 depends solely on n. The result can be found in Bugeaud’s
book [13] as a special case of corollary A.2, where the explicit form of the constant
c4 is also given. It generalises (5.6), which is the same estimate for rational numbers
between 0 and 1. In the case of rational numbers, the spacing distribution is much
more well-behaved than for real algebraic numbers of higher degree, and for this
reason, Theorem6.6 is almost certainly not as sharp as it could be. Nonetheless, as
remarked in [13], the estimate in (5.6) is in some sense best possible.
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If for some k ∈ N, 2k ≤ H(α),H(β) < 2k+1, (6.5) implies that |α − β| >
1
2c42

−2n(k+1). Consequently, for distinct real algebraic numbers αi with 2k ≤
H(αi) < 2k+1, the intervals [αi − 1

4c42
−2n(k+1),αi + 1

4c42
−2n(k+1)] are disjoint.

Let k ∈ N. We will show that as k → ∞,

max
2k≤r<2k+1

ψ(r)

4−1c42−2n(k+1)
= o(1). (6.6)

In other words, the ratio tends to 0 as k tends to infinity. Indeed, suppose to the
contrary that there is a c5 > 0 and a strictly increasing sequence {ki}∞i=1 ⊆ N such
that for any i ∈ N

max
2ki≤r<2ki+1

ψ(r)

4−1c42−2n(ki+1)
> c5.

By the convergence assumption of the theorem together with Cauchy’s condensation
criterion and the monotonicity of ψ,

∞
∑

k=1

22n(k+1)δψ(2k)δ = 22nδ
∞
∑

k=1

(

22knψ(2k)
)δ

< ∞.

On the other hand, as ψ is non-increasing,

∞
∑

k=1

22n(k+1)δψ(2k)δ ≥ 4−δcδ
4

∞
∑

i=1

(

max
2ki≤r<2ki+1

ψ(r)

4−1c42−2n(ki+1)

)δ

≥ 4−δcδ
4c

δ
5

∞
∑

i=1

1 = ∞,

which is the desired contradiction.
Consider the sets

Ek =
⋃

α∈An

2k≤H(α)<2k+1

[α − ψ(H(α)),α + ψ(H(α))].

Clearly, for k large enough

μ(Ek) ≤
∑

α∈An

2k≤H(α)<2k+1

μ([α − ψ(H(α)),α + ψ(H(α))])

≤ c3c
δ
44

−δ22n(k+1)δψ(2k)δ
∑

α∈An

2k≤H(α)<2k+1

μ([α − 1
4c42

−2n(k+1),α + 1
4c42

−2n(k+1)]),
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where we have used (6.2) and (6.6). The intervals in the final sum are disjoint. Hence,
the sum of their measure is bounded from above by the measure of K , which is equal
to 1. We have shown that for k ≥ k0,

μ(Ek) ≤ c3c
δ
44

−δ22n(k+1)δψ(2k)δ.

To complete the proof of this case, we note that K∗
n(ψ;K) is the set of points

falling in infinitely many of the Ek . But

∞
∑

k=k0

μ(Ek) ≤ c3c
δ
44

−δ
∞
∑

k=k0

22n(k+1)δψ(2k)δ = c3c
δ
44

−δ22nδ
∞
∑

k=k0

22nkδψ(2k)δ.

Using Cauchy’s condensation criterion and the convergence assumption of the the-
orem, the latter series converges. Hence, the Borel–Cantelli lemma implies the the-
orem.

To show that the convergence of the second series is sufficient to ensure zero
measure, we note that

#{α ∈ An : α ∈ [0, 1],H(α) = H} ≤ n(n + 1)(2H + 1)n. (6.7)

By (6.1), for any such α, we have μ([α − ψ(H);α + ψ(H)]) ≤ c6ψ(H)δ for some
c6 > 0. Elements of K∗

n(ψ;K) fall in infinitely many of these intervals, and as

∞
∑

H=1

∑

α∈An
α∈[0,1]
H(α)=H

μ([α − ψ(H);α + ψ(H)]) ≤ n(n + 1)c6

∞
∑

H=1

(2H + 1)nψ(H)δ,

which converges by assumption, the measure of K∗
n(ψ;K) is zero by the Borel–

Cantelli lemma. ��
It is possible to prove a stronger result using homogeneous dynamics. This was

done by Kleinbock, Lindenstrauss and Weiss [34], but the present result has the
advantage of being relatively simple to prove.

The final thing, which we will touch upon in these notes, is a result on the Lit-
tlewood conjecture, which uses the Fourier dimension, which we defined in Sect. 3,
but did not use for anything. We will sketch a proof of the following result, which is
a partial result of [28].

Theorem 6.7 Let {αi} ⊆ Bad be a countable set of badly approximable numbers.
The set of β ∈ Bad for which all pairs (αi,β) satisfy the Littlewood conjecture is of
Hausdorff dimension 1.

For a single αi, this result was also proven by Pollington and Velani [42] by a
similar, but slightly more complicated method. It could also be deduced from homo-
geneous dynamics, but the present method is different, and in fact gives a stronger
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result. However, it falls short of anything near the seminal result of Einsiedler, Katok
and Lindenstrauss [23].

Note that unless both α and β are badly approximable, the Littlewood conjecture
is trivially satisfied. Indeed, if α is not badly approximable, there is a sequence qn
such that

qn‖qnα‖ = q2n

∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣
→ 0.

Brutally estimating ‖qnβ‖ ≤ 1/2, we find that

qn‖qnα‖‖qnβ‖ → 0,

so that the pair (α,β) satisfies the Littlewood conjecture. Hence, this problem natu-
rally lives on a set of measure zero, namely Bad×Bad.

The key tool in proving Theorem6.7 is a result on the discrepancy of certain
sequences, which holds true for almost all α with respect to a certain measure intro-
duced by Kaufman [32].

Kaufman’s measure μM is a measure supported on the set of real numbers with
partial quotients bounded above byM. To be explicit, for each real numberα ∈ [0, 1),
let

α = [a1, a2, . . . ] = 1

a1 + 1
a2+ 1

...

be the simple continued fraction expansion of α. For M ≥ 3, let

FM = {α ∈ [0, 1) : ai(α) ≤ M for all i ∈ N}. (6.8)

Recall that the set of badly approximable numbers consists exactly of the numbers
for which the partial quotients form a bounded sequence, so that

Bad =
∞
⋃

M=1

FM .

Kaufman proved that the set FM supports a measure μM satisfying a number of
nice properties. For our purposes, we need the following two properties.

(i) For any s < dimH(FM), there are positive constants c, l > 0 such that for any
interval I ⊆ [0, 1) of length |I| ≤ l,

μM(I) ≤ c |I|s .

(ii) For anyM, there are positive constants c, η > 0 such that the Fourier transform
μ̂M of the Kaufman measure μM satisfies

μ̂M(u) ≤ c |u|−η .
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The first property allows us to connect the Kaufman measure with the Hausdorff
dimension of the setFM via themass distribution principle of Lemma3.3. The second
property provides a positive lower bound on the Fourier dimension of the set FM , but
for our purposes the property is used only in computations.

The second key tool is the notion of discrepancy from the theory of uniform distri-
bution. The discrepancy of a sequence in [0, 1) measures how uniformly distributed
a sequence is in the interval. Specifically, the discrepancy of the sequence (xn) is
defined as

DN (xn) = sup
I⊆[0,1]

∣
∣
∣
∣
∣

N
∑

n=1

χI(xn) − N |I|
∣
∣
∣
∣
∣
,

where I is an interval and χI is the corresponding characteristic function. A sequence
(xn) is uniformly distributed if DN (xn) = o(N).

Our key result is the following discrepancy estimate, which implies Theorem6.7

Theorem 6.8 Let μM be a Kaufman measure and assume that for positive integers
u < v we have

v
∑

n,m=u

|an − am|−η � 1

log v

v
∑

n=u

ψn

where (ψn) is a sequence of non-negative numbers and η > 0 is the constant from
property (ii) of the Kaufman measure. Then for μM-almost every x ∈ [0, 1] we have

DN (anx) � (N log(N)2 + ΨN )1/2 log(N log(N)2 + ΨN )3/2+ε + max
n≤N

ψn

where ΨN = ψ1 + · · · + ψN .

We will need a probabilistic lemma which can be found in [26].

Lemma 6.9 Let (X,μ) be a measure space with μ(X) < ∞. Let F(n,m, x), n,m ≥
0 be μ-measurable functions and let φn be a sequence of real numbers such that
|F(n − 1, n, x)| ≤ φn for n ∈ N. Let ΦN = φ1 + · · · + φN and assume that ΦN →
∞. Suppose that for 0 ≤ u < v we have

∫

X
|F(u, v, x)|2 dμ �

v
∑

n=u

φn.

Then for μ-almost all x, we have

F(0,N, x) � Φ
1/2
N log(ΦN )3/2+ε + max

n≤N
φn.

We will also need the classical Erdős–Turán inequality which can be found
in [40].
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Theorem 6.10 For any positive integer K and any sequence (xn) ⊆ [0, 1),

DN (xn) ≤ N

K + 1
+ 3

K
∑

k=1

1

k

∣
∣
∣
∣
∣

N
∑

n=1

e(kxn)

∣
∣
∣
∣
∣
,

where as usual e(x) = exp(2πix).

Proof of Theorem6.8. Suppose M ≥ 3 and for integers 0 ≤ u < v let

F(u, v, x) =
v
∑

h=1

1

h

∣
∣
∣
∣
∣

v
∑

n=u

e(hanx)

∣
∣
∣
∣
∣
.

Theorem6.10 with K = N tells us that

DN (anx) � F(0,N, x).

Integrating with respect to dμM(x) and applying the Cauchy–Schwarz inequality
gives

∫

|F(u, v, x)|2 dμM ≤
v
∑

h,k=1

1

hk

∫
∣
∣
∣
∣
∣

v
∑

n=u

e(hanx)

∣
∣
∣
∣
∣

2

dμM

=
v
∑

h,k=1

1

hk

⎛

⎜
⎜
⎝

v − u + 1 +
v
∑

n,m=u
n �=m

μ̂M(h(an − am))

⎞

⎟
⎟
⎠

.

Finally using property (ii) of the Kaufman measure we have

∫

|F(u, v, x)|2 dμM �
v
∑

h,k=1

1

hk

⎛

⎜
⎜
⎝

v − u + 1 + h−η
v
∑

n,m=u
n �=m

|an − am|−η

⎞

⎟
⎟
⎠

�
v
∑

n=u

[log(n)2 + ψn].

Since F(n − 1, n, x) � log(n)2 + ψn for all n ≥ 1, the theorem then follows from
Lemma6.9.

For sequences which grow sufficiently rapidly, the theorem has a corollary with a
much cleaner statement. We will say that an increasing sequence of positive integers
(an) is lacunary if there is a c > 1 such that for any n, an+1/an > c. Applying this
inductively, we see that the sequence must grow at least as fast as some geometric
sequence.
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Corollary 6.11 Let ν > 0, let μ be a Kaufman measure and (an) a lacunary
sequence of integers. For μ-almost every x ∈ [0, 1] we have DN (anx) � N1/2

(logN)5/2+ν .

Proof We apply again Theorem6.8. Using lacunarity of the sequence (an), we see
that ∞

∑

n,m=1

|an − am|−η < ∞.

Consequently, we can absorb all occurrences of ΨN as well as the final term
maxn≤N ψn in the discrepancy estimate of Theorem6.8 into the implied constant.
It follows that

DN (anx) � (N log(N)2)1/2 log(N log(N)2)3/2+ε � N1/2(logN)5/2+ν

for μ-almost every x, where ν can be made as small as desired by picking ε small
enough.

Proof of Theorem6.7. Let G denote the set of numbers β ∈ Bad for which there is
an i, such that

lim inf q ‖qαi‖ ‖qβ‖ > 0. (6.9)

Suppose, contrary to what we are to prove, that dimH G < 1. Pick an M ≥ 3 such
that dimH FM > dimH G (this can be done in light of Jarník’s theorem). Let μ = μM

denote the Kaufman measure on FM .
Consider first one of the αi, and let (qk) denote the sequence of denominators of

convergents in the simple continued fraction expansion of αi. In the following, we
will use the various parts of Proposition1.4 many times to deduce results about this
sequence and its relation to αi.

The sequence qk is lacunary. Hence, by Corollary6.11, for μ−almost every x,

DN (qnx) � N1/2(logN)5/2+ν .

Let ψ(N) = N−1/2+ε for some ε > 0 and consider the interval

IN = [−ψ(N),ψ(N)].

By the definition of discrepancy, for every γ ∈ [0, 1] and μ-almost every β

|#{k ≤ N : {qkβ} ∈ IN } − 2Nψ(N)| � N1/2(logN)5/2+ν .

Hence,

#{k ≤ N : {qkβ} ∈ IN } ≥ 2Nψ(N) − KN1/2(logN)5/2+ν

= 2N1/2+ε − KN1/2(logN)5/2+ν,
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where K > 0 is the implied constant from Corollary6.11. Next let Nh denote the
increasing sequences defined by

Nh = min
{

N ∈ N : #{k ≤ N : {qkβ} ∈ IN } = h
}

.

Since each qNh is a denominator of a convergent to αi,

qNh

∥
∥qNhαi

∥
∥ ≤ 1.

Hence,
qNh

∥
∥qNhαi

∥
∥
∥
∥qNhβ

∥
∥ ≤ ∥

∥qNhβ
∥
∥ ≤ (

Nγ
h

)−1/2+ε
.

This establishes our claim and shows that the exceptional set Ei ⊆ FM for which
(6.9) holds has μ(Ei) = 0.

To conclude, let E be the set of β ∈ FM for which there is an i or a j such that
either (6.4) or (6.5) is not satisfied. Then,

E =
⋃

i

Ei ∪
⋃

j

E′
j,

and therefore μ(E) = 0.
Finally μ(G) is maximal, so consider the trace measure μ̃ of μ on G, defined

by μ̃(X) = μ(X ∩ G). It follows from property (i) of Kaufman’s measures that μ
is a mass distribution on [0, 1), and since G is full, μ̃ inherits the decay property
of (i) from μ. By the mass distribution principle it then follows that dimH(G) =
dimH(FM) > dimH(G), which contradicts our original assumption. Therefore we
conclude that dimH(G) = 1.

The proof of Theorem6.7 in fact tells us that something stronger than the Little-
wood conjecture holds for the pairs (αi,β). Indeed, we can work a little more with
the inequalities obtained and get a speed of convergence along the sequence (qNh).
Further results using the full force of the uniform distribution of the sequence (qnβ)

can be found in the original paper [28], where we also prove similar results for the
related p-adic and mixed Littlewood conjectures. However, it is beyond the scope
of these notes to discuss these topics, and for the clarity of the exposition we have
restricted ourselves to results on the original conjecture.

7 Concluding Remarks

These notes are far from being a complete description of the state-of-the-art in metric
Diophantine approximation. Recent developments inmetricDiophantine approxima-
tion on manifolds has barely been touched upon, and the relation with homogeneous
dynamics which has led to spectacular advances in the theory has only been superfi-
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cially described. The selection of results reflect the tastes and expertises of the author,
and much is left out.

Nonetheless, it is hoped that the reader has caught a glimpse of the richness and
beauty of the metric theory of Diophantine approximation and has acquired a taste
for more. Certainly, there are problems and literature enough to last a lifetime of
research.
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1 Targets

Our first target is to prove some Diophantine inequalities over real numbers by using
Minkowski’s first convex body theorem. Also some generalizations over complex
numbers are discussed.

Next we give an elementary proof of Siegel’s lemma over rational numbers. Then
we present without proof a version of Siegel’s lemma over an arbitrary imaginary
quadratic field which slightly improves the existing versions.

Our following target is to give a proof to the equality of heights of a rational
subspace and its orthogonal complement. The proof is based on Grassmann algebra.
Therefore, quite an amount of basics of exterior algebras will be presented in the
framework of rational subspaces. An important tool will be the primitive Grassmann
coordinate vector of the corresponding rational subspace. Lastly, we are ready to
prove the Bombieri–Vaaler [3] version of Siegel’s lemma.

2 Convex Bodies and Lattices
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Throughout these notes the column vectors are denoted by x = (x1, . . . , xn)t ∈
Rn , where the coordinates belong to a ring (or a field) R specified later.

For the different norms of the vector x = (x1, . . . , xn)t ∈ C
n we shall use the

notations

‖x‖∞ = max
k=1,...,n

|xk|, ‖x‖1 =
n
∑

k=1
|xk|, ‖x‖2 = ‖x‖ =

(
n
∑

k=1
|xk|2

)1/2

,

where the first is so-called maximum norm and the last is the usual Euclidean norm.

2.1 Convex Bodies

A non-empty subset C ⊆ R
n is convex, if for any pair of points a, b ∈ C holds

{sa + (1− s)b| 0 ≤ s ≤ 1} ⊆ C.

A bounded convex subset C ⊆ R
n is called a convex body. In these notes we don’t

expect that a convex body is necessarily closed. A subset C is central symmetric
(symmetric wrt origin) if C = −C.
Example 2.1 Let λ ∈ R

+ and assume that C is a central symmetric convex body.
Then the dilation

λC := {λa| a ∈ C}

is also a central symmetric convex body.

By a volume V (C) of a subset C ⊆ R
n we mean the Riemann (or Lebesgue) integral,

if it exists.

2.2 Rings and Modules

In the following, a ring, say (R,×,+), is a non-empty set R with ring product ×
and addition +. The ring is not necessarily commutative but it has zero and identity
elements 0, 1 ∈ R, 0 �= 1.

Let R be a commutative ring. Then (M,+, ·) is an R-module, if (M,+) is an
Abelian group and the scalar product · : R × M → M satisfies the following axioms

1 · m = m, 1 ∈ R; (rs) · m = r · (s · m);
(r + s) · m = r · m + s · m; r · (m + n) = r · m + r · n ∀r, s ∈ R, m, n ∈ M.



A Geometric Face of Diophantine Analysis 131

The elements of R are called scalars. Let M be an R-module, S a subring of R and
B ⊆ M , then

〈B〉S = ∩
B⊆NN , N is a S-submodule of M,

is called a linear hull over S generated by B. In particular,

〈m1, . . . ,mk〉 = 〈m1, . . . ,mk〉S := Sm1 + · · · + Smk

is called a linear hull over S generated by m1, . . . ,mk ∈ M .

Example 2.2 If K is a field, then the K -vector space M = Kn is a K -module. We
may write

Kn = 〈e1, . . . , en〉K = Ke1 + · · · + Ken,

where e1 = (1, 0, . . . , 0)t , . . . , en = (0, . . . , 0, 1)t denote the standard (column)
base vectors.

2.3 Lattices

In these lectures we consider lattices which are free additive subgroups of (Rn,+).
Let n ∈ Z

+ and let l1, . . . , lr ∈ R
n be linearly independent over R, then the linear

hull
Λ = 〈l1, . . . , lr 〉Z = Zl1 + · · · + Zlr ⊆ R

n

over Z forms a lattice. The set {l1, . . . , lr } is called a base of Λ with rankΛ = r . If
rankΛ = n, then Λ is called a full lattice. The determinant of Λ is defined by

det(Λ) :=
√

det[li · l j ]1≤i, j≤r =
√

det(Lt L), L = [l1, . . . , lr ].

where the columns of the matrix L are the base vectors l1, . . . , lr of Λ. In particular,
for the full lattice we have

det(Λ) = |det L| = ∣∣det[l1, . . . , ln]
∣
∣ .

Example 2.3 The integer lattice

Z
n = Ze1 + · · · + Zen

has determinant det(Λ) = 1.
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3 Minkowski’s Convex Body Theorems

3.1 The First Minkowski’s Convex Body Theorem

Theorem 3.1 The first Minkowski’s convex body theorem. Let n ∈ Z
+. Assume that

Λ ⊆ R
n is a lattice with rankΛ = n and C ⊆ R

n is a central symmetric convex body
with {

V (C) > 2n detΛ or

V (C) ≥ 2n detΛ, if C is compact.

Then, there exists a non-zero lattice point in C. In fact, then #C ∩Λ ≥ 3.

3.2 The Second Minkowski’s Convex Body Theorem

3.2.1 Successive Minima

Definition 3.2 Let n ∈ Z
+ and let C be a non-empty subset of Rn . The successive

minima λ1, . . . λn of C with respect to a lattice Λ ⊆ R
n are given by

λ j = inf{λ > 0| rank〈(λC) ∩Λ〉Z ≥ j}.

Lemma 3.3
0 < λ1 ≤ · · · ≤ λn <∞.

Example 3.4 For n ∈ Z
+ let

Bn := {x ∈ R
n| ‖x‖2 ≤ 1}

denote the unit ball in R
n and let λ1, . . . λn be the successive minima of Bn with

respect to a lattice Λ ⊆ R
n . Then, by the definition of successive minima there exist

n linearly independent integer vectors x1, . . . , xn ∈ Λ \ {0} such that

‖x1‖2 ≤ λ1, . . . , ‖xn‖2 ≤ λn. (3.1)

Example 3.5 For n ∈ Z
+ let

�n := {x ∈ R
n| ‖x‖∞ ≤ 1}

denote the n-dimensional “unit” cube inRn . Let λ1, . . . λn be the successive minima
of �n with respect to a lattice Λ ⊆ R

n . Then, there exist n linearly independent
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integer vectors x1, . . . , xn ∈ Λ \ {0} such that

‖x1‖∞ ≤ λ1, . . . , ‖xn‖∞ ≤ λn. (3.2)

3.2.2 The Second Minkowski’s Convex Body Theorem

Theorem 3.6 Let n ∈ Z
+. Assume that Λ ⊆ R

n is a lattice with rank Λ = n and
C ⊆ R

n is a central symmetric convex body. Then

2n

n! detΛ ≤ λ1 · · ·λnV (C) ≤ 2n detΛ.

4 Diophantine Inequalities Over R

In this chapter we present some selected Diophantine inequalities overR. For further
studies we recommend, Cassels [5, 11, 12], Shidlovskii [12] and Steuding [14].

We start from Theorem 4.1, which is a typical example from the theory of linear
forms.

Theorem 4.1 Let
α1, . . . ,αm ∈ R

and
h1, . . . , hm ∈ Z

+

be given. Then there exist p, q1, . . . , qm ∈ Z with a qk �= 0, satisfying

|qi | ≤ hi , i = 1, . . . ,m,

and

|p + q1α1 + · · · + qmαm | < 1

h1 · · · hm .

Proof Write
L0x := x0 + α1x1 + · · · + αmxm,

Lkx := xk, k = 1, . . . ,m

and put

|L0x | < 1

h
:= 1

h1 · · · hm , (4.1)

|Lkx | ≤ hk + 1/2, k = 1, . . . ,m. (4.2)
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Then
(L0, L1, . . . , Lm) : Zm+1 → R

m+1

defines a full lattice

Λ := Z�0 + Z�1 + · · · + Z�m =
Z(1, 0, . . . , 0)t + Z(α1, 1, 0, . . . , 0)

t + · · · + Z(αm, 0, . . . , 1)t ⊆ R
m+1

with determinant

detΛ = ∣∣det(�0 �1 . . . �m)
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 α1 α2 . . . αm

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .

0 0 0 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1.

Now the conditions (4.1) and (4.2) determine a convex set

C := {(y0, . . . , ym)t
∣
∣ |y0| < 1/h, |yk| ≤ hk + 1/2} ⊆ R

m+1

with volume

V(C) = 2m+1(h1 + 1/2) · · · (hm + 1/2)

h1 · · · hm > 2m+1.

By the first Minkowski’s convex body there exists a non-zero vector

0 �= y = (p + q1α1 + · · · + qmαm, q1, . . . , qm)t ∈ C ∩Λ. (4.3)

such that
|qi | ≤ hi , ∀i = 1, . . . ,m,

and

|p + q1α1 + · · · + qmαm | < 1

h1 · · · hm , (4.4)

where by (4.3) we have

(p, q1, . . . , qm)t ∈ Z
m+1 \ {0}.

Finally, if all q1 = · · · = qm = 0 in (4.4), then also p = 0. A contradiction. �
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4.1 Primitive Vector

An integer vector
(r0, r1, . . . , rm)t ∈ Z

m+1

is primitive, if the greatest common divisor satisfies

gcd(r0, r1, . . . , rm) = 1.

Let
gcd(p, q1, . . . , qm) = d ∈ Z≥2

and suppose the integer vector

(p, q1, . . . , qm)t = d(s, r1, . . . , rm)t , (s, r1, . . . , rm)t ∈ Z
m+1,

satisfies the estimate

|p + q1α1 + · · · + qmαm | < 1

h
.

Then

|s + r1α1 + · · · + rmαm | < 1

dh
<

1

h
.

Thus we have also a primitive solution

(s, r1, . . . , rm)t ∈ Z
m+1

for equation

|p + q1α1 + · · · + qmαm | < 1

h
.

Theorem 4.2 Let
α1, . . . ,αm ∈ R

and
h1, . . . , hm ∈ Z

+

be given. Then there exists a primitive vector

(p, q1, . . . , qm)t ∈ Z
m+1 \ {0}

with a qk �= 0, satisfying

|qi | ≤ hi , ∀i = 1, . . . ,m,
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and

|p + q1α1 + · · · + qmαm | < 1

h1 · · · hm .

4.2 Infiniteness of Primitive Solutions

Theorem 4.3 Let
1,α1, . . . ,αm ∈ R

be linearly independent over Q. Then there exist infinitely many primitive vectors

vk = (pk, q1,k, . . . , qm,k)
t ∈ Z

m+1 \ {0} (4.5)

with
hi,k := max{1, |qi,k|}, ∀i = 1, . . . ,m,

satisfying

|pk + q1,kα1 + · · · + qm,kαm | < 1

h1,k · · · hm,k
:= 1

hk
. (4.6)

Proof Suppose on the contrary, that there exist only finitely many primitive solu-
tions for (4.6). Then by the linear independence and assumption (4.5) there exists a
minimum

min |pk + q1,kα1 + · · · + qm,kαm | := 1

R
> 0. (4.7)

Choose then

ĥi ∈ Z
+, ĥ := ĥ1 · · · ĥm,

1

ĥ
≤ 1

R
.

Now by Theorem 4.2 there exists a primitive solution

( p̂, q̂1, . . . , q̂m)t ∈ Z
m+1 \ {0}

with
max{1, |q̂i |} ≤ ĥi , ∀i = 1, . . . ,m,

satisfying

| p̂ + q̂1α1 + · · · + q̂mαm | < 1

ĥ
≤ 1

R
.

which contradicts (4.7). �
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4.3 Corollaries

Theorem 4.4 Let
1,α1, . . . ,αm ∈ R

be linearly independent overQ. If there exist positive constants c,ω ∈ R
+ such that

|β0 + β1α1 + · · · + βmαm | ≥ c

(h1 · · · hm)ω
(4.8)

holds for all

(β0,β1, . . . ,βm) ∈ Z
m+1 \ {0}, hk = max{1, |βk|},

then
ω ≥ 1.

Proof Assume on the contrary that

ω < 1.

By Theorem 4.3 there exists an infinity of primitive vectors satisfying

|pk + q1,kα1 + · · · + qm,kαm | < 1

h1,k · · · hm,k

and by (4.8) we have

c

(h1,k · · · hm,k)ω
≤ |pk + q1,kα1 + · · · + qm,kαm | < 1

h1,k · · · hm,k
. (4.9)

Choose now h1,k, . . . , hm,k such that

log(h1,k · · · hm,k) ≥ log(1/c)

1− ω
.

A contradiction with (4.9). �

Usually, in the existing literature, the above results are only given in terms of

Hk := max
i=1,...,m|qi,k|.

Theorem 4.5 Let
1,α1, . . . ,αm ∈ R
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be linearly independent over Q. Then there exist infinitely many primitive vectors

vk = (pk, q1,k, . . . , qm,k)
t ∈ Z

m+1 \ {0}

satisfying

|pk + q1,kα1 + · · · + qm,kαm | < 1

Hm
k

. (4.10)

One may wonder, if the exponent in (4.10) could be improved? Theorem 4.6
shows that the upper bound in (4.10) is best possible up to a constant factor for an
arbitrary m-tuple (α1, . . . ,αm) of real numbers.

Theorem 4.6 Let α = α0 be an algebraic integer of degree degQα = m + 1 and
αi = σi (α), i = 0, 1, . . . ,m, where σi are the field monomorphisms of the field
Q(α). Then

|p + q1α+ · · · + qmαm | > 1

(3mH)m Am2 , A = max
i=0,1,...,m{1, |αi |}, (4.11)

for all
(p, q1, . . . , qm)t ∈ Z

m+1, 1 ≤ H = max
i=1,...,m|qi |.

Proof We divide the proof in two cases. If |p + q1α+ · · · + qmαm | ≥ 1, we are
done. From now on we suppose |p + q1α+ · · · + qmαm | < 1. Immediately

|p| < 1+ |q1α+ · · · + qmαm | ≤ 1+ mH max{1, |α|}m

implying

|p + q1αi + · · · + qmαm
i | < |p| + |q1αi + · · · + qmαm

i |
≤ 1+ mH max{1, |α|}m + mH max{1, |αi |}m

≤ 3mH

(

max
i=0,1,...,m{1, |αi |}

)m

= 3mH Am

Because α = α0 is an algebraic integer of degree degQα = m + 1, then

Θ := p + q1α+ · · · + qmαm ∈ Z[α] \ {0}

is a non-zero algebraic integer and its field norm is an integer. Hence
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1 ≤ |N (Θ)| = |Θ0Θ1 · · ·Θm |
≤ |Θ|

m
∏

i=1

∣
∣p + q1αi + · · · + qmαm

i

∣
∣

≤ |Θ| (3mH)m Am2
. �

Theorem 4.7 Let
1,α1, . . . ,αm ∈ R

be linearly independent overQ. If there exist positive constants c,ω ∈ R
+ such that

|pk + q1,kα1 + · · · + qm,kαm | > c

Hω
k

for all
vk = (pk, q1,k, . . . , qm,k)

t ∈ Z
m+1, 1 ≤ Hk = max |qi,k|,

then
ω ≥ m.

Finally, we note that by metrical considerations the upper bound in (4.10) may be
improved for almost all m-tuples (α1, . . . ,αm) of real numbers.

Theorem 4.8 For almost all
α1, . . . ,αm ∈ R

wrt Lebesgue measure, there exist infinitely many primitive vectors

vk = (pk, q1,k, . . . , qm,k)
t ∈ Z

m+1 \ {0},

Hk := max |qi,k|, i = 1, . . . ,m,

satisfying

|pk + q1,kα1 + · · · + qm,kαm | < 1

Hm
k log Hk

. (4.12)

Further (4.12) is the best bound for a.a.

4.4 On Simultaneous Diophantine Inequalities

Theorem 4.9 is a variant of well-known simultaneous approximations.

Theorem 4.9 Let
α1, . . . ,αm ∈ R, f1 + · · · + fm = 1,
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be given. Then there exist

q ∈ Z
+, p1, . . . , pm ∈ Z

satisfying

|qαi + pi | < 1

q fi
, ∀i = 1, . . . ,m. (4.13)

Proof Define a set

C = {(x0, x1, . . . , xm)t ∈ R
m+1∣∣ |x0| ≤ q + 1/2, |x0αi + xi | < 1

q fi
, i = 1, . . . ,m}.

The set C is a central symmetric convex body and its volume satisfies

V(C) = (2q + 1)
2

q f1
· · · 2

q fm
> 2m+1.

The first Minkowski’s convex body theorem with the lattice

Λ = Z
m+1

gives a vector
0 �= x = (p, q1, . . . , qm) ∈ C ∩Λ.

Hence we have
(p, q1, . . . , qm) ∈ Z

m+1 \ {0}

satisfying the inequalities (4.13). �

As immediate corollaries we get

Theorem 4.10 Let
α1, . . . ,αm ∈ R

be given. Then there exist

q ∈ Z
+, p1, . . . , pm ∈ Z

satisfying

|qαi + pi | < 1

q1/m
, ∀i = 1, . . . ,m.

Theorem 4.11 Let at least one of the numbers

α1, . . . ,αm ∈ R
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be irrational. Then there exist infinitely many primitive vectors

vk = (qk, p1,k, . . . , pm,k)
t ∈ Z

m+1 \ {0}, qk ∈ Z
+,

satisfying

|qkαi + pi,k| < 1

q1/m
k

, ∀i = 1, . . . ,m.

5 On Diophantine Inequalities Over C

In the complex case Shidlovskii [12] studies linear forms over the ring of rational
integers and gives the following

Theorem 5.1 ([12]) Let Θ0 = 1,Θ1, . . . , Θm ∈ C and H ∈ Z≥1 be given. Then
there exists a non-zero rational integer vector (β0,β1, . . . ,βm)t ∈ Z

m+1 \ {0} with
|β j | ≤ H, j = 0, 1, . . . ,m, satisfying

|β0 + β1Θ1 + · · · + βmΘm | ≤ c

H (m−1)/2 , c = √2
m
∑

j=0
|Θ j |.

While Theorem 5.1 considers linear forms over rational integers only, the next
result, see [8], is over the ring of integersZI in an imaginary quadratic fieldQ(

√−D),
D ∈ Z

+, D �≡ 0 (mod 4).

Theorem 5.2 ([8]) Let Θ1, . . . , Θm ∈ C and H1, . . . , Hm ∈ Z≥1 be given. Then
there exists a non-zero integer vector (β0,β1, . . . ,βm)t ∈ Z

m+1
I
\ {0}, with |β j | ≤

Hj , j = 1, . . . ,m, satisfying

|β0 + β1Θ1 + · · · + βmΘm | ≤
(
2τ D1/4

√
π

)m+1 1

H1 · · · Hm
, (5.1)

where τ = 1, if D ≡ 1 or 2 (mod 4) and τ = 1/2, if D ≡ 3 (mod 4).

6 Siegel’s Lemma

Siegel’s lemma or Thue–Siegel’s lemma is a powerful tool in transcendental number
theory, see e.g. [2, 12, 13]. We may say that most transcendence proofs are based on
Siegel’s lemma.

Let amn ∈ Z (m = 1, . . . , M; n = 1, . . . , N ) be given. Suppose M < N , then
Siegel’s lemma gives an estimate for the size of an integer solution (x1, . . . , xN ) to
the system of equations
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⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1N xN = 0,

a21x1 + a22x2 + · · · + a2N xN = 0,

...

aM1x1 + aM2x2 + · · · + aMN xN = 0.

(6.1)

Theorem 6.1 Let

Lm(x) =
N
∑

n=1
amnxn, m = 1, . . . , M,

be M non-trivial linear forms with coefficients amn ∈ Z in N variables xk. We also
assume that

Am :=
N
∑

n=1
|amn| ∈ Z

+, m = 1, . . . , M. (6.2)

Suppose that
M < N ,

then the system of equations

Lm(x) = 0, m = 1, . . . , M, (6.3)

has a non-zero integer solution z = (z1, . . . , zN )t ∈ Z
N \ {0} with

1 ≤ max
1≤n≤N|zn| ≤

⌊

(A1 · · · AM)
1

N−M
⌋

. (6.4)

Here and in the sequel �x� denotes the largest integer ≤ x .
Note that the upper bound in (6.4) may further be estimated to give a solution

with

1 ≤ max
1≤n≤N|zn| ≤

(

N max
1≤m,n≤N|am,n|

) M
N−M

. (6.5)

6.1 Proof of Siegel’s Lemma

Let
A := [amn] ∈ MM×N (Z)

be the matrix of the Z-module mapping

L = (L1, . . . , LM)t : ZN → Z
M , N > M. (6.6)
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The homomorphism (6.6) between additive groups (ZN ,+) and (ZM ,+) is not
injective and thus

Ker L �= {0}.

Thus there exists a non-zero integer solution z = (z1, . . . , zN )t ∈ Z
N \ {0} to (6.3).

But we do not know its size.
In the following we shall prove the estimate given in (6.4). Denote

Z :=
⌊

(A1 · · · AM)
1

N−M
⌋

.

Then
A1 · · · AM < (Z + 1)N−M , (6.7)

where Z , A1, . . . , AM are positive integers. Consequently,

(A1Z + 1) · · · (AM Z + 1) ≤ A1 · · · AM(Z + 1)M < (Z + 1)N . (6.8)

First we define a box
�1 := {x ∈ Z

N | 0 ≤ xn ≤ Z},

where the number of integer points is

#�1 = (Z + 1)N .

The linear mappings

Lm(x) =
N
∑

n=1
amnxn, m = 1, . . . , M,

are bounded in the box �1 by

∑

amn<0

amnxn ≤ Lm(x) ≤
∑

amn>0

amnxn.

Define

−bm :=
∑

amn<0

amn, cm :=
∑

amn>0

amnxn

and note
bm + cm = Am .
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Thus we have the estimates

−bm Z ≤ Lm(x) ≤ cm Z .

Define the second box by

�2 := {l ∈ Z
M | − bm Z ≤ lm ≤ cm Z},

where
#{lm} = (bm + cm)Z + 1 = AmZ + 1.

The number of points in the second box �2 is

#�2 = (A1Z + 1) · · · (AM Z + 1).

We have
L(�1) ⊆ �2,

where
#�2 = (A1Z + 1) · · · (AM Z + 1) < #�1 = (Z + 1)N

by (6.8). Hence
L : �1→ �2

is not injective on �1. Therefore there exist two different vectors x1, x2 ∈ �1 such
that L(x1) = L(x2), which further gives

L(x1 − x2) = 0, x1 − x2 ∈ ±�1 \ {0}.

By denoting
z = (z1, . . . , zN )t := x1 − x2

we get a non-zero solution to (6.3) satisfying the estimates

−Z ≤ zn ≤ Z , Z =
⌊

(A1 · · · AM)
1

N−M
⌋

, n = 1, . . . , N . �

6.2 Siegel’s Lemma in Imaginary Quadratic Fields

There are several variations of Siegel’s lemma over algebraic number fields, see e.g.
[4]. Here we will mention a recent version, proved in [6], over imaginary quadratic
fields. Let I denote the field Q of rational numbers or an imaginary quadratic field
Q(
√−D), where D ∈ Z

+ and ZI its ring of integers.
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Theorem 6.2 ([6]) Let

Lm(z) =
N
∑

n=1
amnzn, m = 1, . . . , M,

be M non-trivial linear forms with coefficients amn ∈ ZI in N variables zn. Define
Am :=∑N

n=1 |amn| ∈ Z
+ for m = 1, . . . , M. Suppose that M < N. Then there exist

positive constants sI, tI such that the system of equations

Lm(z) = 0, m = 1, . . . , M, (6.9)

has a solution z = (z1, . . . , zN )t ∈ ZI
N \ {0} with

1 ≤ max
1≤n≤N|zn| ≤ sIt

M
N−M
I

(A1 · · · AM)
1

N−M ,

where sQ = tQ = 1 (see e.g. [7]) and sI, tI are suitable constants depending on the
field.

More precisely:

Lemma 6.3 ([6]) There exists a solution to the system (6.9) of equations with

1 ≤ max
1≤n≤N|zn| ≤ max

{

2c
√
D, sIt

M
N−M
I

(A1 · · · AM)
1

N−M

}

,

where

s
Q(
√−D) =

{
2
√
2D1/4√

π
;

2√
π
D1/4; t

Q(
√−D) =

{
5

2
√
2
, D ≡ 1 or 2 (mod 4);

5
2
√
2
, D ≡ 3 (mod 4);

and

c =
{

2
√
2, D ≡ 1 or 2 (mod 4);

2, D ≡ 3 (mod 4).

6.2.1 An Application of Theorem 6.2

Theorem 6.2 is applied in [6] for studying Baker type lower bounds of linear forms
of exponential function values (see also Baker [1]). From [6] we mention a corollary
which gives a new generalised transcendence measure for e.

Theorem 6.4 Let m ∈ Z≥2. Then

∣
∣β0 + β1e + β1e

2 + · · · + βme
m
∣
∣ >

1

h1+ε(h)
, h = h1 · · · hm,
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is valid for all β = (β0, . . . ,βm)t ∈ Z
m
I
\ {0}, hi = max{1, |βi |} with

ε(h) = (4+ 7m)
√

log(m + 1)√
log log h

,

log h ≥ m2(41 log(m + 1)+ 10)em
2(81 log(m+1)+20).

7 Towards Height Theorem of Rational Subspaces

In the second part of our lectures our aim is to give a proof to the equality of heights
of a rational subspace and its orthogonal complement, compare Schmidt [11]. The
proof is based onGrassmann algebra. Therefore, quite an amount of basics of exterior
algebras will be presented in the framework of rational subspaces. An important tool
will be the primitive Grassmann coordinate vector of the corresponding rational
subspace.

8 Towards Exterior Algebras

For a full understanding of exterior (wedge) products one needs some formal under-
standing of tensor products of modules, see Rotman [9], Sect. 8.4. However, in the
following you may find a collection of necessary definitions and results which are
quite enough for our purpose.

8.1 Algebras

Let R be a commutative ring. Four-tuple

(M,×,+, ·)

is an R-algebra, if
(M,×,+)

is a ring, 1 ∈ M , 1× m = m for all m ∈ M , and

(M,+, ·)

is an R-module and moreover

a · (m × n) = (a · m)× n = m × (a · n), ∀a ∈ R, m, n ∈ M.
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8.1.1 Exterior Algebra, Wedge Product

Definition 8.1 Let R be a commutative ring. An R-algebra

(E,∧,+, ·)

is an exterior algebra, if the ring-product ∧, the wedge-product, is alternating:

m ∧ m = 0, ∀m ∈ E . (8.1)

The following lemma characterizes the alternating property.

Lemma 8.2 Let M be an R-algebra. Then

m ∧ m = 0 ∀m ∈ M ⇒ m ∧ n = −n ∧ m ∀m, n ∈ M. (8.2)

If charR �= 2, then

m ∧ n = −n ∧ m ∀m, n ∈ M ⇒ m ∧ m = 0 ∀m ∈ M. (8.3)

Proof of (8.2) Let m, n ∈ M , then by the assumption in (8.2) we get

0 = (m + n) ∧ (m + n)

= m ∧ m + m ∧ n + n ∧ m + n ∧ n

= m ∧ n + n ∧ m.

Hence m ∧ n = −n ∧ m follows. �
The proof of (8.3) is left as an exercise.

8.2 Tensor Product

Definition 8.3 A tensor product of R-modules M and N is a pair formed by a group

M ⊗R N

with an R-bilinear function

h : M × N → M ⊗R N

satisfying: for every R-module G and every R-bilinear function

f : M × N → G
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there exists a unique R-bilinear function such that

f̃ : M ⊗R N → G, f = f̃ ◦ h. (8.4)

As usual, the Definition 8.3 may shortly be given as a commutative diagram

R-bilinear h
M × N → M ⊗R N

∀ f ↘ ↙ ∃! f̃ : f = f̃ ◦ h

∀ G

Let R be a commutative ring. The elements of the tensor product M ⊗R N are
denoted by

m ⊗ n ∈ M ⊗R N , m ∈ M, n ∈ N ,

and they satisfy the following rules

m ⊗ (n1 + n2) = m ⊗ n1 + m ⊗ n2, (m1 + m2)⊗ n = m1 ⊗ n + m2 ⊗ n,

r · m ⊗ n = (r · m)⊗ n = m ⊗ (r · n), ∀r ∈ R,m ∈ M, n ∈ N .

The above definition is quite general but it is not very illustrative in the beginning.
In the following we give a couple of examples which illustrate the idea of tensor
product very well.

8.2.1 Tensor Product of Free Modules M and N Over the Commutative
Ring R

If rankR M = m, rankR N = n and

M = Ra1 + · · · + Ram, N = Rb1 + · · · + Rbn,

then
rankR M ⊗R N = mn

and
M ⊗R N = Ra1 ⊗ b1 + Ra1 ⊗ b2 + · · · + Ram ⊗ bn .

So, the tensor product M ⊗R N of modules is spanned by the tensor products of all
pairs of base vectors from M and N .
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8.2.2 Tensor Product of Vector Spaces M and N Over the Field K

If dimK M = m, dimK N = n and

M = Ka1 + · · · + Kam, N = Kb1 + · · · + Kbn,

then
dimK M ⊗K N = mn

and
M ⊗K N = Ka1 ⊗ b1 + Ka1 ⊗ b2 + · · · + Kam ⊗ bn .

Thus, the tensor product gives a formal way to multiply vector spaces.

8.2.3 Extending Scalars

Recall that an R-module M is free, if M ∼= Rm .
Let M be a free R-module and R be a subring of the ring S. Then

S ⊗R M

gives a module extending the scalars from R to S. Namely, if rankR M = m, then

M ∼= Rm, S ⊗R M ∼= Sm .

8.2.4 Tensor Algebra

Let M be an R-module. The tensor algebra T (M) on M is defined by setting

T (M) =
∑

p≥0
T p(M),

where

T 0(M) = R,

T 1(M) = M,

T p(M) = M ⊗ · · · ⊗ M = 〈m1 ⊗ · · · ⊗ mp| m1, . . . ,mp ∈ M〉, p ≥ 2.
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8.2.5 Construction of Exterior Algebra

Now we are ready to construct exterior algebra on an R-module M by using the
above tensor algebra on M . We get the exterior algebra on M by a quotient space

∧

(M) := T (M)/J,

where J is an ideal generated by all m ⊗ m with m ∈ M . Let

m1 ⊗ · · · ⊗ mp → m1 ∧ · · · ∧ mp

be the corresponding canonical map. Then the product ∧ is alternating.

Example 8.4 Let M be an R-module, then

{

m1 ∧ m2 ∧ m2 = 0,

m3 ∧ m2 ∧ m1 = −m1 ∧ m2 ∧ m3,

for all m1,m2,m3 ∈ M .

9 Grassmann Algebra

9.1 Basics

Assume that the R-module M has base

e1, . . . , en ∈ M, rankRM = n,

which allows us to write

M = 〈e1, . . . , en〉 = Re1 + · · · + Ren.

In the exterior algebra
∧

(M) we have following properties.

Lemma 9.1 Let τ be a permutation in a set {1, 2, . . . , n}, then

eτ (1) ∧ · · · ∧ eτ (n) = sign(τ )e1 ∧ · · · ∧ en, (9.1)

where sign(τ ) is the signature of τ . Moreover

ei1 ∧ · · · ∧ eip �= 0, ∀ 1 ≤ i1 < i2 < · · · < i p ≤ n, (9.2)
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and
r · X = 0, r ∈ R, X ∈

∧

(M) ⇒ r = 0 or X = 0. (9.3)

9.2 Exterior Base

For studying exterior products we introduce the concept of an increasing 0 ≤ p ≤ n-
list.

Definition 9.2 Let n ∈ Z≥1. An increasing 0 ≤ p ≤ n-list σp is a list

{

σ = σp := i1, . . . , i p; 1 ≤ i1 < i2 < · · · < i p ≤ n, if p ≥ 1;
σ := ∅, if p = 0.

Further, corresponding to a 0 ≤ p ≤ n-list σp, we introduce a p-wedge-product

Eσ := ei1 ∧ · · · ∧ eip , p ≥ 1,

E∅ := 1, p = 0.

The set of all 0 ≤ p ≤ n-lists is denoted byC(n, p) := {σp}. Obviously, #C(n, p) =
(n
p

)

.
Nowwe suppose that R is an integral domain and put M = Rn (a free R-module).

If R = K is a field, then M = Rn is a vector space. Let 0 ≤ p ≤ n. Then we may
define a free R-module Rn

p by the linear hull

Rn
p = 〈Eσp | σp ∈ C(n, k)〉R, rankR Rn

p =
(
n

p

)

generated by all p-wedge-products Eσp = ei1 ∧ · · · ∧ eip . In particular

Rn
0 = 〈E∅〉R, rankR R

n
0 = 1;

Rn
1 = 〈Eσ ∈ {e1, . . . , en}〉R, rankR R

n
1 = n;

Rn
2 = 〈Eσ ∈ {e1 ∧ e2, . . .}〉R, rankR R

n
2 =

(
n

2

)

.

Rn
n = 〈Eσ = e1 ∧ e2 ∧ · · · ∧ en−1 ∧ en〉R, rankR R

n
n = 1.

Now we are ready to define Grassmann algebra.
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Definition 9.3 The Grassmann algebra is a graded R-algebra

Gn := Rn
0 ⊕ · · · ⊕ Rn

n , rankRGn = 2n.

Note that Grassmann algebra is an exterior algebra over R, hence an R-module, too.

10 Determinant

Let M be an R-module of rank r(M) = n. A mapping

f : M → M, f (a · m) = a · f (M), f (m + n) = f (n)+ f (m)

is called an R-homomorphism. By using the functor

n
∧

( f ) : x1 ∧ · · · ∧ xn → f (x1) ∧ · · · ∧ f (xn),

we may define the determinant of f .

Definition 10.1 The determinant of f is an element det f ∈ R satisfying

n
∧

( f )e1 ∧ · · · ∧ en = f (e1) ∧ · · · ∧ f (en) := det( f ) · e1 ∧ · · · ∧ en. (10.1)

Example 10.2 Let n = p = 2 and let f be the R-homomorphism defined by

f (e1) = a11e1 + a21e2, f (e2) = a12e1 + a22e2.

Then, by exterior algebra

(a11e1 + a21e2) ∧ (a12e1 + a22e2) = (a11a22 − a12a21) · e1 ∧ e2

which implies
det( f ) = a11a22 − a12a21.

By denoting

a1 := Ae1 = a11e1 + a21e2, a2 := Ae2 = a12e1 + a22e2,

we get a matrix representation

A = [a1, a2], det A := det f = a11a22 − a12a21,



A Geometric Face of Diophantine Analysis 153

for the above R-homomorphism f and its determinant. More generally, we denote

ai := Aei = a1i e1 + · · · + ani en, i = 1, . . . , n,

and hence
A = [a1, . . . , an].

10.1 Expansions

Let
H = Hp = h1, . . . , h p, 1 ≤ h1 < · · · < h p ≤ n,

K = Kq = k1, . . . , kq , 1 ≤ k1 < · · · < kq ≤ n,

be increasing 0 ≤ p ≤ n and 0 ≤ q ≤ n-lists, respectively. If the lists are disjoint and
0 ≤ p + q ≤ n, let τH,K be a permutationwhich arranges h1, . . . , h p, k1, . . . , kq into
an increasing 0 ≤ p + q ≤ n-list

H ∗ K := j1, . . . , jp+q , 1 ≤ j1 < · · · < jp+q ≤ n.

Lemma 10.3 Then

EH ∧ EK =
{

0, if H ∩ K �= ∅;
sign(τH,K )EH∗K , if H ∩ K = ∅. (10.2)

In the following we use also the notation H = h1 < · · · < h p for an increasing
list H = h1, . . . , h p, 1 ≤ h1 < · · · < h p ≤ n.

Example 10.4 By (10.2) we get

(e1 ∧ e5) ∧ (e2 ∧ e4 ∧ e6) = +e1 ∧ e2 ∧ e4 ∧ e5 ∧ e6,

where
H = H2 = 1 < 5, K = K3 = 2 < 4 < 6,

H ∗ K = 1 < 2 < 4 < 5 < 6, n = 6, p + q = 5.

Now we consider certain submatrices of

A = [ast ] = [a1, . . . , an] ∈ Mn×n.
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Corresponding to the increasing lists H = h1, . . . , h p, K = k1, . . . , kp ∈ C(n, p)
we define a p × p submatrix

AHK := [ast ], (s, t) ∈ H × K .

The determinant det(AHK ) is called a minor of A of order p.

Lemma 10.5 (Lemma 9.158 in [9]) Corresponding to the increasing list H = h1 <

· · · < h p, there is an expansion

ah1 ∧ · · · ∧ ahp =
∑

L∈C(n,p)

det(AL ,H )EL , (10.3)

where the scalars det(AL ,H ) are so called Grassmann or Plücker coordinates of
ah1 ∧ · · · ∧ ahp .

Proof Write L = l1 < · · · < l p, then we have

ah1 ∧ · · · ∧ ahp = (Aeh1) ∧ · · · ∧ (Aehp )

=
(
∑

t1=1,...,n
at1,h1et1

)

∧ · · · ∧
⎛

⎝
∑

tp=1,...,n
atp,h p etp

⎞

⎠

=
∑

T=t1,...,tp
at1,h1 · · · atp,h p · et1 ∧ · · · ∧ et1

=
∑

L=l1<···<l p∈C(n,p)

(
∑

τ :T→L

sign(τ )aτ−1(l1),h1 · · · aτ−1(l p),h p

)

· el1 ∧ · · · ∧ elp

=
∑

L∈C(n,p)

det(AL ,H ) · EL . �

Example 10.6 Let p = 2, n = 3 and consider the wedge product a1 ∧ a2 of

a1 = a11e1 + a21e2 + a31e3,

a2 = a12e1 + a22e2 + a32e3.

After some rearrangement we may write

a1 ∧ a2 =
∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
e1 ∧ e2 +

∣
∣
∣
∣

a11 a12
a31 a32

∣
∣
∣
∣
e1 ∧ e3 +

∣
∣
∣
∣

a21 a22
a31 a32

∣
∣
∣
∣
e2 ∧ e3

= det(AL1,H )EL1 + det(AL2,H )EL2 + det(AL3,H )EL3 ,

where
L1 = 1 < 2, L2 = 1 < 3, L3 = 2 < 3, H = 1 < 2.
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Hereafter, corresponding to the increasing lists I = i1 < · · · < i p, we write

AI = ai1 ∧ · · · ∧ aip .

Lemma 10.7 (9.160(i) in [9]) Let I = i1, . . . , i p and J = j1, . . . , jq be increasing
lists, where p, q ∈ {1, . . . , n}. Then

AI ∧ AJ =
∑

H∈C(n,p),K∈C(n,q)

sign(τH,K ) det(AH,I ) det(AK ,J )EH∗K .

Proof

AI ∧ AJ =
∑

H

det(AH,I )EH ∧
∑

K

det(AK ,J )EK

=
∑

H,K

det(AH,I ) det(AK ,J )EH ∧ EK

=
∑

H,K

sign(τH,K ) det(AH,I ) det(AK ,J )EH∗K . �

If I ∗ J = 1 < 2 < · · · < n = p + q, then the above gives

ai1 ∧ · · · ∧ aip ∧ a j1 ∧ · · · ∧ a jq

=
∑

H∈C(n,p),K∈C(n,q)

sign(τH,K ) det(AH,I ) det(AK ,J )EH∗K .

Thus immediate corollaries are

det A = sign(τI,J )
∑

H,K

sign(τH,K ) det(AH,I ) det(AK ,J )

and
det[ahi ]n×n =

∑

h=1,...,n
(−1)h+i ahi det(Aĥ,î ), i = 1, . . . , n,

where ĥ = 1 < 2 < a < h − 1 < h + 1 < · · · ≤ n.

10.2 Linear Independence

In this chapter we assume that R is a field and M is an n-dimensional vector space
over R. Note that most of the following results are still valid in R-modules, where R
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is a commutative ring with unity. The vectors of M are denoted by xi , y j , . . . ∈ M .
The notation S⊥ is used for the orthogonal complement of the subspace S ⊆ M .

Lemma 10.8 (Lemma 5C in [11]) Let x1, . . . , x p ∈ M. Then

x1, . . . , x p are linearly dependent over R ⇔ x1 ∧ · · · ∧ x p = 0. (10.4)

Further,
z ∈ 〈x1, . . . , x p〉 ⇔ z ∧ x1 ∧ · · · ∧ x p = 0. (10.5)

We shall use the notations

∧
p
X = x1 ∧ · · · ∧ x p;

∧̂kX = x1 ∧ · · · ∧ xk−1 ∧ xk+1 ∧ · · · ∧ x p · (−1)p−k.

Readily
∧̂kX ∧ x j = δk j · ∧

p
X .

Proof of Lemma 10.8 Suppose that x1, . . . , x p are linearly dependent over R. Then
there exist a linear combination

r1 · x1 + · · · + rk · xk + · · · + rp · x p = 0, r1, . . . , rp ∈ R, rk �= 0. (10.6)

Operate (10.6) by ∧̂kX∧, then

r1 · 0+ · · · + rk · ∧
p
X + · · · + rp · 0 = 0

implying
∧
p
X = x1 ∧ · · · ∧ x p = 0.

Suppose then
x1 ∧ · · · ∧ x p = 0. (10.7)

Assume on the contrary that

dimR S = p, S := 〈x1, . . . , x p〉R .
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Then
dimR S⊥ = n − p, S⊥ = 〈z1, . . . , zn−p〉,

with some z1, . . . , zn−p ∈ M . Thus

dimR 〈x1, . . . , x p, z1, . . . , zn−p〉R = n.

Now by (10.7) we get

0 = x1 ∧ · · · ∧ x p ∧ z1 ∧ · · · ∧ zn−p = det[x1, . . . , x p, z1, . . . , zn−p] · e1 ∧ · · · ∧ en,

implying
det[x1, . . . , x p, z1, . . . , zn−p] = 0.

Then by linear algebra

dimR 〈x1, . . . , x p, z1, . . . , zn−p〉R ≤ n − 1.

A contradiction. This proves (10.4).
The case (10.5) is left as an exercise. �

Lemma 10.9 (Lemma 5D in [11]) Suppose x1, . . . , x p are linearly independent
over R and y1, . . . , y p are linearly independent over R. Then

〈x1, . . . , x p〉 = 〈y1, . . . , y p〉 ⇔ x1 ∧ · · · ∧ x p = λ · y1 ∧ · · · ∧ y p, λ ∈ R.

Proof Suppose
〈x1, . . . , x p〉 = 〈y1, . . . , y p〉 := N

where N is a p-dimensional R-vector space with a base x1, . . . , x p. Now the vectors
y1, . . . , y p may be written in the base x1, . . . , x p and thus by the definition of
determinant

y1 ∧ · · · ∧ y p = det[y1, . . . , y p]p×p · x1 ∧ · · · ∧ x p.

Assume
x1 ∧ · · · ∧ x p = λ · y1 ∧ · · · ∧ y p, λ ∈ R.

The wedge-product with y j gives

y j ∧ x1 ∧ · · · ∧ x p = λ · y j ∧ y1 ∧ · · · ∧ y p = 0.

Now Lemma 10.8 implies y j ∈ 〈x1, . . . , x p〉 and so

〈x1, . . . , x p〉 = 〈y1, . . . , y p〉. �
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11 Inner Products

In the following we consider vector spaces M = Rn over the real R = R or com-
plex field R = C. The complex conjugates of scalars r ∈ R and vectors x ∈ Rn are
denoted by r ∈ R and x ∈ Rn , respectively.

The Hermitian inner product in Rn is defined in a usual manner by

x · y = (x1, . . . , xn)
t · (y1, . . . , yn)t := x1y1 + · · · + xn yn.

Further, the Hermitian inner product in Rn
p is analogously given by

Z "W =
∑

H∈C(n,p)

ZH EH "
∑

K∈C(n,p)

WK EK :=
∑

H∈C(n,p)

ZHWH .

In particular,

EH " EK = δHK =
{

1, H = K ;
0, otherwise;

hold for the Hermitian inner product with the properties

(Y + Z)"W = Y "W + Z "W ; (a · Z)"W = a · (Z "W ).

Finally, the length (norm) ||Z || of Z = ∑

H∈C(n,p)
ZH EH ∈ Rn

p is given by

||Z ||2 := Z " Z =
∑

H∈C(n,p)

|ZH |2 .

11.1 Laplace Identities

Define a p-dimensional parallelepiped

F := [0, 1]x1 + · · · + [0, 1]x p

spanned by x1, . . . , x p ∈ Rn . Here we note that

V (F) = ||x1 ∧ · · · ∧ x p||

gives the volume of F .

Lemma 11.1 (Laplace identities, Lemma 5E in [11]) Let x1, . . . , x p, y1, . . . , y p ∈
Rn. Then
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(x1 ∧ . . . ∧ x p)" (y1 ∧ . . . ∧ y p) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 · y1 . . . x1 · y p

· · ·
· · ·
· · ·

x p · y1 . . . x p · y p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(11.1)

and

||x1 ∧ . . . ∧ x p|| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 · x1 . . . x1 · x p

· · ·
· · ·
· · ·

x p · x1 . . . x p · x p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1/2

. (11.2)

Sketch of the proof Let e1, . . . , en ∈ Rn be an orthonormal base of Rn . On the left-
hand side of (11.1) we then have

δI J = E I " E J = (ei1 ∧ · · · ∧ eip )" (e j1 ∧ · · · ∧ e jp ),

and on the right-hand side of (11.1) we get

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ei1 · e j1 . . . ei1 · e jp
· · ·
· · ·
· · ·

eip · e j1 . . . eip · e jp

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= δI J .

Secondly, the left-hand and right-hand sides of (11.1) aremultilinear. For example,
on the left-hand side

((a1 + a2) ∧ x2 ∧ · · · ∧ x p)" (y1 ∧ · · · ∧ y p)

= (a1 ∧ x2 ∧ · · · ∧ x p)" (y1 ∧ · · · ∧ y p)+ (a2 ∧ x2 ∧ · · · ∧ x p)" (y1 ∧ · · · ∧ y p).

And on the right-hand side

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(a1 + a2) · y1 . . . (a1 + a2) · y p
· · ·
· · ·
· · ·

x p · y1 . . . x p · y p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 · y1 + a2 · y1 . . . a1 · y p + a2 · y p
· · ·
· · ·
· · ·

x p · y1 . . . x p · y p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 · y1 . . . a1 · y p
· · ·
· · ·
· · ·

x p · y1 . . . x p · y p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a2 · y1 . . . a2 · y p
· · ·
· · ·
· · ·

x p · y1 . . . x p · y p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. �
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11.2 Norm Inequality

Let I = i1, . . . , i p and J = j1, . . . , jq be increasing lists, where p, q ∈ {1, . . . , n}
and write

AI = ai1 ∧ · · · ∧ aip =
∑

H∈C(n,p)

det(AH,I )EH ,

AJ = a j1 ∧ · · · ∧ a jq =
∑

K∈C(n,q)

det(AK ,J )EK .

Remember that Lemma 10.7 gives

AI ∧ AJ = ai1 ∧ · · · ∧ aip ∧ a j1 ∧ · · · ∧ a jq

=
∑

H∈C(n,p),K∈C(n,q)

sign(τH,K ) det(AH,I ) det(AK ,J )EH∗K ,

where

EH ∧ EK =
{

0, if H ∩ K �= ∅;
sign(τH,K )EH∗K , if H ∩ K = ∅. (11.3)

The following lemma provides an upper bound for the length ||AI ∧ AJ || in terms
of the lengths ||AI || and ||AJ ||.
Lemma 11.2 (Lemma 5F in [11]) Let I = i1, . . . , i p and J = j1, . . . , jq be
increasing lists, where p, q ∈ {1, . . . , n}. Then

||AI ∧ AJ || ≤ ||AI ||||AJ || (11.4)

and if
aic · a jd = 0, ∀ ic ∈ I, jd ∈ J, (11.5)

then equality holds in (11.4).

Note that

||AI ||2 =
∑

H∈C(n,p)

| det(AH,I )|2, ||AJ ||2 =
∑

K∈C(n,q)

| det(AK ,J )|2.

11.3 Orthogonal Complement

Let I = i1, . . . , i p and J = j1, . . . , jq be increasing lists, where p, q ∈ {1, . . . , n}
and let
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S = 〈si1 , . . . , si p 〉R ⊆ Rn (11.6)

be a p-dimensional subspace of Rn spanned by si1 , . . . , si p . Then the orthogonal
complement

T := S⊥ = {y ∈ Rn| y · x = 0, ∀ x ∈ S}, q := n − p, (11.7)

is a q-dimensional subspace

T = 〈t j1 , . . . , t jq 〉R ⊆ Rn

of Rn spanned by t j1 , . . . , t jq , say. It immediately follows that

〈si1 , . . . , si p , t j1 , . . . , t jq 〉R = Rn.

Write
SI = si1 ∧ · · · ∧ si p =

∑

H∈C(n,p)

det(SH,I )EH ;

T J = t j1 ∧ · · · ∧ t jq =
∑

K∈C(n,q)

det(TK ,J )EK ,

where
I ∗ J = 1 < 2 < · · · < n := N .

Now denote
det[SI , T J ] := det[s1, . . . , s p, t1, . . . , tq ]

which is an n × n determinant. Then

SI ∧ T J = sign(τI,J ) det[SI , T J ] · E I∗J
=

∑

H∈C(n,p),K∈C(n,q)

sign(τH,K ) det(SH,I ) det(TK ,J )EH∗K .

For H ∈ C(n, p), we set Ĥ = N \ H , which implies

Ĥ ∩ H = ∅, Ĥ ∈ C(n, q).

Thus we get a one to one correspondence between the sets C(n, p) and C(n, q).
Note that we also have

dimR

p
∧

M = #C(n, p) =
(
n

p

)

= #C(n, q) = dimR

q
∧

M, M = Rn.
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It follows from {

H ∗ Ĥ = N = 1 < 2 < · · · < n,

H ∩ K �= ∅, if K �= Ĥ ,

that

SI ∧ T J =
∑

H∈C(n,p),K∈C(n,q)

sign(τH,K ) det(SH,I ) det(TK ,J )EH∗K

=
⎛

⎝
∑

H∈C(n,p)

sign(τH,Ĥ ) det(SH,I ) det(TĤ ,J )

⎞

⎠ E1<2<···<n.

Thus

||SI ∧ T J ||2 =
∣
∣
∣
∣
∣
∣

∑

H∈C(n,p)

sign(τH,Ĥ ) det(SH,I ) det(TĤ ,J )

∣
∣
∣
∣
∣
∣

2

.

We have T = S⊥ which, by Lemma 11.2, implies

‖SI ∧ T J‖2 = ‖SI‖2‖T J‖2 =
∑

H∈C(n,p)

| det(SH,I )|2
∑

H∈C(n,p)

| det(TĤ ,J )|2.

Hence

∣
∣
∣
∣
∣
∣

∑

H∈C(n,p)

sign(τH,Ĥ ) det(SH,I ) det(TĤ ,J )

∣
∣
∣
∣
∣
∣

2

=
∑

H∈C(n,p)

| det(SH,I )|2
∑

H∈C(n,p)

| det(TĤ ,J )|2. (11.8)

Let us write {

SG =
(

det(SH,I )
)

H∈C(n,p) ∈ R(n
p),

T G =
(

det(TĤ ,J )
)

H∈C(n,p)
∈ R(n

p),

for the Grassmann coordinate vectors of
⎧

⎪⎨

⎪⎩

si1 ∧ · · · ∧ si p =
∑

H∈C(n,p)
det(SH,I )EH ,

t j1 ∧ · · · ∧ t jq =
∑

K∈C(n,q)

det(TK ,J )EK .

Then (11.8) may be written as an equality

|S±G · T G | = ‖S±G‖‖T G‖, (11.9)
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where
S
±
G :=

(

sign(τH,Ĥ )det(SH,I )
)

H∈C(n,p)
∈ R(n

p).

12 Rational Subspace

Let K be a field containing the rational number fieldQ ⊆ K , e.g. K = R or K = C.

Definition 12.1 Let
a1, . . . , ak ∈ Q

n

be rational vectors, then the set

S = Sk := Ka1 + · · · + Kak,

is an k-dimensional rational subspace of Kn , if dimK S = k.

Lemma 12.2 Let Sk be a k-dimensional rational subspace of K n. Then the orthog-
onal complement

S⊥k = {y ∈ Kn| y · x = 0 ∀ x ∈ Sk}

is an (n − k)-dimensional rational subspace of K n.

Proof By assumption we have

Sk = Ka1 + · · · + Kak, a1, . . . , ak ∈ Q
n, dimK Sk = k.

Thus
V := Qa1 + · · · +Qak

is a k-dimensional subspace of Qn . The orthogonal complement V⊥ of V in Qn is a
subspace in Qn of dimension dimQ V⊥ = n − k. Hence

V⊥ = Qb1 + · · · +Qbn−k, b1, . . . , bn−k ∈ Q
n.

Further,

W := K ⊗Q V⊥ = Kb1 + · · · + Kbn−k, b1, . . . , bn−k ∈ Q
n,

is a rational subspace in Kn of dimension dimK W = n − k and is the orthogonal
complement of S in Kn . �
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12.1 Lattices of Subspaces

Lemma 12.3 Let Sk be a k-dimensional rational subspace of K n. Then the set

Λ(Sk) := Sk ∩ Z
n, rankΛ(Sk) = k,

of integer points in Sk forms a full lattice in the rational subspace Sk.

Let l1, . . . , lk ∈ Z
n be a base of Λ(Sk). Then we may write

Λ(Sk) = 〈l1, . . . , lk〉Z = Zl1 + · · · + Zlk ⊆ R
n .

12.2 Height of Rational Subspace

Let Sk be a k-dimensional rational subspace of Kn . Remember that the determinant
of Λ(Sk) is given by

det(Λ(Sk)) :=
√

det[sik · sil ]1≤k,l≤p =
√

det(Lt L), L = [si1 , . . . , si p ].

where the columns of the matrix L are the base vectors si1 , . . . , si p .

Definition 12.4 Let Sk be a k-dimensional rational subspace of Kn . Then

H(Sk) := detΛ(Sk)

is the height of Sk. If k = 0, then

H(S0) := 1.

Vaaler [15] proved the following k-dimensional volume estimate for the inter-
section of a k-dimensional subspace with the n-dimensional unit cube �n ⊆ R

n of
volume V (�n) = 2n .

Theorem 12.5 ([15]) Let n ∈ Z
+ and let S be a k-dimensional subspace ofRn. Then

V
dim=k

(�n ∩ Sk) ≥ 2k.

Lemma 12.6 Let Sk be a k-dimensional rational subspace of Rn and let λ1, . . . λk

be the successive minima of �n with respect to Λ = Λ(Sk) = Sk ∩ Z
n, the lattice of

integer points in Sk. Then

λ1 · · ·λk ≤ detΛ = H(Sk). (12.1)
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Proof The set C := �n ∩ Sk is a central symmetric convex body of volume V (�n ∩
Sk) ≥ 2k. Hence, by the Minkowski’s second theorem, Theorem 3.6, we get

λ1 · · ·λk2
k ≤ λ1 · · ·λkV (C) ≤ 2k detΛ,

which implies
λ1 · · ·λk ≤ detΛ = H(Sk). �

12.3 Primitive Vector

Let Λ(S) = 〈si1 , . . . , si p 〉Z be the integer lattice of a rational subspace S ⊆ Kn .
Denote by

SG =
(

det(SH,I )
)

H∈C(n,p) ∈ Z
(n
p) (12.2)

the Grassmann coordinate vector of the exterior product expansion

si1 ∧ · · · ∧ si p =
∑

H∈C(n,p)

det(SH,I )EH ,

where I = i1, . . . , i p is an increasing 1 ≤ p ≤ n-list. We also say that the vector
(12.2) is a Grassmann coordinate vector of the integer lattice of a rational subspace S.

Lemma 12.7 (Lemma 5H in [11]) Let S be a rational subspace in K n, Q ⊆ K.
Then the Grassmann coordinate vector

SG =
(

det(SH,I )
)

H∈C(n,p) ∈ Z
(n
p)

is primitive.

Proof Suppose on the contrary that there exists a prime � ∈ Z such that

SG =
(

det(SH,I )
)

H∈C(n,p) = � · V , V ∈ Z
(n
p).

By reduction modulo � we get

SG = 0 ∈ Z
(n
p)

� .

Therefore
si1 ∧ · · · ∧ si p = 0 ∈ (Z�)

n
p .

By Lemma 10.8 there exists r1, . . . , rp ∈ Z�, where say r1 �= 0, such that

r1 · si1 + · · · + rp · si p = 0 ∈ (Z�)
n .
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Hence
r1 · si1 + · · · + rp · si p = � · w, w ∈ Z

n,

where r1, . . . , rp ∈ Z and � � |r1. Since S is a rational subspace, we find

w = r1
�
· si1 + · · · +

rp
�
· si p ∈ S,

and thus
w ∈ S ∩ Z

n = Λ(S) = Zsi1 + · · · + Zsi p .

But r1
�

/∈ Z, a contradiction. �

By Lemma 12.7 we know that any Grassmann coordinate vector of the integer
lattice of a rational subspace is primitive.

13 Height Theorem

Theorem 13.1 (Lemma 4C in [11])

H(S⊥) = H(S). (13.1)

The result (13.1) is deep.

Proof Let S and T be the subspaces given in (11.6) and (11.7), respectively. Then
we define the corresponding lattices

{

Λ(S) := S ∩ Z
n = 〈lsi1 , . . . , lsi p 〉Z,

Λ(T ) := T ∩ Z
n = 〈lt j1 , . . . , lt jq 〉Z,

but for short we write {

Λ(S) = 〈si1 , . . . , si p 〉Z,

Λ(T ) = 〈t j1 , . . . , t jq 〉Z,

where
si1 , . . . , si p , t j1 , . . . , t jq ∈ Z

n.

Let I = i1, . . . , i p and J = j1, . . . , jq be increasing lists, where p, q ∈ {1, . . . , n},
then

| detΛ(S)|2 := | det[sic · sid ]p×p|
(11.2)= ‖si1 ∧ · · · ∧ si p‖2 =

∑

H∈C(n,p)

| det(SH,I )|2 (13.2)
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and, similarly,

| detΛ(T )|2 = ‖t i1 ∧ · · · ∧ t iq‖2 =
∑

K∈C(n,q)

| det(TK ,J )|2.

By (11.9) we have

|S±G · T G | = ‖S±G‖‖T G‖,

Here we use the Cauchy–Schwarz inequality, Lemma 14.6 with an equality, and thus
obtain

‖S±G‖T G = ±‖T G‖S±G,

where S
±
G and T G are primitive vectors and ‖S±G‖, ‖T G‖ ∈ N. Hence

‖T G‖ = ‖S±G‖

and thus

T G = ±S±G .

Further we get

| detΛ(S)|2 = ‖si1 ∧ · · · ∧ si p‖2
=

∑

H∈C(n,p)

| det(SH,I )|2

=
∑

H∈C(n,p)

|sign(τH,Ĥ )det(SH,I )|2

= ‖S±G‖2 = ‖T G‖2
=

∑

K∈C(n,q)

| det(TK ,J )|2

= ‖t i1 ∧ · · · ∧ t iq‖2 = | detΛ(T )|2.

Finally

H(S⊥) := | detΛ(T )| = | detΛ(S)| := H(S). �

In the following chapter we shall give an application of Theorem 13.1. Namely,
we shall prove a slightly refined version of Siegel’s lemma using Theorem 13.1.
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14 Bombieri–Vaaler Version of Siegel’s Lemma

In the last part of our lectures we shall present a simplified proof of the Bombieri–
Vaaler version of Siegel’s lemma, see Bombieri and Vaaler [3]. The proof is based on
the second Minkowski’s convex body theorem, the height theorem and some careful
analysis of primitive Grassmann coordinate vectors.

14.1 Rational Subspaces

So, again, our target is to study integer solutions of the Eq. (6.1). Let us write the
Eq. (6.1) as a single matrix equation

Ax =

⎡

⎢
⎢
⎢
⎢
⎣

a11 . . . a1N
· · ·
· · ·
· · ·

aM1 . . . aMN

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

x1
·
·
·
xN

⎤

⎥
⎥
⎥
⎥
⎦

= 0,

where

A := [amn] =

⎡

⎢
⎢
⎢
⎢
⎣

b
t
1
·
·
·
b
t
M

⎤

⎥
⎥
⎥
⎥
⎦

∈ MM×N (Z)

and b
t
1 = (a11, . . . , a1N ), . . . , b

t
M = (aM1, . . . , aMN ) denote the rows of A.

However, now we assume w.l.o.g. that rankA = M . Thus we may considerA as
a mapping

A : QN → Q
M

of rankA = M . Hence the kernel

R := kerA ⊆ Q
N , dimQ R = N − M,

is an (N − M)-dimensional rational subspace of QN . Further, the orthogonal com-
plement

R⊥ ⊆ Q
N , dimQ R⊥ = M

is an M-dimensional rational subspace of QN .
Next we define the corresponding integer lattices
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{

Λ(R) = R ∩ Z
N , rankΛ(R) = N − M;

Λ(R⊥) = R⊥ ∩ Z
N , rankΛ(R⊥) = M,

where Λ(R⊥) = 〈r1, . . . , r M〉Z is spanned by integer vectors r1, . . . , r M ∈ Z
N . By

(13.1) we get

H(R) = H(R⊥) = detΛ(R⊥) = √det[rm · rn]1≤m,n≤M .

On the other hand

b1, . . . , bM ∈ R⊥ ∩ Z
N = 〈r1, . . . , r M 〉Z, rankΛ(R⊥) = M.

Thus we may write b1, . . . , bM as linear combinations

bi = c1i r1 + · · · + cMir M , c ji ∈ Z, j, i = 1, . . . , M.

in the base r1, . . . , r M . Also we denote

C := [c1, . . . , cM ] =

⎡

⎢
⎢
⎢
⎢
⎣

c1,1 ... c1,M
. . .

. . .

. . .

cM,1 ... cM,M

⎤

⎥
⎥
⎥
⎥
⎦

.

Then
b1 ∧ · · · ∧ bM = det C · r1 ∧ · · · ∧ r M , det C ∈ Z \ {0}. (14.1)

14.2 Grassmann Coordinates

Next we note that the transpose matrix

At = [b1, . . . , bM
] ∈ MN×M(Z)

of A is determined by the column vectors b1, . . . , bM . Further, we use the notation

R = [r1, . . . , r M ] ∈ MN×M(Z)

for the matrix determined by the column vectors r1, . . . , r M . Here the notations
M1 = M2 = 1, 2, . . . , M denote increasing lists 1 < 2 < · · · < M . By the wedge
product expansion rule (10.3) we get
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⎧

⎪⎨

⎪⎩

b1 ∧ · · · ∧ bM = ∑

H∈C(N ,M)

det(AH,M1)EH ,

r1 ∧ · · · ∧ r M = ∑

K∈C(N ,M)

det(RK ,M2)EK ,

where det(AH,M1) and det(RK ,M2) are M × M-minors of A and R, respectively.
Also we write {

AG :=
(

det(AH,M1)
)

H∈C(N ,M)
∈ Z(N

M),

RG :=
(

det(RK ,M2)
)

K∈C(N ,M)
∈ Z(N

M),

for the Grassmann coordinate vectors of b1 ∧ · · · ∧ bM and r1 ∧ · · · ∧ r M , respec-
tively.

In the following lemma we give a divisibility relation between the greatest com-
mon factor of the minors det(AH,M1) and det C.
Lemma 14.1 Let

D = gcd
H∈C(N ,M)

(

det(AH,M1)
)

,

then
D = | det C|. (14.2)

Proof By (14.1) we have

AG = det C · RG, det C ∈ Z \ {0},

where by Lemma 12.7 the Grassmann coordinate vector

RG =
(

det(RK ,M2)
)

K∈C(N ,M)

of our lattice Λ(R⊥) = 〈r1, . . . , r M 〉Z is primitive. The above immediately imply
(14.2). �

Lemma 14.2 With the above notations we have

‖r1 ∧ · · · ∧ r M‖ ≤ D−1
√

det(AAt ). (14.3)

Proof Here we combine the results (14.1), (14.2) and Laplace identity (11.2). Thus

D · ‖r1 ∧ · · · ∧ r M‖ ≤ | det C| · ‖r1 ∧ · · · ∧ r M‖
= ‖b1 ∧ · · · ∧ bM‖
=
√

det[bm · bn]1≤m,n≤M =
√

det(AAt ). �
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14.3 A Simplified Proof of the Bombieri–Vaaler Version
of Siegel’s Lemma

Bombieri andVaaler [3] presented the following improved version of Siegel’s lemma.

Theorem 14.3 Let
A ∈ MM×N (Z), rankA = M

Then the equation
Ax = 0

has N − M linearly independent integer solutions x1, . . . , x N−M ∈ Z
N \ {0} such

that
‖x1‖∞ · · · ‖x N−M‖∞ ≤ D−1

√

det(AAt ), (14.4)

where D is the greatest common divisor of all M × M minors of A.

Proof Recall that R is an (N − M)-dimensional rational subspace in Q
N . Let

λ1, . . . ,λN−M be the successive minima of the unit cube �N with respect to
Λ = Λ(R) = R ∩ Z

N , the lattice of integer points in R. Then Lemma 12.6 applied
to the rational subspace R with the height Theorem 13.1 gives

λ1 · · ·λN−M ≤ H(R) = H(R⊥) = detΛ(R⊥). (14.5)

By Example 3.5 there exist N − M linearly independent integer vectors x1, . . .
x N−M ∈ Z

N \ {0} from R such that

‖x1‖∞ ≤ λ1, . . . , ‖x N−M‖∞ ≤ λN−M . (14.6)

Hence, by (14.5), (14.6) and (14.3), it follows that

‖x1‖∞ · · · ‖x N−M‖∞ ≤ λ1 · · ·λN−M
≤ H(R) = H(R⊥)
= detΛ(R⊥)
= √det[rm · rn]1≤m,n≤M
= ‖r1 ∧ · · · ∧ r M‖ ≤ D−1

√

det(AAt ). �

Corollary 14.4 In Theorem 14.3 the estimate (14.4) can be replaced by (possibly a
weaker estimate)

N−M
∏

k=1
‖xk‖∞ ≤

M
∏

m=1
‖bm‖2. (14.7)

There are several variants of Siegel’s lemma overQwhich follow from Corollary
14.4. In the following corollary we present two of them.
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Corollary 14.5 In Theorem 14.3 the estimate (14.4) can be replaced by (possibly
weaker estimates)

‖x1‖∞ ≤
(

M
∏

m=1
‖bm‖1

) 1
N−M

≤
(

N max
1≤m,n≤N|am,n|

) M
N−M

. (14.8)

In Corollary 14.5 the first upper bound is exactly the upper bound in the estimate
(6.4).

The above corollaries follow from estimate (14.12) for the well-known Gram
determinant det[bm · bn]1≤m,n≤M . Notice that our Gram determinant is positive.

In fact, Bombieri and Vaaler [3] proved more general results over algebraic num-
bers by using geometry of numbers over the adéles.

Appendix

Cauchy–Schwarz Inequality

Now we suppose that R is an integral domain with absolute value and the norm of
a ∈ RN is defined by

‖a‖ = √a · a

via the inner product · in RN .

Lemma 14.6 (Cauchy–Schwarz inequality)

|a · b| ≤ ‖a‖‖b‖ for all a, b ∈ RN . (14.9)

The equality
|a · b| = ‖a‖‖b‖

implies
‖b‖a = ω‖a‖b, |ω| = 1, ω ∈ R. (14.10)

In particular, when R = Z, then ω = ±1.
Proof Write

w := ‖b‖2a − (a · b)b.

Then
w · b = 0

and consequently
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‖b‖4‖a‖2 = ‖w‖2 + |a · b|2‖b‖2 ≥ |a · b|2‖b‖2 (14.11)

which implies (14.9).
Suppose now

|a · b| = ‖a‖‖b‖ ⇔ a · b = ω‖a‖‖b‖, |ω| = 1, ω ∈ R.

Then (14.11) reads
‖b‖4‖a‖2 = ‖w‖2 + ‖a‖2‖b‖4.

Hence,

‖w‖2 = 0 ⇒ w = ‖b‖2a − (a · b)b = 0

⇒ ‖b‖2a = (a · b)b = ω‖a‖‖b‖b,

which proves (14.10). �

14.4 Gram Determinant

The Gram determinant det[bm · bn]1≤m,n≤M satisfies the following estimates

√

det(AAt ) =
√

det[bm · bn]1≤m,n≤M

≤
√
√
√
√

M
∏

m=1
bm · bm =

M
∏

m=1
‖bm‖2

≤
M
∏

m=1
‖bm‖1 ≤

M
∏

m=1
N max

1≤n≤N|am,n|

≤
(

N max
1≤m,n≤N|am,n|

)M

. (14.12)

References

1. A. Baker, On some Diophantine inequalities involving the exponential function. Canad. J.
Math. 17, 616–626 (1965)

2. A. Baker, Transcendental Number Theory (Cambridge University Press, Cambridge, 1975)
3. E. Bombieri, J.D. Vaaler, On Siegel’s lemma. Invent. Math. 73, 11–32 (1983)
4. E. Bombieri et al., Recent Progress in Analytic Number Theory, vol. 2, On G-functions (Aca-

demic Press, London-New York, 1981), pp. 1–67. (Durham, 1979)



174 T. Matala-aho

5. J.W.S. Cassels, An introduction to the geometry of numbers. Corrected reprint of the Classics
in Mathematics, 1971 edition (Springer, Berlin, 1997)

6. A.-M. Ernvall-Hytönen, K. Leppälä, T. Matala-aho, An explicit Baker type lower bound of
exponential values. Proc. Roy. Soc. Edinburgh Sect. A 145, 1153–1182 (2015)

7. K. Mahler, On a paper by A. Baker on the approximation of rational powers of e. Acta Arith.
27, 61–87 (1975)

8. T. Matala-aho, On Baker type lower bounds for linear forms. Acta Arith. 172, 305–323 (2016)
9. J.J. Rotman, Advanced Modern Algebra (Pearson, New York, 2002)
10. W.M. Schmidt,Diophantine Approximation, vol. 785, Lecture Notes inMathematics (Springer,

Berlin, 1980)
11. W.M. Schmidt, Diophantine approximations and Diophantine equations, vol. 1467, Lecture

Notes in Mathematics (Springer, Berlin, 1991)
12. A.B. Shidlovskii, Transcendental numbers, de Gruyter Studies in Mathematics 12 (Walter de

Gruyter and Co., Berlin, 1989)
13. C.L. Siegel, Transcendental Numbers, vol. 16, Annals of Mathematics Studies (Princeton uni-

versity press, Princeton, 1949)
14. J. Steuding, Diophantine analysis (Chapman & Hall/CRC, Boca Baton, 2005)
15. J.D. Vaaler, A geometric inequality with applications to linear forms. Pacific J. Math. 83,

543–553 (1979)



Historical Face of Number Theory(ists)
at the Turn of the 19th Century

Nicola Oswald

2000 Mathematics Subject Classification 01A60 · 01A70 · 11J70 · 37A05

Some Introductory Words

Of course, it is impossible to give here a complete overview of the many aspects of
number theory and its protagonists. Consequently, we focus mainly on one face of
its multifaceted history. The concrete program consists of the following four topics:

• Meeting the Hurwitz brothers.
The brothers Julius (1857–1919) and Adolf Hurwitz (1859–1919) were both gifted
with a smart intellect and great curiosity in science. Already during their school-
days the two of them became acquainted with mathematical problems and both
started studies in mathematics. So far nothing extraordinary. While the younger
brother turned out to be extremely successful in his research, the elder brother and
his work, however, seem to be almost forgotten.

• Adolf Hurwitz’s mathematical diaries: an example of understanding mathe-
matics on behalf of historical documents.
The mathematical notebooks of Adolf Hurwitz are stored in the library of the
ETH Zurich [21]. Alongside a variety of publications, the zealous Hurwitz wrote
in a meticulous manner mathematical diaries from March 1882 to September 1919.
Mostly with an accurate writing and an impressive precision Adolf Hurwitz worked
on proofs of colleagues, made notes for future dissertation topics and developed
his own approaches to various mathematical problems. We will focus on a certain
entry in which Adolf Hurwitz refers to his elder brother’s dissertation. How do his
notes resemble Julius Hurwitz’s mathematical results?
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• A fruitful friendship: Adolf Hurwitz and David Hilbert.
We give a sketch of an approach to the relationship of two great mathematicians
on behalf of methods from history. For this purpose we define the mathematical
diaries as main corpus of the examination. Those highlight that the lifelong friend-
ship of Adolf Hurwitz with his former student and later colleague David Hilbert
was not only exceptionally fruitful, but also rather interesting. We shall consider
the question whether their relation had undergone a certain change between 1884
and 1919. It appeared that within this period the famous Hilbert completely eman-
cipated from his teacher Hurwitz.

• Julius Hurwitz and an ergodic theoretical view on his complex continued
fraction.
In his dissertation [30] Julius Hurwitz defined a certain continued fraction for
complex numbers. We consider his approach and derive an ergodic theoretical
result. More precisely, on behalf of characteristics which were worked out by
Shigeru Tanaka in [46] we shall sketch a proof of the analogue of the so called
Doeblin-Lenstra Conjecture for Julius Hurwitz’s continued fractions. Interestingly,
the Japanese mathematician published his results nearly one hundred years after
Julius, probably without knowing the old dissertation.

These notes deal with a combination of Diophantine number theory and history of
mathematics. On the first glimpse this might be unexpected, however, at a second
glance this can allow rather fruitful points of view. Doing research in mathematics,
it turns out to be very helpful to be aware of the early considerations and the devel-
opment of the corresponding subject. We want to work out how such an approach
could look like.

1 Meeting the Hurwitz Brothers

Reading the title of this section, the reader interested in Diophantine analysis might
ask the following question:

Why is it interesting to know more about the Hurwitz brothers at all?

Reading the name Hurwitz, probably most mathematicians think of Adolf Hurwitz
who was a great scientist in a broad range of mathematical disciplines. Here we are
mostly concerned about his work on complex continued fractions. Investigating the
scientific contributions of “Hurwitz”, one probably notices an article entitled “On a
certain kind of the continued fraction expansion of complex values”1 [30] written by
J. Hurwitz. This can be a starting point of becoming curious: is there a typing error?
If Adolf Hurwitz is not the author, who else? In the following we give an insight into
the work with archive sources by reconstructing the biography of this other Hurwitz
(Fig. 1).

1“Ueber eine besondere Art der Kettenbruch-Entwickelung complexer Grössen”.
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Fig. 1 Portraits of Adolf Hurwitz (1859–1919) (on the left) and Julius Hurwitz (1857–1919), taken
from Riesz’s register in Acta Mathematica from 1913 [42]

The fact that the two mathematicians were relatives becomes clear rather quickly
on behalf of documents stored in the municipal archive of Adolf Hurwitz’s birthplace.
According to them, Julius (born 14 July 1857) and Adolf Hurwitz (born 26 March
1859) were brothers and grew up in Hildesheim, a tranquil town near Hanover. They
were born into a Jewish merchant family and after the early death of their mother
Elise Wertheim-Hurwitz in 1862, their father Salomon Hurwitz (1813–1885) raised
them and their elder brother Max (1855–1910) with the help of his sister Rosette
Hurwitz. The latter information comes from a biographical dossier of Adolf’s wife
Ida Samuel-Hurwitz which can be found in the university archive of the ETH in
Zurich [45]. Following her description, Salomon was a hard working man, being the
manager of his own local textile manufactory, and even though the family lived in
modest surroundings, he was willing to provide his sons with a good education. In
their youth nothing indicated how different their lives would evolve. We can read that
both, Adolf as well as Julius, were sent to the Realgymnasium “Adreanum”,2 both
sons “showed a particular talent for mathematics, which was documented at a very
early stage [...]” [45, p. 4] and both received extra lessons by their teacher Hermann
Caesar Hannibal Schubert (1848–1911) on Sunday afternoons. Since Schubert spent
only a few years in Hildesheim before he moved further to Hamburg [5, 6] where he
became a famous and influential geometer, the brothers were very lucky that their
times overlapped. In one of Julius’s school certificates, also stored in the municipal
archive of Hildesheim, the note “Julius visited a tavern without permission” indicates
that the elder brother seemed to have been a bit more open for distraction. Neverthe-
less, “Schubert took the trouble to visit the father to convince him to let both sons
take up the study of mathematics [...]. [Salomon] talked to a wealthy and childless

2At that time this was a new kind of highschool with a focus on mathematics and natural sciences.
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friend, E. Edwards, who offered to bear the costs of the studies for one of the sons.
Dr. Schubert selected Adolf.” [45, p. 4] Consequently, “Max and Julius had to become
business men after the graduation of the upper secondary. The pecuniary situation as
well as the future plans of the father for his sons did not allow to even consider an aca-
demic profession.”3 [45, p. 4] This decision separated at least the professional lives
of the brothers fundamentally. The younger enrolled at the University of Munich and
obtained a doctorate supervised by Felix Klein (1849–1925) in Leipzig. This was
the beginning of a meteoric career: Adolf Hurwitz got to know the academic soci-
ety in Berlin and, with the support of Karl Weierstrass (1815–1897) and Hermann
Amandus Schwarz (1843–1921), he did his habilitation in Göttingen. This enabled
him to receive a professorship at the University of Königsberg in 1884 on promotion
of Ferdinand von Lindemann (1852–1939), another pupil of Felix Klein. What is
particularly noteworthy here is that Adolf Hurwitz got to know different schools of
mathematics, was supported by some of the most influencial mathematcians of his
time, and was on his way to become an integral part of the mathematical community
himself.4

This contrasts with a completely different career for Julius. The elder brother
had to postpone his academic ambitions, left school without a general higher edu-
cation entrance qualification and started a banking apprenticeship in Nordhausen, a
small village in what is nowadays Thuringia in Germany.5 Later Julius took over the
banking business from his uncle Adolph M. Wertheimer in Hanover. However, there
are some hints that Julius never broke with his mathematical interests. An evidence
therefore can be found in a letter from the collected letter exchange of Adolf Hurwitz
at the university archive in Göttingen. Here the Hanoveranian mathematician Hans
von Mangoldt (1854–1925) [48] mentioned the elder brother, which shows that Julius
Hurwitz maintained active contact with mathematicians from his place of residence.
Correspondingly, his sister-in-law remembered that he never got accustomed with
his profession as a banker. She wrote that he “[...] felt uncomfortable in this busi-
ness. Hence, [...] Julius left in order to return to school at the age of 33 and passed
the school examination [...]” [45, p. 8]. More precisely, Julius Hurwitz attended a
Realgymnasium in Quakenbrück, a small town in northern Germany. And again, we
can still find his school leaving certificate from September 9, 1890 in the archive of
the University of Halle.6 It is rather impressive to read: he not only had to complete
an exam in mathematics but also in various subjects like geography, French and even
gymnastics and drawing. Furthermore, he was assessed in the category of “moral
behavior”, which was considered to be excellent in his case. A glance at the list of
graduates [1, p. 146] of the school illustrates how unusual and demanding Julius

3“Max und Julius mussten sich, nach Absolvierung der Ober-Secunda, dem Kaufmannsstand wid-
men. Sowohl die pekunäre Lage, wie auch die Zukunftspläne des Vaters für seine Söhne liessen
einen gelehrten Beruf gar nicht in Frage kommen.”
4For a more detailed biography see [38].
5Side remark: Nordhausen was also the place where the first congress of vegetarians had taken
place in 1869.
6Archive of Halle University, Rep. 21 Nr. 162.
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Hurwitz’s late school days must have been. Between 1885 and 1895 the average age
of graduates was twenty, around thirteen years younger than him and, furthermore,
less than ten students finished school per year. We may conclude that Julius must
have had a big motivation to take the risk to change his life so drastically. Proba-
bly a certain financial independence arising from the banking business of his uncle
helped him with his decision. Another reason could have been the good integration
of his brother in Königsberg. Adolf Hurwitz had the great luck to have Hermann
Minkowski (1864–1909) and David Hilbert (1862–1943) as students, two extremely
talented mathematicians who later became great personalities in mathematics of their
generation.

Having graduated from school, Julius Hurwitz moved to his brother and attended
lectures in Königsberg. It is known that he edited a variety of lecture notes not only
from his brother, but also, among others, from Viktor Eberhard in 1890/91 [28] and
David Hilbert in 1892 [29]. On the first page of the second one can find Julius’
handwriting: “reviewed by Dr. Hilbert a. equipped with his personal sidenotes”.7 In
general, we may assume that Julius Hurwitz was nicely integrated into the academic
circle of mathematicians in Königsberg, even though there had always been a strong
dependence of his successful brother. In consequence it is not surprising that when
Adolf Hurwitz was called for a full professorship to the ETH Zurich in 1892, Ida
noted “[Also] his brother Julius soon followed him to Zurich [...]”, and she continued:
“[to Zurich,] where he wrote his doctoral thesis, for which he had received the subject
from his brother.” [45, p. 9] In fact, it was not least a consequence of anti-Semitic
university-political decisions to Adolf Hurwitz’s disadvantage why he moved to
Switzerland. There are documents which show that he was considered for positions
in Rostock and Göttingen, which he could not receive being a Jew.8 At that time,
professors of the ETH did not have the right to award doctorates and there was
consequently not an official option for Julius Hurwitz to proceed at the polytechnic.
However, it seems that once more he took a benefit from the good integration of
his brother in the mathematical community. In 1893 Julius officially enrolled at a
German university, namely the University of Halle-Wittenberg. There he wrote his
dissertation under the supervision of Albert Wangerin (1844–1933), who seems to
have been a very open-minded teacher. At the end of his career he had supervised
the impressive number of 53 doctoral candidates on various topics.9 In his report
on Julius’ dissertation Wangerin declared, “J. Hurwitz examines a certain kind of
continued fraction expansion of complex numbers following work by his brother,
Prof. A. Hurwitz in Zurich, published in Acta Mathematica, volume XI.” [49]

After his doctorate, Julius Hurwitz worked for a few years at the University of
Basel, however, he only published one more scientific work [31], which included
and, in a certain way, extended his dissertation. His brother Adolf Hurwitz stayed in
Zurich for the rest of his life.

7“von Dr. Hilbert durchgesehen u. mit eigenhändigen Randbemerkungen versehen.”, archive ETH,
HS 582: 154.
8For more information see [43, 44].
9A list can be found on www.mathematikuni-halle.de/history.

www.mathematikuni-halle.de/history
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2 Adolf Hurwitz’s Mathematical Diaries: An Example
of Understanding Mathematics Development on the Basis
of Historical Documents

Since his habilitation in 1882, Hurwitz took notes of everything he spent time on with
uninterrupted regularity and in this way he left a series of 31 diaries, which provide a
true view of his constantly progressive development and at the same time they are a rich
treasure trove for interesting and further examination appropriate thoughts and problems.”10

[17, p. 166]

With David Hilbert’s description, taken from his commemorative speech, he provided
a good picture of Adolf Hurwitz’s mathematical diaries. Those notebooks are filled
with interesting problems and inspiring mathematical ideas. After Adolf Hurwitz’s
death they were reviewed and registered in an additional notebook [21, No. 32] by
his confidant and colleague George Pólya, who considered Hurwitz as “colleague
who he felt influenced the most.” [39, p. 25]

In his ninth diary we can find an entry entitled “Concerning Julius’ work.”
[21, No. 9, pp. 94] which refers to his brother’s dissertation on a certain complex
continued fraction. In fact, on the very first page of his work Julius Hurwitz wrote
that “the thesis follows in aim and method two publications due to Mr. A. Hurwitz
to whom I owe the encouragement for this investigation.”,11 which emphasizes that
Adolf supported him at certain points. In the two mentioned publications [22, 23]
Adolf Hurwitz presented a complex continued fraction allowing all Gaussian inte-
gers as possible partial quotients. Interestingly, it is also Adolf Hurwitz who wrote a
review in Zentralblatt [24] about Julius’ doctorate; it starts as follows:

The complex plane may be tiled by straight lines x + y = v, x − y = v into infinitely many
squares, where v ranges through all positive and negative odd integers. The centers of the
squares are complex integers divisible by 1 + i. For an arbitrary complex number x, one may
develop the sequence of equations

(1) x = a − 1

x1
, x1 = a1 − 1

x2
, . . . , xn = an − 1

xn+1
, . . .

following the rule that in general ai is the center of the square which contains xi. In the case
when xi is lying on the boundary of a square, some further rule has to be applied which we
ignore here for the sake of brevity. For x the sequence of equations (1) leads to a continued
fraction expansion x = (a, a1, . . . , an, xn+1) which further investigation is the topic of this
work.12

10“Hurwitz hat seit seiner Habilitation 1882 in ununterbrochenender Regelmäßigkeit von allem,
was ihn wissenschaftlich beschäftigte, Aufzeichnungen gemacht und auf diese Weise eine Serie von
31 Tagebüchern hinterlassen, die ein getreues Bild seiner beständig fortschreitenden Entwicklung
geben und zugleich eine reiche Fundgrube für interessante und zur weiteren Bearbeitung geeignete
Gedanken und Probleme sind.”
11“Die Arbeit schliesst sich, nach Ziel und Methode, eng an die nachstehend genannten zwei
Abhandlungen des Herrn A. Hurwitz an, dem ich auch die Anregung zu dieser Untersuchung
verdanke.”
12“Die complexe Zahlenebene werde durch die Geraden x + y = v, x − y = v , wo ? alle posi-
tiven und negativen ungeraden ganzen Zahlen durchläuft, in unendlich viele Quadrate eingeteilt. Die
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On the first view Julius’ expansion could be mistaken as a specification of the general
complex continued fraction investigated by his younger brother. The key difference
is a modification of the set of possible partial quotients. Julius restricted this set to the
ideal generated by α := 1 + i. It shall be noticed that 1 is not an element of this ideal,
hence condition iii) of Adolf Hurwitz’s setting for his “system” S of partial quotients
is not fulfilled (see [22]). Julius’ approach results in a thinner lattice in C. This leads
to another tiling of the complex plane and enables consequently the definition of
a “nearest” partial quotient an ∈ (α) = (1 + i)Z[i] to each complex number z ∈ C.
What turns up is an expansion of a complex continued fraction

z = a0 − 1

a1 − 1

a2 − 1

a3 + T 3z

,

where each iteration is determined by a mapping T , which will be defined in Sect. 4.
A specific characteristic of this continued fraction is the admissibility of sequences
of partial quotients:

What kind of partial quotients can occur?

Adolf Hurwitz’s diary entry from November 04, 1894, deals with exactly this ques-
tion. We find several pages filled with calculations on partial quotients from complex
continued fractions and a nice result (Fig. 2).
When compared with a certain paragraph of Julius Hurwitz’s doctoral thesis on page
12, we recognize a definite similarity:

We translate Hurwitz’s consequences concerning so called not admissible
sequences of partial quotients:

Lemma 2.1 ([30])
The following rules for consecutive partial quotients hold:
If ar is of the type 1 + i, then ar+1 is not of type 2, 1 − i or −2i.
If ar is of the type −1 + i, then ar+1 is not of type −2i,−1 − i or −2.
If ar is of the type −1 − i, then ar+1 is not of type −2,−1 + i or 2i.
If ar is of the type 1 − i, then ar+1 is not of type 2i, 1 + i or 2.

(Footnote 12 continued)
Mittelpunkte dieser Quadrate werden durch die durch 1+i teilbaren ganzen complexen Zahlen
besetzt. Wenn nun x eine beliebige complexe Zahl ist, so bilde man die Gleichungskette:

(1) x = a − 1

x1
, x1 = a1 − 1

x2
, . . . , xn = an − 1

xn+1
, . . .

nach der Massgabe, dass allgemein ai den Mittelpunkt desjenigen Quadrates bezeichnet, in
welches der Punkt xi hineinfällt. Dabei sind noch bezüglich des Falles, wo xi auf den Rand eines
Quadrates fällt, besondere Festsetzungen getroffen, die wir der Kürze halber übergehen. Durch die
Gleichungskette (1) wird nun für x eine bestimmte Kettenbruchentwickelung x =
(a, a1, . . . , an, xn+1) gegeben, deren nähere Untersuchung der Gegenstand der Arbeit ist.”
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Fig. 2 Excerpt from Adolf Hurwitz’s mathematical diary entry concerning Julius’ work. [21, No.
9, pp. 94]

Fig. 3 Excerpt from Julius Hurwitz’s doctoral thesis [30, p. 12]

In the following we use Julius Hurwitz’s notation (see Fig. 3): firstly, he denotes
the half circle in the complex plane through the points i, 1 + i and 1 by the symbol
B1+i. Accordingly, he defines B1−i, B−1+i, and B−1−i in a similar way as half circles
with the end points 1 and −i, −1 and i, and −1 and −i, respectively. Furthermore,
he designates the four boundary lines of the fundamental domain. The symbol G−

1
represents the line in the third quadrant, G−

−1 the line in the second quadrant, G+
1 the

line in the first and G+
1 the line in the fourth quadrant.

Certainly, Adolf Hurwitz’s notes indicate his direct help and influence on his
brother’s work. However, here we want to focus on their mathematical result and
illustrate their approach to define which successor a certain partial quotients can not
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Fig. 4 Illustration, taken from [36], of the types of partial quotients and the associated complete
tiling of the complex plane

have. In his table, Julius separated partial quotients into those of type ±1 ± i and
those of type ±2, respectively ±i2. First we need to comprehend this notation. Partial
quotients are said to be of type 1 + i if they are of the form k(1 + i); k = +1,+2, . . .,
they are of type 1 − i if they are of the form k(1 − i); k = +1,+2, . . ., they are of type
−1 + i if they are of the form k(1 − i); k = −1,−2, . . ., and they are of type −1 − i
if they are of the form k(1 + i); k = −1,−2, . . .. Furthermore, partial quotients are
of type 2 when they are located in between the angle bisector of the first and the
fourth quadrant, −2 when they are located between the second and third quadrant,
and so on.

Notice that this typification provides a complete tiling of the complex plane (see
Fig. 4). Now we want to comprehend Hurwitz’s line of reasoning. Therefore we pick
out the first case of Julius’ Lemma 2.1: If a partial quotient equals an = 1 + i, then
the next partial quotient an+1 is different from 2, 1 − i,−2i.

The geometrical approach of the Hurwitz brothers to prove this statement can be
illustrated in three steps, based on the equation

zn = an − 1

zn+1
.
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Fig. 5 Excerpt of the
workshop notes illustrating
the inversion

First we take a closer look at the inversion

I : X → X−1, zn−1 �→ − 1

zn−1
= zn,

taking place in each iteration of the continued fraction algorithm. Here an element
zn−1 ∈ X of the fundamental domain is mapped by a Möbius transformation to the
negative of its reciprocal (Fig. 5).

The boundaries of X are represented by the line segments G−
1 , G−

−1, G+
1 and

G+
−1 in the four quadrants. Those are mapped to arcs under the transformation I ,

which form an inner boundary of the set of reciprocals X−1. We illustrate this by the
example of the line G−

1 in the third quadrant having end points −1 and −i. Those
are transformed as follows:

−1 �→ − 1

−1
= 1 and − i �→ − 1

−i
= −i.

The arc arising from G−
1 is the half circle between the points −i and 1, which does

not pass through the origin. Merging all four half circles B±1±i through the points
±1 ± i, arising from the inversion I(G±

±1), one can see that the set of reciprocals is
given by all complex numbers excluding a flower shaped area F located around the
origin: X−1 = C \ F.

Now we focus on the above stated case an = 1 + i, which implies that zn is element
of the fundamental domain shifted around 1 + i. We furthermore know that zn is not
an element of F. The elementary translation
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Fig. 6 Illustration of the
translation

zn �→ zn − an = 1

zn+1

performs a shift back to the fundamental domain X (see Fig. 6).
Notice that the domain of possible reciprocals 1

zn+1
in X is bounded by G−

−1, G+
1 ,

G+
−1 and the half circle through the points −1,−i and zero. Since this arc is the

continuation of B−1−i, we denote it as B′
−1−i in the sequel.

Now we complete our considerations by a second inversion performing

1

zn+1
�→ −zn+1.

To figure out the actually possible image domain, we need to focus on the transfor-
mation of B′

−1−i. We know

−1 �→ 1 and − i �→ −i.

Furthermore, the origin is mapped to infinity. This leads to a more limited set of
possible zn+1, excluding not only F but also that part of the Gaussian complex plane
which is bounded by the straight line through −i and 1 (see Fig. 7).

Taking into account Julius Hurwitz’s typification of partial quotients, we come to
the same conclusion as he and his brother did: an+1 can not be of the type 2,−2i or
1 − i.

The diary entry of Adolf Hurwitz provides a nice example of how a mathematical
result and its reception can evolve. Based on the model of his younger brother’s
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Fig. 7 Illustration of the
second inversion

approach, Julius Hurwitz’s line of argumentation is based on examining arcs occuring
by Möbius transformations. Therefore, he investigated a number of cases for all types
of partial quotients in a similar manner as the analyzed example above. Thanks to
Adolf Hurwitz’s notes we can comprehend the origins of Julius’ ideas.

3 A Fruitful Friendship: Adolf Hurwitz and David Hilbert

Examination of Adolf Hurwitz’s estate furthermore highlights that his lifelong friend-
ship to his former student and later colleague David Hilbert was not only exception-
ally fruitful, but also rather interesting. It seems that their relation had undergone
a certain change between 1884 and 1919. In this section we try to approach to a
research question from history of mathematics:

Can we identify indicators marking when the student–teacher relation transformed to a
collegial relation?

Hereby, it is important to make clear what “corpus” we use, which means, what
documents we take into account. The following analysis is mainly based on the
mentioned Hurwitz estate and its comparison to additional biographical informations
and mathematical details extracted from the Gesammelte Abhandlungen [20] and
from the fourth and fifth supplements of the Grundzüge einer allgemeinen Theorie
der linearen Integralgleichungen. [13, 14] of David Hilbert. This emphasizes that
we will not provide a complete overview of the lifelong friendship between Hilbert
and Hurwitz or their extensive interdisciplinary exchange of mathematical ideas.
However, since most of the documents stored in Zurich have not been processed yet,
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their perception should nevertheless extend the well known facts of their relationship.
We will concentrate on the teacher–student aspect and in particular tackle the question
of their mutual influence, following [35].

3.1 The Beginning of a Friendship

In 1884, when Hurwitz received his first full professorship in Königsberg, he and
David Hilbert met for the first time. The younger wrote later: “His friendly and
open nature won him, when he came to Königsberg, quickly the hearts of all who
got to know him there [...]”13 [17, p. 167]. Hilbert - born, grown up and study-
ing in Königsberg14 - was an extraordinarily inquisitive young mathematician, who
craved for progressive mathematical knowledge. For him and his two-years younger
friend Hermann Minkowski, who was said to be an exceptional talent, it was defi-
nitely a very fortunate coincidence that Adolf Hurwitz became their teacher. Since
Hurwitz was not only familiar with the mathematical school created by Alfred
Clebsch (1833–1872) and Felix Klein, but also had learned in Berlin from
Leopold Kronecker and especially Karl Weierstrass (see Sect. 1), the contribution
of his knowledge was enormous.15 In fact, Hilbert himself mentioned in his obituary
for Adolf Hurwitz [17, p. 162],

Here I was, at that time still a student, soon asked for scientific exchange and had the luck by
being together with him to get to know in the easiest and most interesting way the directions of
thinking of the at time opposite however each other excellently complementing schools, the
geometrical school of Klein and the algebraic-analytical school of Berlin. [...] On numerous,
sometimes day by day undertaken walks at the time for eight years we have browsed through
probably all corners of mathematical knowledge, and Hurwitz with his as well wide and
multifaceted as also established and well-ordered knowledge was always our leader.16

Furthermore, in his colourful biography of David Hilbert, Otto Blumenthal17 (1876–
1944) quoted, “We, Minkowski and me, were quite overwhelmed with his knowledge
and did not believe that we could ever get that far.”18 [3, p. 390]. However, Adolf

13“Sein freundliches und offenes Wesen gewann ihm, als er nach Königsberg kam, rasch die Herzen
aller, die ihn dort kennenlernten [...]”.
14With the exception of one year, 1881, at the University of Heidelberg (see [40]).
15In particular concerning both faces of complex analysis [3, p. 390].
16“Hier wurde ich, damals noch Student, bald von Hurwitz zu wissenschaftlichem Verkehr herange-
zogen und hatte das Glück, durch das Zusammensein mit ihm in der mühelosesten und interessan-
testen Art die Gedankenrichtungen der beiden sich damals gegenüberstehenden und doch einander
so vortrefflich ergänzenden Schulen, der geometrischen Schule von Klein und der algebraisch-
analytischen Berliner Schule kennenzulernen. [...] Auf zahllosen, zeitweise Tag für Tag unter-
nommenen Spaziergängen haben wir damals während acht Jahren wohl alle Winkel mathema-
tischen Wissens durchstöbert, und Hurwitz mit seinen ebenso ausgedehnten und vielseitigen wie
festbegründeten und wohlgeordneten Kenntnissen war uns dabei immer der Führer.”
17Hilbert’s first doctoral student (in 1898).
18“Wir, Minkowski und ich, waren ganz erschlagen von seinem Wissen und glaubten nicht, dass
wir es jemals so weit bringen würden.”
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Hurwitz was also concerned about his students. “In the lessons he always took great
care by interesting exercises to motivate for participation, and it was characteristic,
how often one could find him in his thoughts searching for appropriate exercises
and problems.”19 [17, p. 166], remembered the former student Hilbert as well as,
“Inspirations were given by the mathematical Colloquium [...] in particular, however,
by the walks with Hurwitz “in the afternoon precisely at 5 o’clock next to the apple
tree””20 [3, p. 393]. This tradition of joint walks with students had been continued
by Hilbert for all of his academic life. We may conclude that in the beginning it was
naturally Hilbert who benefited a lot from his teacher Hurwitz. In 1892, he received
his first professorship as successor of Hurwitz in Königsberg.

3.2 Two Productive Universal Mathematicians

Both mathematicians, Adolf Hurwitz as well as David Hilbert, belonged to a dying
species in their profession: They can be considered as universal mathematicians
having comprehensive knowledge and scientific results in various mathematical dis-
ciplines.21 Furthermore, both were extremely productive. We can get an impression
of their work by noticing that the Gesammelten Abhandlungen I - III of Hilbert [20]
consist of more than 1350 pages of mostly influential mathematics similar to the
Mathematisches Werk I + II of Adolf Hurwitz [27] having more than 1400 pages.

Without claiming to be exhaustive, we want to give a strongly shortened overview
of the mathematical work of David Hilbert following the biographical essay
Lebensgeschichte [3] written by his former doctoral student Otto Blumenthal. The
subsequent list sketches Hilbert’s wide scientific spectrum concerning all main math-
ematical disciplines, ordered by modern terms, highlighting some results, publica-
tions or speeches, which we want to analyze in respect to their connection to Hurwitz’s
work in the following subsection.

• 1885–1892 Algebra: theory of invariants
• 1890 Ueber die Theorie der algebraischen Formen [10]
• 1892 Ueber die Irrationalität ganzer rationaler Funktionen mit ganzzahligen Koef-

fizienten [20, vl. II, No. 18] with “Irreduzibilitätssatz” [3, p. 393]
• 1892–1899 Number Theory: theory of number fields
• 1893 Simplification of the Hermite-Lindemann proof of the transcendence of e

and π [20, vl. I, No. 1]

19“In den Übungen war er ständig darauf bedacht, durch anregende Aufgaben zur Mitarbeit her-
anzuziehen, und es war charakteristisch, wie oft man ihn in seinen Gedanken auf der Suche nach
geeigneten Aufgaben und Problemstellungen für Schüler antraf.”
20“Anregungen vermittelten das Mathematische Kolloquium [...], vor allem aber die Spaziergänge
mit Hurwitz “nachmittags präzise 5 Uhr nach dem Apfelbaum””.
21In view of the growth of the mathematical community and its insights around the turn to the
twentieth century, Hilbert and Henri Poincaré are said to be the last knowing almost everything
about the whole developments in mathematics.
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• 1894 Zwei neue Beweise für die Zerlegbarkeit der Zahlen eines Körpers in Prim-
ideale [20, vl. I, No. 2]

• 1896 Die Theorie der algebraischen Zahlkörper [20, vl. I, No. 7], also called
“Zahlbericht” including ideal theory

• 1891–1902 Geometry: axiomatization of geometry
• 1895–1903 Grundlagen der Geometrie including complements [18]
• 1895 Über die gerade Linie als kürzeste Verbindung zweier Punkte [18, compl. I]
• 1900 Über den Zahlbegriff [12]: axiomatization of arithmetic
• 1900 Hilbert stated his 23 mathematical problems at the International Congress of

Mathematicians in Paris [11]
• 1902–1910 Complex Analysis: variation problems, independence theorem
• 1904–1910 Linear Algebra, Functional Analysis: Grundzüge einer allgemeinen

Theorie der linearen Integralgleichungen with supplements [13, 14] including
new terminology

• 1907 (published 1910) Analysis meets Geometry: analytical refounding of
Minkowski’s theory of volumes and surfaces of convex bodies in [16]

• 1907 Analysis meets Number Theory: Beweis der Darstellbarkeit der ganzen
Zahlen durch eine feste Anzahl nter Potenzen (Waringsches Problem) [15]

• 1902–1918 Axiomatization of Physics and Mechanics: theory of relativity
• 1904–1934 Mathematical Foundations
• 1904 A first talk in Heidelberg about Axiomatisierung der Zahlenlehre [3, p. 421]
• 1922–1934 Hilbert Program: formalism and proof theory
• 1931 Die Grundlegung der elementaren Zahlenlehre [19]

Although David Hilbert and Adolf Hurwitz were very similar with respect to their
extraordinary productivity, their different characters can be recognized in their acad-
emic behavior. Hilbert was noticed as extroverted and “became used to be a famous
man”22 [3, p. 407], whereas Hurwitz “avoided any personal being apparent in aca-
demic and public life”23 [17, p. 167] and preferred to work continuously, however,
silently. This is particularly visible in his consequent, nearly peerless way of taking
notes of mathematical ideas in his diaries. In the following we take a glance at those
diaries in view of parallels to the above listed fields of research of David Hilbert.

3.3 Mathematical Exchange

Already here, anticipating, it shall be reported about the seldom harmonic and fruitful coop-
eration of those three mathematicians.24 [3, p. 390],

noted Otto Blumenthal and refered to the active mathematical exchange between
Minkowski, Hilbert and Hurwitz. In the mathematical diaries [21] various entries,

22“gewöhnte sich daran, ein berühmter Mann zu sein”.
23“Mied jedes persönliche Hervortreten im akademischen und öffentlichen Leben”.
24“Es soll schon hier vorgreifend über das selten harmonische und fruchtbare Zusammenarbeiten
dieser drei Mathematiker berichtet werden.”
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Fig. 8 “Hilbert’s Fundamental Theorem. Let f1, f2, · · · , fr, . . . be an infinite series of homo-
geneous functions of x1, x2, · · · xn. We claim that n can be determined in such a way that
fr = A1f1 + A2f2 + · · · Anfn for any r, where A1, A2, · · · , An are entire homogeneous functions
of x1, x2, · · · , xn.” (“Hilbert’s Fundamentalsatz. Es seien f1, f2, . . . , fr, . . . eine unendliche Reihe
von homogenen Funktionen von x1, x2, . . . xn. Dann ist die Behauptung, daß n so bestimmt werden
kann, daß fr = A1f1 + A2f2 + · · · Anfn für jedes r, wobei A1, A2, . . . , An ganze homogene Functio-
nen von x1, x2, . . . , xn.”)

directly or indirectly related to publications of Hilbert, can be found - those are
listed in Appendix “Appendix I: Links to Hilbert in the ETH Estate of Hurwitz”.
Furthermore, some ideas in selected diaries suggest to be inspired by Hilbert.

We already pointed out that without any doubt in their first years it was essentially
David Hilbert who benefited from his teacher. However, his teacher Hurwitz became
very soon aware of his talented student. In diary No. 625 [21, No. 6] on page 44 is a
first entry related to Hilbert, entitled “On Noether’s Theorem (concerning a message
of Hilbert)”.26 Here Hurwitz familiarized himself with the nowadays called residual
intersection theorem, sometimes also fundamental theorem, of Max Noether (1844–
1921), dealing with a linear form associated with two algebraic curves. Interestingly
one page later follows the entry “Hilbert’s Fundamental Theorem”27 dealing with a
linear form of homogeneous functions (Fig. 8).

On the one hand, this can be considered as continuation and extension of Noether’s
theorem, on the other hand, this is a previous version of Hilbert’s basis theorem.
Although Hurwitz was obviously interested perhaps even inspired from Hilbert’s
form and invariant theory, in his work Über die Erzeugung der Invarianten durch
Integration,28 Hurwitz discovered a “new generating principle for algebraic invari-
ants which allowed him to apply an [by Hilbert] introduced method [...].”29 [17, p.
164]. This nice formulation comes from Hilbert himself and can be interpreted in
such a way that Hurwitz kind of improved the use of one of Hilbert’s methods. At
least three more entries in the mathematical diaries (see Appendix II: No. 8, p. 207;

25From 1888 IV. to 1889 XI.
26“Der Nöther’sche Satz (nach einer Mitteilung von Hilbert)”.
27“Hilberts Fundamentalsatz”.
28“On generating invariants by integration.”
29“Neues Erzeugungsprinzip für algebraische Invarianten, das es ihm ermöglicht, ein [von Hilbert]
eingeschlagenes Verfahren [...] anzuwenden.”
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Fig. 9 “The proof of Hilbert’s theorem (Ann 36. p. 485) seems to be the most easiest understandable
in such a way: [...]” (“Der Beweis des Hilbert’schen Theorems II (Ann 36. p. 485) ist wohl am
leichtesten so aufzufassen: [...]”)

Fig. 10 “Hilbert’s theorem holds also for forms whose coeff. are integers of a finite number field.”
(“Der Hilbert’sche Satz gilt auch noch für Formen, deren Coeff. ganze Zahlen eines endlichen
Zahlkörpers sind.”)

No. 14, p. 204; No. 25, p. 77) are directly dedicated to Hilbert’s “Formensatz”,
nowadays called basis theorem. In the entry of the fourteenth diary30 [21, No. 14],
Hurwitz’s comments on Hilbert’s theorems have the tendency to sound like amend-
ments. In the beginning, he wrote (Fig. 9)

Here Hurwitz sounds as if Hilbert’s ideas respectively the way Hilbert had put the
proof to language could be simplified. Another example is on the next page (Fig. 10):

This generalization of the theorem of Hilbert is remarkable, because it obviously
paved the way for one of the later known versions of Hilbert’s basis theorem: The
ring of polynomials K[X1, . . . , Xn] over a field K is Noetherian.31

In 1891, Hurwitz and Hilbert published a first and last joint note [20, vl. II, Nr. 17]
in which they observed “that a certain, a number of parameters including irreducible
ternary form still is irreducible for general integral values of those parameters.”32 [3,
p. 393] Otto Blumenthal considered this as foundation of Hilbert’s famous “Irreduz-
ibilitätssatz” [20, vl. II, Nr. 18] from 1892.

In his first years being Privatdozent33 in Königsberg, when Hilbert adressed him-
self to the theory of number fields, he reported from his and Adolf Hurwitz’s common
walks, discussing theories of Dedekind and Kronecker. “One considered Kronecker’s
proof for a unique decomposition of prime ideals, the other the one of Dedekind,
and we thought both were awful.”34 [3, p. 397]. However, their cooperation turned
out to be successfull: Firstly, Hilbert began a publication building on his talk Zwei

30From 1896 I.1. to 1897 II.1.
31We may assume that Hurwitz had meant “algebraic” instead of “finite”.
32“daß eine gewisse, eine Anzahl Parameter enthaltende irreduzible ternäre Form auch für allge-
meine ganzzahlige Werte dieser Parameter irreduzibel bleibt.”
33In the German system habilitation granted the “venia legendi”, i.e., the permission to lecture as
Privatdozent which at that time meant to collectcourse fees from the students without any payment
from the university.
34“Einer nahm den Kroneckersches Beweis für die eindeutige Zerlegung in Primideale vor, der
andere den Dedekindschen, und beide fanden wir scheußlich.”
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Fig. 11 “Concerning Chapter V of Hilbert’s report the following is to remark.” (“Zum Capitel V
von Hilberts Bericht ist Folgendes zu bemerken.”)

Fig. 12 “According to Hilbert p. 209 we have [...] and the equation νν12 = ν1ν2 would lead to
νk1νk2 = νk12 ” (“Nach Hilbert p. 209 hat man [...] und die Gleichung νν12 = ν1ν2 würde liefern
νk1νk2 = νk12 ”)

neue Beweise für die Zerlegbarkeit der Zahlen eines Körpers in Primideale.35 Sec-
ondly, Hurwitz, also working on algebraic number fields, published another proof
later in his paper Der Euklidische Divisionssatz in einem endlichen algebraischen
Zahlkörper.36 Hilbert considered this work as “remarkable in view of the analogy
with the euclidean algorithm in number theory”37 [17, p. 165] and even preferred
Hurwitz’s proof in his famous Zahlbericht.38 It seems that even after Hurwitz’s mov-
ing to Zurich respectively Hilbert’s full professorship in Königsberg starting from
1892, Hilbert was still slightly influenced by his former teacher. We investigate this
also on behalf of two entries from 1898 and 1899 in Hurwitz’s diaries No. 1539 [21,
No. 15] and No. 1640 [21, No. 16] directly refering to Hilbert’s Zahlbericht (Fig. 11).
The first is listed as “Concerning Hilbert’s “Report on Number Fields””.41

The subsequent entry gives the impression that Hurwitz continued Hilbert’s work
using a result of Hilbert about composing ideals of subfields of number fields. Here-
after, number fields will be defined by K respectively ki and ideals by ν respectively
νi, i = 1, 2, 12 (Fig. 12).

Then Hurwitz first verified this consequence νk1νk2 = νk12 of Hilbert’s formula,
before he compared it with his conjecture (Fig. 13).

35“Two new proofs of the decomposability of numbers of a number field in prime ideals”, given in
September 1893 at the meeting of the “Deutsche Mathematiker Vereinigung” in Munich.
36“The Euclidean division theorem in a finite algebraic number field.”.
37“bemerkenswert durch die Analogie mit dem Euklidischen Algorithmus in der elementaren
Zahlentheorie”.
38Actually Die Theorie der algebraischen Zahlkörper, report of algebraic number theory.
39From 1897 II.1. to 1898 III.19.
40From 1898 III.20. to 1899 II.23.
41“Zu Hilbert’s “Körperbericht””.
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Fig. 13 “I assume that the theorem holds: Is K a composition of k1, k2, moreover k12 the greatest
common divisor of k1 and k2 then ννk12 = νk1νk2 , where ν, ν12, ν1, ν2 are Grundideale of the num-
ber fields K, k12, k1, k2.” (The use of the notation “Grundideal” here is a bit confusing. According
to [41] it goes back to a work of Emmy Noether from 1923. However, this comment is misleading.
According to [20, vl. I, p. 90] the term “Grundideal” was already used by Dedekind and Hilbert him-
self invented the new term “Differente” which is still used today. Interestingly, Hurwitz refering to
Hilbert kept Dedekind’s notation. “Ich vermute, daß der Satz gilt: Ist K aus k1, k2 zusammengesetzt,
ferner k12 der größte gemeinsame Divisor von k1 und k2 so ist ννk12 = νk1νk2 , wo ν, ν12, ν1, ν2 die
Grundideale der Körper K, k12, k1, k2.”)

Fig. 14 “[...] consequently the general theorem holds: ν = ν1·ν2
ν , with ν a common divisor of

ν1 und ν2. Or also: in the equation ν1ν2 = νν12 · j is ν12 · j a common divisor of ν1 and ν2.”
(probably ν12 and ν were interchanged “[...] folglich besteht allgemein der Satz: ν = ν1·ν2

ν , wo ν
ein gemeinsamer Divisor von ν1 und ν2. Oder auch: In der Gleichung ν1ν2 = νν12 · j ist ν12 · j ein
gemeinsamer Divisor von ν1 und ν2.”)

Fig. 15 Under the heading “Concerning Hilbert’s report pag. 287” the symbol
( n,m

ω

)

, where ω is
a prime number, n and m are arbitrary numbers and m is not a square number is treated. (“Zum
Hilbert’schen Bericht pag. 287”)

Consequently, Hurwitz deduced a general new result on algebraic number fields
(Fig. 14).

Here Hurwitz used the Zahlbericht as a textbook, and the entry in No. 16 [21,
No. 16] emphasizes that the teacher Hurwitz reflects on Hilbert’s report (Fig. 15).

It is defined to be equal to +1 or −1, according to the property whether in the
field Q(

√
m) the congruence
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Fig. 16 Excerpt of Hilbert’s Zahlbericht, page 289 respectively [20, vl. I, p. 164]

Fig. 17 “Thus nn · sn ≡ xn · sx · sn(ωλ−1) and n ≡ x · sx(ωλ−2) q.e.d.” (“Also wird nn · sn ≡ xn ·
sx · sn(ωλ−1) und n ≡ x · sx(ωλ−2) q.e.d.”)

n ≡ N(ω) = ω · sω(modωλ)

has for any λ a solution for an integer number ω or not (here s and λ are not defined
precisely).42 Hurwitz stated, “So we have the theorem

(
n · N(α), m

ω

)

=
(n, m

ω

)

,

if α is an arbitrary entire number in the number field (
√

m).”43,44 and continued
“Therefore Hilbert lacks a proof.”45 Indeed, we can find the stated equation some
pages later in Hilbert’s work without a sound verification (Fig. 16):

Within one page Hurwitz filled Hilbert’s gap proving this equation by use of a
clever case distinction (Fig. 17).

Obviously, Hurwitz worked not only with Hilbert’s Zahlbericht, moreover, he
obtained some improvements.

Another diary entry has to be mentioned for the sake of completeness, however any
conclusion would be rather speculative: In No. 23 [21, No. 23] from 1908 Hurwitz
dealed with a short exercise entitled Über die kürzeste Linie auf einem Parallelepiped.
Remarkably one of Hilbert’s papers from 1895 has the very similar title Über die

42Hilbert characterized with his symbol so-called “Normenreste” respectively “Normennichtreste”
[20, vl. I, p. 164] of a number field. Today the symbol is known as “Hilbert symbol”.
43“Es gilt nun der Satz

(
n · N(α), m

ω

)

=
(n, m

ω

)

,

wenn α eine beliebige ganze Zahl im Körper (
√

m).”
44We may assume that an algebraic number field K(

√
m) was meant here.

45“Hierfür fehlt Hilbert der Beweis.”
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Fig. 18 The entry is entitled “Hilbert’s axiomatic theory of quantities” (“Hilbert’s axiomatische
Größenlehre”), where Hurwitz refered to Hilbert’s talk Über den Zahlbegriff [12]

Fig. 19 Excerpts of Hilbert’s publication [12] and Hurwitz’s diary entry, “II. Axioms of Calculation.
[...]”

gerade Linie als kürzeste Verbindung zweier Punkte. However, since these two topics
were examined with a distance of 13 years, we will not take this coincidence into
consideration (Fig. 18).

Instead, we go on chronologically and take a look at diary No. 1946 [21, No. 19]
from 1902.

After his axiomatization of geometry, Hilbert continued working on developing
an axiomatic system for arithmetic. He was demanding for complete freedom from
contradictions in mathematics. Therewith, Hilbert became one of the founders of a
new philosophical movement in mathematics, the complete establishment of mathe-
matics on an axiomatic system, being the first advocate of the so-called formalism.47

His above mentioned talk and subsequent publication [12] can be considered as mile-
stone. What makes Hurwitz’s entry so interesting, is that it contains nothing but a
nearly exact copy of Hilbert’s ideas (Fig. 19).

Here Hurwitz followed step by step, axiom by axiom, Hilbert’s rules for oper-
ations, calculations, order and continuity and even his consequences, as well as
Hilbert’s new terminology (Figs. 20 and 21),

It seems that this concept was completely new for Hurwitz and, furthermore, that
he was willing to understand Hilbert’s axiomatization. Here we get a first idea that

46From 1901 XI.1. to 1904 III.16.
47Due to inspirations of various mathematicians his attitude was in a steadily evolvement. For more
information we refer to [47].
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Fig. 20 “Some remarks on the dependence of axioms were added by Hilbert:” (“Einige Bemerkun-
gen über die Abhängigkeit der Axiome hat Hilbert hinzugefügt:”)

Fig. 21 “From them the existence of a “Verdichtungsstelle” follows (as Hilbert expresses himself.)”
(“Aus ihnen folgt die Existenz der “Verdichtungsstelle” (wie Hilbert sich ausdrückt.)”)

the status of their relation had become collegial. In any case, David Hilbert and Adolf
Hurwitz are on an equal footing at the turn of the century.

The year 1900 was also the year when Hilbert gave his talk about his famous 23
problems at the International Conference of Mathematicians in Paris [11]. It might
be interesting to notice that one entry in diary No. 22 [21, No. 22] concerning the
proof of the Theorem of Pythagoras could have been inspired by the third problem.

More obvious, however, is Hilbert’s influence on an entry in diary No. 2148 [21,
No. 21] from August 09, 1906, which is entitled “D. Hilbert (Integralequ. V. Gött,
Nachr. 1906)”49 and refers to the fifth supplement of Hilbert’s article Grundzüge einer
allgemeinen Theorie der linearen Integralgleichungen [14] from 1906. In this work
Hilbert defined a new terminology and presented an innovative concept of handling
linear algebra problems by applying integral equations. His method is based on the
symmetry of the coefficients which is equivalent to the symmetry of the kernel50 of
the integral equation (see [3, p. 411]). The fourth [13] and fifth supplement, to which
Hurwitz refered, extend Hilbert’s previous results on bilinear forms with infinitely
many variables. The diary entry begins with the section “Bezeichungen”, which
means “notations”. One after the other Hurwitz reproduced Hilbert’s definitions of
the terms “Abschnitte” and “Faltung” as well as “Eigenwerte”, “Spektrum” and
“Resolvente” (Fig. 22).51

In fact, those terms were introduced by Hilbert himself. On page 459 of the
fifth supplement he wrote: “Values are significantly determined by the kernel(s,t);
I named them Eigenwerte resp. Eigenfunktionen [...].”52 It seems that Hurwitz was
not yet familiar with Hilbert’s concept. One indication is the special highlighting of
all those terms by double underlining, another indication is the placing of certain

48From 1906 II.1. to 1906 XII.8.
49“D. Hilbert (Integralgl. V. Gött. Nachr. 1906)”.
50Hilbert’s term “Kern” became internationally used, in English it was transformed to “kernel”.
51“Segments”, “convolution”, “eigenvalue”, “spectrum”, “resolvent”.
52“Die Werte [...] sind wesentlich durch den Kern (s,t) bestimmt; ich habe sie Eigenwerte bez.
Eigenfunktionen [...] genannt.” In English these objects are now called eigenvalues and eigenfunc-
tions.
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Fig. 22 Excerpt of Hurwitz’s diary entry. The important terms are double underlined

Fig. 23 “Thus the “convolution” Kn(x, ·)Kp(λj·, y) = ∑
KpqxqK (p)

n (λ/y)” (“Also die “Faltung”

Kn(x, ·)Kp(λj·, y) = ∑
KpqxqK (p)

n (λ/y)”)

terms in quotation marks on the second page, where Hurwitz became acquainted
with resulting equations (Fig. 23).

This shows the unfamiliar use of this term. Some days later, in an entry from
September 02, 1906, Hurwitz continued his analysis. He wrote,

Then Hurwitz defined again a variety of new terms. This is followed up through
an entry from September 16, 1906, where Hurwitz stated a theorem on quadratic
forms (Figs. 24 and 25).

Hurwitz examined the theorem as well as the proof and found some reformula-
tions, noted on diary pages 170 and 171. Two pages later he stated a further theorem
(Fig. 26).
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Fig. 24 “In Hilbert’s concept the following continuations are expediently to be used [...]” (“In
Hilberts Ideenbildung sind folgende Fortsetzungen zweckmäßig zu benutzen [...]”)

Fig. 25 “If Q = ∑
apqxpxq for

∑
x2

p ≤ 1 is a function, i.e. if for any system of values

(x1, x2, · · · , xp, · · · ), which satisfies
∑

x2
p ≤ 1, Limn=∞(p,q=1,2,...n)

∑
apqxpxq exists, then Q is

a limited form. (notification of Hilbert, that students proved this, the proof is to be considered as
very difficult.)” (“Wenn Q = ∑

apqxpxq für
∑

x2
p ≤ 1 eine Funktion ist, d.h. wenn für jedes Wert-

system (x1, x2, · · · , xp, · · · ), das
∑

x2
p ≤ 1 erfüllt, Limn=∞(p,q=1,2,...n)

∑
apqxpxq existiert, so ist

Q eine beschränkte Form. (Mitteilung v. Hilbert, daß Schüler dies bewiesen, den Beweis als sehr
schwer bezeichnen.)”)

Fig. 26 “Proof either according to Hilbert or with the theorem on pag 170 [...]” (“Beweis entweder
nach Hilbert oder mit Hilfe des Satzes pag 170 [...]”.)

The next section continues with the consideration of linear and quadratic forms,
which we do not want to deepen here. However, what we remark is that Hurwitz was
not only dealing with Hilbert’s ideas, he was moreover adopting a completely new
theory from his colleague.

One year later the collegial relation became more apparent. In 1907, David Hilbert
solved the task of developing an analytical refounding of Minkowski’s theory of
volumes and surfaces of convex bodies in his sixth supplement53 [16]. This task had
already been tackled by Hurwitz in 1901 and 1902. An entry in diary No. 1854 [21,
No. 18] about his colloquium talk from January 21, 1901 is entitled (Fig. 27).

53Which was published three years later in 1910.
54From 1900 XII. to 1901 X.
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Fig. 27 “Minkowski’s theorems on convex bodies [...]”. (“Minkowski’s Sätze über konvexe
Körper [...]”)

Fig. 28 “It remains doubtful if simple results can be discovered here.” (“Es bleibt fraglich, ob man
hier zu einfachen Resultaten durchdringen kann.”)

Here Hurwitz discussed several questions on convex bodies. However, four pages
of calculations later, he stated (Fig. 28).

Obviously, he was not content with his considerations. One year later, Adolf
Hurwitz published the article [25] in which he tried a first attempt of an appropriate
refoundation “using his theory of spherical functions [...], however, he only had a
partial success. Hilbert, with his powerful tool on integral equations, replaces the
spherical function by more generalized ones and passes through.”55 [3, p. 414].56

Hilbert developed more and more as guidepost and unique mathematician. At the
latest, the year 1907 can be considered as final turnaround of the teacher–student
relation to Hurwitz. A therefore remarkable situaton is explained in detail by Otto
Blumenthal: in a short note [26] from November 20, 1907, Adolf Hurwitz proved a
variation of the so-called Waring problem. This number theoretical question, named
after the English mathematician Edward Waring (1736–1798) and published in his
work Meditationes algebraicae from 1770, claimed that for every exponent n ∈ N

there exists a natural number m such that every natural number can be expressed
as a sum of at least m many n-th powers. Hurwitz showed, “[i]s the nth power
of x2

1 + x2
2 + x2

3 + x2
4 equal to a sum of 2nth powers of a linear rational form of

x1, x2, x3, x4, and does the Waring Conjecture hold for n, it is also valid for 2n.”57 [3,
p. 415] According to Otto Blumenthal, “[t]his theorem gave Hilbert the inspiration

55“mit seiner Theorie der Kugelfunktionen [...], hatte aber nur einen Teilerfolg erzielt. Hilbert,
im Besitze der mächtigen Hilfsmittel der Integralgleichungen, ersetzt die Kugelfunktionen durch
allgemeinere, und kommt durch.”
56Firstly, it is remarkable that Hurwitz, studying Hilbert’s supplements, did not apply the integral
equation method. Secondly, notice that Hilbert’s dissertation thesis was about spherical functions.
Interestingly, the thesis is dedicated to Hurwitz.
57“Ist die n-te Potenz von x2

1 + x2
2 + x2

3 + x2
4 identisch gleich einer Summe (2n)-ter Potenzen lin-

earer rationaler Formen der x1, x2, x3, x4, und gilt die Waringsche Behauptung für n, so gilt sie auch
für 2n.”
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and direction for his examinations. He found an unexpected way to state an identity
of the by Hurwitz demanded kind for arbitrary n.”58 Moreover, Hilbert deduced
“from a general principle which was used by Hurwitz in the theory of invariants in
1897, a formula [...]”59 and he managed “to transfer the by the integration demanded
taking the limits in the coefficients of the sum and finally, on behalf of another trick, to
replace those coefficients by positive rationals. Therewith the foundation for the proof
of Waring’s theorem is laid.”60 [3, p. 415] Finally, Hilbert solved Waring’s Problem
[15] and presented a wonderful example for his mathematical skills: “[b]ecause he
fought together with a master of Hurwitz’s high level and won with the weapons from
Hurwitz’s armor chamber on a point, when [Hurwitz] had no prospect of success.”61

[3, p. 416]
With this meaningful characterization we close the analysis of the diary entries

related to the mathematical exchange between those two great mathematicians with
some last significant words from Hilbert, expressing that Hurwitz was “[...] more
than willing to appreaciate the achievements of others and he was genuinely pleased
about any scientific progress: an idealist in the good old-fashioned meaning of the
word.”62 [17, p. 164]

3.3.1 Personal Relation: Lifelong and Even Longer

Besides the mathematical diaries there are some more hints on the multifaceted
relationship between David Hilbert and Adolf Hurwitz to be discovered in the ETH
estate in Zurich. Hurwitz, who suffered during all of his life from an unstable health,
was a very rare guest at conferences outside Zurich. Accordingly several greeting
cards63 sent from mathematical events can be found, from “Lutetia Parisiorum, le 12
août 1900”, the “Landau-Kommers 18. Jan. 1913” and from the “Dirichletkommers
am 13. Februar 1905”.

All of those were signed by a great number of mathematicians, the first two show
the handwriting of David Hilbert. On the card from Paris (see the left picture in

58“Dieser Satz gab Hilbert die Anregung und Richtung zu seinen Untersuchungen. Er fand näm-
lich einen ungeahnten Weg, um für beliebige n eine Identität der von Hurwitz geforderten Art
aufzustellen.”
59“aus einem allgemeinen Prinzip, das Hurwitz 1897 in der Invariantentheorie benutzt hatte, eine
Formel [...]”.
60“den durch die Integration geforderten Grenzübergang in die Koeffizienten der Summe zu verlegen
und schließlich durch einen weiteren Kunstgriff diese Koeffizienten durch positive rationale zu
ersetzen. Damit ist die Grundlage für den Beweis des Waringschen Satzes gelegt.”
61“Denn er kämpfte zusammen mit einem Meister von dem hohem Range Hurwitz’s und siegte
mit den Waffen aus Hurwitz’s Rüstkammer an einem Punkte, wo dieser keine Aussicht auf Erfolg
gesehen hatte.”
62“[...] gern bereit zur Anerkennung der Leistungen anderer und von aufrichtiger Freude erfüllt über
jeden wissenschaftlichen Fortschritt an sich: ein Idealist im guten altmodischen Sinne des Wortes.”
63Under the directory HS 583: 52,53 and 57.
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Fig. 29 Greeting cards from the “Lutetia Parisiorum” and the “Landau-Kommers”

Fig. 29) he wrote, “Sending warm greetings, wishing good recovery and hoping for
a soon reunion longer than the last time Hilbert”.64

Furthermore, some documents testify that there had even been a close relation-
ship between the families Hurwitz and Hilbert. As already mentioned above, Adolf
Hurwitz’s elder brother Julius, who also studied mathematics in Königsberg, edited
several of Hilbert’s lectures. On some lecture notes65 comments of Hilbert himself
can be found and in the extensive collected correspondence of Adolf Hurwitz66 a
letter exchange between Julius Hurwitz and Hilbert has been discovered.

In an additional notebook No. 3267 Georg Pólya completed the mathematical
diaries with a register. Next to this list the notation “the first 9 volumes and table of
contents are for the purpose of editing temporarily at Prof. Hilbert in Göttingen”68 and
is written and later crossed out with a pencil. Obviously, Hilbert had lent the first nine
as well as the twentysecond diary and had returned them after a while. It is difficult to
reconstruct when exactly he borrowed the diaries, however, there are two hints. In the
beginning of this section we already stated Hilbert’s remarks about Hurwitz’s diaries.
He wrote that they “provide a true view of his constantly progressive development
and at the same time they are a rich treasure trove for interesting and for further
examination appropriate thoughts and problems.” [17, p. 166] Since this quotation is
taken from his commemorative speech, Hilbert had viewed the diaries before 1920
and considered them as a rich source of new mathematical inspirations (Fig. 30).

In a letter of condolence to Ida Samuel-Hurwitz69 from December 15, 1919 - four
weeks after Adolf Hurwitz’s death - Hilbert wrote that for George Pólya (1887–1985)

64“Herzliche Grüße sendend, gute Erholung wünschend und baldiges Wiedersehen auf länger, wie
das letzte Mal erhoffend. Hilbert”.
65Under the directory HS 582: 154.
66Which is stored in the archive of Göttingen.
67In HS 582: 32.
68“die ersten 9 Bände und Inhaltsverzeichnis sind zwecks Bearbeitung vorderhand bei Prof. Hilbert
in Göttingen”.
69Under the directory HS 583: 28.
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Fig. 30 “22. for editing temporarily at Prof. Hilbert in Göttingen” (“22. zwecks Bearbeitung vorder-
hand bei Prof. Hilbert in Göttingen”)

and him the “matter of publishing the Hurwitz’s treatises [is] of utmost concern”.70,71

He offered, “The negotiations could be done verbally with Springer by a local, very
skillful, math. colleague.”72,73 It took another few years before Hilbert’s and Pólya’s
support of their mathematical and personal friend finally turned out to be successfull.
Adolf Hurwitz’s Mathematische Werke [27] were published in 1932.

4 Julius Hurwitz and an Ergodic Theoretical View
on His Complex Continued Fraction

Reading Shigeru Tanaka’s article A complex continued fraction transformation and
its ergodic properties [46] with its modern terminology, one might get the impression
that his algorithm provides a typical recent, innovative approach to complex contin-
ued fractions. However, it turns out that Tanaka’s continued fraction expansion equals
the one of Julius Hurwitz [30]. In this section we adopt the modern perspective to
receive new tools for handling some characteristics concerning its approximation
quality.

4.1 Basics

Tanaka’s approach relies on the following representation of complex numbers z,

z = xα + yα,

with x, y ∈ R and α = 1 + i, respectively α = 1 − i. Obviously, all complex num-
bers z have therewith a representation

z = x(1 + i) + y(1 − i) = (x + y) + i(x − y), (4.1)

70“Angelegenheit der Herausgabe der Abhandlungen von Hurwitz [ist] unsere wichtigste Sorge”.
71Pólya himself remembered, “I played a large role in editing his collected works.” [39, p. 25].
72“Die Verhandlungen könnte ich durch einen hiesigen sehr gewandten math. Kollegen mündlich
mit Springer führen lassen.”
73Probably, Hilbert meant Richard Courant, his former student and at that time professor in Göt-
tingen, with whom he had created the “Gelbe Buchreihe” with publisher Springer.
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where x and y are uniquely determined by solving the system of linear equations
Re z = x + y and Im z = x − y. To facilitate the following calculations, we illus-
trate this representation of complex numbers. We have

z = a + ib =
(

1

2
(a + b)

)

α +
(

1

2
(a − b)

)

α,

which leads to (

x
y

)

= 1

2

(

1 1
1 −1

) (

a
b

)

.

Accordingly, the sets
I0 := {nα + mα : n, m ∈ Z},

respectively
I := I0 \ {0}

describe subsets of the set of Gaussian integers Z[i]. Since

n + m ≡ n − m mod 2 (4.2)

for any pair of integers n, m, it follows that I0 contains exactly those numbers z whose
real part and imaginary part have even distance. Writing I0 in the form

I0 = {a + ib ∈ Z[i] : a ≡ b mod 2} = (1 + i)Z[i] = (α),

it occurs that I0 is the principal ideal in the ring of integers Z[i] generated by α. In
fact, this ideal is identical to the set of possible partial quotients in Julius Hurwitz’s
case (Fig. 31).

To construct a corresponding continued fraction expansion, firstly an appropriate
complex analogue to the Gaussian brackets is required. To identify the nearest integer
to z from I0, we define

[ . ]T : C → I0,

[z]T =
⌊

x + 1

2

⌋

α +
⌊

y + 1

2

⌋

α.

Furthermore, we specify a fundamental domain

X =
{

z = xα + yα : −1

2
≤ x, y <

1

2

}

,

and define a map T : X → X by T0 = 0 and
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Fig. 31 Illustration, taken from [36], of Tanaka’s change of coordinates {1, i} → {α,α} along the
angle bisectors of the first and third quadrant

Tz = 1

z
−

[
1

z

]

T

for z 
= 0.

By iteration, we obtain the expansion

z = 1

a1 + Tz
= 1

a1 + 1

a2 + T 2z

= · · · = 1

a1 + 1

a2 + . . . + 1

an + Tnz

,

with partial quotients an := an(z) := [
1

T n−1z

]

T
. As in the real case, convergents pn

qn
to

z are defined by “cutting” the continued fraction after the nth partial quotient. Setting

p−1 = α, p0 = 0, and pn+1 = an+1pn + pn−1 for n ≥ 1, (4.3)

as well as
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q−1 = 0, q0 = α, and qn+1 = an+1qn + qn−1 for n ≥ 1, (4.4)

by the same reasoning as for regular continued fractions for real numbers, z can be
expressed as

z = pn + Tnzpn−1

qn + Tnzqn−1
. (4.5)

4.1.1 Example

As illustrating example we choose x = 1
8 , y = 3

8 and receive

z = 1

2
(1 + i) − 1

4
(1 − i) = 1

8
+ i

3

8
= 1

8
(1 − 3i).

For the first transformation Tz, we calculate 1
z and

[
1
z

]

T
:

1

z
= 8

1 − 3i
= 8(1 + 3i)

(1 − 3i)(1 + 3i)
= 8

10
(1 + 3i) = 4

5
(1 + 3i).

Following Tanaka, we obtain

(

x
y

)

= 1

2

(

1 1
1 −1

)

·
( 4

5
12
5

)

respectively x = 8
5 , y = − 4

5 . Thus, we have

a1 =
[

1

z

]

T

=
⌊

8

5
+ 1

2

⌋

α +
⌊

−4

5
+ 1

2

⌋

α = 2α − α = 1 + 3i.

Consequently, we receive the continued fraction expansion with first partial quotient

z = 1

8
(1 − 3i) = 1

1
z

= 1
4
5 (2α − α)

= 1

2α − α + 4
5 (2α − α) − (2α − α)

= 1

a1 + Tz
.

For the second partial quotient, we calculate

Tz = 4

5
(2α − α) − (2α − α) = −2

5
α + 1

5
α = −1

5
− 3

5
i = −1

5
(1 + 3i),

1

Tz
= −5(1 − 3i)

(1 + 3i)(1 − 3i)
= −5(1 − 3i)

10
= −1

2
(1 − 3i) = 1

2
(α − 2α)
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and

a2 =
[

1

Tz

]

T

=
⌊

1

2
+ 1

2

⌋

α +
⌊

−1 + 1

2

⌋

α = α − α = 2i.

For the third partial quotient, we calculate

T 2z = −1

2
(1 + i),

1

T 2z
= −2(1 − i)

(1 + i)(1 − i)
= −1 + i = −α

and

a3 =
[

1

T 2z

]

T

=
⌊

−1 + 1

2

⌋

α = −1 + i.

Since

T 3z = 1

T 2z
−

[
1

T 2z

]

T

= 0,

it follows that the algorithm terminates and that the finite continued fraction is given
by

1 − 3i

8
= 1

1 + 3i + 1

2i + 1

−1 + i

.

4.1.2 Some Considerations and Characteristics

To deepen the understanding of the behaviour of T we examine some of its charac-
teristics generating the complex continued fraction expansion. First of all, we verify
that T indeed maps X to X and determine the region in which 1

z is located.

Lemma 4.1 For z ∈ X we have Tz ∈ X.

Proof Considering 0 
= z = a + ib = 1
2 (a + b)α + 1

2 (a − b)α ∈ X, it follows that

1

z
= (a − b)

2(a2 + b2)
α + (a + b)

2(a2 + b2)
α

and [
1

z

]

T

=
⌊

a2 + a − b + b2

2(a2 + b2)

⌋

α +
⌊

a2 + a + b + b2

2(a2 + b2)

⌋

α.

To show that Tz = 1
z − [

1
z

]

T
lies in X one takes the difference of the respective x or

y-values. We receive



Historical Face of Number Theory(ists) at the Turn of the 19th Century 207

−1

2
≤ (a ± b)

2(a2 + b2)
−

⌊
a2 + a ± b + b2

2(a2 + b2)

⌋

≤ 1

2
,

which concludes the proof. q.e.d.

In view of Lemma 4.1 the continued fraction expansion follows from iterating T
over and over again. Since Tz ∈ X, we can localize 1

z by inverting the minimal and
maximal possible value of |z|.

A natural question is:

For which numbers does the algorithm terminate?

To tackle this question we introduce a certain dissection of the set of Gaussian integers
on behalf of

J := 1 + (α) = {c + id ∈ Z[i] : c 
≡ d mod 2},

which leads to the disjoint decomposition

Z[i] = I0 ∪̇ J

with I0 as defined in Sect. 4.1. Recall that I = I0 \ {0} (Fig. 32).

Theorem 4.2 The algorithm terminates if, and only if,

z ∈ Q :=
{

z = u

v
: either u ∈ I, v ∈ J or v ∈ I, u ∈ J

}

.

In the sequel the set

M := {z ∈ C : Tnz = 0 for some n ∈ N} ⊂ Q[i]

will be examined. Since the algorithm terminates if, and only if, z is equal to a
convergent pn

qn
, M can also be written as

M :=
{

z = pn

qn
for some n ∈ N

}

.

The proof of the theorem will be separated into two parts. After showing M ⊂ Q, we
verify the inverse inclusion Q ⊂ M. However, first some preliminary work needs to
be done.

By definition I0 = {nα + mα : m, n ∈ Z} = (1 + i)Z[i] = (α). Hence, for
z ∈ M, we have

an =
[

1

Tn−1z

]

T

= αbn with bn ∈ Z[i].

In accordance with (4.3) and (4.4) the first convergents are of the form
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Fig. 32 Illustration taken from [36]: considerations from Sect. 2 show that 1
z is always located

in the infinite region outside the four semicircles B±1±i centered at ± 1
2 ± i 1

2 with radius 1√
2

(see
Sect. 4.1.3 for more details)

p1

q1
= α

a1α
= α

α2b1
,

p2

q2
= a2α

(a2a1 + 1)α
= α2b2

αb′
2

, · · ·

with b′
2 ∈ Z[i] and so on. We observe that the parity of the α-parts of numerator and

denominator alternate in their exponents.

Lemma 4.3 We have

pn

α
∈ (α) ⇔ 2|n ⇔ qn

α
/∈ (α),

respectively
pn

α
/∈ (α) ⇔ 2 � n ⇔ qn

α
∈ (α).

Proof It is sufficient to consider the sequence of nominators (pn), since (qn) can be
treated analogously. According to the recursion formula (4.3) we may write

pn

α
= an

pn−1

α
+ pn−2

α
,

what leads to a simple proof by induction. We begin with



Historical Face of Number Theory(ists) at the Turn of the 19th Century 209

• n = −1 : p−1

α
= α

α
= 1 /∈ (α), and

• n = 0 : p0

α
= 0 ∈ (α),

which satisfy the assertion. In the induction step we distinguish the two cases of n
being even or odd.

1. case : 2|n
Since n − 2 is even as well, the induction hypothesis provides pn−2

α
∈ (α). More-

over, we observe an ∈ (α), respectively an
pn−1

α
∈ (α). On behalf of the recursion

formula follows pn

α
∈ (α). Here we have used that (α) is an ideal.

2. case : 2 � n
This case can be treated similarly: pn−2

α
/∈ (α), an ∈ (α) implies pn

α
/∈ (α).

q.e.d.

Thus, we have verified M ⊂ Q and for the proof of Theorem 4.2 it remains to
prove the inverse inclusion.

Lemma 4.4 We have
Q ⊂ M.

In particular, all z = u
v

∈ Q(i) with either u ∈ I, v ∈ J or v ∈ I, u ∈ J lead to a ter-
minating algorithm.

Proof We assume that O := Q \ M is not an empty set. Then there exists a number
z ∈ O of the form z = u

v
∈ I

J (respectively ∈ J
I ) with Tn u

v

= 0, for which |u|2 + |v|2

is minimal. Without loss of generality we may assume u ∈ I and v ∈ J .
We have

z = u

v
= 1

a1 + 1

a2 + 1

. . . + 1

an + Tn u
v

.

Furthermore, we put

z′ = x

y
= 1

a2 + 1

a3 + 1

. . . + 1

an + Tn u
v

.

Because of Tn u
v

= Tn−1 x
y , it follows that z′ is as well an element of the set Q and

satisfies the condition
Tn x

y

= 0.
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Moreover, we have
u

v
= 1

a1 + x
y

= y

a1y + x
(4.6)

and therewith u = y ∈ I (respectively ∈ J) and v = a1y + x ∈ J (respectively ∈ I).
To go on, we observe the multiplicative and additive structure of I and J by noting

J · I = I · J = I , J · J = J , I · I = I,

and
J + I = I + J = J , J + J = I , J + J = J.

Of course, this is meant in the sense of Minkowski’s multiplication and addition of
sets, respectively, and can easily be shown on behalf of complex calculation.

With the constraint a1 ∈ I , the structure of x
y occurs:

1. For u = y ∈ I and v = a1y + x ∈ J we have that a1y + x is an element of I · I + x,
which is a subset of J , if, and only if, x ∈ J.

2. For u = y ∈ J and v = a1y + x ∈ I we have that a1y + x is an element of I · J + x,
which is a subset of I , if, and only if, x ∈ I.

Obviously, the structure of z = u
v

changes for z′ = x
y in an alternating way. The

property of non-terminating as well as the observed structure above do also hold if
z = x

y is replaced by x
−y . With (4.6) we additionally obtain

|u| = |y| and |v| = |a1y + x|

what leads to
|u|2 + |v|2 = |y|2 + |a1y + x|2.

Since |u|2 + |v|2 was assumed to be minimal, the inequality

|a1y + x|2 ≤ |x|2 (4.7)

follows. Since setting z′ = x
y or z′ = x

−y will not change anything of our previous
observations, it is guaranteed that the case of real part and imaginary part of a1y
being positive can always be achieved. With x = a + ib, the inequality

|a1y + x|2 = (Re (a1y) + a)2 + (Im (a1y) + b)2 > a2 + b2 = |x|2

holds. This is a contradiction to (4.7), i.e., to the minimality of z = u
v
, which proves

that there is no number satisfying the assumption. Consequently, O is an empty set.
q.e.d

Concluding Lemmas 4.3 and 4.4, it follows that complex numbers z ∈ C, having
a finite continued fraction, are either of the form z ∈ I

J or z ∈ J
I .
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Remark In Julius Hurwitz’s doctoral thesis [30] a whole chapter is dedicated to the
question which complex numbers have a finite continued fraction expansion. There
it is described that the continued fraction is finite in any case of rational complex
numbers. This is because Hurwitz allowed a last partial quotient from Z[i] in those
cases when irregularities occur from rational complex numbers with numerator and
denominator divisible by (1 + i). That Shigeru Tanaka [46] did not refer to those
difficulties is certainly due to the fact that under an ergodic theoretical point of view
those few irregularities are insignificant. The set Q(i) is countable and thus negligible
with respect to applications from ergodic theory. However, this could also indicate
that Julius Hurwitz’s thesis was unknown to Tanaka.

Next we examine some characteristics of the algorithm concerning its approxi-
mation property.

Lemma 4.5 Let an+1 
= 0. For kn := qn+1

qn
we have |kn| > 1.

Notice that for an+1 = 0 the recursion formula leads to qn+1 = qn−1 and that the
continued fraction is finite.

Proof We suppose that all previous k1, . . . , kn−1 are of absolute value > 1, here
certainly |k1| ≥ √

2 (because |aj| ≥ √
2 for every aj ∈ I). Thus,

kn = an+1 + 1

kn−1
∈ {z ∈ C : |z − an| < 1}.

We assume |kn| < 1, hence,

|an+1| =
∣
∣
∣
∣
kn − 1

kn−1

∣
∣
∣
∣
≤ |kn| + 1

|kn−1| < 2

and consequently an+1 = ±1 ± i. Without loss of generality we consider an+1 =
1 + i. By a backwards calculation we determine

an−2k = −2 + 2i and an−2k−1 = 2 + 2i

for all k ∈ N0 with 2k < n. The following considerations are by induction:
For n = 1 we have k1 = a2 = 1 + i which leads to |k1| = √

2 > 1.
For n = 2 we have k2 = a3 + 1

−2+2i = 3
4 (1 + i) which leads to |k1| = 3

4

√
2 > 1.

For n ≥ 3 we have k1 = ±2 + 2i which leads to |k1| = √
8 and k2 = ±2 + 2i + 1

k1

which leads to |k2| ≥ √
8 − 1

|k1| .
Therefore, we observe kj = ±2 + 2i + 1

kj−i
as well as |kj| ≥ √

8 − 1
|kj−1| =: yj ∈ R.

We consider the recursion yj = √
8 − 1

yj−1
with

y1 = √
8, y2 = √

8 − 1√
8

= 7

4

√
2 <

√
2 + 1.
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Under the assumption yj < yj−1 < . . . it follows by induction that

yj+1 = √
8 − 1

yj
<

√
8 − 1

yj−1
= yj

as well as

yj+1 = √
8 − 1

yj
>

√
8 − 1√

2 + 1
= √

2 + 1.

Hence, for all j < n the inequality

kj ≥ yj >
√

2 + 1

holds. Consequently, with kn = an + 1
kn−1

this leads to

|kn| =
∣
∣
∣
∣
1 + i + 1

kn−1

∣
∣
∣
∣
>

√
2 − 1√

2 + 1
= 1.

This is the desired inequality. q.e.d.

In the following, we shall use the previous lemma in order to show that the
continued fraction expansion actually converges.

4.1.3 Geometrical Approach to the Approximation Behaviour

We have already indicated that, following Tanaka’s line of argumentation, the approx-
imation properties of his algorithm can be illustrated geometrically. This happens
essentially on behalf of two tilings.

Firstly, the fundamental domain X is split into disjoint so-called T-cells. This is
done with respect to the first n partial quotients as follows. We define the set A(n) of
sequences of partial quotients by

A(n) = {a1(z), a2(z), . . . , an(z) : z ∈ X}.

Such sequences are called T-admissible. One should notice that certain sequences
of numbers from (1 + i)Z[i] cannot appear as sequence of partial quotients, which
was examined by Julius Hurwitz (see Lemma 2.1).

Corresponding to each admissible sequence a1, a2, . . . , an ∈ A(n) the subset
X(a1, a2 . . . , an) of X arises as

X(a1, a2 . . . , an) = {z ∈ X : ak(z) = ak for 1 ≤ k ≤ n};

each such set is called a T -cell. We have

X =
⋃

a1,a2...,an∈A(n)

X(a1, a2 . . . , an).
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In other words, T -cells describe a “close” neighborhood of a certain z ∈ X.
The second tiling is corresponding to the set of reciprocals

X−1 =
{

1

z
: z ∈ X, z 
= 0

}

.

In each iteration of the continued fraction algorithm a complex number

Tnz = 1

Tn−1z
−

[
1

Tn−1t

]

T

arises, which is split into an integral partial quotient and a remainder. The latter is
going to be iterated again. We thus receive a sequence of elements of X−1. By taking
the reciprocals, the edges of X are transformed to arcs of discs. We define

U1 :=
{

z ∈ X :
∣
∣
∣z + α

2

∣
∣
∣ ≥ 1√

2

}

.

Writing z = xα + yα, we have

∣
∣
∣z + α

2

∣
∣
∣ =

∣
∣
∣
∣

(

x + y + 1

2

)

+ i

(

x − y + 1

2

)∣
∣
∣
∣

=
√

(

Re (z) + 1

2

)2

+
(

Im (z) + 1

2

)2

≥ 1√
2

including elements z ∈ X, while excluding numbers which lie inside the disc of radius
1√
2

and center − 1
2 (1 + i) = − 1

2α (see Fig. 32). Analogously, we define

U2 := −i × U1, U3 := −i × U2 and U4 := −i × U3.

Setting
U(α) := U1, U(α) := U2, U(−α) := U3, U(−α) := U4

and
U(a) := X, if a 
= α,α,−α,−α,

we attach to each Gaussian integer a ∈ I an area. With (4.2) there is always an even
integer distance between real part Re a and imaginary part Im a (Fig. 33).

Thus, the set of reciprocals X−1 can be composed from translates of the sets U(a)
shifted by a, i.e.,

X−1 =
⋃

a∈I

(a + U(a)).
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Fig. 33 Illustration taken from [36]: the numbers a ∈ I are located on the angle bisectors of the
quadrants or on parallel lines shifted by a multiple of 2 excluding the origin

These geometrical observations are related to one another on behalf of the defined
transformation T . We have

TnX(a1, . . . , an) = U(an).

This implies that the nth iteration of the transformation applied to the remainder of
the n first partial quotients maps to the domain U, which is located around the nth
partial quotient. This is interesting in view of Eq. (4.5), from which the uniqueness
of the inverse map Tn follows. We define φa1···an := (Tn)−1 by

φa1···an : U(an) → X(a1, . . . , an)

with
φa1···an(z) = pn + zpn−1

qn + zqn−1
.

The “forward” mapping to the non-integer remainder of 1
T n−1z becomes a unique

inverse mapping “backwards” in the algorithm. Since in each set U(an) = X, U1, . . . ,
U4 the origin is included, for all admissible sequences of partial quotients a1, . . . , an ∈
A(n) the nth convergent is located in the corresponding T -cell, that is
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pn

qn
= φa1···an(0) ∈ X(a1 · · · an).

Consequently, the algorithm indeed produces convergents approximating the initial
values better and better. The more partial quotients are chosen as fixed, the smaller
the T -cell becomes in X and therewith the closer the corresponding convergent is
located.

4.2 Ergodic Theory

In ergodic theory one examines so-called measure preserving dynamical systems. In
general such a dynamical system describes a mathematical concept which models a
certain time-process in a certain space on behalf of fixed mathematical regularities.

4.2.1 Transformations

We consider a probability space (X,Σ,μ) with non-empty set X, a σ-algebra Σ on
the set X, a probability measure μ on (X,Σ) and a measure preserving transformation

T : X → X.

The above mentioned time-process is explained by assuming T as “shift into the
future”, whereas its inverse T−1 can be considered as “shift into the past”. Here T is
said to be measure preserving, if, and only if, for E ∈ Σ ,

μ(T−1E) = μ(E),

which means that the measure of E is preserved under T . Furthermore, a measurable
set E is called T-invariant when

T−1E = E.

The corresponding dynamical system is written as quadrupel (X,Σ,μ, T).
In addition, T is called ergodic when for each μ-measurable, T -invariant set E

either
μ(E) = 0 or μ(E) = 1.

A very powerful result dealing with ergodic transformations was realized by Georg
David Birkhoff [2] and in the general form below by Aleksandr Jakovlevich Khin-
chine [33].74

74For a comprehensive version see [7].
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Theorem 4.6 (Pointwise Ergodic Theorem, Birkhoff 1931)
Let T be a measure preserving ergodic transformation on a probability space
(X,Σ,μ). If f is integrable, then

lim
N→∞

1

N

∑

0≤n≤N

f (Tnx) =
∫

X
fdμ

for almost all x ∈ X.

Here the nth transformation Tn is defined recursively as follows

T 0 = id, T 1 = T and Tn = T 0 ◦ Tn−1.

4.2.2 Continued Fraction Transformation

In this subsection we shortly introduce an ergodic approach to continued fractions.
Hereby, we follow a classical method75 firstly explained for the real case.

We define a transformation T : [0, 1) → [0, 1) which serves as operator in the
well known regular continued fraction algorithm (similar to the map T introduced in
Tanaka’s complex approach in Sect. 4.1). Choosing the unit interval as fundamental
set X, we define T0 = 0 and, for x ∈ X,

Tx = T(x) := 1

x
−

⌊
1

x

⌋

if x 
= 0.

For an irrational number x ∈ R \ Q and a0 := �x� ∈ Z we obviously have x − a0 ∈
[0, 1). Setting

T 0x := x − a0, T 1x := T(x − a0), T 2x := T(T 1x), . . . ,

the definition above provides

Tnx ∈ [0, 1) \ Q for all n ≥ 0.

With

an = an(x) :=
⌊

1

Tn−1x

⌋

for n ≥ 1

one receives the well-known regular continued fraction expansion

75Once more we refer to [7, p. 20].
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x = a0 + 1

a1 + T 1x
= a0

1

a1 + 1

a2 + T 2x

= · · ·

= a0 + 1

a1 + 1

a2 + . . . + 1

an + Tnx

= [a0; a1, a2, · · · , an + Tnx].

The existence of the limit

x = [a0; a1, a2 · · · , an, · · · ] = lim
n→∞[a0; a1, a2 · · · , an + Tnx]

follows on behalf of the representation related to the nth convergent pn

qn
∈ Q to x. In

fact, we have

x = pn + Tnxpn−1

qn + Tnxqn−1

and pn−1qn − pnqn−1 = (−1)n for n ≥ 1. In view of Tnx ∈ [0, 1) the inequality

∣
∣
∣
∣
x − pn

qn

∣
∣
∣
∣
<

1

an+1q2
n

can be derived. Here (qn)n≥0 is a strictly increasing sequence of positive integers.
In the complex case, the fundamental set is naturally two-dimensional correspond-

ing to real and imaginary parts of the expanded complex number. Hence, in Shigeru
Tanaka’s, respectively Julius Hurwitz’s algorithm the transformation T : X → X
is defined on the fundamental domain X = {z = xα + yα : −1

2 ≤ x, y < 1
2 } with

α = 1 + i (and α = 1 − i) by

Tz := 1

z
−

[
1

z

]

T

for z 
= 0 and T0 = 0,

where

[z]T :=
⌊

x + 1

2

⌋

(1 + i) +
⌊

y + 1

2

⌋

(1 − i).

The analogy between the real and complex approach is obvious. However, for the
complex continued fractions some adjustments need to be done. In order to apply
ergodic methods a main challenge is to define an invariant measure for a given
transformation. In the real case, there is the so-called Gauss-measure,76 defined by

μ(A) = 1

log 2

∫

A

1

1 + x
dx,

76Discovered by Carl Friedrich Gauss.
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for all Lebesgue sets A ⊂ [0, 1). For complex algorithms some difficulties may
appear. Here a so-called natural extension of the underlying transformation can be
helpful.

4.2.3 Dual Transformation and Natural Extension
for Tanaka’s Algorithm

We have shown that Tanaka’s transformation T provides a complex continued fraction
expansion. Here we sketch another related transformation S : Y → Y , introduced by
Tanaka, where

Y = {w ∈ C : |w| ≤ 1}

is the unit disc centered at the origin in the complex plane. We define subsets Vj of
Y by

V1 := {w ∈ Y : |w + α| ≥ 1},

V2 = −i × V1, V3 = −i × V2, V4 = −i × V3, V5 = V1 ∩ V2,

V6 = −i × V5, V7 = −i × V6, V8 = −i × V7

and a partition of I0 = {nα + mα : n, m ∈ Z}, respectively I = I0 \ {0} by

J1 = {nα : n > 0}, J2 = −i × J1, J3 = −i × J2, J4 = −i × J3,

J5 = {nα + mα : m > 0}, J6 = −i × J5, J7 = −i × J6, J8 = −i × J7.

Setting

V (a) :=
{

Y , if a = 0,
Vj, if a ∈ Jj,

for 1 ≤ j ≤ 8, we obtain a new complete tiling of the complex plane

C =
⋃

a∈I0

(a + V (a)).

Furthermore, we define S0 = 0 and

Sw = 1

w
−

[
1

w

]

S

for w 
= 0

with [w]S = a if w ∈ a + V (a). As above partial quotients arise through

bn = bn(w) =
[

1

Sn−1w

]

S

∈ I0.
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Fig. 34 Illustration of the tiling of the complex plane with respect to S

This leads to an expansion of w ∈ Y as

w = [b1, b2, · · · , bn + Snw]

with convergents Vn := [b1, b2, · · · , bn]. Tanaka proved that the transformation S
satisfies a certain duality.

Lemma 4.7 (Duality)
Let a1, . . . , an be a sequence of numbers in I. Then a1, . . . , an is T-admissible if, and
only if, the reverse sequence of partial quotients an, . . . , a1 is S-admissible.

The proof is based on geometrical constraints concerning a finely tiling of Y respec-
tively Y−1 and can be found in [46, p. 200] (Fig. 34).

By Lemma 4.7, we know that for each T -admissible sequence there exists an
associated sequence of convergents of a given w ∈ Y , namely

qn−1

qn
= [an, an−1, . . . , a1] = Vn ∈ Y .

This provides another proof of Lemma 4.5: the sequence (qn)n∈N increases monoto-
nously in absolute value. Given this dual transformation S, one can construct the
so-called natural extension T containing information of T as well as information of
S, which can be regarded as “future” and “past” of the sequence of partial quotients.
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On behalf of Lemma 4.7, we define T : X × Y → X × Y by77

T(z, w) =
(

Tz,
1

a1(z) + w

)

, (4.8)

where a1 = [
1
z

]

T
. Tanaka [46] proved.

Theorem 4.8 (Natural Extension)
The transformation T is a natural extension; in particular T and S are ergodic and
the function h : X × Y → R defined by

h(z, w) = 1

|1 + zw|4

is the density function of a finite absolutely continuous T-invariant measure.

4.2.4 Variation on the Doeblin-Lenstra Conjecture

In this section we give a proof of an analogue of the so-called Doeblin-Lenstra Con-
jecture for the complex case of Tanaka’s continued fraction algorithm [37]. Therefore,
we first state the original conjecture for the regular continued fraction algorithm for
real numbers.

Theorem 4.9 (Doeblin-Lenstra Conjecture)
Let x be any irrational number with continued fraction convergents pn

qn
. Define the

approximation coefficients by θn := qn|qnx − pn|. Then for almost all x we have

lim
n→∞

1

n

∣
∣{j : j ≤ n, θj(x) ≤ c}∣∣ =

{ c
log 2 , for 0 ≤ c ≤ 1

2 ,

−c+log 2c+1
log 2 , for 1

2 ≤ c ≤ 1.
(4.9)

Notice that θj(x) ≤ 1 for all j and all x.
Indeed, this conjecture is due to Hendrik W. Lenstra jr. and, implicitly, included in

an old paper of Wolfgang Doeblin [8]; it has been proven by Wieb Bosma, Hendrik
Jager and Freek Wiedijk [4] with ergodic methods, in particular by using the natural
extension T of the continued fraction transformation T as main tool. We shall follow
their approach and apply their machinery to Tanaka’s, respectively Julius Hurwitz’s
complex continued fraction. For this purpose we define, for some complex number z,

θn := θn(z) := |qn|2
∣
∣
∣
∣
z − pn

qn

∣
∣
∣
∣
.

77In [46] a more exact, more finely, tiling of X resp. Y was given on behalf of sets U and V . For
our needs, it is sufficient to consider the whole sets X and Y .
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Notice that the absolute values of the denominators qn increase strictly with n. We
shall prove the almost sure existence of a limiting distribution function for this
quantity:

Theorem 4.10 For x > 0 we define

�(x) := lim
N→∞

1

N
� {n ≤ N : θn(z) ≤ x} .

Then, for almost all z, the distribution function �(x) exists and is given by

�(x) = lim
N→∞

1

N

∑

n≤N

χAx (T
n(z, 0)) = μ(Ax) = 1

G

∫∫

Ax

dλ(u, v)

|1 + uv|4 , (4.10)

whereT is defined by (4.12) below,λ is the Lebesgue measure,χAx is the characteristic
function of the set

Ax :=
{

(u, v) ∈ X × Y :
∣
∣
∣
∣

1

u
+ v

∣
∣
∣
∣
≥ 1

x

}

,

and the normalizing constant

G :=
∫∫

X×Y

dλ(u, v)

|1 + uv|4 = 4π

∞
∑

n=0

(−1)n

(2n + 1)2
. (4.11)

equals 4π times the Catalan constant.

Interestingly, Catalan’s constant appears in various results in the ergodic theory of
continued fractions, see for example [34], [32, p. 1217] or [9, p. 2].

We shall briefly mention another interesting phenomenon: already in Julius
Hurwitz’s thesis [30] one can find the statement that the sequence of θn(z) has always
a finite limit point (p. 34), in general, however, the sequence of the θn(z) appears to
have divergent subsequences. This is rather different from the real case where the
limiting distribution function is constant for x ≥ 1 as follows from the classical esti-
mate |z − pn

qn
| ≤ 1

q2
n

giving θn(z) ≤ 1. Indeed, there exist z for which θn(z) diverges
to infinity.

Proof ofTheorem4.10. Recall that Tanaka showed that the mapT : X × Y → X × Y
defined by

T(z, w) =
(

Tz,
1

a1(z) + w

)

, (4.12)

where a1 = [
1
z

]

T
is a natural extension (Theorem 4.10); in particular T and S are

ergodic. Moreover, the function h : X × Y → R given by
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h(u, v) = 1

|1 + uv|4 (4.13)

is the density function of a finite absolutely continuous T-invariant measure μ. It thus
follows from the dual transformation that

vn = qn−1

qn
= [0; an, an−1, . . . , a2, a1],

and hence we obtain the equivalence

θn(z) ≤ x ⇔
∣
∣
∣
∣

Tnz

1 + VnTnz

∣
∣
∣
∣
≤ x. (4.14)

By (4.12), we find

Tn(z, w) = (Tnz, [0; an, an−1, . . . , a2, a1 + w]) ,

and, in particular, Tn(z, 0) = (Tnz, Vn). In view of (4.14) this shows that θn(z) ≤ x
if, and only if,

Tn(z, 0) ∈ Ax = {(u, v) ∈ X × Y :
∣
∣
∣
∣

u

1 + uv

∣
∣
∣
∣
≤ x},

respectively

Tn(z, 0) ∈ Ax =
{

(u, v) ∈ X × Y :
∣
∣
∣
∣

1

u
+ v

∣
∣
∣
∣
≥ 1

x

}

.

Comparing the quantities Tn(z, w) = (Tnz, [0; an, an−1, . . . , a1 + w]) and Tn(z, 0)
= (Tnz, [0; an, an−1, . . . , a1]), it follows that for every ε > 0 there exists n0(ε) such
that, for all n ≥ n0(ε) and all w ∈ Y , we have

Tn(z, w) ∈ Ax+ε ⇒ Tn(z, 0) ∈ Ax,

as well as
Tn(z, 0) ∈ Ax ⇒ Tn(z, w) ∈ Ax−ε.

We define AN
x := {n ≤ N : Tn(z, w) ∈ Ax}. Since T is ergodic, the following limits

exist and the inequalities in between hold: for all ε > 0,

lim
N→∞

1

N
�AN

x+ε ≤ lim inf
N→∞

1

N
�AN

x ≤ lim sup
N→∞

1

N
�AN

x ≤ lim
N→∞

1

N
�AN

x−ε.

Since the underlying dynamical system (X × Y ,Σ,μ,T) with the corresponding
invariant probability measure μ (with density given by (4.13)) and σ-algebra Σ is
ergodic, application of Birkhoff’s pointwise ergodic theorem yields (4.10).
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In order to compute the normalizing factor G, we shall use the following derivation
of the geometric series expansion

1

(1 − w)2
=

∑

m≥1

mwm−1,

valid for |w| < 1. To prevent difficulties that could arise from singularities of h on
the boundary of X × Y we define, for 0 < ρ < 1,

Xρ := {z = x + iy : −ρ

2
≤ x, y ≤ ρ

2
} and Yρ := {w ∈ C : |w| ≤ ρ}.

In view of (4.13) and |1 + uv|2 = (1 + uv)(1 + uv) we find

Gρ :=
∫∫

Xρ×Yρ

dλ(u, v)

|1 + uv|4

=
∑

m,n≥1

mn(−1)m+n
∫

Xρ

um−1un−1dλ(u)

∫

Yρ

vm−1vn−1dλ(v).

We compute

∫

Yρ

vm−1vn−1dλ(v) =
∫

Yρ

|v|2(n−1)vm−ndλ(v)

=
∫ 2π

0

∫ ρ

0
rm+n−1eiϕ(m−n)drdϕ =

{

π ρ2n

n , if m = n,
0, otherwise.

Applying the derivation of the geometric series expansion once again, leads to

Gρ = π
∑

n≥1

nρ2n
∫

Xρ

|u|2(n−1)dλ(u)

= π

∫

Xρ

∑

n≥1

nρ2n|u|2(n−1)dλ(u) = π

∫

Xρ

dλ(u)

ρ−2 − |u|2 .

Now with ρ → 1− we get Gρ → G1 = G by Lebesgue’s theorem on monotone
convergence. Next, we use the symmetry of the fundamental domain and split it
along the axes into four parts of equal size. We consider the part located in the first
quadrant � := {a + ib : 0 ≤ a, b ≤ 1; b − 1 < a} and deduce

G = 4π

∫∫

�
dadb

1 − |a + ib|2 = 4π

∫ 1

0

(∫ 1−a

0

db

1 − (a2 + b2)

)

da,

where
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∫ 1−a

0

db

1 − a2 − b2
=

∫ 1−a

0

(
1√

1 − a2 − b
+ 1√

1 − a2 + b

)

db
1

2
√

1 − a2

=
[

− log |b −
√

1 − a2| + log(b +
√

1 − a2)
]1−a

b=0
· 1

2
√

1 − a2

= 1

2
√

1 − a2
log

√
1 − a2 + 1 − a√
1 − a2 − 1 + a

.

Altogether this gives

G = 2π

∫ 1

0
log

√
1 − a2 + 1 − a√
1 − a2 − 1 + a

da√
1 − a2

= 2π

[

A − B + i
∞

∑

k=1

(− exp(i arcsin(a)))k

k2
− i

∞
∑

k=1

(exp(i arcsin(a)))k

k2

]1

a=0

with

A = arcsin(a) log(1 − exp(i arcsin(a))),

B = arcsin(a) log(1 + exp(i arcsin(a))).

Hence, we obtain (4.11).
In contrast to the real case for the ordinary regular continued fraction expansion

[4] the analogous expressions for the complex situation are by far more complicated.
Using Tanaka’s results [46] one may compute �(x) in the latter case numerically,
however, it seems difficult to find an explicit expression for the limiting distribution
function. Another instance of this difficulty is given by Tanaka [46] himself and his
non-explicit respresentation of the entropy of T and S.

Appendix

The appendix contains two parts: a list of direct or indirect references to David Hilbert
in Hurwitz’s estate (see Sect. 3) in the ETH Zurich library and a table of figures of
these notes.

Appendix I: Links to Hilbert in the ETH Estate of Hurwitz

In Sect. 3 we consider the teacher–student relation of Adolf Hurwitz and David
Hilbert. Here we give a list of documents of Adolf Hurwitz’s estate in the ETH Zurich
library (in the directories HS 582 and HS 583) directly or indirectly connected to
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David Hilbert including a great number of diary entries [21] (HS 582 : 1–30) with
remarks related to Hilbert.

• Lectures of David Hilbert edited by Julius Hurwitz
HS 582: 154, Die eindeutigen Funktionen mit linearen Transfor-
mationen in sich (Königsberg 1892 SS) with handwritten remarks
of Hilbert (e.g. on pages −1, 34, 69, 80, 81, ...)
HS 582: 158, Geometrie der Lage (Königsberg 1891 SS)

• No. 6: 1888 IV.–1889 XI.,
p. 44 “Der Nöther’sche Satz (nach einer Mitteilung von Hilbert)”
p. 45 “Hilberts Fundamentalsatz”
p. 93 “Hilbert beweist die obigen Sätze so” (study on convergent series)

• No. 7: 1890 IV.9.–1891 XI.,
p. 94 “[...] die Hilbert’schen Figuren” (“Lines on square”-figures)

• No. 8: 1891 XI.3.–1894 III.,
p. 207 “Zweiter Hilbert’scher Formensatz” (Hilbert’s basis theorem)

• No. 9: 1894 IV.4.–1895 I.6.,
loose sheet concerning “[...] von Hilbert, betreffend die Anzahl von
Covarianten”

• No. 13: 1895 VI.19.–XII.31.,
p. 19 letter to Hilbert in stenography

• No. 14: 1896 I.1.–1897 II.1.,
p. 204 “Hilberts 2tes Theorem” (related to [10, p. 485])

• No. 15: 1897 II.1.–1898 III.19.,
p. 175 “Zu Hilberts “Körperbericht”” (related to Hilbert’s Zahlbericht)

• No. 16: 1898 III.20.–1899 II.23.,
p. 129 “Zum Hilbertschen Bericht pag. 287” (related to Hilbert’s
Zahlbericht)

• No. 19: 1901 XI.1.–1904 III.16.,
p. 29 “Hilberts axiomatische Größenlehre” (related to [12])
p. 114 “Abbildung einer Strecke auf ein Quadrat”,”[..] die Hilbert’schen
geometrisch erklärten Funktionen sollen arithmetisch
charakterisiert werden.” (“Lines on square”-figures)

• No. 20: 1904 III.16.–1906 II.1.,
p. 163 “Hilberts Beweis von Hadamards Determinantensatz”

• No. 21: 1906 II.1.–1906 XII.8.,
p. 166 “Hilberts Vte Mitteilung über Integralgleichungen”
(related to [14])

• No. 22: 1906 XII.18.–1908 I.22.,
p. 36 “Convergenzsätze von Landau + Hilbert”

• No. 25: 1911 X.27.–1912 XII.27.,
p. 77 “Zu Hilberts Formenarbeit (Charakt. Funktion eines Moduls)”

• In the directory HS 582: 32 due to George Pòlya on page 4 and 6 there are remarks
“die ersten 9 Bände und Inhaltsverzeichnis sind zwecks Bearbeitung verderhand
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bei Prof. Hilbert in Göttingen” and “22. zwecks Bearbeitung vorderhand bei Prof.
Hilbert in Göttingen”, crossed out with pencil

• HS 582: 28, Letter of condolences from David Hilbert to Ida Samuel-Hurwitz
(December 15, 1919)

• HS 583: 52, Greeting cards from conferences with Hilbert’s handwritting: “Lutetia
Parisiorum, le 12 aout 1900” and the “Landau-Kommers 18. Jan. 1913”

• Remarks in the biographical dossier written by Ida Samuel-Hurwitz (HS 583a: 2).

Appendix II: Table of Figures

• Figure 1: Portraits of Adolf and Julius Hurwitz, taken from Riesz’s register in Acta
Mathematica from 1913 [42].

• Figure 2: Excerpt of [21, No. 9, p. 100], ETH Zurich library, Hs 582:9, DOI:10.
7891/e-manuscripta-12816.

• Figure 3: Excerpt of [30, p. 12].
• Figure 4: Illustration of Julius Hurwitz’s types of partial quotients, made by the

author.
• Figures 5, 6 and 7: Excerpts from the workshop notes, made by the author.
• Figure 8: Excerpt of [21, No. 6, p. 45], ETH Zurich library, Hs 582:6, DOI:10.

7891/e-manuscripta-12821.
• Figures 9 and 10: Excerpts of [21, No. 14] on pages 204 and 205, ETH Zurich

library, Hs 582:14, DOI:10.7891/e-manuscripta-12840.
• Figure 11: Excerpt of [21, No. 15, p. 175], ETH Zurich library, Hs 582:15, DOI:10.

7891/e-manuscripta-12831.
• Figures 12 and 13: Excerpts of [21, No. 15, p. 177], ETH Zurich library, Hs 582:15,

DOI:10.7891/e-manuscripta-12831.
• Figure 14: Excerpt of [21, No. 15, p. 178], ETH Zurich library, Hs 582:15, DOI:10.

7891/e-manuscripta-12831.
• Figures 15 and 17: Excerpts of [21, No. 16] on pages 129 and 130, ETH Zurich

library, Hs 582:16, DOI:10.7891/e-manuscripta-12830.
• Figure 16: Excerpt of Hilbert’s ’Zahlbericht’, page 289 respectively [20, vl. I, p.

164].
• Figure 18: Excerpt of [21, No. 19, p. 29], ETH Zurich library, Hs 582:19, DOI:10.

7891/e-manuscripta-12819.
• Figure 19: Excerpt of [12, p. 182] and [21, No. 19, p. 29], ETH Zurich library, Hs

582:19, DOI:10.7891/e-manuscripta-12819.
• Figures 20 and 21: Excerpts of [21, No. 19, p. 30], ETH Zurich library, Hs 582:19,

DOI:10.7891/e-manuscripta-12819.
• Figures 22, 23, 24, 25 and 26: Excerpts from [21, No. 21] on pages 166, 167, 168,

169 and 172, ETH Zurich library, Hs 582:21, DOI:10.7891/e-manuscripta-12836.
• Figures 27 and 28: Excerpts of [21, No. 18, p. 75, p. 81], ETH Zurich library, Hs

582:18, DOI:10.7891/e-manuscripta-12810.

http://dx.doi.org/10.7891/e-manuscripta-12816
http://dx.doi.org/10.7891/e-manuscripta-12816
http://dx.doi.org/10.7891/e-manuscripta-12821
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http://dx.doi.org/10.7891/e-manuscripta-12831
http://dx.doi.org/10.7891/e-manuscripta-12831
http://dx.doi.org/10.7891/e-manuscripta-12831
http://dx.doi.org/10.7891/e-manuscripta-12830
http://dx.doi.org/10.7891/e-manuscripta-12819
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http://dx.doi.org/10.7891/e-manuscripta-12819
http://dx.doi.org/10.7891/e-manuscripta-12819
http://dx.doi.org/10.7891/e-manuscripta-12836
http://dx.doi.org/10.7891/e-manuscripta-12810
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• Figure 29: Greeting cards from “Lutetia Parisiorum, le 12 aout 1900” and the
“Landau-Kommers 18. Jan. 1913”, in Hs 583:53 and 57, ETH Zurich library.

• Figure 30: Excerpt of Georg Pòlya’s list [21, No. 32, p. 6], ETH Zurich library, Hs
582:32, DOI:10.7891/e-manuscripta-16074.

• Figure 31: Illustration of Tanaka’s change of coordinates {1, i} → {α,α}, made
by the author.

• Figure 32: Illustration of the set of reciprocals X−1, made by the author.
• Figure 33: Illustration of the numbers a ∈ I , made by the author.
• Figure 34: Illustration of the tiling of the complex plane in respect to the dual

transformation, made by the author.
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