
Trends in Mathematics      
Research Perspectives

New Trends in 
Analysis and 
Interdisciplinary 
Applications

Pei Dang, Min Ku 
Tao Qian, Luigi G. Rodino    
Editors

Selected Contributions of the  
10th ISAAC Congress, Macau 2015





Trends in Mathematics

Research Perspectives

Research Perspectives collects core ideas and developments discussed at con-
ferences and workshops in mathematics, as well as their increasingly important
applications to other fields. This subseries’ rapid publication of extended abstracts,
open problems and results of discussions ensures that readers are at the forefront of
current research developments. Proposals for volumes can be submitted using the
online book project submission form at our website www.birkhauser-science.com.

More information about the series at http://www.springer.com/series/4961

http://www.birkhauser-science.com
http://www.springer.com/series/4961


New Trends in Analysis
and Interdisciplinary
Applications

Pei Dang • Min Ku • Tao Qian • Luigi G. Rodino
Editors

Selected Contributions of the 10th ISAAC
Congress, Macau 2015



Editors
Pei Dang
Faculty of Information Technology
Macau University of Science

and Technology
Taipa, Macau

Min Ku
Department of Mathematics
University of Aveiro
Aveiro, Portugal

Tao Qian
Faculty of Science and Technology,

Department of Mathematics
University of Macau
Taipa, Macau

Luigi G. Rodino
Department of Mathematics
University of Torino
Torino, Italy

This work is published under the auspices of the International Society of Analysis, its
Applications and Computation (ISAAC).

ISSN 2297-0215 ISSN 2297-024X (electronic)
Trends in Mathematics
Research Perspectives
ISBN 978-3-319-48810-3 ISBN 978-3-319-48812-7 (eBook)
DOI 10.1007/978-3-319-48812-7

Library of Congress Control Number: 2017937532

Mathematics Subject Classification (2010): 30E25, 32A50, 35-XX, 35-06, 44-00, 42-00

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This book is published under the trade name Birkhäuser, www.birkhauser-science.com
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://www.birkhauser-science.com


Preface

The International Society for Analysis, its Applications and Computation (ISAAC)
is organizing biennial international congresses since 1997 in different places all
over the world. Besides highlighting the newest developments in analysis, its
applications, and computation through plenary and session talks, these congresses
became well-liked social events where young scientists are honored with ISAAC
awards, highly advancing and active mathematicians are elected as honorary ISAAC
members, and the society is electing its officers for the next 2-years period. After the
congresses the ISAAC members elect a new board, the group in charge of electing,
supporting, and controlling the officers, for the following 2 years.

The 10th International ISAAC Congress was organized at the University of
Macau between the 3rd and the 8th of August 2015. The proceedings of this
10th congress are published in two volumes, one containing the plenary lectures
and the other one including the session talks and some personal citations for
meritorious ISAAC members. Some sessions publish their own proceeding issues
separately. The plenary talks appear as “Mathematical Analysis, Probability and
Applications—Plenary Lectures: ISAAC 2015, Macau, China, T. Qian and L.
Rodino., eds. Springer Proceedings in Mathematics and Statistics, 177, 2016.”

At the Macau congress Professor Lo Yang from the Chinese Academy of
Sciences was elected as honorary member (see the citation by Gary Gundersen
in this volume) and Dr. Jinsong Liu, also from the Chinese Academy of Sciences
in Beijing, received the ISAAC award for young scientists. As newly introduced,
five analysts were chosen for special mention of young scientists: Dr. Marcello
D’Abbicco from Universidade de Sao Paulo, Brazil; Dr. Matteo Dalla Riva from
Universidade de Aveiro, Portugal; Dr. Pei Dang from Macau University of Science
and Technology, Macau, China; Dr. Humberto Gil Silva Rafeiro from Pontificia
Universidad Javeriana, Bogota, Colombia; Dr. Yan Yang from Zhongshan (Sun Yat-
Sen) University, Guangzhou, China.

Two more citations were included in this volume, one for Professor Wei Lin
from Zhongshan University in Guangzhou by Yongzhi Xu, Dao-Qing Dai, and Yu-
Qiu Zhao, and one for Professor Rudolf Gorenflo from FU Berlin by Francesco
Mainardi. Unfortunately two colleagues from the participants of the Macau congress
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have passed away recently. Alan McIntosh, a plenary speaker at the congress,
passed away in August 2016, and Juri Rappoport, one of the very active special
interest group and session organizers and long-time ISAAC member, passed away
in March 2016. Some short obituaries will appear in the next ISAAC newsletter
to be sent out in January, 2017. The Macau ISAAC congress proved to be also
very efficient in recruiting a large number of new ISAAC life members. This has
happened mainly because of the activities of some special interest groups. ISAAC
has now over 200 life members and two institutional members, i.e., the Scientific
Centre CEAF in Lisbon, Portugal, and the Springer International Publishing AG in
Basel, Switzerland.

The 76 articles collected in the present volume are selected from session talks.
They are the outgrowth and further development of the talks presented at the
conference by participants from different countries all over the world, including
United States, UK, Australia, Canada, Russia, Kazakhstan, China, India, Hong
Kong, Japan, Korea, Macau, and members of the European Union. Most of them
contain new results. All the papers were strictly refereed. This volume reflects the
latest developments in the area of analysis, its applications, and computation. As in
the previous years, some of the sessions or interest groups decided to publish their
own volumes of proceedings and are therefore excluded from the present collection.
This volume contains eight different chapters.

In Part I, we include eleven articles on complex-analytic methods for applied
sciences, complex geometry, and generalized functions. L.A. Alexeyeva and G.K.
Zakir’yanova use the method of generalized functions to solve nonstationary
boundary value problems (BVP) for strictly hyperbolic systems and construct
the generalized solutions of BVP subject to shock waves. Olaf Bar uses a fast
algorithm to determine the flux around closely spaced nonoverlapping disks in a
conductive plane. Roman Czapla and Vladimir V. Mityushev construct a conformal
mapping of the square with disjoint circular holes onto the square with disjoint slits.
Piotr Drygas and Vladimir Mityushev study two-dimensional elastic composites
with nonoverlapping inclusions by means of boundary value problems for analytic
functions, following Muskhelishvili’s approach. Victoria Hoskins gives an example
of a linear action of the additive group on an affine algebraic variety arising in the
construction of an algebraic symplectic reduction, with nonfinitely generated ring of
invariants. Priska Jahnke and Ivo Radloff generalize a theorem of Van de Ven to the
case when the ambient space is a homogeneous manifold different from a projective
space. Irina V. Melnikova considers different types of solutions to abstract stochastic
Cauchy problems, especially generalized solutions, as regularized in a broad sense.
Mateusz Muchacki discusses image processing algorithms in different areas of
science. E. Pesetskaya and N. Rylko extend the method of functional equations
to boundary value problems for a half-plane, strips, and rectangles with circular
inclusions. Daniel S. Sage illustrates the theory of meromorphic connections on
curves whose leading term is nilpotent in the case of rank-2 flat vector bundles,
where much of the Lie-theoretic complexity is absent. Finally, Anna Stolińska and
Magdalena Andrzejewska present a result of a qualitative investigation where a case
study is treated using an eye tracking technology.
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In Part II, we include eleven articles on complex and functional-analytic methods
for differential equations and applications. H. Begehr constructs harmonic Green
and Neumann functions using the parqueting-reflection principle for strips and
hyperbolic strips in the complex plane. Zaiqiang Ku and Li Cheng study the SIR
model and obtain the relationship between the number of affected individuals
within a special period of time with applications to Ebata virus propagation. M.B.
Muratbekov treats such issues as existence of the resolvent and discreteness of
the spectrum for the Schrödinger operator with a parameter changing sign. S.A.
Avdonin, G.Y. Murzabekova, and K.B. Nurtazina consider source identification
problems for the heat equation with memory on an interval and on graphs without
cycles and propose a stable efficient identification algorithm. N. Rajabov suggests
new methods for investigating the model Volterra type integral equation with loga-
rithmic singularity and the kernel of which consists of a composition of polynomial
functions with logarithmic singularity and functions with singular points. K.N.
Ospanov studies a three-term second-order differential equation with unbounded
intermediate coefficient and gives solvability results and some conditions for com-
pactness of the resolvent of the corresponding operator. Gian Rossodivita and Judith
Vanegas find all linear first-order partial differential operators with elliptic complex
numbers-valued coefficients associated with an elliptic generalized-analytic opera-
tor. Simon Serovajsky and collaborators consider a bacteria population under the
action of bactericidal antibiotics. A. Tungatarov solves the Cauchy problem for a
system of n-th order nonlinear ordinary differential equations. Yufeng Wang and
Yanjin Wang study the Hilbert-type boundary-value problem for rotation-invariant
polyanalytic functions on the unit disc. Finally, Shouguo Zhong, Ying Wang, and
Pei Dang study a Riemann boundary value problem with square roots on the real
axis for a sectionally holomorphic unknown function having zeros in the upper and
lower half-planes, and obtain a solution and the explicit solvability condition.

Part III includes twelve articles on functions theory of one and several complex
variables. Zhixue Liu and Tingbin Cao make use of Nevanlinna theory and
the Zalcman-Pang lemma to obtain interesting results of normalness criteria for
a certain type of differential polynomials studied. Guantie Deng, Haichou Li,
and Tao Qian present some results on rational approximation, Laplace integral
representation, and Fourier spectrum characterization of functions in Hardy Hp

spaces on tubes for the whole range of p in Œ1;C1� in the several complex variables
setting. Robert Xin Dong obtains lower bounds for the Arakelov metrics for certain
compact Riemann surfaces. Min Ku and Fuli He construct the Bergman kernel on
the unit ball of R

2n in the setting of Hermitian Clifford analysis and then derive
the Plemelj formula for the Bergman integral on the unit ball. Further, Xiao-Min
Li, Cui Liu, and Hong-Xun Yi study the uniqueness question for transcendental
meromorphic functions that share four distinct finite real values. Fanning Meng,
Jianming Lin, Wenjun Yuan, and Zhigang Wang study a complete intersection sur-
face singularity of Brieskorn type and propose a sufficient condition for coincidence
of the fundamental cycle and the minimal cycle on a minimal resolution space.
Ming-Sheng Liu investigates properties and characteristics of a subclass of starlike
functions on the unit disk and proves a covering theorem. Yongmin Liu and Yanyan
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Yu obtain the boundedness and compactness of the generalized integration operator
from the QK.pI q/ space to the little Zygmund-type space. Katsuhiko Matsuzaki
studies the hyperbolic metric a domain in the plane obtained by removing its integer
lattice points. Wenjun Yuan, Fanning Meng, and Shengjiang Chen study a normality
criterion related to the famous Hayman conjecture and obtain four criteria. Jingshi
Xu and Xiaodi Yang introduce variable exponent Besov and Triebel-Lizorkin spaces
associated with a non-negative self-adjoint operator and give equivalent norms and
atomic decompositions of these new spaces. Hongfen Yuan, Tieguo Ji, and Hongyan
Ji derive a decomposition theorem for the kernel of the polynomial slice Dirac
operator using the generalized Euler operator in R

mC1, generalizing the well-known
Almansi decomposition theorem. Shengjiang Chen, Weichuan Lin, and Wenjun
Yuan consider properties of meromorphic functions, which share a set with their
first derivatives. Finally, Cuiping Zeng derives a normality criterion for differential
polynomials, which improves an earlier result by Fang and Hong.

Part IV is devoted to harmonic analysis and nonlinear PDEs and includes seven
articles. Neal Bez et al. propose a conjecture concerning the shape of initial data that
make the classical Strichartz estimates extremal for the wave propagator with initial
data of Sobolev regularity d�1

4
in all spatial dimensions d > 3, complementing an

earlier conjecture of Foschi in the critical case of 1
2

regularity. Jishan Fan and Tohru
Ozawa study global weak solutions to the 3D time-dependent Ginzburg-Landau-
Maxwell equations with the Coulomb gauge and obtain uniform bounds of solutions
with respect to the dielectric constant. Tokio Matsuyama and collaborators prove
Lp-boundedness of functions of Schrödinger operators on an open set of Rd. Tokio
Matsuyama and Michael Ruzhansky consider the Cauchy problem for the Kirchhoff
equation and establish the almost global existence of Gevrey space solutions.
Kiyoshi Mochizuk and Igor Trooshin treat an inverse scattering problem on a graph
with infinite rays and a loop joined at different points, and reconstruct a potential on
the basis of the scattering data of the operator. Lukasz T. Stȩpień presents some exact
(functionally invariant) solutions of self-dual Yang-Mills equations in the SU.2/
case. Finally, Vladimir B. Vasilyev discusses basic principles for constructing a
theory of boundary value problems on manifolds with nonsmooth boundaries.

Part V contains ten articles on integral transforms and reproducing kernels. Miki
Aoyagi considers the Vandermonde matrix-type singularity learning coefficients in
statistical learning theory. Dong Hyun Cho, Suk Bong Park, and Min Hee Park
introduce several scale formulas on CŒ0I t� for the generalized analytic conditional
Wiener integrals of cylinder functions and of functions in a Banach algebra,
which corresponds to the Cameron-Storvick Banach algebra. B.I. Golubov and S.S.
Volosivets generalize the results of C.W. Onneweer on membership of multiplicative
Fourier transforms to Besov-Lipschitz or Herz spaces. Byoung Soo Kim reviews
results on shifting for the Fourier-Feynman transform. T. Matsuura and S. Saitoh
develop some general integral transform theory, based on the recent general concept
of generalized reproducing kernels. Juri Rappoport considers the application of
the Kontorovich-Lebedev integral transforms and dual integral equations to the
solution of certain mixed boundary value problems and reduces the diffusion and
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elasticity problems to the solution of a proper mixed boundary value problem for
the Helmholtz equation. S. Saitoh and Y. Sawano introduce a general concept of
a generalized delta function as a generalized reproducing kernel and consider all
separable Hilbert spaces. Yoshihiro Sawano proves that the mapping R W HK.E/ 3
f 7! . f jE1; f jE2/ 2 HKjE1�E2 .E1/ ˚ HKjE2�E2 .E2/ is isomorphic if and only if
KjE1 � E2 D 0, where K is a positive definite function on E D E1 C E2. G.K.
Zakir’yanova studies a system of hyperbolic equations of second order, and by
using the Fourier transform of generalized functions constructs the fundamental and
generalized solutions. Finally, Haizhang Zhang and Jun Zhang justify substituting
inner products with semi-inner-products in Banach spaces, discuss the notion of
reproducing kernel Banach spaces, and develop regularized learning schemes in the
spaces.

Part VI deals with recent advances in sequence spaces and includes five articles.
Awad A. Bakery gives sufficient conditions on a sequence space under which the
finite-rank operators are dense in the space of all the operators considered. Binod
Chandra Tripathy addresses developments on rates of convergence of sequences.
Further, Paritosh Chandra Das studies a bounded difference sequence space with
a statistical metric. Shyamal Debnath and Debjani Rakshit introduce the notion of
rough convergence in general metric spaces and the set of rough limit points and
prove several results concerning this set. Finally, Amar Jyoti Dutta introduces a class
of sequences of interval numbers and establishes some properties like completeness,
linearity, symmetry, as well as some inclusion relations.

Part VII focuses on recent progress in evolution equations and includes twelve
articles. Marcello D’Abbicco and his collaborators find a critical exponent for the
global existence of small-data solutions to the semilinear fractional wave equation
in low space dimensions. Andrei V. Faminskii applies a classical Strichartz-type
argument for an abstract one-parameter set of linear continuous operators and
rigorously justifies a Strichartz-type estimate in a non-endpoint case. M.R. Ebert,
L. Fitriana, and F. Hirosawa prove that the elastic energy satisfies a better estimate
than the kinetic energy if the propagation speed is in L1.RC/. Anahit Galstian
gives estimates for the lifespan of solutions of a semilinear wave equation in the
de Sitter spacetime with flat and hyperbolic spatial part under some conditions
on the order of the nonlinearity. Christian P. Jäh discusses the connection of the
backward uniqueness property with the regularity of the principal part coefficients
measured by moduli of continuity and obtains a new backward uniqueness result
for higher-order equations. Xiaojun Lu and Xiaofen Lv study the strong unique
continuation property for the electromagnetic Schrödinger operator with complex-
valued coefficients and its applications. Makoto Nakamura studies the Cauchy
problem for nonlinear complex Ginzburg-Landau type equations in Sobolev spaces
under the variance of the space and remarks some properties of the spatial variance
on the problem. Belkacem Aksas and Salah-Eddine Rebiai consider boundary
and internal stabilization problems for the fourth-order Schrödinger equation in
a smooth bounded domain of R

n and establish the decay of the solutions. Pham
Trieu Duong and Michael Reissig give a survey of an external damping problem
and present a research approach to show essential conditions for the differential
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operators that influence the decay estimates and the global existence of solutions
to initial value problems. Yuta Wakasugi deals with the critical exponent for the
Cauchy problem of the system of semilinear damped wave and wave equations and
proves some blow-up results. Jens Wirth’s work is devoted to Cauchy problems for
t-dependent hyperbolic systems with lower order terms allowed to become singular
at a final time and describes the associated loss of Sobolev regularity in terms of the
full symbol of the operator.

Part VIII is devoted to wavelet theory and image processing and includes
six articles. Kensuke Fujinoki considers two-dimensional average interpolating
wavelets and describes properties of the bi-orthogonal bases and associated filters,
such as order of zeros, regularity, and decay. Keiko Fujita studies the Gabor
transformation for a square integrable function on the two-dimensional sphere and
its inverse transformation, and by using an integral over R3 gives the inverse Gabor
transformation in explicit form. Nobuko Ikawa and his collaborators investigate
the relation between the slow component of auditory brainstem response and the
number of averagings using discrete stationary wavelet analysis and present a
new model to analyze the phase shifts of the spontaneous electroencephalogram.
Further, Kiyoshi Mizohata shows how to deal with big data written in Japanese and
explains several interesting results obtained by wavelet analysis. Akira Morimoto
and collaborators propose an image source separation method using N-tree discrete
wavelet transforms and present the results of numerical experiments to show the
validity of the proposed method. Finally, Marcin Piekarczyk and Marek R. Ogiela
undertake a study of the approach to personal authentication based on analyzing
biomechanical characteristics related to palm movements and propose a matching
scheme.

The editors wish to sincerely thank Macau government and the University of
Macau, whose support made possible the success of the conference. We wish to
thank the postgraduates in the Department of Mathematics who contributed kind and
generous support as volunteers during the congress. We are grateful to the organizers
of the 21 sessions of the congress for their work. They spent a key large amount
of time inviting participants, arranging and chairing their sessions, and creating a
familiar and workshop-like atmosphere within their sessions. Finally, we sincerely
thank the session leaders, including V. Mityushev, H. Begehr, A. Schmitt, Wenjun
Yuan, Ming-Sheng Liu, Michael Oberguggenberger, J. Wirth, Juri Rappoport, V.
Georgiev, B.C. Tripathy, Marcello D’Abbicco, Qiuhui Chen, and Keiko Fujita,
who participated in collecting contributions to this proceedings volume and in the
refereeing process of the submissions.

Macau, China Pei Dang
Aveiro, Portugal Min Ku
Macau, China Tao Qian
Torino, Italy Luigi G. Rodino
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Citation

Professor Lo Yang: Honorary Member of ISAAC

Professor Lo Yang is a well-known outstanding mathematician whose research
achievements and contributions to the mathematical community are invaluable. His
extensive collection of high-quality research contains profound results on a variety
of topics in complex analysis. Most of his research is in the value distribution theory
of meromorphic functions, which is the study of the growth and distribution of
values of entire and meromorphic functions. Modern value distribution theory began
with the fundamental work of Rolf Nevanlinna.

Particular areas of Lo Yang’s research include Nevanlinna deficiencies of mero-
morphic functions and their derivatives and primitives, deficient functions, angular
distribution theory, Borel directions and other singular directions, normal families,
and other areas. His research has had a far-reaching impact on value distribution
theory. He likes to work on big problems and has had outstanding success.

His many striking results include the following: (a) Lo Yang and G. H. Zhang
showed that the number of deficient values of a meromorphic function f of
finite positive order cannot exceed the number of Borel directions of f (with a
corresponding result for entire functions). (b) Lo Yang showed that the sum of
the deficiencies of the kth derivative of a meromorphic function cannot exceed a
specific constant that depends on k, which improved results of E. Mues and W.K.
Hayman. (c) Lo Yang and Y. Wang proved an inequality for the sums of deficiencies
of a meromorphic function and its kth derivative and found all cases of equality.
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(d) Lo Yang showed that a meromorphic function of finite lower order p has at
most a countable number of deficient functions, and the sum of the corresponding
deficiencies cannot exceed a specific constant that depends on p. (e) For every
transcendental meromorphic function, Lo Yang proved the existence of a Hayman
direction of Picard type, and with Q.D. Zhang, proved the existence of a Hayman
direction of Borel type. As an expert in the field, Lo Yang wrote the very important
reference book, Value Distribution Theory, which is an invaluable resource for both
established researchers and mathematicians entering the field.

His publications are very well written and they exhibit his love of mathematics.
His style of writing is a pleasure to read. Lo Yang has achieved numerous honors
and awards and he has held many important positions. He was elected Member of
the Chinese Academy of Sciences in 1980, where he was the youngest Academician
from 1980 to 1990. Lo Yang was the Director of the Institute of Mathematics (1987–
1995) and the founding President of the Academy of Mathematics and Systems
Science (1998–2002) in the Chinese Academy of Sciences. He was the Secretary
General (1983–1987) and President (1992–1995) of the Chinese Mathematical
Society.

In addition to the enormous contributions of his research and his excellent work
in the above important positions, Lo Yang has contributed to the mathematical
community in many other significant ways. These additional contributions include
his several expository surveys of important results in complex analysis, his
numerous lectures at universities throughout the world, his extensive work at
developing Chinese mathematics and arranging international scientific exchanges,
his service on editorial boards of several mathematical publications, and the
countless times he has helped others with their research.

Gary G. Gundersen
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Citation

Professor Wei Lin: Citation for His 80th Birthday

Professor Wei Lin is a professor in the Department of Mathematics at Zhongshan
(Sun Yat-sen) University in Guangzhou, China. Lin is perhaps most well known
for his involvement in the development of a new classification system for partial
differential equations, a project completed in collaboration with Ci-Quian Wu, under
the direction of Professor Loo-Keng Hua, and published in their 1979 work, Systems
of Second-Order Linear Partial Differential Equations with Constant Coefficients,
Two Independent Variables and Two Functions. Professor Lin’s research continues
to expand upon his earlier work, though since the 1990s he has developed an
increased focus on wavelet theory, publishing papers on the nonuniform sampling
problems in shift-invariant spaces and the Galerkin Method and the subdivision
algorithm, among many others.

Lin was born on September 7, 1934, in Shantou, Guangdong Province, China. In
1952, he was admitted to Zhongshan University, and he completed his undergrad-
uate work there by 1956. Following his graduation, Lin remained at Zhongshan,
where he began his postgraduate studies, majoring in geometric theory of complex
functions and completing his thesis in 1960 (no degree was conferred, as prior to
1977 no degree system existed in China). Following completion of his thesis, Lin
received an appointment as a lecturer at Zhongshan, a position he held until 1978,
this duration due largely to the ossification of positions in Chinese universities
during the period. Lin was promoted to associate professor in 1978 and achieved
full professor status in 1983. The Academic Degrees Committee of the State Council
approved Professor Lin as an advisor for PhD students in 1986.
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In addition to his work at Zhongshan University, Lin has also been actively
involved in a variety of other roles in the mathematical community. Between 1990
and 1995, he was the Chairman of the Mathematical Society of Guangdong; he
was later named Honor Chairman, a position that he continues to hold. Lin was
a member of the board of directors of the International Society for Analysis, its
Applications and Computation (ISAAC) between 1997 and 2002, and from 2006 to
2010. Professor Lin has served on the editorial committee of several well-respected
journals, including the Journal of Applicable Analysis, Advances in Mathematics,
and Control Theory and Application.

Among the most important of Professor Lin’s myriad publications is the afore-
mentioned Systems of Second-Order Linear Partial Differential Equations. Lin and
his coauthors completed the classification of the system with two variables and
two unknown functions, underwent theoretical analysis of the canonic systems, and
found applications in mathematical physics, such as elasticity. Their initial 1979
Chinese-language publication was later enhanced by a 1985 English companion,
which carried the work further and included revisions and research reports by
Professors Robert Gilbert, Y.K. Cheung, C.Q. Wu, and, of course, Lin himself.

On top of his impressive theoretical work, the issues of applying mathematics to
practical systems have been one of Professor Lin’s concerns since the 1970s. During
this period, Lin turned to a brand new mathematical-related field, automatic control
theory and applications. On the theoretical level, Lin and his colleagues developed
the distributed control systems, while simultaneously applying their work to the
creation of a digitally controlled steel-cutting machine for Wen Chong Shipyard in
Guangzhou.

Throughout his career, Professor Lin has worked not only to advance his field
but also to create bridges within the international community. In 1982, Professor
Lin visited Professor Gilbert at the University of Delaware. During this 1 year
visit, Lin’s warm and friendly personality helped to build a bridge for long-
lasting international collaborations among Gilbert, Lin, Heinrich Begehr, and other
mathematicians in analysis, application, and computation. Lin has also received
visiting appointments at a number of institutions across the globe, including the
University of Delaware, the Free University of Berlin, the University of Kazan, and
the National University of Singapore.

Yongzhi Xu
Dao-Qing Dai
Yu-Qiu Zhao
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Professor Rudolf Gorenflo: Citation for His 85th Birthday

As a long standing collaborator of Professor Rudolf Gorenflo (since 1994), I
am pleased and honored to edit an overview of his life story and professional
career on the occasion of his 85th birthday for ISAAC readers. He is a well-
known mathematician, an expert in the fields of Differential and Integral Equations,
Numerical Mathematics, Fractional Calculus, Applied Analysis, Special Functions,
and Mathematical Modeling. His list of publications yields a vivid sight of his
ability for collaboration with other researchers and on his wide spectrum of research
activities; see his profile in GOOGLE SCHOLAR and the cited paper of FCAA in
2011.

Footnote: For readers interested in Fractional Calculus and in other details of
Gorenflo’s scientific life may I refer to the survey paper published in the journal
Fractional Calculus and Applied Analysis, Vol. 14 No. 1 (2011), pp. 3–18, entitled
Professor Rudolf Gorenflo and his contribution to fractional calculus by Yuri
Luchko, Francesco Mainardi, and Sergei Rogosin.

Rudolf Gorenflo is a descendant of Huguenots who in the seventeenth century
came to Germany as religious refugees. He was born on July 31, 1930, as first son
of a farmer in Friedrichstal near Karlsruhe. As a child he learnt and practiced all
kinds of agricultural work, thereby during the war also learning how to hide in holes
against low-flying fighter planes hunting peasants in the fields. As a remarkable fact
it may be noted that between ages 12 and 16 he played the organ in the village
church at religious services, replacing the regular organist who served in the army
during the war. His mathematical talents showed early. He mastered the number
system before he learnt to read alphabetical texts; aged 5 years he well knew the
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multiplication table, and a little later he liked to play with decimal expansions of
fractions, for example by pencil and paper calculation he found the length of the
period of the number 1/49 to be 42, contrary to the naive expectation that it should
be 48. When he was 12 his parents (recognizing his inclination) arranged for him
school education in a gymnasium, and he could get a kind of higher instruction
(languages including Latin, mathematics and science, history, religion). He has
in living grateful memory his teachers of mathematics. He was, e.g., fascinated
learning that the power, the imaginary unit raised to itself, turns out to be a real
number.

After Matura examination he became a student of mathematics at the Technical
University of Karlsruhe. Under the guidance of Professor Hans Wittich he choose
theory of analytic functions as his field of research for his diploma (1956) and degree
of Doctor rerum naturalium (1960). His diploma thesis “Meromorphic Periodic
Functions of Finite Order” was a critical detailed exposition of papers by Pham
Tinh-Quat, a Vietnamese researcher working in Paris with the famous Georges
Valiron. His doctoral thesis treated questions of deducing asymptotic properties
of an entire function from the infinitary behavior of the sequence of its Taylor
coefficients. It has the horribly long title “On the Wiman-Valiron comparison
method for power series and its application to the theory of entire transcendental
functions.” In it appears as an example the Mittag-Leffler function which now,
55 years later, still is a companion of Rudolf Gorenflo. From 1955 until 1961
R. Gorenflo was a teaching assistant in Prof. Wittich’s institute. Feeling that
there are no promising career prospects for pure mathematicians at the beginning
of the 1960s R. Gorenflo looked around for and found a position in industry.
Now, leaving the warm environment of university research and teaching made
him scientifically homeless. Instead of developing a clear mathematical profile by
working for the rest of his life deeper and deeper in the specialization he had entered
through his two theses he became a random walker through mathematics and its
applications. Entering a commercial-industrial enterprise was not his death as a
scientist. After having received his degree of Dr. rer. nat, he worked as a research
mathematician first in a telecommunication company in Stuttgart (Standard Electric
Lorenz, then in the German branch of US International Telephone and Telegraph
Company ITT), then 8 years (1962–1970) in the Max Planck Institute for Plasma
Physics in Garching near Munich, then as professor of Mathematics 3 years at the
Technical University in Aachen, and since 1973 at the Free University of Berlin.
He has collaborated with very different kinds of coauthors in several countries, in
varying mathematical and physical disciplines and has supervised many students.
His fields of research comprise complex analysis, random numbers and Monte-
Carlo simulation, integral transforms and special functions, fractional calculus,
diffusion processes (analysis, discretization, stochastics, and simulation), and recent
specialization distributed order fractional diffusion processes. A few applications
may be mentioned: simulation of queuing systems, simulation of particle flights in
rarefied gases, evaluation of spectroscopic measurements, calculation of magnetic
fields for toroidal devices of plasma containment in controlled nuclear fusion. At
SEL and in the Institute for Plasma-Physics large part of his work consisted in close
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collaboration with engineers and physicists by which he developed his outstanding
ability to work fruitfully with non-mathematicians.

Thus, a researcher, he has worked in complex analysis. He contributed to the
theory of entire and meromorphic functions and complex differential equations.
Later he devoted to its application to modeling plane electric and magnetic fields
and flows, in analysis, simulation, and numerical treatment of diffusion processes
(of one- and of multicomponent type). All the applications were achieved by
systems of parabolic differential equations in theory and numerical treatment of
integral equations occurring in evaluation of physical measurements. In this latter
activity he found his way into the field of inverse and ill-posed problems, first to
integral equations of Abel type where he made acquaintance with differential and
integral operators of non-integer order and to whose theory and practice he later
worked intensively with several coauthors. Noteworthy to mention here are his joint
books with Sergio Vessella on Abel Integral Equations: Analysis and Applications
(Springer1991) and with Dang Dinh Ang et al. on Moment Theory and Some Inverse
Problems in Potential Theory and Heat Conduction (Springer 2002). In the 1980s
R. Gorenflo jointly with the geophysicist Prof. Andreas Vogel was a chief organizer
of several conferences on applications of mathematics in geophysics with main
emphasis on inverse problems. Gorenflo’s research results attained international
peer recognition. Then he were invited to have a research visit the universities
in Delaware (Newark, Del.), Kingston Ontario, Florence (Italy), Beijing, Tokyo,
Hanoi, Ho Chi Minh City, Manila, Kraków. In recent years he developed close
collaboration with the Centre for Mathematical and Statistical Sciences (Director
Prof. A.M. Mathai) in Pala in the southern Indian state of Kerala, India, starting in
2009 with a course he gave there on power laws and their applications.

Around 1990 R. Gorenflo started his final career as a specialist in fractional
calculus which was highly stimulated through friendship and collaboration with
myself (Francesco Mainardi). This started with the conference hold in Summer of
1994 in Bordeaux. As their field of highest common interest they choose fractional
relaxation and diffusion with related stochastic processes. Jointly with several
coauthors, including Mainardi’s students, they contributed substantially to the
development and applications of fractional calculus and propagated their results in
many international conferences. Their joint work culminated in their joint book with
the late Prof. Anatoly Kilbas and Prof. Sergei Rogosin from Minsk on Mittag-Leffler
Functions: Related Topics and Applications. Theory and Applications. Springer-
Verlag 2014.

Other aspects should not be forgotten. R. Gorenflo was one of West German
mathematicians who during the Cold War cultivated close personal and scientific
contacts with colleagues in the other separated part of Germany and with colleagues
from socialist countries. He participated in conferences in eastern parts of the
world and had visitors and research fellows from there in Berlin, contacts that were
strengthened and continued after the great change of 1989. He acted as one of the
founding editors of the journal Fractional Calculus and Applied Analysis and is
member of editorial committees of several other journals. In Aachen and Berlin he
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has guided many students in their works for diploma, doctor’s degree, and teacher’s
examination, among them several from outside of Germany.

Rudolf Gorenflo: a short outline of his life.

Born on 31 July 1930 in Friedrichstal near Karlsruhe.
1950–1956: Student of Mathematics and Physics at Technical University in
Karlsruhe.
1956: Diploma in mathematics.
1960: Promotion to Dr. rer. nat. (doctor rerum naturalium).
1957–1961: Scientific assistant at Technical University in Karlsruhe.
1961–1962: Mathematician at Standard Electric Lorenz Company in Stuttgart.
1962–1970: Research mathematician at Max-Planck Institute for Plasma Physics in
Garching near Munich.
1970: Habilitation in Mathematics at Technical University in Aachen.
1971–1973: Professor at Technical University in Aachen.
1972: Guest professor at the University of Heidelberg.
since October 1973: Full professor at Free University of Berlin.
1976–1982: Deputy leader of Free University Research Project Optimization and
Approximation (Leader K.-H. Hoffmann).
1982–1989: Director of Third Mathematical Institute of Free University of Berlin.
1980–1984: President of Berlin Mathematical Society.
1983–1988: Head of Research Project Modelling and Discretization (Free Univer-
sity of Berlin).
1989–1994: Head of Research Project Regularization (Free University of Berlin).
1995–2003: Head of Research Project Convolutions (Free University of Berlin).
1994–1997: Leading member of NATO Collaborative Research Project Fractional
Order Systems, with R. Rutman, University of Massachusetts Dartmouth.
1995: Guest professor at the University of Tokyo.
1996–2013: Visiting professor of the Department of Physics, University of Bologna
for periods of 2–4 weeks (almost) every year.
Since October 1998: Professor emeritus at Free University of Berlin.
After emeritation: continued activity in teaching, scientific research and interna-
tional collaboration, refereeing and reviewing, and editorial boards of journals.
Rudolf Gorenflo is member of several scientific associations.
Family status: married since August 1959, two sons, one daughter.

Francesco Mainardi
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1 Foundation

“Let us found an international society for analysis!” announced R.P. Gilbert upon
entering the office of H. Begehr, at the Free University of Berlin (FU), late in the
morning as usual after a long night working on mathematics. This idea came to him
in the beginning of the 1990s, almost 25 years ago. “What for?” replied Begehr, “Do
you want to become the president of something?” But it was not just a mood. There
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was already the idea to call the society after Newton “ISAAC,” the International
Society for Analysis, its Applications and Computation.

In the 1970s R.P. Gilbert had been honored by an Alexander von Humboldt
Award, at that time still restricted to US citizens, which had enabled him to extend
his stay in Berlin for an additional semester at FU Berlin in 1974/1975. About 15
years later he used the AvH-reinvitation program for another visit at FU. Begehr
and Gilbert were involved in writing a monograph [1] and the idea of an ISAAC
was put aside for a while. During January 15–17, 1993, there was the conference on
Complex Analysis and its Applications at the newly founded Hong Kong University
of Science and Technology, organized by Chung Chun Yang. Here Gilbert brought
up the idea about ISAAC at the conference and the response from colleagues
was indeed supportive. In particular, C.C. Yang was enthusiastic. But his aim was
different; in his view the main purpose behind the founding of the ISAAC was to
promote and restore the prestige of complex analysis as an area in mathematical
research. In this sense he was quite active at that time, e.g., with his book series in
complex analysis with Gordon and Breach and with Kluwer. However, Gilbert had
in mind a less focussed society which would “promote analysis, its applications,
and its interaction with computation.” This idea was adopted by the colleagues at
the conference and was imbedded in ISAAC’s constitution. The goal of ISAAC was
to act as a society in the broad field of analysis and should never be dominated just
by some particular subfield.

Three more years passed by before Gilbert had prepared to incorporate the
society as a nonprofit organization in the state of Delaware. This registration had to
be renewed every year for about US$30 and was terminated in 2005. The registration
was important because otherwise a tax rate of 2% would have applied even to
membership fees paid in the USA.

In 1996 activities of ISAAC began in ernest with Gilbert opening a bank account
in Delaware and Begehr one in Berlin. C.C. Yang, the founding vice president, was
asked to act as a treasurer for Asia. In April Gilbert had set up registration forms for
memberships. They were sent out internationally and the founding members became
registered. Indeed, this enabled Begehr sending US$1000 to Gilbert in that June
for paying the cost of registration. Shangyou Zhang, a young colleague of Gilbert,
set up a home page for ISAAC at the University of Delaware and consequently
became the ISAAC corresponding secretary. A second website was established at
the Freie Universität Berlin with a link to the main site in Delaware. And Yuri
Hohlov opened a site in Moscow. He also managed to create the ISAAC logo, a
drawing of the head of ISAAC Newton. Hohlov had put a list of ISAAC fellows
on his site, which contained many mathematicians to whom Begehr had sent an
invitation to join ISAAC. This publication was risky as none of the persons on the
list were ever asked if they agree. By the way, only some were recruited at that
time and had paid their dues. Nevertheless, the list survived somehow on the main
website at Delaware now in the “List (all ISAAC related people),” containing more
than 500 names; however their email addresses are not visible for the public but
can be used to send messages. Probably it was never used again and has not been
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updated. The Moscow page disappeared, however, as soon as Hohlov joined the
Lenin Library in Moscow as an employee.

2 ISAAC Publications, Proceedings

Gilbert prepared the 1st International ISAAC Congress at the University of
Delaware (UD) early in 1996. This Congress took place from June 3 to 7,
1997. It was necessary to reduce registration fee for the congress, as well as
the society membership fee, for attendees from countries with weak economies.
Also it was decided that the Congress fee should contain some part of the ISAAC
membership fee for the following 2 years. The congress was organized in parallel
sessions, altogether more than 25, and plenary talks; see the ISAAC home page
“mathissac.org” under “congresses”. The congress fee of US$100 was moderate
for the developed countries. Several publishers were present, not just for book
presentations but with editors who were interested in obtaining book contracts
with ISAAC and its members. In particular John Martindale from Kluwer was
enthusiastic about the new society and was expressing his wish that ISAAC will
soon compete with SIAM in magnitude and importance. He signed a contract with
Gilbert about a book series “International Society for Analysis, Applications and
Computation.” Ten volumes have appeared between 1998 and 2003. In 1997 the
market for scientific literature was still okay. Kluwer had guaranteed for US$500
each volume published in this series and for the first two volumes this amount
was actually paid. Obviously Kluwer did not make money with the series and
stopped paying. When Kluwer then merged with Springer after 2003 and the name
Kluwer disappeared, the book market for proceedings had collapsed because of the
restricted book budgets of university libraries. Springer had decided not to publish
ISAAC’s proceedings anymore and as a consequence had terminated the Kluwer
ISAAC series. John Martindale continued to work for Springer. He managed, e.g.,
in 2006 to get the English translation of the first volume of the Selected Works of
S.L. Sobolev published by Springer. The Russian original had appeared in 2003.
But Martindale was not happy with the new company and had quit. A translation
of the second Sobolev volume, published in Russian language in the same year
2006, has not appeared. However, Springer was not interested in further collected
works, for examples, the translation of the 2009 in Russian language published
Selected Works of S.M. Nikol’skii. Therefore some years later this publisher has
changed its policy. Already in 2003 Birkhäuser, since 1985 part of Springer, has
started its series “Trends in Mathematics” and in 2011 Springer itself has started its
“Springer Proceedings in Mathematics,” now “Springer Proceedings in Mathematics
& Statistics,” where proceedings volumes are published. In 2013 Birkhäuser has
started the subseries “Research Perspectives” of the “Trends in Mathematics.” Since
the 2013 congress in Krakow the proceedings of ISAAC are published in these
series, the plenary talks volumes in the Springer series, and the general proceedings
volumes with Birkhäuser. The general Krakow proceedings volume is the second
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book in this newly opened subseries. But the general proceedings volume gets
smaller and smaller as more sections are publishing their own volumes in order to
avoid length restrictions for manuscripts.

As a consequence to the situation with publishers H. Begehr had started to
tight ISAAC’s strings with World Scientific in Singapore. This company had
published the main proceedings from 2001 in Berlin in a very reliable way with
convincing results. The problem was the requirement of bulk orders. Joji Kajiwara
had succeeded in finding financial resources for paying the printing costs for the two
proceedings volumes from 1999 of together more than 1,600 pages.

By the way he did a marvelous job although he had to look after his sick spouse
daily for years. On the occasion of his 70th birthday ISAAC has honored him with
a “Distinguished ISAAC Service Award”.

Joji Kajiwara Fukuoka 2015

It was presented to him at the 12th International Conference of Finite and Infinite
Dimensional Complex Analysis and Applications in Tokyo in July 2004, one of
a yearly held series of conferences, organized by mathematicians at first from the
countries China, Japan, and Korea, to which later Thailand and Vietnam and recently
India have joined in. This series was once initiated by Joji Kajiwara.

The Fukuoka proceedings volumes were the only ones of all ISAAC congresses
where almost all contributions are published in total. Maybe it was just an accident
that some contributions from the session “Analytic Extension Formulas and their
Applications” were published together with the ones from a conference from 11
to 13 January, 2000, on “Applications of Analytic Extensions” at the Research
Institute for Mathematical Sciences of the Kyoto University in an extra volume
in the ISAAC Kluwer series 2001 under the title “Analytic Extension Formulas
and their Applications” edited by Saburou Saitoh, Nakao Hayashi, and Masahiro
Yamamoto.

From the Delaware 1st ISAAC congress, four sections have published their
papers in extra volumes outside the ISAAC Kluwer series; see the ISAAC home
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23rd International Conference on Finite or Infinite Dimensional Complex Analysis and Applicat-
ions Kyushu Sangyo University, Fukuoka, Japan, 24.–28. 08., 2015

page mathisaac.org. For the 3rd congress in Berlin an extra volume with the plenary
lectures and some main talks from sessions had appeared in the ISAAC Kluwer
series. All the other contributions made up two volumes of about 1500 pages
published with World Scientific in Singapore. At the 4th congress in Toronto,
Man Wah Wong had founded his special interest group under the ISAAC umbrella
on pseudo-differential operators and a book series “Pseudo-Differential Operators,
Theory and Applications” published with Springer-Birkhäuser. The contributions
to the ISAAC congresses within the sessions on pseudo-differential operators are
since 2003 published in the Birkhäuser series “Operator Theory: Advances and
Applications.” Until the 7th congress in London World Scientific has published the
main parts of the contributed talks. At the Krakow congress in 2013 representatives
from Springer were present and new relations to this publisher were tied. Since
then the proceedings are split into two parts. While the plenary talks are published
in the series “Springer Proceedings in Mathematics & Statistics,” the contributed
talks of most of the sessions are appearing in a volume from the Birkhäuser series
“Trends in Mathematics, Research Perspectives.” After the 10th congress in Macao,
ISAAC and Springer signed a contract on publishing monographs and proceedings
volumes under the logo of ISAAC (see Appendix). This is the second contract about
ISAAC publications as the SAAC book series with World Scientific, see http://
www.worldscientific.com/series/saac, is also effective since 2003. Only the main

http://www.worldscientific.com/series/saac
http://www.worldscientific.com/series/saac
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proceedings of the 8th ISAAC congress 2011 in Moscow were published without
World Scientific and Springer for monetary reasons. They have appeared in three
volumes published by the Peoples’ Friendship University of Russia in Moscow.

A list of ISAAC publications is available at the home page mathisaac.org; see
also the links there to the SIGs’ home pages.

3 Members

The first ISAAC members were according to an email from Begehr to Gilbert from
May 9, 1997: H. Begehr, M. Essen, R. Gorenflo, M. Kracht, S. Louhivaara, H.
Malonek, W. Watzlawek, E. Wegert as life members (they had paid DM (German
Marks) 250) and as annual members (the fee was DM 40) in 1995 K. Guerlebeck,
P. Kravanja, M. Reissig, St. Ruscheweyh, J. Schnitzer and in 1996 Yu. Hohlov and
M. Reissig. Not yet listed here are R.P. Gilbert and C.C. Yang. They both were
supposed to recruit members in America and in Asia, respectively. At the end of
2015 ISAAC had 204 life members registered from 49 counties. The largest groups
are from Japan (22), Russia (19), Italy (16), USA (13), China (12), Germany (10),
and Kazakhstan (10). Seven members are from each Georgia and Serbia, 6 from
Austria, also 6 from India, and 6 from Uzbekistan, 5 from Canada, 5 from UK,
and 5 from Turkey, 4 as well from Belgium, from France and from Romania. Four
countries have 3 ISAAC members: Armenia, Portugal, Sweden, and Tajikistan. The
countries Algeria, Belarus, Cuba, Finland, Malaysia, Poland, Switzerland, Ukraine,
and Vietnam are represented each by 2 members, and Argentina, Australia, Brazil,
Egypt, Guadeloupe (France), Iran, Israel, Korea, Kyrgystan, Macedonia, Mexico,
Moldova, Saudi Arabia, South Africa, Spain, Taiwan, United Arab Emirates, and
Venezuela have one citizen in ISAAC. Among the “paid” members no continuation
of membership fee is yet cultivated. Among the few members, however, is one
institutional member from Portugal, the Center for Functional Analysis, Linear
Structures and Applications in Lisbon. It has joined ISAAC in 2009 and is since then
an ISAAC member. And recently in spring 2016 Springer International Publishing
AG has become the second institutional ISAAC member.

Four mathematicians have been decorated as Honorary ISAAC Members. Victor
Burenkov had initiated to honor Sergei Mikhailovich Nikol’skii, see [2], Academi-
cian of the Russian Academy of Sciences; at the 3rd congress in Berlin, Nikol’skii
was at the age of 96, one of the plenary speakers there. At the York University in
Toronto, Lee Lorch (see [3]) was—also suggested by Victor Burenkov—elected as
Honorary Member. Oleg Vladimirovich Besov [4], former student and coauthor of
S.M. Nikol’skii and also Academician at the Russian Academy of Sciences, became
Honorary ISAAC Member at the Catania ISAAC congress in 2005. He was the
first plenary speaker there and again V. Burenkov had suggested him. Lo Yang,
Academician at the Chinese Academy of Sciences, was elected Honorary ISAAC
Member at the 10th ISAAC Congress at the University of Macau in Macao 2015,
see [5].



ISAAC: How It Became What It Is xxv

4 ISAAC Budget

Because international money transfer was and still is expensive, the idea at the
beginning was to have local treasurers, collecting fees and only from time to time
transfer bigger amounts. Due to the economical situation C.C. Yang did not collect
any membership fees. Gilbert collected money in North America; Begehr had
opened an ISAAC bank account in Berlin. The only financial resources of ISAAC
are the membership and the congress participation fees. Already between 1995 and
1997 Begehr had collected DM (German Marks) 285 for paid membership fees
and DM 2000 for life membership fees. For the registration of ISAAC as nonprofit
scientific society in Delaware DM 1556.30 was transferred to Gilbert in 1997.
Further in the first years ISAAC had in 1998 collected DM 1390 for conference
fees and between the 2001 and 2003 congresses about Euro 610 and US$140 from
so-called paid members and about Euro 1960 and US$1400 from life members.

But because of the monthly due bank charges, DM 109.50 until autumn of 1997,
and only rare use, the account was terminated in October 1997. Since then Begehr
uses his private bank account also for ISAAC. The account in Newark, Delaware,
with Gilbert was dissolved in December 2006. The collected amount was used from
Man Wah Wong to finance his ISAAC workshop on pseudo-differential operators
from 11 to 16 December 2006 at the Fields Institute in Toronto. But Zhang still held
an account for paying fees through credit cards. He had arranged for this possibility
in connection with the 3rd congress in Berlin after this was demanded mainly from
USA participants. In 2011 he did transfer the entire amount to Begehr and closed the
account in the US on 11.11. 2011. This was just after Gilbert had retired from the
University of Delaware. The main part of this amount was collected from congress
fees paid via credit cards since 2001. During 2005 and 2009 Wong has collected
some membership fees. This money was spent together with contributions from the
Berlin account to finance the conference on “Homogenization, Inverse Problems
and Applied Analysis” at the University of Central Florida in Orlando, Florida, from
January 13 to 15, 2007, organized by Miao-jung Ou from the University of Delaware
in honor of Gilbert on the occasion of his 75th birthday.

At its 2015 meeting in Macao, the board decided to open a bank account again for
ISAAC. But this became difficult in the meantime. Banks are very careful nowadays
with opening new bank accounts because of problems with money washing. Before
ISAAC is not registered again as a (nonprofit) scientific society, there is no chance
for an own society account. In recent years, however ISAAC’s financial situation
has improved. The 3rd (Berlin), the 7th (London), and the 10th (Macao) congresses
were the only ones ISAAC was able to collect funds from. Recently many non-
ISAAC members from SIGs are joining ISAAC as life members and thus increasing
the ISAAC property.

The basis for the property of ISAAC was laid at the Berlin congress. This
congress was financially supported mainly by the German Research Foundation
(DFG), the Berlin Government, and the Free University of Berlin. Unfortunately
there was an economical crisis before the congress which had forced the local
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75th Birthday Party of R.P. Gilbert Orlando, Florida, 2007

government to stop spending from the budget. As a consequence, when finally, 1
week before the congress, the amount of over DM 100,000 (about Euro 50,000) was
transferred, this was too late to guarantee financial support to participants from the
former Soviet Union as they had not enough time to apply for visa. Most of the
support from the city had to be returned but some part could be saved for the society
for paying bulk orders of the proceedings etc.

In 2005 ISAAC had besides the cash in Begehr’s FU account Euro 22,240
furnished by the Berlin congress. Part of this amount was spent for bulk orders in
2009 for the Berlin (about US$9000) and the Ankara (about US$5000) proceedings
to World Scientific. In 2009 from the London congress about Euro 11,000 remained
after having paid the World Scientific bulk order. From the Macao congress about
Euro 4000 was transferred early in 2016 by Tao Qian to the society. He has been able
to financially support many more participants of the congress than it was possible
in the events before 2015.

But all the congresses were organized independently of the ISAAC budget.
Only for the Toronto and the Catania congresses in 2003 and 2005 some financial
engagement of the society for plenary speakers and some young participants
was required. Up to the 2nd congress in Fukuoka and the 10th in Macao all
ISAAC awards for young researchers were financed by ISAAC. C.C.Yang had
suggested to start the ISAAC Awards for young scientists of age below 40. He had
managed to finance 10 awardees at the Fukuoka congress. In Berlin again 10 young
mathematicians were decorated. The price was equipped with a certificate, DM
800 supported by Berlin Mathematical Society, Daimler Chrysler, Motorola, and
Siemens, and additionally some books provided by Elsevier, Kluwer, Springer, and
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World Scientific. Afterwards, the number of awards was reduced to one at most two.
At the Macao congress besides one award some Special Mention of Young Scientist,
just a certificate for outstanding research work, were given to five candidates.
The other congress very successful also from a financial point of view was the
London congress. It got financial support from the London Mathematical Society,
the IMU, the Engineering and Physics Research Council, the Oxford Centre in
Collaborational and Applied Mathematics, the Oxford Centre for Nonlinear Partial
Differential Equations, the Bath Institute for Computer Systems, and the Imperial
College London (Strategic Fund and Department of Mathematics).

Remarkable is also the funding of the Fukuoka congress from the Commemo-
rative Association for the Japan World Exposition (1970). It served to equip any
proceedings contributor who had registered at the congress with a whole set of
two proceedings volumes of more than 1600 pages. From the Berlin congress on
it became usual that participants had the choice to order the proceedings volume
during the registration process. When this habit was given up without notice at the
Krakow congress, this caused some irritation.

5 Constitution

For getting ISAAC registered in Delaware, Gilbert had to create a constitution. It
has served for several years, but was not very much observed in the first years.
Already in the constitution the idea of special interest groups (SIGs) within the
ISAAC society was established. In 2003 Man Wah Wong has founded the first
SIG on pseudo-differential operators. Because of a discussion in the ISAAC board
about representatives of several, in the meantime built, active special interest groups
(SIGs) without elections in the board, before and during the 2009 London ISAAC
congress, Michael Ruzhansky and Begehr, on request of the board, have adjusted the
constitution somehow to what was practiced. The ISAAC community has accepted
the new constitution by an electronic voting and it was amended in 2013 just before
the 9th congress in Krakow. One regulation in the new constitution proved to be very
effective in the sequel. Some of the SIGs had quite some large numbers of members,
but only a few of whom were registered ISAAC members. Large enough SIGs are
allowed to delegate a representative in the board. But non-ISAAC members in a SIG
are only counted once as a SIG member. Afterwards they have to join ISAAC or are
not counted again. This rule was applied for the first time in 2015. And because
several SIGs wanted to keep their representative in the board, ISAAC enjoyed more
new life members than ever within a short period between the 10th International
ISAAC Congress in Macao and the following board election at the beginning of
2016.

The constitution is available at the ISAAC home page mathisaac.org.
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6 Officers and Board, ISAAC Congresses

Gilbert had served as the founding president until the 3rd International ISAAC
Congress in 2001 in Berlin. At the 2nd congress 1999 in Fukuoka organized by Joji
Kajiwara the first ISAAC board meeting took place (see the Appendix). According
to the minutes of this meeting, besides Gilbert and Begehr, Erwin Brüning, Louis
Fishman, Ismael Herrera, Ilpo Laine, Saburo Saitoh, Boris Vainberg, Man Wah
Wong, and Yongshi Xu took part. Already at the first Congress in Newark, Delaware
not only the site of the next but also the next two congresses were determined as
Fukuoka Institute of Technology, Japan, and FU Berlin, Germany, with Kajiwara
and Begehr, respectively, as local organizer.

At the 3rd congress the democratic structure, manifested in the constitution, was
finally practiced. The open board meeting was preceded by a Member Meeting
attended by many congress participants who even were not ISAAC members (see the
Attachment). However they could not participate in the voting. Gilbert had stepped
down as president and had nominated Begehr as first elected president for the period
of 2 years. After his election Begehr suggested Gilbert as an honorary president. The
board was in favor. But neither a vice president nor a new secretary was nominated.
C.C. Yang continued as the vice president and Begehr served also as secretary. For
the board meeting in Berlin Gilbert and Begehr just had appointed some colleagues
independently of their membership to ISAAC but they were appealed to become
ISAAC members. Attendances on this meeting can be viewed in the respective
list of the minutes of the board meeting of the 3rd ISAAC congress in Berlin (see
Attachment).

Board members were Grigor Barsegian, Carlos Berenstein, Alain Bourgeat,
Erwin Brüning, Victor Burenkov, William Cherry, Christian Constanda, George
Csordas, Julii Dubinski, Abduhamid Dzhuraev, Maths Essen, Antonio Fasano,
Louis Fishman, Klaus Hackl, Ismael Herrera, Adi Ben Israel, Joji Kajiwara, Ilpo
Laine, Irina Lasiecka, Wei Lin, Fon-Che Liu, Rolando Magnanini, Takafumi Murai,
Ivan Netuka, John Ryan, Saburou Saitoh, Promarz Tamrazov, Domingo Tarzia,
Boris Vainberg, Armand Wirgin, Man Wah Wong, and Yongzhi Xu.

At this meeting it was decided to split the proceedings into two parts, one with
just the plenary and some main talks from the sessions published by Kluwer in the
ISAAC series and others published by World Scientific.

For the election of a board Zhang had set up an electronic voting system on
the ISAAC website. This lead to the first democratically elected ISAAC Board
consisting of Heinrich Begehr (President), Alain Bourgeat, Victor Burenkov, Julii
Dubinskii, Robert Gilbert (Honorary President), Joji Kajiwara, Ilpo Laine, Michael
Reissig, John Ryan, Saburou Saitoh, and Man Wah Wong.

ISAAC still had very few members. The main task in the following years was
to recruit members. Only with a certain number of members the society would
start to develop itself. Life members, just paying a certain amount only once at the
beginning of membership was attractive as well for the members as for the society.
At first the fee was US$200 later after beginning of 2010 Euro 300. Such an amount
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Congress Photo by A. Begehr Berlin 2001

is not very much for people in countries with a strong economy; but the society
could collect a bigger amount at a moment while the budget still was very low. For
many candidates however, this amount was not affordable because of the economy
in their countries. Many of those colleagues were interested in ISAAC and their fees
were waived or reduced. After a few years ISAAC counted over 100 life members
while the regular annual, as “paid” members listed, ones never were more than 20
at the same time.

In 2003 the 4th congress was held at York University in Toronto, organized by
Man Wah Wong. This 4th ISAAC congress was hit by SARS. Because of this disease
many scientists refused to participate. While in the preceding Berlin congress there
almost 40 sessions, in Toronto there were just 15 sessions. In the minutes of the
Toronto board meeting ISAAC is reported to have, besides 1 honorary member, 54
life members, 44 of which had joined after 2001, and 16 paid members. Begehr was
reelected as president. At the board meeting were present Begehr, Victor Burenkov,
Gilbert, Ilpo Laine, Michael Reissig, Saburou Saitoh, M.W. Wong, and C.C. Yang.

The board election after the 2003 congress took place in two separate ballots. As
well three vice presidents were elected, Erwin Brüning for Africa, Man Wah Wong
for America, and C.C. Yang for Asia, and Victor Burenkov, Massimo Lanza de
Cristoforis, Ilpo Laine, Michael Reissig, John Ryan, Saburo Saitoh, and Masahiro
Yamamoto as board members. Additionally, Gilbert as the Honorary President
belonged to the board. This board elected the next president at the congress in
Catania in 2005. By the regulation of the constitution the president may only once
be reelected. ISAAC should develop as an international society dominated neither
by some person nor by a group. Man Wah Wong was elected and served for the next
4 years. The reelection of presidents became a habit in the following years.

New vice presidents were determined by electronic election, namely Victor
Burenkov replacing M.W. Wong, Saburo Saitoh, and Erwin Brüning. Begehr and
Zhang were confirmed as secretary and treasurer and as webmaster and secretary,
respectively. Besides the officers members of the board were for the board 2006
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Lee Lorch, decoration as honorary ISAAC member V. Burenkov, H. Begehr photo by R.P Gilbert
Toronto 2003

to 2008: Okay Celebi, Anatoly Kilbas, Massimo Lanza de Cristoforis, Michael
Reissig, Luigi Rodino, Bert-Wolfgang Schulze, Joachim Toft.

The decision for the site of the following congress had been taken already in
the year before the Toronto congress at the “International Conference to Celebrate
Robert Pertsch Gilbert’s 70th Birthday” at CAES du CNRS in Fréjus, France,
on “Acoustics, Mechanics, and the Related Topics of Mathematical Analysis”
organized by Armand Wirgin from June 18 to 22, 2002.

Franco Nicolosi had been participating and was enthusiastic to organize the
ISAAC congress after the Toronto one already in 2004. But ISAAC did not give
in and did not change the congress period. Probably Franco had to postpone his
retirement at the University of Catania in order to run the ISAAC congress.

There were no changes of officers at the Ankara congress in 2007 which was
organized by Okay Celebi. As representatives in the board of the SIG pseudo-
differential operators were Luigi Rodino and Bert-Wolfgang Schulze, for the SIG
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M.W. Wong, opening speech of president Ankara 2007

A. Wirgin, R.P. Gilbert CNRS-Marseille, Fréjus 2002
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Franco Nicolosi, 70th birthday conference Catania 2009

special functions and reproducing kernels Alain Berlinet and Anatoly Kilbas were
nominated. Seven Board members were elected electronically: Bogdan Bojarski,
Okay Celebi, Massimo Lanza de Cristoforis, Michael Reissig, John Ryan, Joachim
Toft, Masahiro Yamamoto.

O.A. Celebi, heading towards the opening speech Ankara 2007
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H.T. Kaptanoglu, R.P. Gilbert, T. Shaposhnikova, V. Maz’ya Ankara 2007

M. Ruzhansky, ISAAC awardee 2007, session talk Ankara 2007

In London 2009 a successor of M.W. Wong had to be chosen. There was an
exciting board meeting. Two groups supporting different candidates were labeled.
While one group wanted to elect Luigi Rodino, a member from Wong’s SIG, the
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other just aimed for a change to another subgroup. After all Michael Ruzhansky,
also from the pseudo-differential operators group, was elected.

He was the local organizer of the 9th ISAAC congress in London, which was
very well planned and held. Vice presidents were elected for the next 2 years by
electronic voting: Victor Burenkow for Europe and Africa, Yongzhi Steve Xu for
America, Masahiro Yamamoto for Asia. As the former president Man Wah Wong
became board member by invitation. Moreover, eight representatives of six SIGs
were delegated so that only five members could be elected by the general members.
Begehr and Zhang were confirmed in their positions. But Zhang just wanted to be
the webmaster without also being secretary. The new regulation for filling the board
seats said that larger SIGs may delegate two members, smaller ones just one. Larger
SIGs were in 2009 the pseudo-differential operators and the partial differential
equations groups. The total number of board members including the officers is
20. The honorary president, Gilbert, is counted as an officer. The five elected
board members were Bogdan Bojarski, Okay Celebi, Massimo Lanza de Cristoforis,
Michael Reissig, and Joachim Toft. The six SIG representatives were Luigi Rodino
and Bert-Wolfgang Schulze for pseudo-differential operators, Mitsuro Sugimoto
and Daniele Del Santo for partial differential equations, Michael Oberguggenberger
for generalized functions, Sergei Rogosin for complex analysis, Juri Rappoport for
integral transforms and applications, and Saburo Saitoh for reproducing kernels.

Congress Dinner, M. Ruzhansky, main organizer, with wife, H. Begehr, next generation London
2009
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As Begehr had pointed out, ISAAC was not following the rules from the
constitution. Therefore at the board meeting of the Moscow congress it was agreed
upon a reform of the constitution to be worked out by the president and the secretary
before the next congress.

Opening Ceremony, V. Burenkov, main organizer Moscow 2011

Group on stairs to Main Lecture Hall Moscow 2011
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Excursion on Moscow River V. Burenkov, P.D. Lamberti, M. Lanza de Cristoforis, A.
Mohammed, S. Bernstein, unknown, unknown, F. Sommen Moscow 2011

This was done before the 2013 Krakow congress organized by Vladimir Mityu-
shev. The new constitution was accepted by electronically voting. Fifty-one mem-
bers have voted, 47 in favor, 1 opposed, 3 abstained. The constitution was put on
the home page and is effective since August 5, 2013. Vladimir Mityushev explained
that by Polish law it will not be possible to transfer to ISAAC money from collected
congress fees. He offered to use the amount to build up a new ISAAC home page
at the Pedagogical University in Krakow. This was accepted by the board and in
Macao 2015 confirmed where V. Mityushev had explained the progress in building
up this site, isaacmath.org.

According to the new constitution a new president and just one vice president
were elected in Krakow. Luigi Rodino became president and Michael Reissig vice
president. Begehr was acclaimed as secretary and treasurer. Zhang is still webmaster
until the new home page will work.

Michael Reissig had suggested to start an ISAAC newsletter to increase the
contact within the society. Four have appeared until the following congress in 2015
at the University of Macau in Macao. This was ISAAC congress no. 10 organized
by Tao Qian.
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Michael Ruzhansky, opening speech of president Krakow 2013

Vladimir Mityushev, session talk of local organizer Krakow 2013

The board, according to the new regulation, consists besides the honorary
president, the president, the vice president, the past president, secretary and
treasurer, webmaster, local organizer of the next congress, just one representative
of each active SIG and of elected members up to altogether 21. For the period
2014–2016 the SIG representatives are Man Wah Wong for pseudo-differential
operators, Mitsuro Sugimoto for pdes, Stevan Pilipovic for generalized functions,
Sergei Rogosin for complex analysis, Yuri Rappoport for integral transforms and
reproducing kernels, Irene Sabadini for Clifford and quaternionic analysis, Anatoly
Golberg for complex variables and potential theory, and Tynysbek Kalmenov for
spectral analysis and bvps. The seven elected members are Okay Celebi, Massimo
Lanza de Cristoforis, Michael Oberguggenberger, Joachim Toft, Ville Turunen,
Masahiro Yamamoto, and Jens Wirth.
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Board Meeting, Krakow 2013

Luigi Rodino, speech as newly elected President Closing Ceremony, Krakow 2013

This board elected the new officers in Macao. Luigi Rodino was reelected;
Joachim Toft became the vice president after Michael Reissig had stepped down.
Begehr was elected as secretary and treasurer. The next local congress organizer
is Joachim Toft. His Linnäus University in Växjö will host the 11th International
ISAAC Congress in 2017. Because he is also the vice president this time eight board
members will be elected at the beginning of 2016.
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Tao Qian getting up to present Macao as next congress site Krakow 2013

Tao Qian Opening Speech, Alan McIntosh First Plenary Lecture Macao 2015

Unfortunately the home pages of the congresses disappear after a while as the
universities close them down. For the Berlin, Toronto, and Catania congresses
however are the abstracts still available, as the AMCA service from Toronto was
used for these three congresses (see http://at.yorku.ca/cgi-bin/amca/submit/cahk-
01).

Abstracts for the 3rd congress are http://at.yorku.ca/c/a/h/k/01.htm, for the 4th
congress http://at.yorku.ca/c/a/k/u/01.htm, and for the 5th one http://at.yorku.ca/c/

http://at.yorku.ca/cgi-bin/amca/submit/cahk-01
http://at.yorku.ca/cgi-bin/amca/submit/cahk-01
http://at.yorku.ca/c/a/h/k/01.htm
http://at.yorku.ca/c/a/k/u/01.htm
http://at.yorku.ca/c/a/p/g/01.htm
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Audience During Plenary Talk of L. Cohen Macao 2015

ISAAC Special Mention Award Decoration by L. Rodino and M. Reissig Macao 2015
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J. Toft Photo by M. Ruzhansky in Matsumoto, Japan, February 2016 discussing the 2017 ISAAC
Congress

a/p/g/01.htm. Later congresses saved the fee for this service, but the abstracts are
not available any more on the Internet. Some rudimental home page for the 4th
and the 5th congress are still available via link from the AMCA page http://www.
math.yorku.ca/isaac03/, and the AMCA page http://mathisaac.org/c/cs/isaac/c/05/a,
respectively. But on the ISAAC home pages, mathisaac.org, the websites of most of
the congresses are still available. Zhang has reconstructed the one for Delaware. No
home pages are there any more from Fukuoka, Berlin, Ankara, and Moscow.

The ISAAC congresses are held in sessions. Between 20 and 30 sessions are
organized on varying subjects. The Delaware congress had 25 sessions. At the
Fukuoka congress one session with the title “Special Session” organized by Michael
Reissig presided a meeting on the occasion of Begehr’s 60th birthday. Six talks
were presented: R.P. Gilbert (About the person H. Begehr), Ju. Duinskij (About
Begehr’s results in the theory of boundary value problems in C

n), W. Sprößig (On
hypercomplex boundary value problems in H. Begehr’s work), Xing Li (Complex
analytic methods in mechanics), A. Cialdea (Contributions of H. Begehr to the
theory of Hele-Shaw flows), M. Reissig (Contribution of H. Begehr to the abstract
Cauchy-Kovalevsky theory).

The number of plenary speakers of the ISAAC congresses is 10 to 12. The first
plenary talk was delivered by H. Begehr on June 3, 1997, 8:45–9:45 on Riemann
Hilbert Boundary Value Problems in C

n:

Only one of the plenary speakers was invited twice: Saburou Saitoh was one at
the Berlin and at the Macao congress. The plenary talks at the Berlin congress were
video-recorded. The diskettes are still in Begehr’s hands and can occasionally be
shown at some later ISAAC congress.

http://at.yorku.ca/c/a/p/g/01.htm
http://www.math.yorku.ca/isaac03/
http://www.math.yorku.ca/isaac03/
http://mathisaac.org/c/cs/isaac/c/05/a
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H. Begehr’s 60th Birthday Party, Photo E. Wegert Fukuoka 1999

As an international scientific society ISAAC is well equipped with analysts from
a large group of countries representing the major fields in analysis, its applications,
and computation. But some geographic areas such as South America and Australia
are not adequately present and further scientific spreading would be favorable.
Also ISAAC has not yet managed to organize congresses there. ISAAC is overly
dominated by Europeans and mainly has its meetings there. ISAAC needs to move
around and to widen its membership more internationally.

7 Special Interest Groups (SIGs)

As was pointed out earlier already, from the very beginning of ISAAC, Gilbert had
fixed the idea of special interest groups within the society for particular activities
such as workshops, local conferences etc. in the constitution. There he had listed
as examples Approximation Theory, Function Theoretic Methods in Partial Differ-
ential Equations, Asymptotics and Homogenization, Free and Moving Boundary
Problems, Inverse Problems and Control Theory, and Symbolic Computation and
Analysis, but none was really organized until Man Wah Wang has efficiently created
the SIG for pseudo-differential operators on 15. 09. 2003. Before only some people
in Function Theoretic Methods in Partial Differential Equations had developed
some activities in organizing small conferences and workshops mainly the ones in
1998 and 2004 at METU in Ankara organized by Okay Celebi, Gilbert, Begehr,
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and Wolfgang Tutschke and one in 2002 in connection with a Nato Advanced
Research Workshop organized by Grigor Barsegian, and Begehr, and the ISAAC
Conference on Complex Analysis, Partial Differential Equations, and Mechanics of
Continua dedicated to the Centenary of Ilia Vekua at Tbilisi State University in April
2007 organized by George Jaiani. But the very first ISAAC activity was the Graz
conference on generalized analytic functions in honor of Gilbert’s 65th birthday
organized mainly by Wolfgang Tutschke a few months before the Delaware ISAAC
congress.

It was then Man Wah Wong who had motivated many colleagues in joining
this SIG and also ISAAC in connection with the Toronto congress. Man Wah
Wong became ISAAC president, Michael Ruzhansky, successor of M.W. Wong
as president from 2009 to 2013, and Luigi Rodino, president since 2013, and
one is vice presidents right now since 2015, Joachim Toft. Moreover, Wong had
founded a book series “Pseudo-Differential Operators, Theory and Applications”
published with Springer-Birkhäuser. The contributions to the ISAAC congresses
from the sessions on pseudo-differential operators are since 2003 published in
Gohberg’s Birkhäuser series “Operator Theory: Advances and Applications” where
also proceedings of other conferences of this SIG are published; see the site of
the group http://www.math.yorku.ca/IGPDO/, e.g., from the ISAAC home page
mathisaac.org.

Several SIGs followed and at the end of 2015 there are altogether nine SIGs.
Very active ones are also the SIG on partial differential equations, and the SIG
on generalized functions, the SIG on Clifford and quaternionic analysis. The two
SIGs founded by Saburou Saitoh on reproducing kernels and on integral transforms
and applications are even older than the pseudo-differential operator group. They
had organized a conference “Applications of analytic extensions” in January 2000
at the Research Institute for Mathematical Sciences at the Kyoto University. Later
both groups merged to the SIG integral transforms and reproducing kernels. Other
SIGs are on inverse problems and industrial mathematics, on complex analysis, on
complex variables and potential theory, and finally the youngest one on spectral
analysis and boundary value problems.

Acknowledgements Thanks are due to Tatsiana Vaitsiakhovich for her help with the photos and
text arrangement. Photos were provided by H. Begehr, R.P. Gilbert, H.T. Kaptanoglu, S. Leonardi,
V. Mityushev, T. Qian, Yu. Rappoport, M. Ruzhansky, K.H. Shon.
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Appendix

1. List of ISAAC Presidents

Robert Pertsch Gilbert, Founding President, 1996–2001,
Heinrich Begehr, 2001–2005,
Man Wah Wong, 2005–2009,
Michael Ruzhansky, 2009–2013,
Luigi Rodino, 2013–2017.

2. List of International ISAAC Congresses

Newark, Delaware, USA, 03.–07. 06. 1997 (R.P. Gilbert; S. Zhang)
Fukuoka, Japan, 16.–21. 08. 1999 (J. Kajiwara)
Berlin, Germany, 20.–25. 08. 2001 (H. Begehr)
Toronto, Canada, 11.–16. 08. 2003 (M.W. Wong)
Catania, Italy, 25.–30. 07. 2005 (F. Nicolosi)
Ankara, Turkey, 13.–18. 08. 2007 (A.O. Çelebi)
London, GB, 13.–18. 08. 2007 (M. Ruzhansky; J. Wirth)
Moscow, Russia, 22.–27. 08. 2011 (V. Burenkov)
Krakow, Poland, 05.–09. 08. 2013 (V.V. Mityushev)
Macao, China, 03.–08. 08. 2015 (T. Qian)
Växjö, Sweden, 14.-18. 08. 2017 (J. Toft)

3. List of ISAAC Supported Conferences

Generalized Analytic Functions—Theory and Applications, on the occasion of
the 65th anniversary of R.P. Gilbert, 06.–10. 01. 1997, Technical University of
Graz, Austria,
Workshop on Recent Trends in Complex Methods for Partial Differential Equa-
tions, 06.–10. 06. 1998, Middle East Technical University, Ankara, Turkey,
Applications of Analytic Extensions, 11.–13. 01. 2000, Research Institute for
Mathematical Sciences, Kyoto University, Kyoto, Japan,
Complex Analysis, Differential Equations and Related Topics, devoted to the
memory of Professor Artashes Shahinyan, 17.–21. 09. 2002, in union with the
NATO Advanced Research Workshop Topics in Analysis and its Applications,
22.–25. 09. 2002, Yerevan, Armenia,
Workshop on Recent Trends in Applied Complex Analysis, 01.–05. 06. 2004,
Middle East Technical University, Ankara, Turkey,
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Function Spaces, Approximation Theory, Nonlinear Analysis, dedicated to the
centennial of Sergei Mikhailovich Nikol’skii, 23.–29. 05. 2005, Lomonosov
Moscow State University and V.A. Steklov Mathematical Institute of RAS,
Moscow, Russia,
ISAAC Workshop on Pseudo-Differential Operators: PDE and Time-Frequency
Analysis, 11.–15. 12. 2006, Fields Institute, Toronto, Canada, see (http://www.
fields.utoronto.ca/programs/scientific/06-07/ISAAC/),
Homogenization, Inverse Problems and Applied Analysis, dedicated to the 75th
birthday of R.P. Gilbert, 13.–15. 01. 2007, University of Central Florida, Orlando,
USA,
Complex Analysis, Partial Differential Equations, and Mechanics of Continua,
dedicated to the Centenary of Ilia Vekua, 23.–27. 04. 2007, I. Vekua Institute of
Applied Mathematics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia,
Analysis, PDEs and Applications on the occasion of the 70th birthday of
Vladimir Maz’ya, 30. 06.–03. 07. 2008, University of Rome, Italy,
International Symposium on Nonlinear Partial Differential Equations and Appli-
cations, in honor of Franco Nicolosi on the occasion of his 70th birthday, 22.–25.
06. 2009, Catania, Italy,
Chinese-German Workshop on Analysis of Partial Differential Equations and
Applications, 14.–18. 02. 2011, Freiberg, Germany,
Analytical Methods of Analysis and Differential Equations (AMADE) 2011 in
honor of A. Kilbas, 12.–19. 09. 2011, Minsk, Belarus,
Italian-German Workshop on Modern Aspects of Phase Space Analysis, 13.–17.
02. 2012, Freiberg, Germany,
Satellite conference of ECM Fourier Analysis and Pseudo-differential Operators,
25.–30. 06. 2012, Helsinki, Finland,
Conference on Applied Analysis and Mathematical Biology in honor of R.P.
Gilbert’s 80th birthday, 08.–09. 08. 2012, University of Delaware, Newark, USA,
Topics in PDE, Microlocal and Time Frequency Analysis, 03.–08. 09. 2012, Novi
Sad, Serbia,
Complex Analysis & Dynamical Systems VI, 19.–24. 05. 2013, Nahariya, Israel,
Conference on Fourier Analysis and Approximation Theory, 04.–08. 11. 2013,
Centre de Ricerca Matemàtica, Barcelona, Spain,
Complex and Harmonic Analysis, 11.–13. 06. 2014, Holon, Israel,
Days of Analysis, 03.–07. 07. 2014, Novi Sad, Serbia,
Recent Trends in Mathematical Analysis and its Applications, 21.–23. 12. 2014,
Indian Institute of Technology, Roorkee, India,
2nd International Conference on Mathematical Computation (ICMC 2015), 05.–
10. 01. 2015, Haldia Institute of Technology, Haldia, India,
Complex Analysis & Dynamical Systems VII, 10.–15. 05. 2015, Nahariya, Israel,
Analytical Methods of Analysis and Differential Equations (AMADE) 2015,
14.–19. 09. 2015, Minsk, Belarus,
Boundary Value Problems, Functional Equations, Applications, 3rd Meeting,
20.–23. 04. 2016, University of Rzeszow, Poland,

http://www.fields.utoronto.ca/programs/scientific/06-07/ISAAC/
http://www.fields.utoronto.ca/programs/scientific/06-07/ISAAC/
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Modern Methods, Problems and Applications of Operator Theory and Harmonic
Analysis dedicated to Stefan Samko, 24.–29. 04. 2016, Rostov-on-Don, Russia,
Harmonic Analysis and Approximation Theory, 06.–10. 06. 2016, Centre de
Recerca Matemàtica, Catalunya, Spain,
Actual Problems in Theory of Partial Differential Equations dedicated to the
centenary of Andrey V. Bitsadze, 15.–19. 06. 2016, Lomonosov Moscow State
University and V.A. Steklov Mathematical Institute of RAS, Moscow, Russia,
14th International Conference on Integral Methods in Science and Engineering,
25.–29. 07. 2016, University of Padua, Italy,
24’ICFIDCAA-2016 24th International conference on finite or infinite dimen-
sional complex analysis and applications, 22.–26. 08. 2016, Anand International
College of Engineering, Jaipur, India,
International conference on generalized functions GF2016, 05.–09. 09. 2016,
Centre for Advanced Academic Studies, Dubrovnik, Croatia,
VI Russian-Armenian Conference on Mathematical Analysis, Mathematical
Physics and Analytical Mechanics, 11.–16. 09. 2016, Rostov-on-Don, Russia,
International Conference Nonlinear Analysis and its Applications, 18.–24. 09.
2016 (postponed to 2017), Samarkand State University of Uzbekistan,
International Conference on Mathematical Analysis and its Applications
(ICMAA 2016), 28. 11.–02. 12. 2016, Indian Institute of Technology, Roorkee,
India,
3rd International Conference on Mathematical Computation (ICMC 2017), 17.–
21. 01. 2017, Haldia Institute of Technology, Haldia, India.

4. Minutes of the ISAAC Board Meeting on August 19, 1999, 17:15–17:45 at
Fukuoka Institute of Technology in Fukuoka, Japan
Present: R.P. Gilbert, President, H. Begehr, E. Bruening, L. Fishman, I. Herrera,

I. Laine, Man Wah Wong, S. Saitoh, B. Vainberg, Y. Xu

1. Proceedings problems with the present publisher Kluwer are discussed. ISAAC
might switch to publish its proceedings by itself in case the publisher will ask
for subsidies. In future the costs of the proceedings will have to be collected
from the participants together with congress fees. This could be about US$100
together with some US$40–50 for membership fee for the term until the next
congress and probably additional $100 for local organization. In the future the
proceedings might become about 1000 pages per congress. For the proceedings
of this congress Prof. Kajiwara has found some funds for paying the printing
costs. The suggested restriction to 6 pages per contribution is discussed. Many
board members would prefer to enlarge this to about 10 pages. This has to
be discussed with Prof. Kajiwara who only knows the side conditions for the
publication of these proceedings. As many of the preregistered colleagues did
not arrive at the congress, it seems likely that the contributions could be increased
slightly. The session organizers are responsible to collect the manuscripts in time
and to contact Prof. Kajiwara about their length. They are also responsible to get
the manuscripts properly refereed. The manuscripts together with copies of the
reviews should be sent to the editors in time.
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2. Next congress in Berlin. It seems desirable that the local organization and the
president/board work closely together in preparing the congresses. For Berlin a
careful selection of sessions and session organizers should be ensured. People
will be invited to organize a session and they then should invite colleagues to
participate in their session. The board will decide about the plenary talks. One
afternoon during the congress should be reserved for an excursion. The congress
should be properly advertised in particular not just on the website of ISAAC.
As in Berlin the president, the vice presidents, and the board will be elected it
is desirable to have registered members. Any participant of the congress having
paid the fee which will include a membership fee (see 1.) is an ISAAC member
for the period until the next congress. He/she is thus able to take part in the voting
both actively and passively.

3. Further congresses. The following possibilities are offered: 2003: Mexico (I.
Herrera), Toronto (Man Wah Wong), Durbam, South Africa (E. Bruening), 2005:
Joensuu (I.Laine). After Berlin ISAAC should have its next congress on another
continent. The different possibilities are discussed and also when during the year
it should take place.

4. Workshops and regional meetings. ISAAC intends to have local workshops in
between its biannual congresses. The local workshops should find own financial
support. The perspective proceedings should be prepared under the same rules as
the ones for the congresses. They are edited by the local organizers. Eventually
these proceedings could be electronically published. Until now we have had
the following local meetings: 1997: Generalized analytic functions—theory and
applications, Graz, Austria, 1998: Recent trends in complex methods for partial
differential equations, Ankara, Turkey.

5. Memberships and purpose of ISAAC. The aim of ISAAC was roughly fixed in the
constitution and an accompanying letter from the president, after ISAAC had got
registered in Delaware in 1996. ISAAC does not want to be just another AMS. It
is also not inclined to cover the whole area of analysis but is devoted to complex
and functional analysis, its applications, and computation. The ISAAC website
is suggested to be improved. In particular the congresses and workshops as well
as the proceedings appeared have to be advertised. Until now three volumes
have appeared with Kluwer, three more are in press, three volumes from the
first congress have appeared elsewhere, additionally one will appear as a special
issue in a journal.

Proceedings appeared in our Kluwer series: Generalized analytic functions,
theory and applications to mechanics. Eds. H. Florian, K. Hackl, F.J. Schnitzer, W.
Tutschke. ISAAC 1, Kluwer, Dordrecht, 1998.

Partial differential and integral equations. Eds. H. Begehr, R.P. Gilbert, G.-C.
Wen. ISAAC 2, Kluwer, Dordrecht, 1999.

Reproducing kernels and their applications. Eds. S. Saitoh, D. Alpay, J.A. Ball,
T. Ohsawa. ISAAC 3, Kluwer, Dordrecht, 1999.
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Proceedings appeared elsewhere: Inverse problems, tomography, and image
processing. Proc. of sessions from 1. int. congress of ISAAC. Ed. A.G. Ramm.
Plenum Press, New York, 1998.

Spectral and scattering theory. Proc. of sessions from 1. int. congress of ISAAC.
Ed. A.G. Ramm. Plenum Press, New York, 1998.

Dirac operators in analysis. Eds. J. Ryan, D. Struppa. Pitman Research Notes No.
394. Addison Wesley Longman, Harlow, 1998.

Proceedings in print: Recent developments in complex analysis and computer
algebra. Eds. R.P. Gilbert, J. Kajiwara, Y.S. Xu. Kluwer, Dordrecht.

Direct and inverse problems of mathematical physics. Eds. R.P. Gilbert, J.
Kajiwara, Y.S. Xu. Kluwer, Dordrecht.

Complex methods for partial differential equations. Eds. H. Begehr, A.O. Celebi,
W. Tutschke. Kluwer, Dordrecht.

Orthogonal polynomials and computer algebra. Eds. R.A. Askey, W. Koepf, T.H.
Koornwinder. Special issue of Journal of Symbolic Computation.

R.P. Gilbert, President, H. Begehr, Secretary

5. Minutes of the ISAAC Member and Board Meeting on Tuesday, August 21,
2001, 7:15–9pm in Berlin During the 3rd ISAAC Congress
Participants: (*: board member)
T. Aliyev (Azerbaijan), G.E.G. Almeida (United Kingdom), C. Andreian

Cazacu (Romania), G. Barsegian (Armenia), H. Begehr* (Germany), A. Bourgeat*
(France), V. Burenkov (United Kingdom), V.V. Dmitrieva (Russia), A.D. Dzabrailov
(Azerbaijan), L. Fishman* (USA), V.A. Gaiko (Belarus), R.P. Gilbert* (USA), V.S.
Guliev (Azerbaijan), H. Guliev (Azerbaijan), G. Jaiani (Georgia), G. Khimshiashvili
(Georgia, Poland), W. Lin* (China), I.S. Louhivaara (Germany, Finland), N.
Manjavidze (Georgia), G.F. Roach* (United Kingdom), J. Ryan* (USA), S. Saitoh*
(Japan), R.S. Saks (Russia), V. Stanciu (Romania), P. Tamrazov* (Ukraine), B.
Vainberg* (USA), S. Voldop’yanov (Russia), A. Wirgin* (France), M.W. Wong*
(Canada), S. Xu* (USA), C.C. Yang* (Hong Kong), M. Yamamoto (Japan)

The main problem of ISAAC is still the lack of registered members. For this
reason there are no elections for a new board. It is decided that the old board will
remain but C.H. FitzGerald (USA), St. Krantz (USA), A.G. Ramm (USA) will be
replaced. The board members are expected to pay membership fee (US$20 per year,
lifetime membership fee US$200). Moreover, they are expected to participate in the
organization and/or in the congresses itself at least every second time. Members
from countries with weak economy may apply for exemption from paying the
membership fee. The board will decide about exemptions. New board members
are G. Barsegian (Armenia), C. Berenstein (USA), V. Burenkov (UK), G. Csordas
(USA), A. Dzhuraev (Tajikistan), and R. Magnanini (Italy).

The location for the 4th International ISAAC Congress is not yet fixed. At the
2nd congress Mexico, South Africa, and Canada were discussed and for 2005
Joensuu (Finland) was offered. ISAAC’s policy is to have its congresses on different
continents; the American continent is favorable for 2003. The strong offer from
Minsk (Belarus) for organizing the next congress is gratefully recognized. It should



ISAAC: How It Became What It Is xlix

be accepted for an intermediate conference or workshop in 2002 as there the
facilities are optimal for meetings with up to 200 participants. Other options for
locations of the next congresses are Taiwan, Maryland (USA), Rome, and Armenia.
Joensuu has withdrawn for the 2005 congress as there will be another conference on
complex analysis in 2005. They offer to organize the 2007 congress. Other locations
for smaller ISAAC conferences or workshops are Armenia and the new branch of the
Banach center in Bedlevo near Posnan. ISAAC members are welcome to organize
such workshops in even numbered years.

The proceedings of ISAAC congresses, conferences, and workshops will not any
more be published automatically in the Kluwer ISAAC series. All publishers have
changed their policy in accepting proceedings only under bulk orders of the editors.
This economical reason forces ISAAC to split the proceedings into two parts. The
plenary and some elected main talks will be published in the ISAAC series with
Kluwer, and the main proceedings volumes with World Scientific. Here a section
of open problems is suggested. The ISAAC series will change its character in the
sense that also monographs might be published there. World Scientific has applied
to become an ISAAC member. The board is in favor of this idea and fixes the fee for
a lifetime membership for a company at US$2000.

After the Member meeting is closed, the Board meeting takes place. During this
meeting R.P Gilbert steps down as the interim president. He nominates H. Begehr as
the new president. The board approves this motion. The new president suggests to
elect R.P. Gilbert as honorary president. This is accepted without objections. There
are no proposal to elect a new vice president and a new secretary. Hopefully at the
next congress there will be enough ISAAC members to elect all officers and board
members. It is discussed if ISAAC should have more than one vice president, e.g.,
one for each continent. At last the board approves the motion of the president to
accept S.M. Nikol’skii, Academician of the Russian Academy of Sciences, one of
the plenary speakers of this congress, 96 years old and one of the dominant Russian
analysts of the last century, well known, e.g., for his research results about O.V.
Besov’s function spaces, the Nikol’skii-Besov spaces.

H. Begehr

6. Minutes of the ISAAC Board Meeting on 12. August, 2003, 7–9pm at York
University in Toronto
Attendant: H. Begehr, V.I. Burenkov, R.P. Gilbert, I. Laine, M. Reissig, S. Saitoh,

M.W. Wong, C.C. Yang

0. The agenda proposed is approved.
1. Report of the president.

a. At this moment the society has 54 life members, 1 honorary member, and 16
paid members. Forty-four life members have joined since 2001. Everyone is
invited to RECRUIT further members.

b. There are two different ISAAC home pages, one at the Univ. of Delaware and
the other at FU Berlin. These were briefly described. It would be appreciated
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if members would visit them regularly and use the services offered, e.g., the
open problem section or the job search and the advertisements section.

c. The financial situation is reported on: R.P. Gilbert has an ISAAC account in
Newark, Delaware, of about US$3500. H. Begehr has US$1540 and about
Euro 24,000. The exact figure in Euro will be available as soon as the bill for
the World Scientific proceedings volumes from the 3rd congress (US$9000)
will be paid. From 1995 to 1997, DM 285/DM 2000 has been collected for
paid/life membership fees, and in 1998 DM 1390 has been collected for
conference fees. From this amount DM 109.50/DM 1556.20 was paid for
account costs/transferred to R.P. Gilbert for ISAAC registration costs. The
account was canceled in October 1997. The remaining amount was transferred
into Euro 1027.34. From 2001 DM 1026 = Euro 524.59 and Euro 82.50 as
well as US$140 were collected for paid membership fees and Euro 1962.35
and US$1400 for life membership fees. Thus H. Begehr has Euro 3596.78
and US$1540 in his hands. Moreover, at the ISAAC account at the FU Berlin
there are Euro 28,774.32. From this amount US$9000 have to be paid to World
Scientific and US$400 for the ISAAC Award to Prof. Umezu in Toronto.

d. Special interest group. M.W. Wong has formed a special interest group on
pseudo-differential operators. It has four directors and several other members.
Special interest groups are supposed to organize workshops and coordinate
scientific activities in their area. Members of these groups are supposed to be
ISAAC members. (It is discussed if these special interest groups are a good
way to expand and develop ISAAC.)

2. Elections. The board agrees that the elections by the ISAAC members for the
officers and the board members should be done electronically. With the first
ballot the officers will be elected. A second ballot will be used to elect the board.
Officers and board members will serve for a 2 years period. The board had a
split vote concerning the period for the president: 6 votes for a 2-years period
with the possibility for a second 2-years term, 2 votes for a 4-years period. It was
agreed upon that as the president also the vice presidents are only re-eligible for
a second time in sequence. Moreover, it was agreed to elect two vice presidents
this time. President and the vice presidents should represent each of the global
areas, the Americas, Europe, and Asia. The secretary may be reelected any time.

H. Begehr is nominated for president, M.W. Wong and C.C. Yang for vice
presidents, and S. Zhang as secretary and webmaster. The present board members
are wiling to serve again at the board. The four absent members will be asked if
they want to serve as board members again. Further candidates may be nominated
by ISAAC members. The board agrees that the Founding and Honorary President
is a lifetime board member. Also former presidents will become lifetime board
members. An enlargement of the board up to 20 members is discussed but as
long as the number of members is still small this is not considered as suitable.

3. Further activities. The next ISAAC congress will be organized in Catania. This
decision was made by the board last year after the ISAAC conference in Frejus.
F. Nicolosi has agreed to act as local organizer. There are no information yet
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how far the preparation, if any already, has gone. This will be discussed with
Prof. Nicolosi soon. There are two more offers for this 2005 congress: one
from the University and the Academy of Sciences from Minsk and one from
the Middle East Technical University in Ankara. Both these possibilities were
discussed. In case Catania will not work out the board will decide again. In
that case both candidates should work out a detailed offer including information
about the congress fee, financial supports, accommodations, flight connections,
and proceedings. An essential condition will be that the membership fee for the
society can be collected together with the congress fee and then handed over to
ISAAC. As another possible place for a congress Moscow is suggested.

Ankara has also suggested an ISAAC workshop at the Middle East Technical
University to be organized by O. Celebi, H. Begehr, and R.P. Gilbert.

4. Organization of the congresses. I. Laine has suggested to carefully select the
sessions for future congresses. The stochastic way it was done so far is not
satisfactory. Related sessions should neither overlap in the schedule nor should
there be too many. Fewer and broader sessions are preferable. I. Laine will
provide the board with some particular suggestions. An ISAAC congress opens
a window on analysis, its applications, and computation. Different congresses
open different windows. A sequence of congresses should more or less cover
the whole area. In the future topics and organizers of session will be decided by
the board as is done already with the plenary speakers. It is discussed if session
organizers should be asked to become ISAAC members first.

5. In the ISAAC series with Kluwer since 1998 altogether 10 volumes—all
proceedings—have appeared. As proceedings are not easily sold any more
Kluwer does not pay any money anymore to ISAAC for volumes published.
This was done only for the first few volumes. Now ISAAC is asked to combine
publication of proceedings with a bulk order. The series are open for publishing
monographs also. Everybody is asked to think about using the ISAAC series for
publishing books. The lectures from the annually organized “minicorsi” at the
university of Padua will appear in the ISAAC series.

6. Miscellaneous. The high congress fees are criticized. It is discussed if the pro-
ceedings can be published electronically. The congress fee should be negotiated
with perspective local organizers for congresses. The proceedings of this 4th
Intern. ISAAC Congress will appear with Kluwer in our series. M.W. Wong has
negotiated with Kluwer for an 800 pages volume and a bulk order of 100 copies.
The contributions from the session on pseudo-differential operators will appear in
Gohberg’s Birkhaeuser series on Operator Theory, Advances and Applications.
Registered participants will receive a copy. V. Burenkov suggests to make Prof.
Lee Lorch an Honorary Member of ISAAC at the closing ceremony. Prof. Lorch
is a distinguished mathematician at York University and a fellow of the Royal
Society of Canada. He is a participant of this congress and about 87 years old.
The board agreed to this suggestion with 6:0:2.

Prof. J. Kajiwara is nominated for a “Distinguished ISAAC Service Award”.
He has served ISAAC extremely well in organizing the 2nd Intern. ISAAC
Congress in Fukuoka, in preparing the proceedings volumes of this congress
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almost all by himself, and as a board member. This is accepted by the board.
The award will be presented to him on the occasion of his 70th birthday at the
celebration at the 12th International Conference on Finite or Infinite Dimensional
Complex Analysis and Applications to be held next July in Tokyo.

H. Begehr

7. Minutes of ISAAC Board Meeting in Catania During the 5th International
ISAAC Congress, 26 July, 2005, 17.00–20:45
Attendants: H. Begehr, E. Bruning, V. Burenkov, M. Lanza De Cristoforis,

F. Nicolosi (guest as local organizer), M. Reissig, S. Saitoh, M.W. Wong, M.
Yamamoto, C.C. Yang

Excused: J. Ryan, R.P. Gilbert (not at the congress), I. Laine (not at the congress)
Further guests for point 1 of the agenda: O. Celebi, A. Kilbas, A. Jerbashian
The board agrees to the agenda suggested.
Site of the 6th International ISAAC Congress.
O. Celebi (METU Ankara), A. Kilbas (Univ. Minsk), and A. Jerbashian (Univ.

Yerevan) are reporting about the conditions in their institutions, city/country for
organizing the congress and answering questions of board members. Of particular
interests are as follows:

International traffic connection of the city (airplane and train connections) and
local transportation,

Possibilities of accommodation for 300 to 400 participants as well in higher
quality hotels as in student dormitories/youth hotels close to the congress site,

Lecture halls for about 15 parallel sessions,
Chances to get financial support from local, national, and international sources

(societies, institutions, companies),
Experience in organizing conferences.
After the three reporters have left, the board agrees in demanding more detailed

proposals in written form from the three universities. A questionnaire will be worked
out which should be answered within the proposals until beginning of September
2005. The board members will be informed electronically about the proposals and
should decide via e-mail contact.

Remark Prof. Kilbas has handed over two letters from the President of the Belarus
Academy of Sciences and from the Rector of the Univ. Minsk inviting ISAAC to
organize the ISAAC congress in Minsk. The letters were sent once in 2001 to
ISAAC. After the board meeting J. Toft has offered to organize the next ISAAC
congress in Sweden. Other universities have expressed their interest to host ISAAC
congresses in the near future. They are Univ. of New Delhi and Univ. of Wuhan; also
colleagues from Moscow are willing to organize an ISAAC congress in Moscow.

Money Report.
This is a continuation of the money report from the last board meeting in Toronto.
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Since the Toronto congress ISAAC has the following income:

Euro 2905, US$320, Yen 7700 : with H. Begehr,
Euro 220, US$40. : with M.W. Wong,
US$220 (?) : with R.P. Gilbert,
Euro 640 (?) : with F. Nicolosi.

Remark the amount with R.P. Gilbert is not confirmed; the amount with F. Nicolosi
is estimated (expected membership fees collected in Catania).

The amount at FU Berlin from the 2001 congress:

Euro 22,240

Remark This amount differs by Euro 1020 from the figure given at the meeting. As
was mentioned there some part of the amount given there is NATO money for the
Yerevan NATO workshop in 2002.

Since the Toronto congress ISAAC has spent:

US$165 by M.W. Wong for the AMCA service,
Euro 7934 by H. Begehr for plenary speakers in Catania,
Euro 980 by H. Begehr for participants support in Catania,
Euro 400 by H. Begehr for one ISAAC award in Catania,

A final financial report on the total amount of ISAAC money will be given later.
Award Procedure.
The board agrees that strict regulations for the procedure as well for nomina-

tions/applications as criteria for the selection process have to be formulated and be
published on the ISAAC home page. This has to be done early enough before the
next congress. The board is expecting some proposal which then can be modified
before deciding upon.

President Election.
The board agrees in the principle to re-elect the president in sequel only once.

ISAAC should not become the society of just one person. In accordance with R.P.
Gilbert who is not able to attend the congress for health reasons M.W. Wong is
nominated as a candidate. Also V. Burenkov and C.C. Yang are nominated. The
board agrees that F. Nicolosi may vote in the election process. The result of the
voting is:

V. Burenkov 3 votes, M.W. Wong 5 votes, C.C. Yang 2 votes.
M.W. Wong is elected and accepts: He is the new ISAAC president for the next
2 years.

The board agrees to H. Begehr being the secretary and treasurer for this period. Also
S. Zhang is welcome to continue his work as webmaster and secretary for ISAAC.

Other Elections.
The vice presidents and the board will be elected electronically in Octo-

ber/November this year by all life, honorary, and paid members. The board
nominates E. Bruning, V. Burenkov, F. Nicolosi, S. Saitoh, and C.C. Yang for the
positions of three vice presidents.
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For the board election ISAAC members may nominate candidates in September.
They will be informed via e-mail. All present board members will be candidates,
additionally F. Nicolosi.

The suggestion to enlarge the board, as proposed already in Toronto, is met by the
regulation that all officers (honorary president, president, vice presidents, secretary
and treasurer, webmaster and secretary) are board members and that moreover each
special interest group will delegate one representative (director) to the board.

The board election will be combined with the election of the vice presidents.
Various.
S. Saitoh has established two new special interest groups on
Integral Transforms (jointly with A. Kilbas),
Reproducing Kernels (jointly with A. Berlinet).
V. Burenkov is nominating O. Besov as honorary ISAAC member. The board

approves this.

Remark O. Besov was decorated as honorary member on the final lunch during the
excursion on 30th July by F. Nicolosi. A certificate could not be produced in Catania
and will be mailed later. V. Burenkov will write a citation for O. Besov which will
be put on the respective place on the Berlin ISAAC home page.

Heinrich Begehr

8. Frame Agreement Between Springer and ISAAC from 2015
The International Society for Analysis, its Applications and Computation

(ISAAC) and the Springer International Publishing AG signed a joint Frame
Agreement.

The aim of the Agreement is to promote the publication of proceedings of
workshops and conferences, monographs, and textbooks, edited, or written, by
ISAAC members, members of the ISAAC special interest groups, or any scientist
willing to take part in such ISAAC activities. The volumes will appear with the
ISAAC logo and a short sentence stating the belonging to the Frame Agreement.

The procedure is as follows: Colleagues interested in these ISAAC activities may
send a text or a proposal to luigi.rodino@unito.it who will forward the material, with
a short presentation, to the competent Springer editor. At this moment, the potential
editor/author will interact directly with Springer. In particular, Springer will take
care of the refereeing process and will choose the appropriate Springer series where
the book will be published. The publication will then be governed by a separate
contract between editor/author and Springer.

Other editors/authors, producing independently (outside the aforesaid procedure)
Springer books related to Analysis, Applications and Computation, should be
possibly invited by ISAAC and Springer to add, before publication, the ISAAC logo
in the cover. They are also welcome to enter in this way the Frame Agreement.

We should also draw the attention of colleagues to the ISAAC Series on Analysis,
Applications and Computation, co-edited by Heinrich Begehr of Freie Universität
Berlin in Germany, Robert Pertsch Gilbert of the University of Delaware in the USA,
and M.W. Wong of York University in Canada and published by World Scientific. To
date, six volumes have been published and another one is scheduled to be published
in 2016.
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Generalized Functions Method for Solving
Nonstationary Boundary Value Problems
for Strictly Hyperbolic Systems
with Second-Order Derivatives

L.A. Alexeyeva and G.K. Zakir’yanova

Abstract The method of generalized functions has been elaborated for solving
nonstationary boundary value problems (BVPs) for strictly hyperbolic systems.
Considered solutions may belong to the class of regular functions with discontinu-
ous derivatives on moving surfaces, that is, wave fronts (shock waves). Generalized
solutions of BVP subject to shock waves have been constructed. Singular boundary
integral equations have been obtained that allow for the solution of BVP.

Keywords Boundary value problem • Generalized function method • General-
ized solution • Hyperbolic system • Shock wave
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The goal of this paper is to elaborate the method of boundary integral equations
(BIEs) for solving nonstationary boundary value problems (BVPs) for strictly
hyperbolic systems, which can be used to describe the dynamics of anisotropic
continuum media. It is based on the generalized functions method (GFM), which
gives the possibility of constructing the solutions of BVP in the space of distribu-
tions [1, 2]. The solutions considered may belong to the class of regular functions
with discontinuous derivatives on moving surfaces. This case is typical of dynamic
processes with shock waves in media. Here, on the basis of GFM in the space of
distributions, the dynamic analogues of Kirchhoff’s, Gauss’s, and Green’s formulas
have been constructed using the fundamental Green’s matrix of the system [3] and
the new fundamental matrices generated by it [4]. For construction of their regular
integral representations, the original method of regularization of the integral kernel
with strong singularities on the fronts of fundamental solutions has been elaborated
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4 L.A. Alexeyeva and G.K. Zakir’yanova

[1, 2, 4]. The resolving singular BIEs are constructed, and integral representations
of classical solutions are given.

1 Statement of Nonstationary BVPs

We consider a system of hyperbolic equations of the form

Lij.@x; @t/uj.x; t/C Gi.x; t/ D 0; .x; t/ 2 RNC1 (1)

Lij .@x; @t/ D Cml
ij @m@l � ıij@2t ; i; j;m; l D 1;N;

Cml
ij D Clm

ij D Cml
ji D Cij

ml; (2)

where x D .x1; : : : ; xN/, @j D @=@xj; @t D @=@t, ıij D ıij is the Kronecker symbol,
and there is everywhere tensor convolution over repeated indices.

The matrix Cml
ij satisfies the condition of strong hyperbolicity:

W.n; v/ D Cml
ij nmnlv

ivj > 0 8n ¤ 0; v ¤ 0: (3)

We construct a solution of (1) in the bounded region x 2 S� � RN ; t > 0; D� D
S� � .0;1/, D�

t D S� � .0; t/; D D S � .0;1/, Dt D S � .0; t/, and n.x/ is a unit
normal to S.

The vector function u is continuous and twice differentiable everywhere on D�,
except perhaps on some characteristic surface F in RNC1, which in RN describes
wave fronts Ft with gaps where the derivatives are discontinuous.

We have the following conditions on the wave fronts [5]:

Œui.x; t/�Ft
D 0 ) ml Œui;t �Ft C cŒui;l �Ft

D 0; (4)

ml
�
� l
i

�
Ft
D �c Œui;t �Ft

: (5)

Here � l
i D Cml

ij uj;m, ui;mD @mui, ui;tD @tui. It is a shock wave. The speed of motion
c of the wave front is defined by the characteristic equations of system (1):

detfCml
ij �m�l � �2t ıijg D 0; (6)

where .�; �t/ D .�1; : : : ; �N ; �t/ is a normal to the characteristic surface F:

c D � �t

k�k2 ; k�k
2 D �j�j: (7)
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By virtue of (3), Eq. (6) has 2N real roots, c D ˙ck.�/, 0 < ck � ckC1, k D 1;N,
which in general depend on the direction of motion of Ft.

We must construct the solutions of Eq. (1) that satisfy (4) and (5) as well as the
initial conditions

ui.x; 0/ D u0i .x/; x 2 S� C S; ui;t .x; 0/ D u1i .x/; x 2 S� (8)

and boundary conditions

� l
i .x; t/nl.x/ D gi.x; t/; x 2 S; t � 0; i D 1;N: (9)

We call such solutions classical.

Remark 1.1 Wave fronts arise if the following condition of coordination of initial
and boundary data is not satisfied:

wi.x;C0/ D u0i .x/; uSi ;t .x;C0/ D u1i .x/; x 2 S: (10)

This is a typical typical situation in problems in mechanics when the boundary
vector g.x; t/, which describes boundary stresses, has the character of a shock.

2 BVP Statement in the Space of Distributions D0
N.RNC1/

To consider Eq. (1) in the space of distributions, we consider the generalized
functions

bu.x; t/ D uH�
D .x; t/; bGk.x; t/ D Gk H

�
D .x; t/; (11)

where

H�
D .x; t/ D H�

S .x/H.t/;

is the characteristic function of the space-time cylinder D�, H.t/ is the Heaviside
function, and H�

S .x/ is the characteristic function of S� 2 RN .
Their generalized derivatives are equal to

@jH
�
D D �nj.x/ıS.x/H.t/; @tH

�
D D H�

D .x/ı.t/ )
@j Ou D u;j H

�
D � unj.x/ıS.x/H.t/; @t Ou D u;t H

�
D .x; t/C u0.x/H

�
D .x/ı.t/:

Here ıS is a singular generalized function representing a simple layer on the surface
S [1], while gk.x; t/ıS.x/H.t/ denotes a simple layer on D. If we substitute these
formulas and their second derivatives into Eq. (1), then [by virtue of the conditions
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on the gaps (4) and (5)], the densities of the layers of the independent singular
functions on the wave fronts are equal to zero. As a result, we get the following
theorem.

Theorem 2.1 If u is a classical solution of BVP, then Ou is its generalized solution
for the singular function

bGi D H�
D
bGi C u0i .x/H

�
S .x/ı

0.t/C u1i .x/H
�
S .x/ı.t/

Cgi.x; t/ıS.x/H.t/ � .Cml
ij uj.x; t/nm.x/ıS.x/H.t//;l :

From this, the simple method of construction of wave front conditions for
hyperbolic systems follows: one has only to write the equations in the space of
distributions and set the densities of the layers of the independent singular functions
to zero.

3 Generalized Solution of Nonstationary BVP

We denote bybUk
i .x; t/ the matrix of fundamental solutions of Eq. (1) (Green tensor).

It satisfies (1) with Fi D ıki ı.x/ı.t/ and the radiation conditions (see construction U
in [3]). The following theorem has been proved.

Theorem 3.1 If u.x; t/ is the classical solution of a BVP, the generalized solutionbu
is representable in the form of a sum of convolutions (�)

bui D Uk
i �bGk C @tUk

i �x u
0
k.x/H

�
S .x/C Uk

i �x u1k.x/H
�
S .x/

CUk
i � gk.x; t/ıS.x/H.t/ � Cml

kj @lU
k
i � uj.x; t/nm.x/ıS.x/H.t/: (12)

Here the symbol � denotes the full convolution on .x; t/; the variable under �
corresponds to an incomplete convolution only on x or t as the case may be.

In mechanics problems, this formula defines the solution of a BVP: media
displacements through boundary tensions and displacements, initial values of
displacements, and their speeds. At zero initial data, this formula is the dynamic
analogue of Green’s formula for elliptic equations [6]. When there is no boundary
(summands with layers disappear), it gives the solution of the Cauchy problem and
generalizes the formulas of Poisson (N D 2) and Kirchhoff (N D 3) for the classical
wave equations [1]. But to write this formula in integral form, we regularize one
of the convolutions with hypersingularities on wave fronts. For this, we use the
antiderivative of the Green tensor for t:

bVk
i .x; t/ D bUk

i .x; t/ �t H.t/ ) @tbVk
i D bUk

i ; (13)
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which is the solution of Eq. (1) for Gi D ıki ı.x/H.t/. Applying the rules of
differentiation of convolutions and generalized functions, we obtain

Cml
kj @t

bVk
i � .ujnm.x/ıS.x/H.t//;l D Cml

kj @l
bVk

i � .ujnm.x/ıS.x/H.t//;t
D Cml

kj @l
bVk

i � uj;t nm.x/ıS.x/H.t/
CCml

kj @l
bVk

i �x u0j .x/nm.x/ıS.x/;

which together with Theorem 3.1 yields the following theorem.

Theorem 3.2 If u.x; t/ is the classical solution of BVP, then the generalized solution
bu is representable in the form

bui D Uk
i �bGk C Uk

i �x u1k.x/H
�
S .x/

C@tUk
i �x u0k.x/H

�
S .x/C Uk

i � gk.x; t/ıS.x/H.t/ (14)

�Cml
kj @lV

k
i � uj;t .x; t/nm.x/ıS.x/H.t/ � Cml

kj @lV
k
i �x u0j .x/nm.x/ıS.x/:

To put this solution in integral form and construct BIEs for the BVP’s solution,
we require some new tensors.

4 Fundamental Tensors bV; bT; cW; bU.s/; bT.s/ and Their
Properties

bSmik.x; t/ D Cml
ij @l

bUk
j ; �k

i .x; t; n/ DbSmiknm; (15)

bTi
k.x; t; n/ D ��k

i .x; t; n/ D �Cml
ij nm@lbU

k
j (16)

Properties of symmetry:

bUk
i .x; t/ D bUk

i .�x; t/; bUk
i .x; t/ D bUi

k.x; t/; bSmik.x; t/ D �bSmik.�x; t/;
bTk
i .x; t; n/ D �bTk

i .�x; t; n/ D �bTk
i .x; t;�n/: (17)

The following theorems were proved in [4].

Theorem 4.1 bTk
i .x; t; n/ (for fixed k and n) is the generalized solution of Eq. (1)

corresponding to the multipole Gi D Cml
ik nmı;l .x/ı.t/.
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The antiderivative of the multipolar tensor is given by

bWk
j .x; t; n/ D bTk

j .x; t; n/ �t H.t/; (18)

bWk
i .x; t; n/ D �bWk

i .�x; t; n/ D �bWk
i .x; t;�n/: (19)

In addition, the static Green’s tensor of the static equations is bUk.s/
i .x/:

Lij.@x; 0/bU
k.s/
j .x/C ıki ı.x/ D 0; bUk.s/

i .x/! 0; kxk ! 1: (20)

Finally, the static multipolar tensor is given by

bTk.s/
i .x; n/ D �Cml

kj nm@lbU
i.s/
j ; (21)

bTk.s/
i .x; n/ D �bTk.s/

i .�x; n/ D �bTk.s/
i .x;�n/:

Theorem 4.2 bTk.s/
i is the generalized solution of the static equations

Lij.@x; 0/T
k.s/
j � nmC

ml
ki ı;l .x/ D 0:

Theorem 4.3 (Analogue of Gauss’s Formula) If S is any closed Lyapunov
surface in RN, then

P:V:
Z

S

Ti.s/
k .y � x; n.y//dS.y/ D ıikH�

S .x/; (22)

where this integral is singular only for x 2 S. It is calculated in the sense of principal
values, and H�

S .x/ D 0:5.
Theorem 4.4 The following representations are valid:

bVk
i .x; t/ D Uk.s/

i .x/H.t/C Vk.d/
i .x; t/; (23)

bWk
i .x; t/ D Tk.s/

i .x/H.t/CWk.d/
i .x; t/: (24)

Here Uk.s/
i .x/H.t/, Tk.s/

i .x/H.t/ are regular functions for x ¤ 0. For kxk ! 0, we
have

Uk.s/
i .x/ � ln kxkAN

ik.ex/; Tk.s/
i .x/ � kxk�1BN

ik.ex/; N D 2;
Uk.s/

i .x/ � kxk�NC2AN
ik.ex/; Tk.s/

i .x/ � kxk�NC1BN
ik.ex/; N > 2:
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Here ex D x=kxk, AN
ik.ex/, and BN

ik.ex/ are continuous functions, bounded on the

sphere kexk D 1; Vk.d/
i ; Wk.d/

i are regular functions, continuous for x D 0; t > 0.
For every N, we have

Vk.d/
i .x; t/ D 0 Wk.d/

i .x; t/ D 0 for kxk >max
kD1;M

max
kekD1

ck.e/t;

and for odd N, these equalities hold, and kxk < min
kD1;M

min
kekD1

ck.e/t. These properties

were proved in [4] using some theorems from [7].

5 Integral Form of the BVP Solution: Dynamic Analogue
of the Kirchhoff–Green Formulas

If we write Ou (14) in integral form, it becomes (for zero initial conditions)

buk.x; t/ D
Z

D

fTi
k.x � y; n.y/; t � �/ui.y; t/C Ui

k.x � y; t � �/gi.y; �/gdD.y; �/;

similar to Green’s formulas for the solutions of elliptic systems or Somigliana’s
formula for static BVP of elasticity. But the first summand with Ti

k is not integrable
because of existence of hypersingularities on waves fronts of fundamental solutions.
The integral representation of the BVP solution gives the regularized formula of
Theorem 3.2, obtained using Theorem 4.4. For problems with zero initial conditions,
we get the following theorem.

Theorem 5.1 If x 2 D�, then the classical solution of the BVP is representable in
the form

uk D Ui
k.x; t/ �Gi.x; t/C Ui

k.x; t/ � gi.x; t/ıs.x/H.t/

�
Z

S

Ti.s/
k .x � y/ui.y; t/dS.y/�

Z

S

dS.y/

tZ

0

Wi.d/
k .x � y; n.y/; t � �/ui;t .y; �/d�:

6 Singular BIEs

Using the properties of the static multipolar tensor (22), we construct the singular
BIEs that resolve the nonstationary BVP [4].
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Theorem 6.1 If S is a Lyapunov surface, then the classical solution of the
nonstationary BVP satisfies the following singular BIEs: for x 2 S, t > 0 .k D 1;N/,

0:5uk.x; t/ D Ui
k.x; t/ � Gi.x; t/C Ui

k.x; t/ � gi.x; t/ıs.x/H.t/

�V:P:
Z

S

Ti.s/
k .x � y/ui.y; t/dS.y/

�
Z

S

dS.y/

tZ

0

Wi.d/
k .x � y; n.y/; t � �/ui;t .y; �/d�

�
Z

S

Wi.d/
k .x � y; n.y/; t/u0i .y/dS.y/

C
�
Ui

k.x; t/ �x u0i .y/H
�
S .x/

�
;tCUk

i �x u
1
k.x/H

�
S .x/:

These equations allow us to define unknown boundary functions and construct
the generalized solution, which for regular initial and boundary conditions gives
the classical solution by virtue of the du Bois–Reymond lemma of the theory of
generalized functions [6].

7 Conclusion

The question of the unsolvability of singular BIEs for a certain class of functions
represents an independent task of functional analysis. Numerical solution of these
equations can be obtained using the method of boundary elements. Special cases
of solutions of nonstationary problems in the theory of elasticity are considered in
[8–10].
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A Fast Algorithm to Determine the Flux Around
Closely Spaced Non-overlapping Disks

Olaf Bar

Abstract This paper is devoted to application of the fast algorithm to determine
the flux around closely spaced non-overlapping disks on the conductive plane. This
method is based on successive approximations applied to functional equations.
When the distances between the disks are sufficiently small, convergence of
the classical method of images fails numerically. In this talk, the limitations on
geometric parameters are described.

Keywords Multiply connected domain • Non-overlapping disks • Poincaré series

1 Introduction

Fibrous composites can be modeled by unidirectional circular cylinders embedded
in the matrix [1, 2]. The electrical or thermal conductivity in the plane perpendicular
to fibers can be described by Laplace’s equation. The standard numerical methods
(like FEM) refer to calculation of the local fields. In special cases (like a periodic
layout) we can use the Weierstrass function to solve this problem. In this paper
we focus on the case without symmetry. The method used in this work gives an
approximate analytical solution of the discussed problem [3]. This method is based
on inversions with respect to the circles which transform the harmonic functions
from inside to outside of the disks.

2 Description of the Fast Poincaré Series Method

Denote :

Dk D fz 2 C W jz � akj < rk.k D 1; 2; : : : ;N / (1)
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Introduce the inversion with respect to the k-circle:

z�
.k/ D

r2k
z� ak

C ak (2)

The goal of this method is to find a function u.z/ harmonic in D and continuously
differentiable in the closure of D with the following boundary conditions [4]

u.t/ D uk; jt � akj D rk; k D 1; 2; : : : ;N : (3)

This problem can be reduced to the Riemann–Hilbert problem [5]

Re '.t/ D uk; jt � akj D rk; k D 1; 2; : : : ;N ; (4)

on the function '.t/ analytic in D.
The exact solution for the flux between two circles is known [6]

‰.z/ D 1

z� z12
� 1

z � z21
(5)

where ‰.z/ D ' 0.z/. The function ‰.z/ describes the flux for the known difference
u1 � u2 and the z12; z21 satisfy the quadratic equation z�

.1/ D z�
.2/. This function can

be used as the zero-th approximation for the fast algorithm.
Define the analytic function [2]:

fkm.z/ WD

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0; k D m;

P
`2JmI`¤k ‰.zIm; `/.z/; k 2 Jm;

P
`2Jm ‰.zIm; `/.z/; k 2 J�

m;

where J�
m is the complement of Jm [ fmg to f1; 2; : : : ; ng.

The following algorithm can be applied. First, we compute auxiliary functions
 k.z/ by the following iterations:

 
.0/
k .z/ D fkm.z/; (6)

 
. p/
k .z/ D

X

m¤k

�
rm

z � am

�2
 
. p�1/
m

�
z�
.m/

�
C fkm.z/; p D 1; 2; : : : : (7)
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The p-th approximation of the complex flux  .z/ D ' 0.z/ is calculated by formula

 . p/.z/ D
nX

mD1

�
rm

z� am

�2
 
. p/
m

�
z�
.m/

�
C  ı.z/; z 2 D; (8)

where  ı.z/ DP`2Jm ‰.zIm; `/.
The potential '.z/ is obtained by integration of  .z/.

3 Results

Calculations were made for four circles.
Introduce the vector of the circle centers: [�1,�i, 1.1, 1.2 i] (see Fig. 1) and the

radius r D
p
2
2
ı. The limit case ı D 1 yields tangent circles D1 and D2.

The accuracy of calculation is associated with the accuracy of the boundary
conditions. The procedure to obtain the potential from the flux requires integration
of the long algebraic expressions. The analytical integration procedure requires a lot
of time and it is possible at most for the 8–9 iterations. Thus instead of checking the
boundary conditions we check the equivalent conditions [2] (Fig. 2):

Im‰.t/ WD Im

�
t � ak
rk

 .t/

	
D 0; jt � akj D rk; k D 1; : : : ; 4; (9)

The function .z/ describes all the fluxes in D with constant real potentials on the
boundary. It follows from general theory [5] that the problem (9) has .n�1/R-linear
independent solutions (in our case n � 1 D 3). In order to determine  .z/ one can
construct basis functions and their R-linear combination. In order to determine the

Fig. 1 Four disks and the
multiply connected region D
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a
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a
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Fig. 2 Example of stream basis functions ‰1.z/ and ‰2.z/

Table 1 Calculation for
ı D 0:98

Iterations Uerr Im‰err
Im‰err
Uerr

1 0.38 1.40 3.7

2 0.18 1.10 6.1

3 0.16 0.80 5.0

4 0.089 0.61 6.8

5 0.074 0.42 5.7

6 0.048 0.31 6.5

7 0.037 0.22 4.6

8 0.025 0.15 6.0

9 0.0193 0.12 6.2

flux  .z/ corresponding to the potential Re '.z/ with prescribed boundary values
uj one has to find the basis solutions ‰j.z/ (j D 1; 2; 3) of the problem (9). Index j
denotes that the corresponding functions uj;k D ıj;k is a potential on the boundary of
k-disk (ıkj denotes the Kronecker symbol) (Table 1).

Introduce: Im‰err D max.j Im‰.t/j/; Uerr D max.Re'.t//�min.Re'.t//
max.Re'.t// where t 2

@D.
During the calculation it turned out that the maximum of the boundary condition

error occurred between the closest disks D1 and D2. Additionally the maximum
of the error turns into places between one disk and the other. So as the boundary
condition error it was adopted the maximum variation of U on the all disks.

When the number of iterations is less than 9, it is possible to compare the
boundary values comparing the Im‰.t/ and U.t/. The dependence of ln.Uerr/ on
the number of iteration is linear. Figure 3 shows this relation for the eight iterations
depending on ı. Although it is impossible to obtain Uerr for higher number of
iterations,we can use the linear approximation to estimate this error. This prediction
for Uerr is shown in Table 2.
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Fig. 3 Dependence of logarithm of the error on number of iterations

Table 2 Number of
iterations on acceptable Uerr

Accept. Uerr ı D 0:98 ı D 0:99 ı D 0:999

0.05 6 8 13

0.02 9 12 17

0.01 11 14 20

Table 3 Calculation for
Im‰err

Im‰err

Iterations ı D 0:9 ı D 0:99 ı D 0:999

8 0.026 0.246 1.76

9 0.015 0.160 1.20

10 0.0082 0.111 1.17

11 0.0049 0.072 0.791

12 0.0027 0.050 0.779

13 0.0016 0.032 0.525

14 0.0009 0.022 0.523

15 0.0005 0.015 0.351

Table 3 presents the calculation errors for greater number of iterations. The
parameter ı was changed between 0:9 and 0:999.

The results presented in this paper show that at the present stage of research,
we can perform at most 15 iterations, thus it is the limitation of the method. For
four nonoverlapping disks the minimum distance between inclusions is equal to
ı D 0:99. The corresponding relative error holds less than 5%.
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Conformal Mapping of Circular Multiply
Connected Domains Onto Domains with Slits

Roman Czapla and Vladimir V. Mityushev

Abstract The conformal mapping of the square with circular disjoint holes onto
the square with disjoint slits is constructed. This conformal mapping is considered
as a solution of the Riemann–Hilbert problem for a multiply connected domain in a
class of double periodic functions. The problem is solved by reduction to a system
of functional equations.

Keywords Circular multiply connected domain • Conformal mapping • Multiply
connected domain with slits • Riemann–Hilbert problem

1 Introduction

Analytical formulae for conformal mapping of multiply connected domains with
slits onto circular domains are the canonical formulae of complex analysis. Such a
formula can be referred to the Schwarz–Christoffel formula. Analytical formulae for
conformal mapping between various canonical slit domains with sufficiently well-
separated boundary components were given in [3] and the works cited therein. The
geometrical restrictions were eliminated in [6] and a formula for an arbitrary circular
multiply connected domain was constructed by means of the Poincaré series. It
is worth noting that the Poincaré series is the second derivative of the Schottky–
Klein prime function [3] that makes a possibility to use various form of analytical
formulae. The uniform convergence of the Poincaré series for an arbitrary circular
multiply connected domain can extend the validity of the constructions by DeLillo
et al [3] by modifications explained in [6].

Analogous study was performed in [7] where the Schwarz–Christoffel formula
for conformal mapping of multiply connected domains bounded by polygons onto
circular domains was constructed. The formula given in [7] does not contain any
geometrical restriction on boundary components. However, the general Schwarz–
Christoffel formula contains the accessory parameters contrary to formulae for
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conformal mappings onto slit domains. This is the reason why the special formula
[6] for slit domains is preferable than the general one.

Besides the canonical slit domains, conformal mapping of multiply connected
domains with slits of various inclinations onto circular domains is applied to
boundary value problems of fracture mechanics. The results of [6] were developed
to domains bounded by mutually disjoint arbitrarily oriented slits in [2].

The above presented results concern the canonical multiply connected domains
bounded by disjoint circles. However, a straight line can be treated a circle on the
extended complex planebC D C[1. This fact was used in [4] to extend the method
of functional equations [10] to strips and rectangles with circular holes.

In this paper, we follow the method outlined in [4] to construct the conformal
mapping of the square with circular holes onto the square with slits of given
inclinations. The conformal mapping is constructed as a solution of the Riemann–
Hilbert problem for a doubly periodic multiply connected domain. The latter
problem is reduced to a system of functional equations.

2 Basic Problem

Let z D x C iy denote a complex variable on the complex plane C and G D
n
z 2

CW ˇ̌ReŒz�
ˇ̌ � 1

2
&
ˇ̌
ImŒz�

ˇ̌ � 1
2

o
stands for the unit square. Consider non-overlapping

disks Dk D fz 2 GW jz � akj < rkg .k D 1; 2; : : : ;N/. Let D denote the complement
of the closed disks jz � akj � rk to the square G. Consider the second complex
variable � D uC iv on the complex plane with non-overlapping slits �k lying in the
square G. Here, each slit �k has two sides, hence, it is considered as a closed curve.
Let D0 stand for the complement of all the slits �k to G. Find a conformal mapping
' of the circular multiply connected domain D onto D0. Function ' has to satisfy
the following boundary conditions:

Im
�
e�i˛k'.t/

� D ck; jt � akj D rk; k D 1; 2; : : : ;N (1)

Re

�
'

�
˙1
2
C iy

�	
D ˙1

2
; �1

2
� y � 1

2
; (2)

Im

�
'

�
x˙ i

2

�	
D ˙1

2
; �1

2
� y � 1

2
; (3)

where ˛k is the given inclination angle of �k, ak and rk are center and radius of the k-
th disk, ck are undetermined real constants. The condition (1) means that each slit �k

lies on the line � sin ˛kuC cos˛kv D ck, i.e., the circle jz� akj D rk maps onto the
slit �k. The conditions (2) and (3) show that the boundary of the square G is mapped
onto itself and four corner points are fixed points of the conformal mapping. The
fixed point condition should not be imposed in general case. But we shall consider
only symmetric domains D and D0 when this condition is automatically fulfilled.
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Fig. 1 Domains D and D0

More precisely, we assume that the holes of D and the slits of D0 are symmetric with
respect to the axes as shown in Fig. 1 that yields the symmetry of the conformal
mapping including the symmetry of the constants ck and '.0/ D 0. Instead of
the symmetric square one can consider the one fourth small square without any
symmetry condition.

The conditions (1)–(3) can be considered as the Riemann–Hilbert problem
which has a unique solution if one of the undetermined constants ck is fixed [10].
Therefore, the conformal mapping and the unique solution of the Riemann–Hilbert
problem (1)–(3) coincide. This implies the uniqueness of the discussed conformal
mapping. In the same time, this implies that the unique solution of (1)–(3) is a
univalent function.

We now proceed to solve the problem (1)–(3). Introduce an auxiliary function
e'.z/ D '.z/ � z. Then (1)–(3) become

Im
�
e�i˛ke'.t/

� D ck � Im
�
e�i˛k t

�
; jt � akj D rk; k D 1; 2; : : : ;N; (4)

Re

�
e'
�
˙1
2
C iy

�	
D 0; �1

2
� y � 1

2
; (5)

Im

�
e'
�
x˙ i

2

�	
D 0; �1

2
� x � 1

2
: (6)

The problem (4) can be reduced to R-linear problem [10]

e'.t/ D 'k.t/C e2i˛k'k.t/C iei˛k ck � t; jt � akj D rk; (7)

where 'k are analytic in jz � akj < rk and continuously differentiable in jz � akj �
rk, k D 1; 2; : : : ;N. The equivalence of the boundary conditions (4) and (7) was
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justified in [2] and [6]. Multiply Eq. (7) by e�i˛k :

e�i˛ke'.t/ D e�i˛k'k.t/C ei˛k'k.t/C ick � e�i˛k t

that is equivalent to the relation

e�i˛ke'.t/ D 2Re
�
e�i˛k'k.t/

�C ick � e�i˛k t: (8)

One can see that the imaginary part of (8) yields (4). The inverse way from (4) to (8)
is based on the solution to the Dirichlet problem for the disk Dk

2Re
�
e�i˛k'k.t/

� D Re
�
e�i˛ke'.t/C e�i˛k t

�
: (9)

with respect to e�i˛k'k.z/ with givene' (for details see [10]).
We now demonstrate thate' is a double periodic function:

e'.zC i/ De'.z/ D e'.zC 1/: (10)

The symmetry of the conditions (4)–(6) with respect to the x-axis and y-axis implies
that

e'.z/ De'.z/; z 2 D (11)

�e'.�z/ De'.z/: z 2 DI (12)

It follows from (11) that e'


xC i

2

� D e'


x � i

2

�
for 1

2
� x � 1

2
, hence

Re e'


xC i

2

� D Re e'


x � i

2

�
. Using (6) we get e'



xC i

2

� D e'


x � i

2

�
. In the

same way, the condition (12) gives (5).
The R-linear problem (7) can be reduced to functional equations. We introduce

the function [10]:

ˆ.z/ D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
ˆ̂:

'k.z/ �
NX

mD1

e2i˛m
X�

m1;m2

"

'm

�
r2m

z � am �m1 �m2i
C am

�
� 'm.am/

#

C fk.z/;

jz � akj � rk; k D 1; 2; : : :N;
e'.z/ �

NX

mD1

e2i˛m
X

m1;m2

"

'm

�
r2m

z � am � m1 � m2i
C am

�
� 'm.am/

#

; z 2 D;
(13)

where fk.z/ D iei˛k ck � zC e2i˛k'k.ak/ and

NX

mD1

X�

m1;m2

V.m1;m2/m �
X

m¤k

X

m1;m2

V.m1;m2/m C
X0

m1;m2

V.m1;m2/k:
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In the sum
X0

m1;m2
the integer numbers m1;m2 range from �1 toC1 except the

case when m21 Cm22 D 0.
We calculate the jump across the circle jt � akj D rk

�k � ˆC.t/ �ˆ�.t/; jt � akj D rk;

where ˆC.t/ � limz!t x2Dˆ.z/ and ˆ�.t/ � limz!t x2Dk ˆ.z/. Using (7) we get
�k D 0.

The definition ofˆ in jz�akj � rk .k D 1; 2; : : : ;N/ yields the following system
of functional equations

'k.z/ �
NX

mD1
e2i˛m

X�

m1;m2

"

'm

�
r2m

z � am � m1 �m2i
C am

�
� 'm.am/

#

C fk.z/ D C:

(14)
Let 'k .k D 1; 2; : : : ;N/ be a solution of (14). Then the function e' can be found
from the definition of ˆ in D

e'.z/ D
NX

mD1
e2i˛m

X

m1;m2

"

'm

�
r2m

z � am �m1 �m2i
C am

�
� 'm.am/

#

C C: (15)

3 Numerical Example

Solution to the functional equations (14) can be found by the method of approxima-
tions [1]. The zero order approximation is

'
.0/
k .z/ D C � iei˛k ck C z:

Then (15) implies that

e'.0/.z/ D
NX

m�1
e2i˛m

"

r2m
X

m1;m2

�
1

z � am � m1 � m2i

�#

; (16)

where C is taken to be zero. The zero order approximation of function ' has the
form

'.0/.z/ D
NX

mD1
e2i˛mr2mE1.z� am/C z; (17)
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where E1 denotes the Eisenstein function which can be expressed in terms of the
Weierstrass �-function [11]

E1.z/ D
X

m1;m2

1

z � m1 � im2
D �.z/� 	z: (18)

One can expect that the zero approximation (17) gives sufficiently good results
for not high density of slits. Let G be the unit square. Consider 36 non-overlapping
circular disks Dk of radius r D 0:028 symmetric with respect to the x-axis and y-axis
distributed in G. Conformal mapping of the considered domain D onto the square

with slits of the inclinations randomly chosen on
�
� 	

2
; 	
2

�
is presented in Fig. 1.

Higher order approximations will be constructed in a separate paper.

4 Discussion

The successive approximations applied to (14) yield an infinite series after substi-
tution into (15). This is the generalized Poincaré series [8] constructed for doubly
periodic generators (inversions with respect to circles composed with translations
on the square lattice). The present result demonstrates that the method of functional
equations to solve the Riemann–Hilbert problem for complicated multiply con-
nected domains obtained from circular ones by symmetries with respect to straight
lines yields generalized Poincaré series, i.e., solves the considered problem exactly.
In his plenary ISAAC 2015 talk, Darren Crowdy discussed particular cases of the
above problems by use of the Schottky–Klein prime function S.z/ constructed for
a class of domains restricted by the separation condition and the Fourier–Mellin
transforms. One can see that the derivative of ln S.z/ is the Poincaré 
1-series. This
simple observation shows that the most general constructions of solutions to such a
type of boundary value problems can be found in [4–10] and the works cited therein.
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Functional Equations for Analytic Functions
and Their Application to Elastic Composites

Piotr Drygaś and Vladimir Mityushev

Abstract Two-dimensional elastic composites with non-overlapping inclusions is
studied by means of the boundary value problems for analytic functions following
Muskhelishvili’s approach. We develop a method of functional equations to reduce
this problem for a circular multiply connected domain to functional-differential
equations. Analytical formulae for the effective constants are deduced.

Keywords Eisenstein series • Functional equation • Natanzon series • Two-
dimensional elastic composite
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1 Introduction

Two-dimensional elastic composites with non-overlapping inclusions can be dis-
cussed through boundary value problems for analytic functions following Muskhe-
lishvili’s approach [16]. A method of functional equations was proposed to solve
the Riemann–Hilbert and R-linear problems for multiply connected domains [13].
These results were applied to description of the local fields and the effective
conductivity tensor for 2D composites [1, 4, 8, 9, 12, 14, 15]. In the present note,
we develop this method of functional equations to elastic problems modelled by
the biharmonic equation. We reduce the problem for a circular multiply connected
domain to a system functional-differential equations and propose a constructive
method for their solution in terms of the generalized Eisenstein and Natanzon
functions [2, 6, 7, 17]).
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2 Statement of the Elastic Problem

Consider n disks Dk D fz 2 C W jz � akj < rg, (k D 1; ::; n) in the complex plane
C. Let �k D @Dk, bC D C [ f1g, PD D C nSn

jD1


Dj [ �j

�
, D D PD [ f1g where

the circle �k is orientated in counter-clockwise sense. Further, the limit case as n!
1 will be considered following the method described in [5]. This means that we
formally introduce an infinite sequence of non-overlapping disks Dk (k D 1; 2; : : :).
After, we fix a number n and consider only first n disks. Since the number n is
arbitrary in our study, hence we can take the limit n!1 in the final formulae.

The component of the stress tensor can be determined by the Kolosov–
Muskhelishvili formulas [16]

�xx C �yy D
�
4Re' 0

k.z/; z 2 Dk;

4Re' 0
0.z/; z 2 D;

(1)

�xx � �yy C 2i�xy D
8
<

:

�2
h
z' 00

k .z/C  0
k.z/

i
; z 2 Dk;

�2
h
z' 00
0 .z/C  0

0.z/
i
; z 2 D;

Introduce constants B0 D �1

xx C�1

yy

4
; �0 D �1

yy ��1

xx C2i�1

xy

2
; where �1

xx , �1
xy , �1

yy are
the given stresses at infinity. Introduce the functions '0.z/ D B0zC '.z/,  0.z/ D
�0zC  .z/ where '.z/ and  .z/ are analytical in D and bounded at infinity, 'k.z/
and  k.z/ are analytical in Dk and all one twice differentiable in the closures of the
considered domains. The ideal contact between different materials is expressed by
means of the following boundary conditions [16]

'k.t/C t' 0
k.t/C  k.t/ D '0.t/C t' 0

0.t/C  0.t/; (2)

�
�
�1'k.t/ � t' 0

k.t/ �  k.t/
�
D �1

�
�'0.t/ � t' 0

0.t/ �  0.t/
�
; (3)

t 2 @Dk. In these equations � is a shear modulus, � is Kolosov constant and � D
3 � 4� in plane strain; � D .3 � �/=.1 C �/ in plane stress; � is Poisson’s ratio.
Index 1 denotes physical constants for inclusions.

3 Functional-Differential Equations

Let z�
.k/ D r2

z�ak
C ak denote the inversion with respect to the circle �k. Introduce the

functions ˆk.z/ D z�
.k/'

0
k.z/ C  k.z/; jz � akj � r; analytic in Dk except point ak,

where its principal part has the form r2 .z � ak/
�1 ' 0

k.ak/. The problem (2), (3) can
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be reduced to the system of functional equations following [11, 13]
�
�1

�
C �1

�
'k.z/ D

�
�1

�
� 1

�X

m¤k

h
ˆm.z�

.m//� .z � am/ ' 0
m.am/

i

�
�
�1

�
� 1

�
' 0
k.ak/ .z � ak/

C�1
�
.1C �/B0zC p0; jz � akj � r; (4)

and
�
�
�1

�
C 1

�
ˆk.z/ D

�
�
�1

�
� �1

�X

m¤k

'm.z�
.m//

C
�
�1

�
� 1

�X

m¤k

�
r2

z � ak
C ak � r2

z � am
C am

�

��
ˆm.z�

.m//
�0 � ' 0

m.am/

	

C�1
�
.1C �/B0

�
r2

z � ak
C ak

�

C�1
�
.1C �/�0zC !.z/; jz � akj � r; k D 1; 2; : : : ; n:(5)

where

!.z/ D
nX

kD1

r2qk
z � ak

C q0; (6)

q0 is a constant and

qk D ' 0
k.ak/

�
.� � 1/�1

�
� .�1 � 1/

�
�' 0

k.ak/

�
�1

�
� 1

�
; k D 1; 2; : : : ; n: (7)

The unknown functions 'k.z/ and ˆk.z/ (k D 1; 2; : : : ; n) are related by 2n Eqs. (4)
and (5).

Introduce the Banach space H.2;2/
�Sn

jD1Dk

�
as the space of functions f of the

form f .z/ D fk.z/, z 2 Dk, analytic in
Sn

jD1Dk, endowed with the norm

kfk2H.2;2/ WD
nX

jD1

 

sup
0<r<rk

Z 2	

0

jfj


rei
 C aj

� j2d
C

sup
0<r<rk

Z 2	

0

jf 0
j



rei
 C aj

� j2d
 C sup
0<r<rk

Z 2	

0

jf 00
j



rei
 C aj

� j2d

!

:
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The functional equations contain compositions of 'k.z/ and ˆk.z/ with inversions

which define compact operators in the Banach space H.2;2/
�Sn

jD1Dk

�
. Hence, the

functional equations (4) and (5) can be effectively solved by use of the symbolic
computations. After their solution '.z/ and  .z/ can be found

�1

�
.1C �/ '.z/ D

�
�1

�
� 1

� nX

mD1

h
ˆm.z�

.m// � .z � am/ ' 0
k.ak/

i
C p0; z 2 D;

(8)

�1

�
.1C �/ .z/ D !.z/�

�
�1

�
� 1

� nX

mD1

�
r2

z � am
C am

���
ˆm.z�

.m//
�0 �' 0

m.am/

	

C
�
�
�1

�
� �1

� nX

mD1
'm.z�

.m//; z 2 D: (9)

Theorem 3.1 ([3]) For sufficiently small coefficients�,�k, � and �k (k D 1; : : : ; n)
the method of successive approximations applied to (4) and (5) converges in

H.2;2/
�Sn

jD1Dk

�
�H.2;2/

�Sn
jD1Dk

�
.

For instance, the zero approximation has the form

'
.0/
k .z/ D �

1 � �

�k

1C �

�k
�k

.� C 1/
2 � �

�k
C �

�k
�k
B0 .z � ak/C .� C 1/B0zC p0; (10)

 
.0/
k .z/ D .1C �/�0zC q0; jz� akj � r; k D 1; 2; : : : ; n: (11)

Let the approximation of the order .p � 1/ be known. Then the p-th approximation
for '.p/k .z/ has the form

'
.p/
k .z/ D

�
1C �

�k
�k

��1

�
0

@
X

m¤k

�
1 � �

�m

��
ˆ
.p�1/
m .z�

.m// � .z � am/
�
'
.p�1/
m

�0
.am/

	

�
�
1 � �

�k

�
.� C 1/B0

2 � �

�k
C �

�k
�k

.z� ak/C .� C 1/B0zC p0

1

A : (12)

Analogous formulae can be written for  .p/k .z/.
An alternative method is to solve Eqs. (4) and (5) by series with undetermined

coefficients proposed in [11]. We are looking for the analytic potentials 'k and  k
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in the form of the series in r2

'k.z/ D
1X

jD0

1X

sD0
˛
.s/
k;j r

2s.z � ak/
j;  k.z/ D

1X

jD0

1X

sD0
ˇ
.s/
k;j r

2s.z � ak/
j: (13)

Selecting the terms with the same powers .z � ak/j and r2s we arrive at an
iterative method to find ˛

.p/
k;j and ˇ

.p/
k;j . When the coefficients are determined,

the functions (13), hence (8) and (9), can be approximately constructed. The
stress and deformation tensors can be calculated by the Kolosov–Muskhelishvili
formulae [16]. Then, the effective elastic moduli of macroscopically isotropic
fibrous composites can be calculated as follows:

�eff D h�xx � �yyi
2h"xx � "yyi ; keff D h�xx C �yyi

2h"xx C "yyi : (14)

Here, the limit average over the plane is introduced

hAi D lim
Qn!1

1

jQnj
“

Qn

A dxdy:

In the latter limit, it is assumed that the infinitely many points ak are distributed in
the plane. After long symbolic computations we get

�eff D � � .� C 1/� .� � �1/
��1 C � f

C
�
�2B0.� C 1/�.�� �1/.���1 C .�1 � 1/�C �1/

	�0.��1 C �/..�1 � 1/�C 2�1/

C 2e.1/3 .� C 1/��0.� � �1/2
	�0.��1 C �/2 C �.� C 1/�.� � �1/2

.��1 C �/2
!

f 2 C O.f 3/ (15)

and

keff D 7kC k.� C 1/� .��1�C .� � 1/�1 C �/
.� � 1/ ..�1 � 1/�C 2�1/ f

C
 
e.0/2 k.� C 1/ .� � �1/ �0 .�1�C �1/ .��1�C ��1 C � � �1/

	B0.� � 1/ .�1 C 1/ .�1� � �C 2�1/ .��1 C �/

C e.0/2 k�0.� C 1/ .� � �1/2 .��1�C .� � 1/�1 C �/
	B0.� � 1/ .�1 C 1/ ..�1 � 1/�C 2�1/ .��1 C �/
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� 2k.� C 1/� .��1�C .� � 1/�1 C �/ ..�1 � 1/� � ��1 C �1/
.� � 1/2 ..�1 � 1/�C 2�1/2

�
f 2

CO.f 3/; (16)

where

e.0/2 D lim
n!1

1

n2

nX

kD1

X

m¤k

1

.ak � am/2
; e.1/3 D lim

n!1
1

n2

nX

kD1

X

m¤k

ak � am
.ak � am/3

(17)

are the generalized Eisenstein and Natanzon series [2, 3, 10, 17] which depend on the
values of B0 and �0. The Eisenstein summation must be applied for the conditionally
convergent sums (17). Take B0 D 0, �0 D i in (15) and B0 D 1, �0 D 0 in (16).
Then, we get e.0/2 D 	 (see discussion in [10, 15]). It is a generalization of the

Rayleigh formula [18] for a regular array. Numerical simulations suggest that e.1/3 D
	
2

. A rigorous proof of the latter formula has been unknown.
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2. P. Drygaś, Generalized Eisenstein functions. J. Math. Anal. Appl. 444(2), 1321–1331 (2016)
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An Example of Algebraic Symplectic Reduction
for the Additive Group

Victoria Hoskins

Abstract We give an example of a linear action of the additive group on an affine
algebraic variety arising in the construction of an algebraic symplectic reduction,
with non-finitely generated invariant ring.

Keywords Algebraic symplectic reduction • Geometric invariant theory • Non-
reductive group actions
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1 Introduction

Geometric invariant theory (GIT) gives a method for constructing quotients of
reductive group actions in algebraic geometry [5]; the reductivity of the group
ensures rings of invariants are finitely generated. The invariant theory of the simplest
non-reductive group, the additive group Ga D C

C, has been extensively studied.
Weitzenböck [8] showed any linear Ga-action on A

n has finitely generated ring of
invariants. Zariski proved any Ga-action on a normal affine variety of dimension at
most three has finitely generated invariant ring [9]. In this note, we give a linear
Ga-action on a non-normal reducible affine variety of dimension 3, whose ring of
invariants is non-finitely generated.

The example arises in the construction of an algebraic symplectic reduction
for Ga. Symplectic reduction is a method for constructing quotients in symplectic
geometry and is performed by taking a quotient of a level set of a moment map.
For reductive groups, one uses GIT to obtain an algebraic symplectic quotient;
for example, hypertoric varieties and Nakajima quiver varieties arise as algebraic
symplectic reductions of reductive group actions. In [2], the groundwork is laid
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for combining non-reductive GIT with algebraic symplectic reduction. In this note,
we study a Ga-action on an algebraic symplectic variety for which the reduction
at all regular values of the moment map is an algebraic symplectic variety and, at
the only non-regular value 0, we show the ring of Ga-invariant functions on the
moment map zero level set Z is non-finitely generated. For every non-reductive
group G, there exists a rational G-representation on a finitely generated algebra
for which the ring of invariants is non-finitely generated by a Theorem of Popov.
Our example provides such a representation for Ga. As far as the author is aware,
this is the first example of a Ga-action on a three-dimensional affine variety Z for
which the ring of invariants is non-finitely generated. By the result of Zariski, every
Ga-action on a normal affine variety of dimension at most 3 has a finitely generated
ring of invariants. In particular, we will see that the moment map zero level set Z is
reducible and non-normal.

The outline of this paper is as follows: Section 2 is an overview of algebraic
symplectic reduction and Sect. 3 contains all the results and calculations for an
action of the additive group.

We use the following conventions: we always work over the complex numbers
and by variety, we mean a finite type separated reduced scheme.

2 An Overview of Algebraic Symplectic Reduction

Let .M; !/ be an algebraic symplectic manifold; that is, M is a smooth quasi-
projective complex variety and ! is a closed non-degenerate algebraic 2-form on
M. Suppose a linear algebraic group G acts symplectically on .M; !/. Then, for
A 2 g D Lie G and m 2 M, we let Am denote the infinitesimal action of A on m:

Am WD d

dt
exp.tA/ 	 mjtD0:

By varying m 2 M, we get a vector field on M denoted MA, called the infinitesimal
action of A.

The goal of algebraic symplectic reduction is to construct a quotient of this action
which is also an algebraic symplectic manifold by using a moment map for the
action.

Definition 2.1 A moment map for a symplectic action of a linear algebraic group G
on an algebraic symplectic manifold .M; !/ is a G-equivariant algebraic morphism
� W M ! g� which lifts the infinitesimal action in the sense that for each A 2 g�,
we have an agreement of 1-forms

d�A D !.MA;�/
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where �A W M ! C is given by pairing the moment map � with A 2 g and MA is
the vector field on M given by the infinitesimal action of A. We say the action of G
is Hamiltonian if a moment map exists.

We note that a moment map may not exist and may not be unique. If a moment
map exists, then for each  2 g�, the level set ��1./ is an algebraic subvariety of
M, which is smooth if and only if  is a regular value of the moment map. Moreover,
��1./ is invariant under the action of the stabiliser subgroup G � G. For central
elements , we have that G D G acts on ��1./. The idea of algebraic symplectic
reduction is to take an algebraic quotient of this action and show that ! descends to
a form on this quotient.

GIT enables the construction of algebraic quotients of reductive group actions
[5]. Given an action of a reductive group G on a quasi-projective variety X, GIT
gives a categorical quotient of the action on an open subset of X using a linearisation
L D .L; �/ of the action (that is, a lift � of the action to a line bundle L over
X). More precisely, the linearisation L determines an open subset Xss.L/ � X
of semistable points and the GIT quotient Xss.L/ ! X==LG is constructed using
invariant sections of powers of L. The GIT is a good quotient of the G-action on
Xss.L/ and restricts to a geometric quotient on the stable locus (for the definitions of
the (semi)stable sets and good and geometric quotients, see [6]).

One can always find a linearisation L D .L; �/ of our G-action on M, as M is
smooth (for example, see [1, Theorem 7.3]); then this restricts to a linearisation of
the G-action on ��1./, which we also denote by L.

Definition 2.2 For a Hamiltonian action of a reductive group G on an algebraic
symplectic manifold .M; !/ with moment map � W M! g� and a linearisation L of
the G-action on M, we define the algebraic symplectic reduction at a central value
 2 g to be the GIT quotient ��1./==LG.

By the infinitesimal lifting property of �, a central value  is a regular value of �
if and only if G acts on ��1./ with finite stabiliser groups. In this case, the action
is closed and so the GIT quotient of this action is a geometric quotient that has at
worst orbifold singularities. If G acts on ��1./ss.L/ freely, then it follows from
Luna’s étale slice Theorem that ��1./==LG is smooth and the form descends to a
symplectic form on this GIT quotient by the Marsden–Weinstein Theorem [4].

For a non-reductive group G, one can use techniques of non-reductive geometric
invariant theory to construct a quotient of the action [3]. The main difference of the
non-reductive theory is that invariant rings may not be finitely generated.

3 The Example

Let us consider the simplest non-trivial representation of the additive group Ga: we
let Ga act linearly on V D A

2 by

s 	 .z1; z2/ D .z1 C sz2; z2/
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where s 2 Ga and .z1; z2/ 2 A
2. If we identify T�V Š V � V� and take dual

coordinates .˛1; ˛2/ on V�, then the cotangent lift of the action is the linear action
given by

s 	 .z1; z2; ˛1; ˛2/ D .z1 C sz2; z2; ˛1; ˛2 � s˛1/:

The cotangent bundle T�V has a natural algebraic symplectic Liouville form

! D dz1 ^ d˛1 C dz2 ^ d˛2:

By Weitzenböck’s Theorem [8], the ring of Ga-invariant functions on the
cotangent bundle is finitely generated. To compute the ring of Ga-invariants, we use
an algorithm of van den Essen [7]. Given a rational Ga-action on a finitely generated
algebra A, we let D denote the derivation of the Ga-action; then the ring of invariants
is the kernel of D. The algorithm works by picking a 2 A such that b WD D.a/ ¤ 0
and D.b/ D 0, then in the localisation Ab, we see that D.a=b/ D 1 and so the ring
of Ga-invariants in Ab is finitely generated by van den Essen [7, Proposition 2.1].
In fact, if x1; : : : ; xn are generators of A, then .�a=b/ 	 x1; : : : ; .�a=b/ 	 xn; y˙1 are
generators of .Ab/

Ga . Then

AGa D A \ .Ab/
Ga

and a sequence of generators for AGa can be obtained by following the algorithm
described in loc. cit �3–5.

We claim that by applying this algorithm, we have

CŒT�V�Ga D CŒz2; ˛1; z1˛1 C z2˛2�:

Indeed, we can take a D z1 and b D z2; then

.CŒT�V�z2 /Ga D CŒz˙1
2 ; ˛1; ˛2 C ˛1z1=z2�

and so the result follows from [7, Lemma 3.1].

Proposition 3.1 This Ga-action on the cotangent bundle T�V with its Liouville
symplectic form is Hamiltonian with moment map � W T�V ! C given by

�.z1; z2; ˛1; ˛2/ D z2˛1:

Furthermore,  2 C is a regular value of the moment map if and only if  ¤ 0.
Proof The infinitesimal action of A 2 Lie .Ga/ D C on .z; ˛/ 2 T�V is given by

.Az;A˛/ D .Az2; 0; 0;�A˛1/:
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For p D .z1; z2; ˛1; ˛2/ 2 T�V and p0 D .z0
1; z

0
2; ˛

0
1; ˛

0
2/ 2 Tp.T�V/ Š T�V , we

have

dp�.p
0/ D .z2˛0

1 C z0
2˛1/ D !.1p; p0/:

Moreover� is Ga-equivariant, as the coadjoint action of Ga is trivial and� is clearly
Ga-invariant. Hence, � is a moment map.

Furthermore, dp� is surjective if and only if z2 ¤ 0 or ˛ ¤ 0. Therefore,  2 C

is a regular value of � if and only if  ¤ 0. ut
To construct an algebraic symplectic reduction, we can use a linearisation of

the Ga-action on T�V . Since T�V is an affine space, the only line bundle on T�V
is the trivial line bundle. In fact, as the character group of Ga is trivial, the only
linearisation of the action is the trivial one (see [1, Theorem 7.2]). The trivial
linearisation on T�V corresponds to the non-reductive GIT quotient

T�V==Ga WD Spec CŒT�V�Ga Š A
3:

We first construct the algebraic symplectic reduction at a regular value of the
moment map  2 C

�. The following result shows that there is a categorical quotient
of the Ga-action on ��1./; in fact, we show the quotient is a trivial Ga-torsor,
which, in particular, is a geometric quotient.

Proposition 3.2 For  2 C
�, the level set ��1./ � T�V is a smooth quadric

hypersurface and theGa-action on��1./ is free. The ring ofGa-invariant functions
on ��1./ is finitely generated and, moreover,

	 W ��1./! ��1./==Ga WD Spec CŒ��1./�Ga

is a trivial Ga-torsor. Hence, the quotient ��1./ ! ��1./==Ga is a geometric
quotient and ��1./==Ga is a smooth affine variety which is naturally algebraic
symplectic.

Proof The first statement is a simple computation. For the second statement, we
observe that D.z1˛1=/ D 1 on ��1./, where D denotes the derivation of the Ga-
action. Hence, by van den Essen [7, Proposition 2.1], the ring of Ga-invariants on
��1./ is finitely generated and we have

CŒ��1./�Ga D CŒz2; ˛1; z1˛1 C z2˛2�=.z2˛1 � / D CŒz˙1
2 ; z1=z2 C z2˛2�:

There is a Ga-equivariant morphism from ��1./ to the trivial Ga-torsor over
��1./==Ga given by

f W ��1./! .��1./==Ga/ � A
1; p D .z1; z2; ˛1; ˛2/ 7! .	.p/; z1˛1=/;



40 V. Hoskins

which we claim is an isomorphism. First f is injective: if

f .z1; z2; ˛1; ˛2/ D f .z0
1; z

0
2; ˛

0
1; ˛

0
2/;

then z2 D z0
2 and ˛1 D ˛0

1 and, as z2˛1 D  ¤ 0, we have z1 D z0
1 and ˛2 D ˛0

2.
Let .q1; q2/ be coordinates on ��1./==Ga Š A

1�f0g�A1 and r be the coordinate
on A

1. For surjectivity, if .q1; q2; r/ 2 ��1./==Ga �A
1, then f .rq1; q1; =q1; .q2 �

r/=q1/ D .q1; q2; r/. Therefore, by Zariski’s Main Theorem, f is an isomorphism.
Since the trivial Ga-torsor is a geometric quotient, so is 	 . Furthermore, as 	 is a

trivial Ga-torsor and ��1./ is smooth, so is ��1./==Ga, and there is a short exact
sequence

0! Tp.G 	 p/! Tp.�
�1./! T	.p/.�

�1./==Ga/! 0;

for each p 2 ��1./. One can then follow the arguments of the Marsden–Weinstein
Theorem [4] to prove that Tp.��1.// D Tp.G 	 p/! , i.e. Tp.G 	 p/ is isotropic, and
so there is an induced symplectic form on the quotient. ut

A straight forward calculation gives a description of the singular locus of the zero
level set as the Ga-fixed locus:

Sing ��1.0/ D f.z1; z2; ˛1; ˛2/ W z2 D ˛1 D 0g D ��1.0/Ga :

Since the singular locus has codimension 1, the zero level set ��1.0/ is not normal.
The zero level set has two irreducible components: fz2 D 0g and f˛1 D 0g, which
are normal, and so the normalisation of ��1.0/ is the disjoint union of these two
irreducible components.

Proposition 3.3 The ring of Ga-invariant functions on ��1.0/ is non-finitely
generated.

Proof We claim that for n � 0, the functions

zn1˛1 and z2˛
n
2

are Ga-invariant functions on ��1.0/. Indeed, for s 2 Ga,

s 	 zn1˛1 D .z1 C sz2/
n˛1 D .zn1 C szn�1

1 z2 C 	 	 	 zn2/˛1
D zn1˛1 C .z2˛1/.szn�2

1 C 	 	 	 C zn�1
2 /

and similarly z2˛n2 is Ga-invariant on ��1.0/. However, the functions z1 and ˛2 are
not Ga-invariant. In particular, for each n, the invariant functions zn1˛1 and z2˛n2 are
not polynomials in the invariant functions zm1 ˛1 and z2˛m2 for m < n. In other words,
each of these invariants is a new generator of CŒ��1.0/�Ga and so this ring is non-
finitely generated. ut
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In this example, we also see that taking Ga-invariants is not right exact, as the
homomorphism of invariant rings

CŒT�V�Ga ! CŒ��1.0/�Ga

is not surjective: the invariant functions zn1˛1 and z2˛n2 on ��1.0/ do not extend to
invariant functions on T�V .

Furthermore, one cannot construct a quotient by taking the spectrum of the ring
of invariants, as this is not finitely generated. Instead, one should use the techniques
of non-reductive GIT developed by Doran and Kirwan [3]. This idea is pursued in
a joint work with Doran [2], where in a general set-up, we use notions of stability
and a Hilbert–Mumford criterion to determine an open subset of the zero level set
of the moment map which admits an algebraic symplectic quotient. More precisely,
the open subset is the completely stable locus in the sense of [3, Definition 5.2.11],
which can be determined by extending the linear Ga-action to SL2 and using the
Hilbert–Mumford criterion.

Let us outline how this works in our example. For the Ga-action on ��1.0/,
the completely stable locus ��1.0/s is the largest open set possible, namely the
complement to the Ga-fixed locus:

��1.0/s WD f.z1; z2; ˛1; ˛2/ 2 ��1.0/ W z2 ¤ 0 or ˛1 ¤ 0g;

which coincides with the smooth locus of ��1.0/. In general, the completely stable
locus is a proper subset of the complement to the Ga-fixed locus. It follows from
[3, Theorem 5.3.1] that the completely stable locus admits a Zariski locally trivial
geometric quotient. In our example, the completely stable locus is the union of two
connected components, each of which is isomorphic to A

2 � .A1 � f0g/ and has a
geometric quotient which is isomorphic to A

1 � .A1 � f0g/ (in fact, these quotients
are both trivial Ga-torsors). Furthermore, there is an induced algebraic symplectic
form on the geometric quotient ��1.0/s=Ga which is constructed as in the proof of
Proposition 3.2.
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Submanifolds with Splitting Tangent Sequence

Priska Jahnke and Ivo Radloff

Abstract A theorem of Van de Ven states that a projective submanifold of complex
projective space whose holomorphic tangent bundle sequence splits holomor-
phically is necessarily a linear subspace. Note that the sequence always splits
differentiably but in general not holomorphically. We are interested in generaliza-
tions to the case, when the ambient space is a homogeneous manifold different from
projective space: quadrics, Grassmannians or abelian manifolds, for example. Split
submanifolds are closely related to totally geodesic submanifolds.

Keywords Complex homogeneous spaces • Totally geodesic submanifolds

Mathematics Subject Classification (2010) 14M17; 32M10

1 Introduction

Let M be a complex projective manifold and X � M a complex compact
submanifold. Denote the holomorphic tangent bundle of M by TM and the normal
bundle of X by NX=M.

Definition 1.1 The submanifold X � M has splitting tangent sequence, iff

0 �! TX �! TMjX ˛�! NX=M �! 0 (1)

splits holomorphically, i.e. 9ˇ W NX=M ! TMjX such that ˛ ı ˇ D idNX=M .
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More generally, assume f W X ! M be a holomorphic immersion from some
compact complex manifold X to M. Then we call f split, if the natural sequence

0 �! TX �! f �TM �! Nf �! 0

admits a holomorphic splitting.

Remark 1.2 Let

0 �! S �! E �! Q �! 0

be any short exact sequence of vector bundles on a complex manifold X. The
(holomorphic) splitting obstruction is the image

Œı.idQ/� 2 Ext1.Q; S/;

where ı W Hom.Q;Q/ �! Ext1.Q; S/ is the first connecting morphism. In
particular, (1) splits if h1.X;TX ˝ N�

X=M/ D 0 (h1-criterion).
Now fix a hermitian metric on E. Then the corresponding connection gives rise

to the second fundamental form B 2 A0;1.Hom.Q;S//, whose class

ŒB� D Œı.idQ/� 2 Ext1.Q; S/

coincides with the splitting obstruction. Hence the vanishing of the second funda-
mental form implies the splitting of the sequence.

2 Projective Space and Abelian Manifolds

Example Consider first M a projective space. That a submanifold X has splitting
tangent sequence depends not only on the geometry of X, but also on the embed-
ding:

1. Let Pm � Pn be a linear subspace. Then

H1.Pm;TPm ˝ NPm=Pn/ D
M

n�m

H1.Pm;TPm.�1// D 0:

Hence the tangent sequence splits by the h1-criterion.
2. Let C � P2 be a conic. Then TC D O.2/ and NC=P2 D O.4/, where O.1/ denotes

the tautological hyperplane bundle on C ' P1. The tangent bundle of P2 splits
on C as a direct sum TP2 jC D O.a/ ˚ O.b/ for some integers a; b. Counting
degrees in the tangent sequence we find aC b D 6. On the other hand, the dual
Euler sequence of P2 restricted to C remains surjective on H0-level, implying
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H0.C; �1
P2
.1/jC/ D 0. This means a; b � 3, hence a D b D 3 and the tangent

sequence does not split.

In general, the case M a projective space was first studied by A. Van de Ven in
1958:

Theorem 2.1 (Van de Ven [14]) A submanifold X � Pn has splitting tangent
sequence if and only if X ' Pm is a linear subspace.

There can be found several different proofs of this result in the literature,
compare, for example, [6, 11, 13] or [3]. One idea is the following:

Sketch of Proof: For the splitting of linear subspaces of Pn see the above example.
Assume, on the other hand, X � Pn is split, dim.X/ D m � 1. Then the natural
surjective map

TM.�1/ �! TX.�1/ �! 0

implies TX.�1/ is generated by global sections, where OX.1/ D OPn.1/jX is the
restriction of the hyperplane bundle. Then by Wahl’s Theorem (or use Mori’s
Theorem or projective connections)

.X;OX.1// ' .Pm;OPm.1// or .P1;OP1 .2//:

Now we are done since the tangent sequence of a conic in P2 does not split as seen
above. ut

For several reasons, another interesting class for M are abelian varieties. Here we
can show:

Theorem 2.2 (Jahnke [3]) Let M be an abelian variety. Then a submanifold X �
M has splitting tangent sequence if and only if X is abelian.

The proof relies on the fact that X is abelian if and only if TX is trivial, and on a
general result on vector bundles: any globally generated vector bundle with trivial
determinant must be trivial.

The vanishing of the second fundamental form was studied in a more general
situation by N. Mok. In general this should be a stronger condition than just the
holomorphic splitting, but it turns out that at least for projective spaces and abelian
varieties both notions coincide. Adopted to our situation here, Mok proves in his
paper:

Theorem 2.3 (Mok [12]) Let M be a projective space, abelian or a ball quotient
and f W X ! M a holomorphic immersion, where X is a compact complex manifold.
Then f is split, if and only if the second fundamental form vanishes, or equivalently,
if f W X ! M is totally geodesic.

We may ask for which further types of M the splitting of a submanifold already
implies the vanishing of the second fundamental form.
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3 Homogeneous Manifolds

Besides projective spaces and abelian manifolds we find homogeneous manifolds
a suitable category to consider for the following reasons: if X � M is split, the
splitting morphism induces a surjective map

TM �! TX :

This means X inherits several positivity properties of M:

• if M is homogeneous, then also X is,
• if TM is ample, 1-ample etc., then also TX is,
• if M admits a projective connection, then also X does [5], etc.

Moreover, by a theorem of Borel and Remmert, any homogeneous projective
manifold M splits into a product

M ' A �G=P;

where A is abelian and G=P a rational homogeneous space.
We now first collect some general facts on splitting submanifolds (see [3]):

Lemma 3.1 1.) Let X � Y � M be projective manifolds. Then

1. if X � M is split, then X � Y is split,
2. if X � Y and Y � M are split, then X � M is split.

2.) If M ' Y � Z, then all fibers of the projections are split in M.

Proposition 3.2 Let M ' Y � Z and f W X ! Y a split holomorphic immersion
(resp. embedding). Let g W X ! Z be any map. Then .f � g/ W X ! M is a split
immersion (resp. embedding).

Proof Denote the projections of M by 	Y and 	Z , respectively. Then we have TM '
	�
Y TY ˚ 	�TZ . Hence

.f � g/�TM ' f �TY ˚ g�TZ :

Since f is split by assumption, there exists a holomorphic splitting morphism ˇ W
f �TY ! TX , such that ˇ ı Tf D idTX , where Tf W TX ! TY denotes the tangent map
of f . Then

� W
�
.f � g/�TM ' f �TY ˚ g�TZ �! TX

.v;w/ 7! ˇ.v/

is a splitting morphism for f � g. ut
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Example Using this result we can construct some interesting examples:

1. Assume M ' A � G=P homogeneous. Take some split submanifold X � G=P
and define g 
 0. Then X ,! M is split.

2. Again for M ' A � G=P now assume there exists an elliptic curve E � A. Then

f W E ,! A is split. Pick some rational curve C � G=P and take g W E 2W1�! P1 '
C a double cover. Then .f � g/.E/ � M is split.

3. Consider M ' P1 � P1, f D idP1 on the first factor and for some d � 1

g W
�

P1 �! P1

Œs W t� 7! Œsd W td�

on the second factor. Then C D .f � g/.P1/ � M is a rational curve of bidegree
.1; d/, which is split for any d by Proposition 3.2.

We conclude that we should first understand splitting submanifolds of the rational
homogeneous part G=P. The projective space is well known, for some further cases
there is a classification in [3], we sum up the results:

Theorem 3.3 (Jahnke [3])

1.) Assume X is a submanifold of the n-dimensional quadric M D Qn, n � 2.
Then

(i) If dim.X/ � 2, then X is split if and only if X is a complete intersection
subquadric or a linear subspace.

(ii) If dim.X/ D 1 and X is split, then X ' P1 is a rational curve.

2.) If M is a Grassmannian, then any split submanifold is again rational homoge-
neous.

Remark 3.4 Concerning rational curves C � Qn:

1. Assume C � Q2 � Qn is a curve of bidegree .1; d/ in some 2-dimensional
complete intersection subquadric of Qn. Then C is split in Q2, hence also split in
Qn.

2. Assume n � 6 and L ' P3 � Q W n a linear subspace. Then L is split in Qn.
Take C a rational curve of degree d � 2 in L. Then C is non-split in L, hence also
non-split in Qn.

We now compare this result with the list of all submanifolds with vanishing
second fundamental form:

Theorem 3.5 (Chen/Nagano, Klein [1, 7]) Let X � Qn a submanifold with
vanishing second fundamental form. Then X is a complete intersection subquadric
or a linear subspace.

This means for dim.X/ � 2 split submanifolds of Qn are exactly those with van-
ishing second fundamental form. But for curves this is not the case anymore: rational
curves in Qn with vanishing second fundamental form are lines or conics. The curves
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of degree d � 3 lying in some complete intersection subquadric constructed above
have splitting tangent sequence, but non-vanishing second fundamental form.

4 Manifolds with Holomorphic Projective Connection

Another interesting case are manifolds admitting a holomorphic projective connec-
tion for the following reason:

Proposition 4.1 (Jahnke/Radloff [5]) Let M be compact Kähler carrying a holo-
morphic projective connection. Let � W N ,! M be a compact submanifold that splits
in M. Then N carries a holomorphic projective connection.

Here, a manifold M is said to carry a holomorphic normal projective connection
if the (normalized) Atiyah class of the holomorphic cotangent bundle has the form

a.�1
M/ D

c1.KM/

mC 1 ˝ id�1M C id�1M ˝
c1.KM/

mC 1 2 H1.M; �1
M ˝ TM ˝�1

M/;

where we use �1
M ˝ TM ˝�1

M ' �1
M ˝ End.�1

M/ ' End.�1
M/˝�1

M.
Compact Kähler Einstein manifolds with holomorphic projective connection

were studied by Kobayashi and Ochiai in [8], the only such varieties are Pn.C/,
finite étale quotients of tori and ball quotients. Here, the connection is always flat,
i.e. M admits a projective structure. In the non Kähler Einstein case we found in
dimension three exactly one new example, that are families of fake elliptic curves
M �! C [4]. Again, the connection is flat. This classification generalizes to higher
dimensions (now assuming flatness):

Theorem 4.2 (Jahnke/Radloff [6]) On a projective manifold Mm which is not
Kähler Einstein, the following conditions are equivalent:

1. M carries a flat holomorphic normal projective connection.
2. Up to a finite étale covering, M admits an abelian group scheme structure f W

M �! C over a compact Shimura curve C such that the Arakelov inequality
2 deg f��1

M=C � .m � 1/ degKC D .m � 1/.2gC � 2/ [2] is an equality.
3. Up to a finite étale covering, M ' Z �C Z �C 	 	 	 �C Z, where Z �! C is a Kuga

fiber space constructed from the rational corestriction CorF=Q.A/ of a division
quaternion algebra A defined over a totally real number field F such that

A˝Q R ' M2.R/˚ H˚ 	 	 	 ˚ H:

Here H denotes the Hamiltonian quaternions.

That 2. implies 3. is due to Viehweg and Zuo [15], and by construction, a
manifold as in 3. admits a projective structure (see [6] for details). For the converse,
first show that the existence of a rational curve implies M is the projective space.
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Hence, by the cone theorem, we may assume KM is nef, and also KF is nef for any
smooth submanifold. By results of Aubin and Yau we conclude that if M is also
big, then M is a ball quotient, and if KM 
 0, then M is a finite étale quotient of
a torus. In the remaining case, we now show that M must have (generically) large
fundamental group and use results of Kollár [9] and Lai [10] to prove that there
exists a finite étale cover M0 �! M which is a good minimal model and, again up
to a finte étale cover, M is an abelian group scheme over a base N of general type.

We already studied splitting submanifolds of the projective space and abelian
manifolds. The case M a ball quotient is treated by Yeung in [16]. In the remaining
case as described in Theorem 4.2 we have

Proposition 4.3 (Jahnke/Radloff [5]) Let dim.M/ D 3 and 	 W M �! C be a
modular family of fake elliptic curves. A compact submanifold N of M of dimension
0 < dimN < 3 splits in M if and only if

1. N is an étale multisection of 	 or
2. N is an elliptic curve in a fiber of 	 .
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Generalized Solutions to Stochastic Problems as
Regularized in a Broad Sense

Irina V. Melnikova

Abstract We consider different types of solutions to abstract stochastic Cauchy
problems, especially generalized solutions, as regularized in a broad sense. By the
regularization of a problem in a broad sense, we mean construction of proper well-
posed problems related to the original one, whose solutions, in distinct from the
regularization in the ill-posed problem theory, are not necessarily approximations to
a solution of the original problem.

Keywords Distribution • Gelfand–Shilov spaces • Generalized solution •
Laplace and Fourier transforms • Semigroup • White noise • Wiener process

Mathematics Subject Classification (2010) 47D06, 46F12, 46F25, 60G20

Models of various evolution processes considered with regard to random perturba-
tions lead to the Cauchy problem for equations with an inhomogeneity in the form of
white noise in infinite dimensional spaces. Among them, important for applications
is the first-order Cauchy problem

X0.t/ D AX.t/C F.t;X/C B.t;X/W.t/; t � 0 .or t 2 Œ0;T�/; X.0/ D �; (1)

where A is the generator of a regularized semigroup in a Hilbert space H, F is a
nonlinear map in H, W D fW.t/; t � 0g is a white noise process in another Hilbert
space H, and B.t;X/ 2 L.H;H/.

The problem (1) is ill-posed due to several reasons: the generation by A just
a regularized semigroup, properties of F and B, and the well-known irregularity
property of white noise processes. Because of the irregularity of W, which is not a
process in the usual sense, the problem (1), similarly to the finite dimensional case,
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is considered in the integral form :

X.t/ D � C
Z t

0

AX.s/dsC
Z t

0

F.s;X/dsC
Z t

0

BdW.s/; t � 0; (2)

where
R t
0
BdW.s/ is the Itô integral w.r.t. (with respect to) a H-valued Wiener process

fW.t/; t � 0g, a “primitive” of W, and W.t/ D W.t; !/; ! 2 .�;F ;P/ (see, e.g.,
[2, 3, 7]). The problem (2) is usually written in the short form :

dX.t/ D AX.t/dtC FdtC BdW.t/; t � 0; X.0/ D �: (3)

To overcome the issues related to the ill-posedness of the problem, along with
weak and mild solutions to (2) we consider

• solutions generalized w.r.t. the spatial variable x 2 R
n for the problem with

differential operators A D A .i@=@x/ in Gelfand–Shilov spaces.
For the problem in the differential form (1) we consider

• solutions generalized w.r.t. the time variable t 2 R in spaces of abstract
distributions and ultra-distributions, where the spaces are closely related to the
type of the semigroup generated by A;

• solutions generalized w.r.t. the random variable ! 2 � in spaces of abstract
stochastic distributions.

Each of these solutions allows us to overcome a part of the ill-posedness issues.
Further we consider different types of regularization in the broad sense related to
each type of solutions. We do not consider here the regularization using methods of
ill-posed problem theory; such regularization of stochastic problems needs special
investigations (for (1) with F D B D 0, see, e.g, [6]). We study the problem using
known techniques of abstract (ultra)distribution and Gelfand–Shilov generalized
functions, as well as new ones extending the white noise theory to the infinite
dimensional case. The solutions mentioned can be found, e.g., in [1, 4, 8].

1 Regularization in the Case of the Problem (2)

If A is the generator of C0-class solution operators U.t/; t � 0; to the corresponding
homogeneous Cauchy problem, the linear problem (with F D 0) has a weak solution

X.t/ D U.t/� C
Z t

0

U.t � s/B dW.s/; t � 0 ; (4)

that is a process pathwise satisfying the equation

hX.t/; yi D h�; yi C
Z t

0

hX.s/;A�yi ds C
Z t

0

hBdW.s/; yi Pa:s:; t � 0; (5)
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y 2 domA�, and in the case F ¤ 0, a mild solution

X.t/ D U.t/� C
Z t

0

U.t � s/F.s;X/ dsC
Z t

0

U.t � s/B dW.s/; t � 0: (6)

The solutions (4) and (6) can be considered as (weakly) regularized by “test”
functions y 2 domA� and, as we will see below, any generalized solution can be
considered as regularized by test functions corresponding to the problem.

Now consider the regularization of solutions, in particular solution operators
related to A, the generator of a regularized semigroup: integrated, convoluted, or
R-semigroup. A family of bounded operators fS.t/; t 2 Œ0; �/g; � � 1; satisfying
the equations with smooth bounded operators R.t/ in H:

A
Z t

0

S.s/f ds D S.t/f � R.t/f ; f 2 H; S.t/Af D AS.t/f ; f 2 domA;

is a K-convoluted semigroup SK in H with the generator A if R.t/ D K.t/I, in
particular an n-times integrated semigroup Sn if K.t/ D tn

nŠ , and S D SR is an R-
semigroup if R.t/ 
 R. The semigroup is local if � <1. These semigroups are the
following regularizations of solution operators U.t/:

SK.t/ D .U � K/.t/; Sn.t/ D
Z t

0

U.s/
.t � s/n�1

.n � 1/Š ds; SR.t/ D U.t/R:

For A, the generator of a regularized semigroup S, instead of (4) and (6) we have
(weak) regularized solutions with S instead of U for corresponding regularized prob-
lems. Further we will consider generalized solutions obtained via these regularized
ones and additionally regularized by corresponding test functions.

Now mention regularization of the white noise term in the case of (5). Here W is
a Q-Wiener process: W D WQ.t/ DP1

iD1 �iˇi.t/ei; t � 0, where ˇi are independent
Brownian motions and feig is a basis in H such that Qei D �2i ei,

P1
iD1 �2i < 1.

The regularization is due to “integration” of W and due to �i, which distinguish
a Q-Wiener process WQ from a weak Wiener process W.t/ D P1

iD1 ˇi.t/ei; t �
0; converging just weakly in H. Usage of a Q-Wiener process or a weak Wiener
process in a stochastic problem depends on a model that results in the problem. In
Sect. 3 we show regularization that allows us to use a weak Wiener process W and
corresponding W D W 0.

2 Regularization in the Case of Generalized w.r.t. t Solutions

Let D0.H/ be the space of abstract (H-valued) distributions, D0
fMqg.H/ the space of

abstract ultra-distributions, and fWQ.t/; t � 0g be a Q-Wiener process with values in
a Hilbert spaceH: WQ.t/ D WQ.t; !/; ! 2 �I WQ.t; !/ 2 H; t � 0;Pa:s:I WQ.t; 	/ 2
L2.�IH/:
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A Q-white noise W is defined as the generalized t-derivative of W:

h';Wi WD �h' 0;WQi D �
Z 1

0

WQ.t/'
0.t/ dt; ' 2 D .' 2 DfMqg/; (7)

where WQ continued by zero for t < 0 is regarded as a (regular) element of
D0
0.H/ .D0

fMqg;0.H// Pa:s: and of D0
0



L2.�IH/� 
D0

fMqg;0


L2.�IH/� �. The space

is chosen in dependence on the type of a semigroup generated by A, namely an
integrated or convoluted one.

Using the general idea of reducing boundary-value differential problems to
equations with ı-functions and their derivatives multiplied by boundary (initial)
data in spaces of distributions, we consider the generalized w.r.t. t linear stochastic
Cauchy problem (1) with W D WQ

0 and A generating an integrated (convoluted)
semigroup as follows:

h';X0i D Ah';Xi C h'; ıi� C h';BWi; ' 2 D .' 2 DfMqg/: (8)

It is well known that if A is the generator of a C0-semigroup, then its resolvent
R.�/; � > $ , is the Laplace transform of solution operators U.t/; t � 0,
satisfies the MFPHY-condition, and solution operators can be obtained via the
inverse Laplace transform of R (see e.g., [6]). Generally, the resolvent satisfies the
following conditions:

(R1) ƒ$ D f� 2 C W Re� > $; $ 2 Rg � �.A/ and





dk

d�k

�R.�/
�n

�

 �

CkŠ

.Re� �$/kC1 ; � 2 ƒ$; k 2 N0I

(R2) ƒln
n; �;$ D f� 2 C W Re� > n� ln j�j C$g � �.A/ and

kR.�/k � Cj�jn; � 2 ƒln
n; �;$ I

(R3) ƒM
˛; �;$ D f� 2 C W Re� > ˛M.� j�j/C$g � �.A/ and

kR.�/k � Ce$M.� j�j/; � 2 ƒM
˛; �;$ ;

where M.x/ is a positive function increasing not faster than xh; h < 1;
(R4) The set �.A/ does not fill any interval of the type � > $ .

Note that (R1) coincides with the MFPHY-condition as n D 0. Change of the
resolvent behavior when we pass from (R1) to (R4) reflects strengthening of the ill-
posedness of (1), which is connected with the character of peculiarities of solution
operators and corresponds, respectively, to an exponentially bounded n-times
integrated semigroup, local n-times integrated semigroup, convoluted semigroup,
and an R-semigroup.
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In the case of integrated and convoluted semigroups the techniques of the Laplace
transform, now the generalized Laplace transform, can be used for regularization of
solution operators U.t/; t � 0; and X, generalized w.r.t. t solution to (8): h';Xi D
h';U�iCh';U�BWi: In this case the regularization (by ' and K) is the following:

h';Ui D h'; d
n

dtn
Sni; h';Ui D h';PultSKi;

SK.t/ D L�1ŒeKR�.t/ D .U � K/.t/;

where ' 2 D in the case of Sn and ' 2 DfMqg in the case of SK , eK D LŒK� is the
Laplace transform of K (its order of decreasing at infinity is defined by smoothness
of K), and Pult is an ultra-differential operator defined by the equality PultK D ı.

As for regularization of solutions to the nonlinear Cauchy problem, we obtained a
generalized solution to (1) with the generator of a C0-semigroup in spaces of abstract
stochastic algebras [4, 5], which were constructed on the basis of Colombeau
algebras (see, e.g., [9]). Here, in addition to the regularization of solutions, the
regularization by convolution with ı-shaped functions in the very construction of
elements of the algebra holds.

In the case of R-semigroups the regularization of solution operators is performed
by smoothing the operator .�I � A/�1 (which is not the resolvent in this case) by
the operator R. In the next section we consider the regularization in the case of
differential operators A generating R-semigroups.

3 Regularization in the Case of Generalized w.r.t. x and !

Solutions

First, consider generalized w.r.t. x solutions to the linear Cauchy problem (2) with
A D A .i@=@x/, .m �m/-operator-matrix of differential operators.

In contrast to the case of an abstract operator A, where the technique of the
(generalized) Laplace transform of solution operators representing the resolvent
of A is used, here main results are based on the estimation of the Fourier
transformed solution operators etA.s/; s D � C i� . It is proved (see, e.g., [4]) that
the family of convolution operators with the regularized Green function GR.t; x/ D
1
2	

R
R
ei�xR.�/etA.�/ d�; x 2 R:

ŒSR.t/f �.x/ WD GR.t; x/ � f .x/; f 2 L2m.R/; (9)

forms an R-semigroup fSR.t/; t 2 Œ0; �/g in L2m.R/ with

Rf .x/ D 1

2	

Z

R

ei�xR.�/ef .�/ d�; x 2 R;
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where R is taken in such a way that it neutralizes the growth of ketA.�/km andef is the
Fourier transform of f 2 L2m.R/ D L2.R/ � 	 	 	 � L2.R/.

Since A generates only a regularized semigroup, we cannot construct a solution
in the form (4) as we did while constructing the solution to the Itô integrated Cauchy
problem (5) in the case of a C0-semigroup fU.t/; t � 0g. In the case of R-semigroup
defined by (9) we construct X, regularized (by  and R) solution1

h .x/;X.t; x/i D h .x/;R�1SR.t; x/�.x/C R�1SR.t � h; x/BW.h; x/ dhi;

 2 ‰. Here test function spaces‰ are determined by estimates on ketA.s/km, which
in turn are determined by estimates for eigen-values of A.s/ given in the Gelfand–
Shiov classification (see, e.g., [4]).

For the generalized w.r.t. x linear Cauchy problem (2) with � 2 L2m.R/ and
A .i@=@x/ generating a Petrovsky correct system, there exists a unique .regularized
by  and R/ solution X.t; 	/ 2 S 0

m; for a conditionally correct system, X.t; 	/ 2
.S˛;A/0m, where parameters ˛;A are determined by estimates of ketA.s/km .˛ D 1

h ,
1

h eAh
> a0/; for an incorrect system, X.t; 	/ 2 .S˛;A/0m, where ˛ D 1

p0
and

1
p0 eAp0

> b1.

Note the important fact that here, due to test functions  2 ‰ � L2m.R/ we can
consider weak Wiener processes W.

In conclusion, without going into details, introduce a generalized w.r.t.! solution
to the linear Cauchy problem with multiplicative singular white noise W defined
in the space .S/��.H/, � 2 Œ0; 1/, an infinite dimensional extension of the white
noise space. Replacing the Itô integral in (2) with the Hitsuda–Skorohod integral
and differentiating w.r.t. t, we come to the Cauchy problem

dX.t/

dt
D AX.t/C B



t;X.t/

� ˘W.t/; t � 0; X.0/ D �: (10)

Applying the S-transform to (10), we obtain the following problem:

d

dt
OX.t; 
/ D A OX.t; 
/C B


 OX.t; 
/� OW.t; 
/; t � 0; 
 2 S; OX.0; 
/ D O�.
/;

where OX.t; 
/ D SŒX.t/�.
/, OW.t; 
/ D SŒW.t/�.
/, and O�.
/ D S�.
/.
Under certain, not restrictive conditions on operators A and B, we obtain OX via

the approximation based on the contraction operators theorem and then X D S�1Œ OX�,
a (regularized by test functions from .S/�/ solution to (10) with X.t/ 2 .S/��.H/;
t � 0.

1Recall that if we write an argument of a generalized function, we mean the function is applied to
test functions of this argument.
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Image Processing Algorithms in Different Areas
of Science

Mateusz Muchacki

Abstract The main objective of this paper is to present some of the key issues in
the field of computer processing of digital images. They are used in a large amount
of fields of science and education. Using modern controllers (MS Kinect, PS Move)
can recognize and interpret the gestures of the user. It can be used in the development
of interesting applications for teaching tools.

Keywords Image processing algorithms • Kinect

Motion sensors, created for home entertainment systems, which at the end of
the first decade of the twenty-first century changed the approach to the issues
of cooperation between man and machine provided the opportunity of natural
human interaction with operated device. There are many systems based on so-
called natural user interface, which key element is the user himself, whose gestures,
body movements, and speech are interpreted by appropriate mechanisms without
direct contact of the user with the hardware. One of the most important systems of
this type are: Perceptive Pixel, Microsoft Pixel Sense, 3D Immersive Touch, or the
popular Microsoft Kinect. To a large extent they are based on creating a scene using
different types of user tracking sensors (cameras, IR cameras, motion sensors, and
microphones) and allow to determine his location in a controlled space. With this
type of solutions direct and intuitive contact has become possible, on which Natural
User Interface systems (NUI, NI) are based.

From the perspective of educational applications (but actually in virtually any
application area) of NUI based systems, the solutions based on the last of these
solutions can be distinguished, namely, Microsoft Kinect (Xbox Kinect), or rather
its implementation in the MS Windows environment. The device itself is equipped
with a number of sensors, such as RGB camera, infrared wave emitter IR camera,
and four microphones. This package allows you to interact with your computer
without using any additional physical controller. Thanks to Kinect SDK user
library provided by Microsoft, it is possible to track user movements using skeletal
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representation of the silhouette of a person registered by the device. This gives a
fairly wide range of possibilities of application of the described environment, both
in applications for the youngest computer users (for whom traditional controller
can be a barrier to contact with the unit), and in activities related to the therapeutic
function of the NUI system applications associated with, e.g., rehabilitation of older
people. In the traditional sense of a computer system, the user in order to be able to
interact with the machine uses a peripheral input device—to enter instructions, then
waits for the result on the output device—usually a computer monitor. The set of
this type I/O devices in conjunction with the operating system, can be defined very
simply as the user interface. Similarly, any system—also in purely software terms—
mediating in man-machine communication can be named user interface either it is
an operating system, application running locally, Web application or manageable
Web page.

The evolution of user interfaces—from simple text to advanced, often intuitive
graphics solutions, as well as recently popular touch solutions—indicates a desire to
maximize the simplification of the interaction between man and machine (towards
direct and intuitive). The last of the steps (for the moment) is to use interfaces
that eliminate any peripheral device in favor of gestures or interpretation of the
movement of human body. Speaking of systems acquiring data from observations
of the real world, we enter into another area of issues which is computer vision
(CV). It covers three main issues. The first one deals with the problems of obtaining
a digital image of sufficiently high quality. This area consists of image acquisition
process and image pre-processing process, which eliminates noise and distortion. In
the second stage specific features are extracted from the picture—essential for the
further stages of the work. This stage is called image analysis. The third and final
stage of the process of computer vision is usually associated with classification or
recognition of recorded images. One of the overriding motives of CV development
was to create a system capable of perceiving and understanding the image in a
manner similar to human. In this case, the analysis is done with geometric, physical,
or static models. Many tasks included in CV schemes can be analyzed as mathematic
problems—in view of the fact that a significant part of the required image processing
is based on statistics, geometry operations, or processes optimization.

Among many issues that are raised within CV applications we can distinguish
three basic ones: image recognition, motion analysis, and reconstruction of three-
dimensional scenes. The very process of image recognition is the task of finding
a well-known object in the image or scene. This task easy for a human is still
a major challenge for vision system. It requires appropriate strategies—and the
performance of the plotted sequence of actions: (1) detection—detection of a
plurality of segments in the picture, (2) classifications—determination of the best
fit of the plurality of segments with a set of elements of the representation object
model, (3) location—determination of the position of the detected object in three-
dimensional space or on a plane. For a rigid object with known dimensions there are
3–6 degrees of freedom: the three-dimensional object requires the calculation of six
parameters (three translations and three rotation angles), and the flat object—three
parameters (two translations and one angle).
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In order to classify the strategies of image recognition, 3D object detection
problem due to the method of searching a set of models and data segments can be
divided into: optimal strategies and heuristic strategies [3]. In the optimal strategies
there are two approaches: a systematic search and Bayes for object instances. Both
the first and the second strategy can be difficult due to the computational complexity
resulting from the large number of possible instances. In the heuristic strategies
there are three main methods: data-driven fit, model-driven fit, and algorithm
for generation and verification of hypotheses (a combination of the two previous
strategies). They are often used because of their characteristics, namely finding a
“good enough” solution as soon as possible. Practical research show that the most
effective algorithm is just the latest example of the heuristic strategy (algorithm
generation and test hypotheses), and its most popular implementation is RANSAC
algorithm [2]. The key objective in the process of image recognition is to determine
whether the information about a specific object, the related characteristics and
important properties is included in the analyzed data. Performing this type of action
sequences is not much of a problem for the computer, but in general situations
(applications) it is very hard to get a satisfactory solution. Much more effective
are in this case systems that focus on specific cases—e.g. facial recognition, letters,
signs recognition, etc.

In the processes of motion analysis the sequence of images to predict further
action—change of the parameters or object position on the stage is tested (usually
by tracking a set of points or objects). The most common problems with the
reproduction of three-dimensional scenes—are the problems associated with the
process of image acquisition (3D to 2D mapping, scene illumination, etc.). The
above analysis may be cover simple sets of points embedded in 3D space and
complex spatial models. The ideal and most importantly universally accessible
controller implementing basic functions and objectives of natural user interface
(NUI) is Microsoft Kinect. It allows a fully natural communication, which does not
require additional controllers or markers to facilitate data acquisition. The controller
performs image analysis through the main points located on the head, arms, body,
and legs of a simplified human model (20 points). The emitter and an infrared
camera can effectively and quite accurately determine the location of an object
in the visual field sensors. The algorithm calculating the distance to each point of
analyzed scene is based on relationships that arise from used imaging technique—
stereoscopy—where on the basis of two angles, one can calculate the actual distance
from the observed objects. In case of the described controller, the simplification
exhausting the fact that one of the observers (in this case the IR emitter that produces
a beam of pseudo-random patterns) of the scene is also the reference point for the
image viewed by a second observer (camera R, reading automatically the location
of points generated by the emitter to the objects in the scene) were used. This allows
to determine the distance of objects in the scene. The very process of detection of
objects is based on generating a point cloud (containing more than 300,000 of them).

Based on this simple solution, a number of projects supporting various fields
of science were created. From educational games to robot control systems. For
example, in the Department of Computer Science of Cracow Pedagogical University
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Virtual Reality Educational system based on developed there Gesture Description
Language (GDL) [1] was created, basing on an open environment of well-known
and popular among the youth game allows to transfer into the virtual world with
which player interacts through gestures interpreted by the Kinect controller.

Examples of uses of the systems described above could be listed indefinitely.
From simple, uncomplicated entertainment applications, through education to
complex, advanced models used in areas such as artificial intelligence, robotics, and
neuroscience. Imperfection of existing systems poses researchers new challenges,
which, however, as demonstrated the achievements in this field should be resolved
in the coming years.
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Boundary Value Problems for Half-Plane, Strip
and Rectangle with Circular Inclusions

E. Pesetskaya and N. Rylko

Abstract The aim of this work is to extend the method of functional equations
to boundary value problems for half-plane, strips, and rectangles with circular
inclusions.

Keywords Boundary value problem • Functional equations • Multiply connected
domain • Poincaré series • R-linear problem • Riemann–Hilbert problem •
Schottky double

Mathematics Subject Classification (2010) 30E25

1 Introduction

Exact formulae for solutions of the boundary value problem are of great interest of
the theory of analytic functions. The famous Poisson integral solves the Dirichlet
problem for a disk. The corresponding Poisson kernel is expressed in terms of the
elementary rational function �Cz

��z
1
�

and yields the Schwarz operator for the disk (see
formula (2.7.1) in [8]). Many attempts were applied to extend the Poisson formula
to multiply connected domains with circular holes. The main line of this study
was based on the construction of the Poisson kernel in the form of the absolutely
convergent Poincaré 
2-series beginning from [2]. An equivalent approach was
based on the Schottky–Klein prime function [1]. In both the approaches holes of
the domains were located far away each from other. Such a geometrical restriction
is called the separation condition.
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The generalized almost uniformly convergent Poincaré series and the generalized
Schottky–Klein prime functions were constructed in [6–8] for an arbitrary multiply
connected domain that yields the exact Poisson formula, the Schwarz operator,
Green’s functions, Bergman kernel, the Schwarz–Christoffel formula and solves
the scalar Riemann–Hilbert and R-linear problems (see references in [7]). It is
worth noting that the Poincaré series and other corresponding objects in general
are not expressed in terms of the elementary functions that effective computational
methods require. The structure of the objects is based on the functions z�2, z�1, and
ln z related by differentiation. The corresponding functions constructed for doubly
connected domains are expressed in terms of the Weierstrass elliptic functions, for
instance }.z/, �.z/, and ln �.z/. The multi-(quasi-)periodic functions corresponding
to the classic Schottky groups are the Poincaré 
2-, 
1- series and the Schottky–Klein
prime function. Therefore, all the fundamental functions can be obtained from the
Poincaré 
2-series by integration term by term of the uniformly convergent series.
Though the Poincaré series is in general conditionally, hence slowly, convergent, a
fast algorithm was proposed in [9]. The above scheme is the most general to solve
the Riemann–Hilbert and R-linear problems.

Dareen Crowdy gave talks (for instance, a plenary talk at the 10th ISAAC
Congress) where he proposed possible extensions to boundary value problems for
a strip and for a rectangle with circular holes (see Fig. 1). However, these problems
can be easily treated as the above problems considered by Mityushev. For instance,
the boundary of the strip (two straight lines) can be considered as two circles on
the extended complex planebC D C [1. It is worth noting that the previous exact
formulae by Dareen Crowdy [3] had geometrical restrictions, namely the separation
condition. This excludes the case of tangent circles. Following Mityushev’s scheme
the holes can be tangent that yields solution to various problems even more general
than Dareen Crowdy presented. This scheme was discussed by Mityushev at the
hard-to-reach paper [5].

In the present paper, we develop Mityushev’s method of functional equations
to the domains displayed in Fig. 1. A boundary value problem for rectangle is
discussed in the separate paper [4] of the present volume.

Fig. 1 Half-Plane, strip, and rectangle with circular inclusions
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2 Half-Plane

Let z D x1 C ix2 denote a complex variable on the complex plane C and i D p�1.
Consider a multiply connected domain D � C consisting of the half-plane Im z < 0
with n circular non-overlapping inclusions Dk D fz 2 C W jz � akj < rg (k D
1; 2; : : : ; n). The real axis is denoted by L0 D fz 2 C W Im z D 0g and the circles
by Lk D fz 2 C W jz � akj D rg. Let each circle Lk be positively oriented, i.e., when
one is following along Lk the domain Dk is on left. Let the domain D be occupied by
a conducting material with the thermal conductivity � normalized to unity and the
inclusions Dk by a perfect conductor. Let a temperature distribution f .x1/ be given
on L0. For simplicity, it is assumed that f .x1/ decays at infinity at least as jx1j�1.
Then, the temperature distribution T.z/ 
 T.x1; x2/ in D satisfies the boundary
value problem

r2T D 0 in D;
T D f on L0;
T D Tk on LkR
Lk

@T
@n ds D 0 .k D 1; 2; : : : ; n/;

(1)

where r2 D @2

@x21
C @2

@x22
stands for the Laplace operator and Tk are undetermined

constants.
Following [8] introduce the complex potential '.z/ in such a way that

T.z/ D Re '.z/; (2)

where the function '.z/ is single-valued and analytic in the domain D. Following
[8] we can reduce the boundary value problem (1) to the R-linear problem [5]

'.z/ D 'k.z/� 'k.z/C Tk; jz � akj D r .k D 1; 2; : : : ; n/; (3)

'.z/ D '0.z/ � '0.z/C f0.z/; Im z D 0; (4)

where the auxiliary functions 'k.z/ are analytic in the domains jz � akj < r
(k D 1; 2; : : : ; n) and Im z > 0, respectively. Moreover these functions are
continuously differentiable in the closures of the considered domains. The function
f0.z/ is analytic in Im z > 0 and satisfies the boundary value problem

Re f0.x1/ D f .x1/; �1 < x1 <1: (5)

It can be exactly written by Poisson’s formula for a half-plane [8].
Differentiation of (3) and (4) on the tangent parameters of L0 yields the R-linear

problem [8]

 .z/ D  k.z/C
�

r

z � ak

�2
 k.z/; jz � akj D r .k D 1; 2; : : : ; n/; (6)

 .z/ D  0.z/�  0.z/C f 0
0.z/; Im z D 0: (7)
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The problem (6) and (7) is reduced to the system of functional equations

 k.z/ D
X

m¤k

�
r

z � am

�2
 m.z�

.m// �  0.z/; jz � akj � r .k D 1; 2; : : : ; n/;

(8)

 0.z/ D
nX

mD1

�
r

z � am

�2
 m.z�

.m// � f 0
0.z/; Im z � 0: (9)

After its solution the complex flux in the domain D can be found by formula
following from the definition of ˆ.z/ in D

 .z/ D
nX

mD1

�
r

z � am

�2
 m.z�

.m// �  0.z/; z 2 D: (10)

Theorem 2.1 ([8, 10]) The functional equations (8)–(9) can be solved by the
method of successive approximations.

Using Theorem 2.1 we can write the function  .z/ by (10) in the form of the
uniformly convergent Poincaré 
2-series (cf. [6, 8]). The function '.z/ is obtained
by integration of the latter series term by term. This yields '.z/ in the form of the
Poincaré 
1-series. Its further integration yields the Schottky–Klein prime function.
Ultimately, the temperature distribution is defined in (2). Numerical examples are
presented in [10].

3 Strip

Let us consider in the complex plane C of the complex variable z a strip domain
D2 containing a hole with the boundary G1 [ G2 [ @D1, the center a 2 R, and the
radius r (see Fig. 2). A width of the strip is 2b. Let the domain D2 be occupied by a
conducting material with a conductivity �. Consider a problem when the potential
T.z/ 
 T.x; y/ satisfies the Laplace equation �T D 0 in D2 with the Dirichlet
boundary conditions

T.t/ D h1.t/; t 2 G1; T.t/ D h2.t/; t 2 G2; T.t/ D h3.t/; t 2 @D1: (11)

For simplicity, let given functions h1 and h2 form functions Hölder continuous on
G1 [ G2, then T.z/ is continuous at infinity, h3 is a Hölder continuous function
on @D1.

Using a conformal mapping w D 1
z , we arrive at the Dirichlet problem in

the complex plane of the complex variable w (see Fig. 2) for T.w/ harmonic in a
domain D0

2 and Hölder continuous in its closure. In particular, T.w/ is continuous at
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-bi

a x

y z

G1

G2

D1

D

D2

bi

1/a x

y w

Fig. 2 Strip with a hole and conformally equivalent triply connected circular domain

wD 0 and at w D 1. According to the Logarithmic Conjugation Theorem [8], the
harmonic function T.w/ is related to an analytic function '.w/ by formula

T.w/ D Re.'.w//C A1 ln.w � a1/C A2 ln.w� a2/C A3 ln.w � a3/; (12)

where Aj are undetermined real constants, a1; a2; a3 are centers of circles @D0
1, G

0
1,

G0
2 obtained by conformal mapping w D 1

z . In our case, a1 D 1
a , a2 D � {b2 , a3 D {b

2

are centers of the circles @D0
1, G

0
1, G

0
2, respectively. Let us denote w�

k WD r2k
w�ak
C

ak the inversion with respect to a circle with the center ak and radius rk. Using
Decomposition Theorem, we find the function '.w/ in the form

'.w/ D '1.w�
1 /C '2.w�

2 /C '3.w�
3 /: (13)

Here, a function'k is analytic in jw�akj < rk and Hölder continuous on jw�akj � rk
except w D 0where 'k is almost bounded. Substituting (13) into (12) and using (11)
we get the following boundary conditions for k D 1; 2; 3

Re.'1.w�
1 //C Re.'2.w�

2 //C Re.'3.w�
3 //C

3X

iD1
Ai ln.w� ai/ D hk.w/: (14)

Following [8], we arrive at

Re.'1.w�
1 //C Re.'2.w�

2 //C Re.'3.w�
3 // D Regk.w/�

3X

iD1
Ai ln.w� ai/; (15)

where

gk.w/ D � 1
	{

Z

Tk

hk.�/

� � w
d� C 1

2	{

Z

Tk

hk.�/

� � ak
d� C {�k
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is a solution of the Schwarz problem Regk.w/ D hk.w/ with respect to Hölder
continuous function gk. On a boundary of any circle, we have

Re'k.w�
k // D Re'k.w/; Ak ln.w � ak/ D Ak ln rk:

One can consider the problem (15) as the Schwarz problem with respect to the
function '1.w�

1 / C '2.w�
2 / C '3.w�

3 / analytic in the disc jw � akj < rk with the

prescribed real part of boundary values Re.gk.w/ �
3P

iD1
Ai ln.w � ai//. Using these

facts and (13), we get the system of functional equations which after differentiation
becomes

 k.w/ D
3X

m¤k

�
rm

w � am

�2
 m.w�

m/�
3X

m¤k

Am

w � am
C g0

k.w/; k D 1; 2; 3;

(16)
on  k.z/ WD ' 0

k.w/. Let us represent the system (16) in the form of an operator
equation ‰ D A‰ C G. This non-homogeneous equation has a unique solution

in the class of analytical in
3S

kD1
fjw � akj < rkg functions Hölder continuous on

3S

kD1
fjw � akj � rkg for each G from the same class. A solution can be explicitly

found by the method of successive approximations [8].
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Regular Strata and Moduli Spaces of Irregular
Singular Connections

Daniel S. Sage

Abstract In joint work with C. Bremer, the author has developed a geometric
theory of fundamental strata which provides a new approach to the study of
meromorphic G-connections on curves (for complex reductive G). In this theory,
a fundamental stratum associated to a connection at a singular point plays the role
of the local leading term of the connection. In this paper, we illustrate this theory
for G D gl2.C/ (i.e. for connections on rank two vector bundles). In particular, we
show how this approach can be used to construct explicit moduli spaces of irregular
singular connections on the projective line with specified singularities and formal
types.

Keywords Formal connections • Fundamental strata • Irregular singularities •
Meromorphic connections • Moduli spaces • Regular strata

In recent years, there has been extensive interest in meromorphic connections on
curves due to their role as Langlands parameters in the geometric Langlands corre-
spondence. In particular, connections with irregular singularities are the geometric
analogue of Galois representations with wild ramification.

The classical approach to studying the local behavior of irregular singular
meromorphic connections on curves depends on the leading term of the connection
matrix being well-behaved. Let V be a trivializable vector bundle over P1 endowed
with a meromorphic (automatically flat) connection r. Upon fixing a local param-
eter t at a singular point y and a local trivialization, one can express the connection
near y as

dC .M�rt
�r CM1�rt

1�r C 	 	 	 /dt
t
; (1)
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with Mi 2 gln.C/, M�r ¤ 0 and r � 0. From a more geometric point of view, setting
F D C..t//, this formula defines the induced connection Ory on the formal punctured
disk Spec.F/.

When M�r is well-behaved, this leading term contains important information
about the connection. As a first example, if M�r is nonnilpotent, then the expansion
of r at y with respect to any local trivialization must begin in degree �r or below.
Moreover, if Ory is irregular, r is the slope of the connection at y. (The slope is an
invariant introduced by Katz [6] that gives one measure of how singular a connection
is at a given point.)

Much more can be said in the irregular singular nonresonant case when r > 0

and M�r is regular semisimple. We assume that r > 0 so that we are in the
irregular singular case. In this case, asymptotic analysis [9] guarantees that r can
be diagonalized at y by an appropriate gauge change so that r D d C .D�rt�r C
D1�rt1�r C 	 	 	D0/ dtt , with each Di diagonal. The diagonal 1-form here is called

a formal type of Ory. When all of the irregular singularities on a meromorphic
connection on P

1 are of this form, Boalch has shown how to construct well-behaved
moduli spaces of such connections; he has further realized the isomonodromy
equations as an integrable system on an appropriate moduli space [1].

However, many interesting connections do not have regular semisimple leading
terms. Consider, for example, the generalized Airy connections:

dC
�
0 t�.sC1/
t�s 0

�
dt

t
D d C

�
0 1

0 0

�
t�.sC1/

dt

t
C
�
0 0

1 0

�
t�s dt

t
; (2)

for s � 0. Note that when s D 1, this is the usual Airy connection with the irregular
singular point at 0 instead of1. Also, when s D 0, this is the GL2 version of the
Frenkel–Gross rigid flat G-bundle on P

1 [7]. For the generalized Airy connections,
the leading term is nilpotent, and it is no longer the case that one can read off the
slope directly from the leading term. Indeed, the slope is sC 1

2
, not sC 1.

In a recent series of papers joint with Bremer [2–5], we have generalized these
classical results to meromorphic connections on curves (or even flat G-bundles for
reductive G) whose leading term is nilpotent. We have introduced a new notion
of the “leading term” of a formal connection through a systematic analysis of its
behavior in terms of suitable filtrations on the loop algebra. This theory has already
proved useful in applications to the geometric Langlands program [8].

In this paper, we will illustrate our theory in the case of rank 2 flat vector bundles,
where much of the Lie-theoretic complexity is absent. In this case, up to GL2.F/-
conjugacy, one need only consider two filtrations on gl2.F/, the degree filtration and
the (standard) Iwahori filtration.

Let o D CŒŒt�� be the ring of formal power series, and let ! D 

0 1
t 0

�
. Then the

Iwahori filtration is defined by

ir D
�

tdr=2eo tbr=2co
tbr=2cC1o tdr=2eo

�
: (3)
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Recalling that the standard Iwahori subgroup I � GL2.o/ consisting of the invertible
matrices which are upper triangular modulo t, one sees that i WD Lie.I/ is just i0;
moreover, ir D i!r D !ri. A matrix is homogeneous of degree 2s (resp. 2sC1) with
respect to the Iwahori filtration if it is in



Cts 0
0 Cts

�
(resp.



0 Cts

CtsC1 0

�
). In particular,

the matrix of the generalized Airy connection is Iwahori-homogeneous of degree
�.2sC 1/.

The groups GL2.o/ and I are examples of “parahoric subgroups.” For any
parahoric P, there is an associated filtration pj of gl2.F/; this filtration satisfies
pjCeP D tpj for eP 2 f1; 2g. For GL2.o/, the filtered subspaces are tj gl2.o/. For
simplicity, we will take P to be I or GL2.o/ in this paper. Note eGL2.o/ D 1 and
eI D 2.

It will be convenient to view any one-form � 2 �1.gl2.F// as a continuous
C-linear functional on (subspaces of) gl2.F/ via Y 7! Res TrY�. Any such
functional on pr can be represented as X dt

t for some X 2 p�r. For our standard
examples, a functional ˇ 2 .pr=prC1/_ can be written uniquely as ˇ[ dtt for ˇ[

homogeneous.
A GL2-stratum is a triple .P; r; ˇ/ with P � GL2.F/ a parahoric subgroup, r a

nonnegative integer, and ˇ 2 .pr=prC1/_. The stratum is called fundamental if ˇ[

is nonnilpotent. A formal connection Or contains .P; r; ˇ/ if Or D d C X dt
t with

X 2 p�r and ˇ is induced by X dt
t . The following theorem shows that fundamental

strata provide the correct notion of the leading term of a connection.

Theorem 1 Any formal connection Or contains a fundamental stratum .P; r; ˇ/ with
r=eP D slope. Or/; in particular, the connection is irregular singular if and only if
r > 0. Moreover, if .P0; r0; ˇ0/ is any other stratum contained in Or, then r0=eP0 �
r=eP with equality if .P0; r0; ˇ0/ is fundamental. The converse hold if Or is irregular
singular.

The theorem shows that the classical slope of a connection can also be defined
in terms of the fundamental strata contained in it. For flat G-bundles, the analogous
result serves to define the slope [4].

Example 1 The connection in (1) (with the Mi’s in gl2.C/) contains the stratum
.GL2.o/; r;M�rt�r dt

t /; it is fundamental if and only if M�r is nonnilpotent, in which
case the slope is r. If M�r is upper triangular with a nonzero diagonal entry, then
Or contains a fundamental stratum of the form .I; 2r; ˇ/, where ˇ is induced by the
diagonal component of M�rt�r . Again, one sees that the slope is 2r=2 D r. On
the other hand, if M�r has a nonzero entry below the diagonal, then Or contains a
nonfundamental stratum of the form .I; 2rC 1; ˇ0/.

Example 2 The generalized Airy connection with parameter s contains the nonfun-
damental stratum .GL2.o/; s C 1;



0 t�.sC1/

0 0

�
dt
t /. It also contains the fundamental

stratum .I; 2sC 1; !�.2sC1/ dt
t /, whence its slope is sC 1

2
.

In order to construct well-behaved moduli spaces, we need a condition on strata
that is analogous to the nonresonance condition for diagonalizable connections. This
is accomplished through the notion of a regular stratum. Let S � GL2.F/ be a (not



72 D.S. Sage

necessarily split) maximal torus. Up to GL2.F/-conjugacy, there are two distinct
maximal tori: T.F/ and C..!//� (nonzero Laurent series in !). For our standard
examples, we say that .P; r; ˇ/ is S-regular if S is the centralizer of ˇ[. (See [3, 5]
for the general definition.)

Example 3 If M�r is regular semisimple, then the stratum .GL2.o/; r;M�rt�r dt
t / is

Z.M�r/.F/-regular.

Example 4 The stratum .I; 2s C 1; !�.2sC1/ dt
t / contained in the generalized Airy

connection is C..!//�-regular. On the other hand, if .P; r; ˇ/ is C..!//�-regular,
then r=eP 2 1

2
Z n Z.

From now on, we assume that S is T.F/ or C..!//�. Note that s D Lie.S/ is
t.F/ and C..!// in these two cases, and both are endowed with an obvious filtration
by powers of t or !. We call a connection containing an S-regular stratum S-toral.
An S-toral connection can be “diagonalized” into s D Lie.S/. Again, for simplicity,
we will only describe what this means for S equal to T.F/ and C..!//�. For any
r > 0 such that sr contains a regular semisimple element of homogeneous degree
r, one can define a quasiaffine variety A.S; r/ � sr dtt of S-formal types of depth r:
A.T; r/ D fD�rt�r C 	 	 	 C D0 j Di 2 t;D�r regularg dtt and A.C..!//�; 2sC 1/ D
fp.!�1/ dtt j p 2 CŒ!�1�; deg.p/ D 2sC1g. We remark that if we set PT.F/ D GLn.o/

and PC..!//� D I, then an S-formal type A D X dt
t of depth r gives rise to the

S-regular stratum .PS; r;X
dt
t /.

Theorem 2 If Or contains the S-regular stratum .P; r; ˇ/, then Or is P1 WD 1C p1-
gauge equivalent to a unique connection of the form d C A for A 2 A.S; r/ with
leading term ˇ[ dtt .

Before discussing moduli spaces, we need to define the notion of a framable
connection. Suppose that r is a flat G-bundle on P

1. Upon fixing a global
trivialization �, we can write r D d C Œr�, where Œr� is the matrix of the
connection. Assume that the formal connection Ory at y has formal type Ay. We
say that g 2 GL2.C/ is a compatible framing for r at y if g 	 Ory contains the regular
stratum determined by Ay. For example, if Ay D .D�rt�r C 	 	 	 C D0/

dt
t , then g is a

global gauge change such that g 	 Ory D d C .D�rt�r C Xt�rC1/ dtt with X 2 gl2.o/.
The connection r is framable at y if there exists a compatible framing.

We now explain how moduli spaces of connections can be defined for mero-
morphic connections r on P

1 such that Ory is toral at each irregular singularity. We
also want to allow for regular singular points. If the residue of a regular singular
connection is “nonresonant,” in the sense that the eigenvalues do not differ by a
nonzero integer, then its formal isomorphism class is determined by the adjoint orbit
of the residue. Accordingly, our starting data will consist of:

• A nonempty set fxig � P
1 of irregular singular points;

• A D .Ai/, a set of Si-formal types with positive depths ri at the xi’s;
• A set fyjg � P

1 of regular singular points disjoint from fxig;
• A corresponding collection C D .Cj/ of nonresonant adjoint orbits.
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Let M.A;C/ be the moduli space classifying meromorphic rank 2 connections
.V;r/ on P

1 with V trivializable such that:

• r has irregular singular points at the xi’s, regular singular points at the yj’s, and
no other singular points;

• r is framable and has formal type Ai at xi;
• r has residue at yj in Cj.

We will construct this moduli space as the Hamiltonian reduction of a product
over the singular points of symplectic manifolds, each of which is endowed with
a Hamiltonian action of GL2.C/. At a regular singular point with adjoint orbit C,
the symplectic manifold is C viewed as the coadjoint orbit Cdt

t . The symplectic
manifold at an irregular singular point with formal type A will be denoted MA; it
is called an extended orbit. To define it, let OA be the PS-coadjoint orbit of AjpS 2
p_
S . If A is a T.F/-formal type, then MA D OA. The GL2.C/-action is the usual

coadjoint action, and the moment map �A is just restriction of the functional ˛ to
gl2.C/. The definition is more complicated when A is a C..!//�-formal type. In this
case, let B � GL2.C/ be the upper triangular subgroup. Then, MA D f.Bg; ˛/ j
.Ad�.g/.˛//ji 2 OA/g � .BnGL2.C//� gl2.o/_. The group GL2.C/ acts on MA via
h.Bg; ˛/ D .Bgh�1;Ad�.h/˛/ with moment map �A W .Bg; ˛/ 7! ˛jgl2.C/.

We can now describe the structure of M.A;C/.

Theorem 3 The moduli spaceM.A;C/ is obtained as a symplectic reduction of the
product of local data:

M.A;C/ Š
2

4

 
Y

i

MAi

!

�
0

@
Y

j

Cj

1

A

3

5 �0 GL2.C/:

Remark 4 For other variants and a realization of the isomonodromy equations as an
integrable system, see [2, 3].

Here, GL2.C/ acts diagonally on the product manifold, so that the moment map
� for the product is the sum of the moment maps of the factors. Since each factor
involves a functional on gl2.o/ or gl2.C/, the definition of the local moment maps
shows that ��1.0/ is the set of tuples for which the restrictions of these functionals
to gl2.C/ sum to 0. Writing each functional as a 1-form, this is just the condition
that the sum of the residues vanish.

We conclude this paper with two illustrations of the theorem, each with one
irregular singular and one regular singular point, say at 0 and 1. Take As D
diag.a; b/t�1 dtt 2 A.T.F/; 1/ (so a ¤ b) and Ae D !�1 dt

t 2 A.C..!//�; 1/. Also,
let C be an arbitrary nonresonant adjoint orbit. Below, we use the identifications
gl2.o/

_ D gl2.C/Œt
�1� dtt and i_ D tŒ!�1� dtt . Under these identifications, the

restriction map gl2.o/
_ ! i_ has fiber Ce12 dtt .

Example 5 (M.As
0;C1/) We first observe that Ad�.1Ct gl2.o//.As/ D AsC
 0 u

v 0

�
dt
t

with u; v 2 C arbitrary. Indeed, if X;Y 2 gl2.C/, then .1 C tX/Y.1 C tX/�1 
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YC tŒX;Y� .mod t2/, and the claim follows since ad.diag.a; b//.gl2.C// consists of
the off-diagonal matrices. Since GL2.o/ D GL2.C/ Ë .1C t gl2.o//, we get

Ad�.GL2.o//.As/ D Ad�.GL2.C//

��
at�1 u
v bt�1

�
dt

t
j u; v 2 C

�
: (4)

The moduli space is the space of GL2.C/-orbits of pairs .˛;Y/ with Y 2 C, and
Res.˛/CY D 0. One sees from (4) that every orbit has a representative with ˛ of the

form
�

at�1 u
v bt�1

�
dt
t for some u; v 2 C. Since T is the stabilizer of the leading term,

it follows that the moduli space is the same as the set of T-orbits of pairs .˛;Y/ with
˛ in this standard form. We claim that

jM.As
0;C1/j D

8
ˆ̂
<

ˆ̂
:

2; if C is regular nilpotent

1; if C D 0 or C is regular semisimple with trace 0

0; otherwise.

(5)

To see this, note that there are unique representatives for the T-orbits of standard
˛’s by taking .u; 1/ with u 2 C, .1; 0/, and .0; 0/. Each .u; 1/ with u ¤ 0 gives rise
to Y regular semisimple with trace 0 and determinant u. The pairs .1; 0/ and .0; 1/
both lead to regular nilpotent Y’s while .0; 0/ just gives Y D 0.

Example 6 (M.Ae
0;C1/) Here, the moduli space is the space of GL2.C/-orbits of

triples .Bg; ˛;Y/, where .Bg; ˛/ 2 MAe , Y 2 C, and Res.˛/ C Y D 0. This is the
same as the space of B-orbits of triples .B; ˛;Y/. Using I D T Ë I1, an argument
similar to the one in the previous example shows that

Ad�.I/.Ae/ D Ad�.T/
��

z t�1
1 �z

�
dt

t
j z 2 C

�
: (6)

It follows easily that

˛ D
�

z vt�1 C w
v�1 �z

�
dt

t
(7)

for some z; v;w 2 C with v ¤ 0. In fact, each B-orbit has a unique representative
with v D 1 and z D 0. This means that the only adjoint orbits C that give nonempty
moduli space are the orbits of



0 �w�1 0

�
. Thus, M.Ae

0;C1/ is a singleton if C is
regular nilpotent or regular semisimple with trace zero; otherwise, it is empty. We
remark that in the regular nilpotent case, the unique such connection is the GL2
version of the Frenkel–Gross rigid connection, and this argument shows that this
connection is indeed uniquely determined by its local behavior.

Remark 5 By setting C D 0 in these examples, we obtain the corresponding one
singularity moduli spaces: jM.As

0/j D 1 and M.Ae
0/ D ;.
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Analysis of the Strategy Used to Solve
Algorithmic Problem: A Case Study Based
on Eye Tracking Research

Anna Stolińska and Magdalena Andrzejewska

Abstract In this article is presented the result of qualitative investigation in which
a case study method and eye tracking technology were used. The participant has
analyzed the algorithm shown in the flowchart. The path of saccades and fixations
were recorded and the researchers followed the process of solving linear equations.
The results confirmed the hypothesis that eye tracking technology can be used to
optimize the educational process of learning programming.

Keywords Attention • Eye movements • Eye tracking • Flowchart of algo-
rithms • Mathematical literacy

Mathematics Subject Classification (2010) Primary 97C30, 97C70; Secondary
97P99

1 Introduction

Mathematical reasoning and an ability to solve problems in an ordered and algorith-
mic way play an increasing role in the modern society. Mathematics, algorithmic
and programming skills closely connected with them become more and more
important, turning into a key competency for almost all workers. Lots of students
find learning to program hard—they have difficulties in analyzing algorithms—
a fundamental skill that involves decoding, understanding and predicting results.
Failures of students connected with solving algorithmic problems result repeatedly
in a decrease in motivation to learn programming which is thought to be a
complicated skill, because of its complexity or a need to master a syntax of a
programming language [1]. Those problems became a challenge for scientists who
try to find effective methods of teaching mathematics, algorithms and programming
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[2]. More friendly environment and programming tools are being developed [3],
studies on learning strategies are being conducted, innovative methods of teaching,
such as gamification [4], techniques of visualization and simulation are being
implemented [5]. However, it seems that the reasons for these problems should
be looked for at in the first stages of the education in a scope of mathematical
reasoning, during which students acquire basics to construct more advanced skills.
One of the most fundamental elements of educating in a scope of programming is
the ability to make and analyze algorithms which present a solution to a problem.
A question can be asked what is more difficult for students: finding this solution
or presenting it in such a way so that it takes the form of a correct algorithm,
returning good results for any input data. It is also interesting in what way students
read the ready algorithms, what causes that they cannot follow a course in their
execution and cannot find mistakes in them. From the studies performed it results
[6] that a graphic presentation of the algorithms seems to be more effective (in the
meaning of its correct reading and determining a result of its operation), because it
is easier to follow a control course (an order of executing instructions). Observing
of which elements in a flow diagram focus attention of the students and finding
the optimum (leading to solving a problem) information processing patterns can
result in discovering strategies undertaken by the students and subsequently it
can contribute to improving the education process in the scope of algorithms. In
solving algorithmic problems, the ability to select and order information is very
important. These tasks are aided by attention, an elementary cognitive process
which is determined largely by the visual system. The goal of finding an objective
method of analysis of the attention management process, including guidance and
concentration, while solving an algorithmic problem, led researchers to study the
techniques used in the eye tracking studies. The main goal of researchers was an
answer to the question, if the eye tracking technique allows to discover strategies
of solving the algorithmic problems, what subsequently could help a teacher select
the optimum information processing patterns, which could be implemented in the
process of teaching mathematics and algorithms.

2 Eye Tracking Technique

Eye tracking studies provide information on motor, optical and visual functions of
eyeballs and provide a base for making an analysis of a psychological character [7].
In the oculomotor investigations it is assumed that the movement of the eyeballs
is directed at those elements of a visual scene (namely the image presented) you
think about, which are important for a viewer, therefore eye movement parameters
are interpreted as indicators of cognitive processes [8]. The fundamental cognitive
function is attention which is a certain kind of concentration, owing to which you
can focus on the selected stimuli. An important indicator which enables to analyze
the process of directing the attention is time devoted to processing data and a
sequence in which the elements of the visual scene are observed. Eye tracking which
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enables, among other things, to measure those indicators turns out to be a useful
technique in the education studies [9].

Saccades and fixations of which values can be presented as figures or visualized
data owing to processing made by different types of programming are the main
parameters measured during the investigations by an eye tracker. Fixations are
motor functions of an eye which are interpreted as dwelling a gaze on a specific
object, lasting on average 200–300ms. In reality they consist of so-called internal
fixation movements. They are: micro-jitter—alternating rhythmical movements of
usually low amplitude, a micro-saccade (an eye movement lasting on average from
30 to 80 ms) and a micro-drift—a slow eye movement which prevents disappearance
of a still image on the retina, connected with adaptation of receptors [10]. Saccades
are jerky movements shifting a gaze to find an element of the visual scene. During
a saccade an eye moves with the speed of 30–700ı/s. Between the movement
amplitude and its speed there is a close relationship—the higher amplitude the
quicker the eye movement is. Latency from the moment of stimulus appearance
to releasing the saccade is about 150–250 ms [11]. It is assumed that during the
saccade it is not possible to see or to change the trajectory planned earlier and that
they can be released in an intentional or involuntary way.

One of the very popular and frequently present forms of presenting investigation
results is a heat map, which shows the areas to which a tested person directed his/her
gaze differentiating them by colors. Warm colors (red, orange) indicate a great
interest of a user in the specific area, whereas cold colors mean a lower concentration
of focus on the specific region. The elements to which the gaze was not directed at
all are not marked by any color (Fig. 1).

Fig. 1 An example of a picture presenting the heat map—involvement of attention of a student
solving a test task
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Fig. 2 An example of a scan path presenting the fixations while reading the task (a fragment of an
image registered during the tests)

Scan paths by gaze (gaze plot) presenting a saccade movement after the visual
scene are used to make an analysis of the sequence of the areas viewed. The results
represented in such a way depict the areas of dwelling visual attention in a form of
circles of which the size is proportional to the fixation time (Fig. 2).

An important function of majority of applications for managing the data obtained
as a result of the eye tracking measurements is also a possibility to generate
diagrams, a matrix, a percentage distribution of data (some software provides even
over 100 statistically variables) and to single out areas of interest (AOI) with the key
results for them. They include, among other things: dwell time, being the total time
of duration of the fixations and saccades in the selected area of interest, the number
of visits and revisits, a sequence—order of gaze hits into the AOIs based on entry
time (average duration that elapsed before the first fixation).

Operation of the majority of eye trackers available on the market consists of
locating a place on which the tested person focuses his/her gaze by directing
infrared light (harmless for an eye and invisible for a human being) towards an
eyeball and making a measurement of relative positions of a pupil and so-called
a corneal reflection—a light reflection on the eye cornea. Those reflections in
the form of reflexes are well visible and can be recorded by a camera. The eye
tracking measurement requires equipment calibration to be made, which consists of
displaying to the tested participant sequentially highlighting dots on the screen. The
task of the tested person is to follow those highlights with his/her eyes. Glasses or
contact lenses can interfere with good calibration because they disturb the correct
course of the infrared light beam. After the correct calibration of the tested person,
tests can be performed. Technological characteristics of the eye tracking equipment
available on the market are diverse, although for majority of tests in a scope of the
human being–computer interactions of a frequency measurement of 60 Hz is already
sufficient. For investigations on a text read much more higher frequency is required,
and it is deemed that it should be about 500 Hz or more [12].
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3 Methodology and Methods

3.1 Eye Tracking Apparatus

In the experiment there was an eye tracker used of the firm SensoMotoric Instru-
ments iViewTMHi-Speed500/1250 recording a stream of data with 500 Hz time
resolution such as for example coordinates x and y of a gaze position (in pixels
or millimeters), a pupil width, parameters of the fixations and saccades or blinks.
A comfortable construction of the interface used in this system allows for stable
holding of a motionless head, without limiting the field of vision of the examined.
This equipment is characterized by high tolerance to glasses and contact lenses.
During the test visual images were presented on an LCD screen of 2300 screen
diagonal, with resolution of Full HD 1920 � 1080. Before each test 9-point
calibration with validation and other operations were made and their aim was
to prepare the tested person in such a way that the obtained results could be
deemed as reliable and non-distorted. A position of the chin support was corrected,
among others, so that the tested person was in the most comfortable position, with
simultaneous maintenance of the eye position centered in relation to the midpoint
of the screen. Additionally, while testing all persons were provided the same
environment conditions such as a temperature, lighting and acoustic insulation.
Software Experiment CenterTMof the SensoMotoric Instruments firm was used to
design the tests. It allows selecting stimuli in the form of a text, an image, a video,
a www website, a pdf file or others, depending on the experiment conditions. The
results were processed on basis of software SMI BeGazeTM2.4.

3.2 Participants

Fifty two students of third forms of a junior high school at the age of 16, including
25 girls and 27 boys took part in the experiment. Measurement data of 7 persons
were rejected due to technical reasons (improper calibration) and 45 cases were
qualified for further analysis. Among the tested students a group of award winners
in the subject completion in physics was singled out—this group consisted of 16
persons. The eyesight of all the tested students was normal or corrected to normal.
All the students dealt with solving the algorithmic tasks in their school education,
which was confirmed by a diagnostic survey before the test.

3.3 Procedure

The algorithmic tasks discussed in the article and solved by the tested students
selected were presented in the form of a flowchart. The solution correctness
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Fig. 3 The task which the students were solving

indicator was 66.7%, the correct answer was indicated by 30 students, among which
13 students were the finalists of the subject completion in physics. The students were
solving the task presented in Fig. 3.

The task required to present correctly a solution of a linear equation in the form
of ax C b D 0 by a flowchart. In the instruction an analysis of the problem was
included, therefore, the task boiled down to verifying correctness of the record
of the conditions entered in the blocks marked in orange or violet. Indicating the
correct answer (marked by letter B), that is determining that in the first conditional
block a condition should be written: “if a D 0”, it could be done by adopting two
strategies—one in which it was enough to check the content of the output block
placed in the right arm of the algorithm (for the “No” alternative) or an alternative
one, resulting from the assumption that there is a condition that a takes a value
different from 0. In this second case instead of the conditional block “if b D 0”,
should be present the output block “Write out: �b=a”.

4 Results

The eye tracking investigations provide quantitative data for which statistical
interference can be performed. However, in the event of the problem considered in
this article an application of qualitative methodology, which is used in the situation
when a researcher is interested in deepened knowledge on a certain subject and
getting to the root of the problem when representativeness of the results is not
necessary, but rather knowing the essence of the phenomenon, seems to be more
appropriate. Qualitative data can include any record of information in a written,
audio or video form. Therefore, the material, obtained as a result of measurements—
dynamic gaze paths with fixation duration time and films showing points in which
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there is a gaze of the tested person—a bee swarm, was analyzed. The main aim of the
studies was to verify if the eye tracking technique enables us to identify strategies of
solving algorithmic problems, that is why it was decided to use a qualitative analysis
which is characteristic for a case study and to provide an answer on basis of some
selected cases. However, the results, which were obtained on basis of an analysis of
the film materials, were supplemented with numerical data connected with an eye
activity of the cases in question in the determined areas of interest. The preliminary
selection of the research material allowed to specify the people who solved the task
correctly (30 persons). The survey made after the examination enabled subsequently
to reject those students who declared that they could not establish the correct answer
and had made a random choice (11 persons). Among other 19 cases, after watching
all the films 2 students were selected ( in the further part of the article marked by
identifiers P1 and P2)—those who obtained the highest results out of all the tasks
solved while being tested (at 80% level) and solved the task at different time (P1
about 75 s, P2 about 108 s.) And they analyzed them differently (Fig. 4).

On the board with the task there were singled out areas of interest (AOI) for
which the program BeGaze generated information on the gaze activity of the tested.
The following areas were analyzed and interpreted:

• AOI 001—the problem and the mathematical analysis of its solution,
• AOI 002—the formula describing the linear equation,
• AOI 006—the area of the flowchart,
• AOI 008—the main conditional block, for coefficient a,
• AOI 010—the output block area when there is one solution,
• AOI 009—the chart area, with the conditional block for coefficient b and

appropriate output blocks,
• AOI 011—the conditional block for coefficient b,
• AOI 014—the area with the instruction to the task.

The parameters which were the subject of interest were following:

• Dwell Time—expressed by percentage of time percent which the tested dwelt on
observing the area,

• Fixation Count—a number of fixations in the given area,

Fig. 4 Fixations and saccade paths—a record from the screen made while the tasks were being
solved by the tested P1 and P2
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Table 1 Presentation of the selected AOI parameters for cases P1 and P2

Subject Area of interest Dwell time [%] Fixation count Revisits Average fixation [ms]

P1
AOI 001

32:9 77 5 286:5

P2 36:8 160 30 219:9

P1
AOI 002

4:2 7 2 437:0

P2 3:1 9 5 367:5

P1
AOI 006

38:6 80 13 324:0

P2 33:1 136 36 235:5

P1
AOI 008

15:5 26 11 427:1

P2 11:1 42 17 265:5

P1
AOI 009

13:5 31 17 308:8

P2 13:5 60 26 226:0

P1
AOI 010

2:6 6 0 304:8

P2 3:3 13 8 270:0

P1
AOI 011

9:5 24 14 283:2

P2 6:9 30 25 247:8

P1
AOI 014

13:5 45 11 195:6

P2 14:2 63 13 210:0

• Revisits—a number of re-fixations (re-visits) in the given area,
• Average Fixation—the average time of the fixation duration in this area.

The obtained results (values of the parameters above) are presented in Table 1.
By analyzing the data in Table 1 it can be noticed that the tested P1 devoted

less time in percent to a mathematical analysis of solving the problem than P2 (area
A001, Dwell Time P1 32.9%, P2 36.8%), and at the same time he gazed longer at the
formula describing the linear equation (area A002, Dwell Time P1 4.2%, P2 3.1%).
Independently of the time devoted to the analysis of those two areas the P1 behavior
is also characterized by a lower number of fixations—in the case of area A001 it
is almost twice lower (Fixation Count P1 77, P2 160), and further, what seems
to be very important a much lower number of revisits particularly for area A001
(Revisits P1 5, P2 30). It is worth noticing that such a relation took place in each
AOI in question—regardless of the time percentage which the tested P1 devoted to
its observation, made lower number of fixations comparing to P2. This regularity
also concerns a number of revisits to the particular areas of interest. The tested P1
observed the area of the flowchart longer in percent (area A006, Dwell Time P1
38.6%, P2 33.1%), he gazed longer at both conditional blocks (area A008, Dwell
Time P1 15.5%, P2 1.1%; area A011, Dwell Time P1 9.5%, P2 6.9%), although
the analysis of the flowchart area, with the conditional block for coefficient b and
appropriate output blocks, took him the same time percentage as the tested P2 (area
A009, Dwell Time P1 and P2 13.5%). However, on the output block in the case when
there is one solution, the tested P1 gazed for a shorter time (area A010, Dwell Time
P1 2.6% i P2 3.3%). Participant P1 also analyzed the text of the instruction itself
for a shorter time (area A014, Dwell Time P1 13.5% and P2 14.2%). It should be



Analysis of the Strategy 85

noticed that only in the case of this area, P1 showed shorter average time of fixation
duration fixation (area A014, Average Fixation P1 195.6 ms and P2 210.0%), and
the longer average time of the fixation duration is usually interpreted as a sign of
focusing—more careful (deeper) data processing.

5 Conclusions

Both observations of eyesight paths and figures from AOI allowed to notice that
case P1 looking for the solution referred less often to its analysis presented in the
task content. It seems that already at the stage of reading the task content and its
mathematical analysis he identified the problem as the linear equation solution
known to him, after recognizing the mathematical problem (being a standard
school task) he analyzed the flowchart regarding its conformity with the task
solution, which was well known to him. Case P2 concentrated (being guided by
the instruction given in the content) on conformity of the solution presented in
the flowchart with the problem analysis, that is why during following the flow
chart he moved his gaze many times to particular cases of the equation solution
presented in its mathematical analysis making their verification on the algorithm
flow chart. Analysis of the video films lets you also observe that the P1 student
made the decision as the result of adopting the strategy which can be recognized
as optimal—first he paid attention to the content of the output block located on
the high branch of the algorithm. Such a solution made determining quickly the
correct answer possible. However, it should be noticed that the qualitative analysis
enabled to determine that in the P1 case additional time spent on perception was
not used to examine the secondary elements, but to reexamine the adopted solution.
To conclude it should be stated that on the basis of the eyesight analysis and the
values of the selected oculomotor parameters in the areas of interest singled out,
it was possible to recognize and indicate difference in the strategy of solving an
algorithmic task by two selected students who obtained the correct answers. This
result confirms that techniques of visual activity recording can be used to identify
cognitive processes and it is in compliance with the opinion of other researchers [8]
who have stated that eye movements reflect the human thought processes. Use of
the techniques of the visual activity recording to study learning process understood
widely widened our knowledge in the scope of cognitive processes. Eye tracking can
be useful to identify behaviors and reactions which experiment participants cannot
or do not want to describe. As the experiment results show it can be helpful in the
studies on methods of teaching of information technology, in particular in the scope
of algorithmic and programming because it allows observing and differentiating
information processing patterns.
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bach ośrodkowego układu nerwowego. Polski Przegla̧d Neurologiczny, 6(4), 202–211 (2010)

12. A. Poole, L.J. Ball, Eye Tracking in Human-Computer Interaction and Usability Research:
Current Status and Future Prospects (Idea Group Inc, Pennsylvania, 2005)

www.cs.tut.fi/~edge/literature_study.pdf


Part II
Complex and Functional-Analytic Methods
for Differential Equations and Applications

Heinrich Begehr



Green and Neumann Functions for Strips
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Abstract Harmonic Green and Neumann functions are constructed using the
parqueting-reflection principle for strips and hyperbolic strips in the complex plane.

Keywords Green and Neumann functions • Hyperbolic strip • Parqueting-
reflection principle • Strip

Mathematics Subject Classification: 31A25, 35J25

1 Introduction

A set of plane domains fDi W i 2 Ig; I some index set, is said to provide a
parqueting of the complex plane C if [i2IDi D C while Di \ Dk D ; for
i; k 2 I; i ¤ k: Occasionally a domain D is providing a parqueting of C through
continued reflections of D at its parts of the boundary @D. For this it is necessary
that @D is composed by arcs from circles and straight lines. Such domains can be,
e.g., convex polygons, disc sectors, infinite sectors, circular ring domains, circular
concave or convex lenses, straight strips, half planes, hyperbolic strips, hyperbolic
half planes. In case a parqueting of C is provided the parqueting-reflection principle
helps to construct the harmonic Green and Neumann functions as well for the
original domain as for all the other domains from the parqueting.

Definition A domain D of the complex plane C with piecewise smooth boundary
@D is called admissible for the parqueting-reflection principle, if continued reflec-
tions at the boundary parts achieve a parqueting of C.

The Parqueting-Reflection Principle The original domain D is called a pole-
domain. Any direct reflection of D at some part of @D is called a zero-domain.
A reflection of a zero-domain at some part of its boundary is a pole-domain.
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Choosing an arbitrary point z 2 D it will become a pole. Any reflection of z into
a zero-domain will become a zero. Any reflection of a zero in a zero-domain will
become a pole in a pole-domain and vice versa.

Let fzg [ fzkg and fez0g [ fezkg be the sets of poles and zeros respectively, from
this construction. Then the harmonic Green function of D is

G1.z; �/ D log
ˇ
ˇ� �ez0
� � z

Y

k

� �ezk
� � zk

ˇ
ˇ2:

A candidate for the harmonic Neumann function for D is

N1.z; �/ D � log
ˇ
ˇ.� � z/.� �ez0/

Y

k

.� � zk/.� �ezk/
ˇ
ˇ2:

Here in case of infinite products for the Neumann functions certain factors achieving
convergence have to be inserted.

The principle was applied for a circular ring in [10, 13], for a triangle, see
[5–7, 14], for some concave and convex lenses [8, 9], for disc sectors [15], for half
ring [4], for half hexagon[11, 12], for quarter ring[11, 12], for hyperbolic strip [1, 2].
The results for the plane strip and a hyperbolic strip are reported on here. For details
see [3]. For the half strip see also [3].

2 Dirichlet and Neumann Problems in a Strip

Let for 0 < ˛ < 	; a 2 R
C the set S1 be the strip

S1 D fz 2 C W z D e2i˛zC 2iatei˛; 0 < t < 1g:

The boundary parts

@�S1 D fz 2 C W z D e2i˛zg; @CS1 D fz 2 C W z D e2i˛zC 2iaei˛g

are parallel lines with angle ˛ against the positive real axis, the first one passing
through the origin, the second one above the first in distance a to the former.

Continued reflection of S1 at the boundaries provides a parqueting of C through
the strips

SkC1 D fz 2 C W z D e2i˛zC 2ia.kC t/ei˛; 0 < t < 1g; k 2 Z;

C D
[

k2Z
Sk; Sk \ Sl D ; for k ¤ l:
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An arbitrary point z 2 S1 has the representation z D e2i˛zC 2iatei˛ for some t; 0 <
t < 1: Reflecting this point at the line z D e2i˛zC 2iaei˛ gives the image

z2 D e2i˛zC 2iaei˛ 2 S2:

Reflecting this point at the line z D e2i˛zC 4iaei˛ leads to

z3 D e2i˛z2 C 4iaei˛ D zC 2iaei˛ 2 S3:

Inductively z2kC1 D zC 2iakei˛ 2 S2kC1; z2k D e2i˛zC 2iakei˛ 2 S2k; k 2 Z;

follow. Choosing the z2k as zeros and the z2kC1 as poles leads to the meromorphic
function

P.z; �/ D � � e2i˛z

� � z

1Y

kD1

� � e2i˛z � 2iakei˛
� � z � 2iakei˛

� � e2i˛zC 2iakei˛
� � zC 2iakei˛

D � � e2i˛z

� � z

1Y

kD1

.� � e2i˛z/2 � .2iakei˛/2
.� � z/2 � .2iakei˛/2 D sin	 ��e2i˛z

2iaei˛

sin	 ��z
2iaei˛

:

G1.z; �/ D log jP.z; �/j2 is the Green function for S1. For ˛ D 0; a D 1 this

is a classical result, see, e.g., [6]. N1.z; �/ D � log
ˇ
ˇ
ˇsin	 ��e2i˛z

2iaei˛
sin	 ��z

2iaei˛

ˇ
ˇ
ˇ
2

is the

Neumann function for S1: By the way, the symmetry of both the Green and the
Neumann functions are obvious.

Theorem 1 The Dirichlet problem

wzz D f ; in S1; w D � on @S1;

f 2 Lp;2.S1IC/; 2 < p; � 2 C.@S1IC/; lim
x!1 x1C��.xC iy/ D 0; xC iy 2 S1; 0 < �;

is uniquely solvable by

w.z/ D � 1
2a

Z

@�S1

�.�/Re cot	
� � z

2iaei˛
ds� � 1

2a

Z

@CS1

�.�/Re cot	
� � z

2iaei˛
ds�

C 1
	

Z

S1

f .�/ log
ˇ
ˇ sin	 ��e2i˛z

2iaei˛

sin	 ��z
2iaei˛

ˇ
ˇ2d�d:

Theorem 2 The Neumann problem

wzz D f ; in S1; @�w D � on @S1;

f 2 Lp;2.S1IC/; 2 < p; � 2 C.@S1IC/; lim
x!1 x1C��.xC iy/ D 0; xC iy 2 S1; 0 < �;
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is for any c 2 C solvable by

w.z/ D c � 1

2	

Z

@�S1

�.�/ log
ˇ
ˇ
ˇsin	

� � z

2iaei˛

ˇ
ˇ
ˇ
2

ds�

� 1

2	

Z

@CS1

�.�/ log
ˇ
ˇ̌sin	

� � z

2iaei˛

ˇ
ˇ̌2ds�

C 1
	

Z

S1

f .�/ log
ˇ
ˇ
ˇsin	

� � e2i˛z

2iaei˛
sin	

� � z

2iaei˛

ˇ
ˇ
ˇ
2

d�d:

Remark The Neumann problem is unconditionally solvable for the strip due to the
circumstance that the normal derivative of the Neumann function vanishes at the
boundary of the strip as long as the other variable lies inside the strip. The proofs of
both results are straightforward by verification.

3 Dirichlet and Neumann Problems for the Hyperbolic Strip

A hyperbolic strip is given by two circles not intersecting one another and orthogo-
nal to the unit circle. There are two main different cases, either one of the two discs
is enclosed in the other or they are disjoint. While the latter case can be transformed
into the first one by reflection the converse is not always possible. Here the following
case is studied. For four real numbers m1;m2 greater than 1 and positive r1; r2
given such that 1C r21 D m21; 1C r22 D m22 the circles @D�m1 .r1/; @Dm2 .r2/ where
Dm.r/ D fjz � mj < rg for 0 < r; 1 < m; 1 C r2 D m2 are orthogonal to the unit
circle @D. For r1 C r2 < m1 C m2 the relations �1 < r1 � m1 < 0 < m2 � r2 < 1

hold. Both circles are disjoint and D D D n fD�m1 .r1/
S

Dm2 .r2/g is a hyperbolic
strip, see [1, 2].

The disc Dm2 .r2/ is reflected at @D�m1 .r1/ onto D�m3 .r3/;m3 D 2˛ˇ�m2.˛2Cˇ2/
.˛2Cˇ2/�2˛ˇm2 ;

m23 D r23 C 1; ˛ D m1m2 C 1; ˇ D m1 C m2: The circle @D�m3 .r3/ is orthogonal
to @D and D�m3 .r3/ is compactly included in D�m1 .r1/. Reflecting now D�m1 .r1/ at
@D�m3 .r3/, etc. gives a set of nested discs D�m2kC1

.r2kC1/; ˛2k�1 D m2k�1m2kC1 �
1; ˇ2k�1 D m2k�1 �m2kC1; k 2 N;

m22kC3 D r22kC3 C 1; m2kC3 D
2˛2k�1ˇ2k�1 C m2k�1.˛22k�1 C ˇ22k�1/
˛22k�1 C ˇ22k�1 C 2˛2k�1ˇ2k�1m2k�1

;

shrinking monotonically towards the point�1. Interchanging the roles of m1 and m2
produces a sequence of discs Dm2k .r2k/, shrinking monotonically towards the point
1, with ˛2k D m2km2kC2 � 1; ˇ2k D m2k �m2kC2; k 2 N; and

r22kC4 C 1 D m22kC4; m2kC4 D
2˛2kˇ2k C .˛22k C ˇ22k/m2k
˛22k C ˇ22k C 2˛2kˇ2km2k

:
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Reflecting an arbitrary point z 2 D D D n fD�m1 .r1/ [Dm2 .r2/g at @D�m1 .r1/
gives

z1 D �m1zC 1
zC m1

2 D \ fD�m1 .r1/ n D�m3 .r3/g:

The reflection of z1 at @D�m3 .r3/ is

z3 D �m3z1 C 1
z1 C m3

D ˛1z � ˇ1
�ˇ1zC ˛1 ; ˛1 D m1m3 � 1; ˇ1 D m1 � m3:

Continuing, then z2k�1 2 D \ fD�m2k�1 .r2k�1/ n D�m2kC1
.r2kC1/g is reflected at

@D�m2kC1
.r2kC1/ onto

z2kC1 D �m2kC1z2k�1 C 1
z2k�1 C m2kC1

D ˛2k�1z2k�3 � ˇ2k�1
�ˇ2k�1z2k�3 C ˛2k�1 :

The continued reflections of an arbitrary point z 2 D D DnfD�m1 .r1/[ Dm2 .r2/g
at @Dm2 .r2/ leads to the points z2k 2 Dm2k.r2k/ n Dm2kC2

.r2kC2/; k 2 N: They are

z2 D m2z � 1
z� m2

; z2k D m2kz2k�2 � 1
z2k�2 �m2k

D ˛2k�2z2k�4 C ˇ2k�2
ˇ2k�2z2k�4 C ˛2k�2 ; 1 < k:

The two families of hyperbolic strips D�m2k�1 .r2k�1/nD�m2kC1
.r2kC1/;Dm2k .r2k/n

Dm2kC2
.r2kC2/; k 2 N; together with the strip D itself compose a parqueting of the

unit disc D. Reflecting D at its boundary completes the parqueting of the complex
plane C. The last reflection transforms the points zk 2 D onto zk �1.

Remark 1 The reflection at @D maps each of the discs D�m1 .r1/;Dm2 .r2/ onto itself
and the domain D onto C n fD [D�m1 .r1/ [Dm2 .r2g, [2].

The parqueting-reflection principle [4–6, 8, 9, 11–15] leads to the meromorphic
function in C

P.z; �/ D 1 � z�

� � z

� � z1
1 � z1�

� � z2
1 � z2�

1Y

kD1

1 � z4k�1�
� � z4k�1

1 � z4k�

� � z4k

� � z4kC1
1 � z4kC1�

� � z4kC2
1 � z4kC2�

;

converging for z and � in D. The harmonic Green function for the hyperbolic strip
D is G1.z; �/ D log jP.z; �/j2, see [2]. The respective Neumann function is, see [1],

N1.z; �/ D � log jQ.z; �/j2; z 2 D; � 2 D;
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with

Q.z; �/ D .� � z/.1 � z�/
1Y

kD1

� � z2k�1
� C 1

1 � z2k�1�
z2k�1.1C �/

� � z2k
� � 1

1 � z2k�

z2k.1 � �/ :

The respective boundary value problems for the hyperbolic strip are treated, e.g.,
in [3].

Theorem 3 The Dirichlet problem

wzz D f in D; f 2 Lp.DIC/; 2 < p;

w D � on @D; � 2 C.@DIC/; �
�
�1
2
˙ i

m1
r1

�
D �

�
1

2
˙ i

m2
r2

�
D 0;

is uniquely solvable by

w.z/ D � 1

4	

Z

@D
�.�/@��G1.z; �/ds� �

1

	

Z

D
f .�/G1.z; �/d�d:

Theorem 4 The Neumann problem for the Poisson equation

wzz D f in D; @�w D � on @D;

for f 2 Lp.DIC/; 2 < p; � 2 C.@DIC/; �.� 1
2
˙ i m1r1 / D �. 12 ˙ i m2r2 / D 0; is solvable

if and only if

1

2	

Z

@D
�.�/ds� D 2

	

Z

D
f .�/d�d:

The solution then is with some arbitrary c 2 C

w.z/ D cC 1

4	

Z

@D
�.�/N1.z; �/ds� � 1

	

Z

D
f .�/N1.z; �/d�d:
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The Forecast of Ebola Virus Propagation

Zaiqiang Ku and Li Cheng

Abstract To control and alleviate the outbreak of Ebola hemorrhagic fever in West
Africa, it is quite important to understand the transmission of Ebola virus and
establish a proper medicine transportation system. The population in the regions
suffering from Ebola virus disease (EVD) is divided into three groups including
susceptible (S), infected (I), and recovered (R) ones. According to the transmitting
speed of Ebola virus is changed, the SIR model is established to obtain the
relationship between the number of affected individuals within a specific period of
time. The outbreak of EVD in Sierra Leone would reach State Emergency Level 3
announced by WHO within 30 weeks starting July 2nd, 2014, and the number of
affected individuals would decrease gradually.

Keywords Ebola virus disease • Medicine delivery • SIR model

Mathematics Subject Classification (2010) 92C50, 34A30

1 Introduction

1.1 Problem Background

Ebola hemorrhagic fever (EHF) is caused by the Ebola virus (EV), an acute
hemorrhagic disease. It has a very high infectivity, and the fatality rate is as high
as 50–88%. People are mainly infected through the contact with infectious patients
or animals via fluid, feces, secretion, etc. The quantity of the medicine needed, speed
of manufacturing of the vaccine or drug, locations of delivery and any other decisive
factors should be considered to develop a feasible vaccine or drug delivery system
such that the pressure on the current fight against Ebola could be relieved.
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1.2 Previous Research

Studying on mathematical model for Ebola virus, as early as in 1996, Fauci [1]
used the SIR and SEIR model to simulate Zaire twice Ebola outbreak process: the
Yambuku crisis in 1976 and the Kikwit epidemic in 1995 [2]. The final conclusion
as follows: when the basic reproductive rate was satisfying 1:72 < R0 < 8:60; then
the Ebola virus infection was not so serious as before and the potential death of
population could be reduced.

1.3 Our Works

The remainder of the paper is organized as follows. In Sect. 2.1, we establish a
Ebola virus propagation model. We first simulate the parameters of the SIR model,
and then spread the process of the Ebola virus and eliminate the analysis.

2 Ebola Virus Propagation Model

2.1 SIR Model Based on the Transmission of Ebola Virus

SIR model divides the region of disease into three types of status: susceptible state
(S), infection state (I), and recovery mode (R) [3–6]. This model is considering the
effect of eliminating the Ebola virus.

2.2 Terms, Definitions, and Symbols

Before constructing a mathematical model for the problem, let us introduce the
following terms, definitions, and symbols used in this paper.

• S: denotes the susceptible state, and its number is recorded as S.t/.
• I: denotes the infection state, and its number is recorded as I.t/.
• R: denotes the recovery mode, and its number is recorded as R.t/.
• N: the total number of population in the disease area (city or country).
• Patients’ daily contact rate (infection) is �. Daily cure rate is �, and the number

of people from infection to restore state per unit time is �I.
• The contact coefficient during infectious period is ı D �

�
.
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2.3 Assumptions

We make the following three assumptions.

• Over a period of time, the research object is ideal, without thinking of moving
and other causes of death, so the total population maintains a constant level N.

• Only the patients who have been cured after going through the treatment have
long-term immunity, anyone else has no immunity.

• If people who have no immunity contact with an infected person, then they
become contagious.

2.4 The Foundation of Model

Obviously, the ideal situation is

S.t/C I.t/C R.t/ D N: (1)

The model described by differential equations is

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

dS

dt
D ��SI; S.0/ D S0

dI

dt
D �SI � �I; I.0/ D I0

dR

dt
D �I:

(2)

2.5 Solution and Result

On the basis of Eqs. (1) and (2), the solution can be obtained as follows:

S.t/ D S0e� R
S : (3)

From the first three items of its Taylor expansion, by eliminating the change rate
of the number of people, we have the approximate solution

dR

dt
D �

"

N � R � S0

 

1 � R

ı
C 1

2

�
R

S

�2!#

: (4)
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The initial value of the solution is obtained under the cumulative removal
number:

R.t/ D ı2

S0

�
S0
ı
� 1C ˛tanh

�
1

2
˛�t � '

�	
; (5)

where ˛ D ı2

S0

"�
S0
ı
� 1

�2
C 2S0I0

ı2

# 1
2

, and tanh' D S0 � ı
˛ı

:

Therefore, Eq. (4) can be reduced to

dR

dt
D �˛2ı2

2S0

1

ch2.�˛t
2
� '/ : (6)

The final infection incidence area calculation is as follows:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

I.t/ D I0 C S0 � SC ıln S

S0
; I.0/ D I0

S.t/ D S0e
� R

S ; S.0/ D S0

R.t/ D ı2

S0

�
S0
ı
� 1C ˛tanh

�
1

2
˛�t � '

�	

ı D �

�

˛ D ı2

S0

"�
S0
ı
� 1

�2
C 2S0I0

ı2

# 1
2

tanh' D S0 � ı
˛ı

S.t/C I.t/C R.t/ D N:

(7)

2.6 Analysis of the Result

In this subsection, we analyze the effect of R.t/; S.t/, I.t/:

(1) Analysis of the changes of R.t/.

We can get
1

ch2.�˛t
2
� '/ � 1; because of ch2.�˛t

2
� '/ � 1:

In the item (6) if and only if �˛t
2
� ' D 0, that is, t D 2'

�˛
. dR

dt gets the
maximum value, also the number of the recovery mode is the largest.

(2) Analysis of the changes of S.t/, I.t/.
The first two equations of the model are independent of R.t/, so the two

equations of the relationship between I.t/ and S.t/ can be used.
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First we consider

8
<̂

:̂

dS

dt
D ��SI; S.0/ D S0

dI

dt
D �SI � �I; I.0/ D I0:

(8)

Eliminating dt, we thus get the first order equation dI
dS D �1 C ı

S : By solving the
equation, we get I.s/ D I0CS0�SCıln S

S0
:Denote lim

t!1

S.t/ D S1; lim
t!1

I.t/ D I1;
and lim

t!1

R.t/ D R1:

(i) The final uninfected healthy proportion is S1. It is the inner root of the
equation I0 C S0 � SC ıln S

S0
D 0.

(ii) If S0 > ı, then I.t/ first increases. When S0 D ı, I.t/ reaches the maximum
value: Im D S0 C I0 � ı.1C ln S0

ı
/ and then I.t/ decreases and tends to 0. S.t/

is monotonically decreasing to S1 only if the number of infected persons I.t/
has a growing period, and then infectious diseases are spreading. The value ı
is a threshold. When S0 > ı, the infectious diseases will spread.

(iii) If S0 � ı, I.t/ is monotonically decreasing to 0, and S.t/ is monotonically
decreasing to S1. Therefore reducing the infectious period, where the contact
number is ı, making S0 � ı. Hence, the infection does not spread.

Therefore, the higher the level of medical treatment is, the higher is the daily cure
rate. Thus, improving the health and medical level is an effective way to control the
spread of infection.

3 Empirical Analysis

On the basis of the SIR model established in Sect. 2, we test the model parameters
to verify whether it is consistent with reality or not. If it is consistent, the model
may be thought initially reasonable, and it can be applied in practice according to
the scope of application and make further verification. If it is not consistent, the
parameters need more carefully checking until we find a satisfying result.

Step 1: Analysis of spreading of Ebola
The data of Ebola virus’s epidemic changing situation occurred in Guinea from
July 2, 2014 to February 4, 2015 published by WHO, are shown in Table 1.

Step 2: The revised SIR model
Taking July 2, 2014 as the base point and forecasting it to the following 100
weeks. We can draw an image of the number of those infected, those recovered,
those infectious over the changes of time with MATLAB.
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Table 1 2014 Guinea Ebola virus caused cumulative cases and death numbers

Date 7.2 7.7 7.8 7.14 7.16 7.21 7.24 7.28 7.31 8.3 8.4

Total cases 413 412 408 409 406 410 415 427 460 472 485

Total deaths 303 305 207 309 304 310 314 319 339 346 358

Date 8.8 8.12 8.13 8.15 8.19 8.21 8.22 8.28 9.6 9.8 9.12

Total cases 495 506 510 519 543 579 607 648 812 862 861

Total deaths 367 373 377 380 394 396 406 430 517 555 557

Date 9.16 9.18 9.22 9.24 9.18 9.22 9.24 9.26 10.1 10.3 10.8

Total cases 936 942 1008 1022 942 1008 1022 1074 1157 1199 1298

Total deaths 595 601 632 635 601 632 635 648 710 739 768

Date 10.11 10.15 10.17 10.22 10.25 10.29 10.31 11.5 11.7 11.12 11.14

Total cases 1350 1472 1519 1540 1553 1906 1667 1731 1760 1878 1919

Total deaths 778 843 862 904 926 997 1018 1041 1054 1142 1166

Date 11.19 11.26 12.3 12.10 12.17 12.24 1.7 1.14 1.21 1.28 2.4

Total cases 1971 2134 2164 2292 2416 2597 2775 2806 2871 2917 2975

Total deaths 1192 1260 1327 1428 1525 1607 1781 1814 1876 1910 1994

Step 3: To verify the similarity
We find that the number of infected persons reached the peak in the thirtieth
week. Therefore, the authors of this paper believe that with the continuous
development of effective drugs and more effective measures of prevention and
cure taken, the Ebola outbreak will be eased on February 1, 2015.

4 Conclusions

In this paper, the problem was to build a realistic, sensible, and useful model that
considers the spread of the disease, the quantity of the medicine needed, possible
feasible delivery systems, locations of delivery, speed of manufacturing of the
vaccine or drug. We draw the conclusion that the communication model could
effectively simulate the Ebola virus, and could also predict the trend of development
of the next stage of Ebola.
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On Existence of the Resolvent and Discreteness
of the Spectrum of the Schrödinger Operator
with a Parameter Changing Sign

M.B. Muratbekov

Abstract In this work such issues as existence of the resolvent and discreteness
of the spectrum for the Schrödinger operator with a parameter changing sign are
studied.
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In this research we study the Schrödinger operator with a parameter changing sign

��C .�k.x/t2 C ita.x/C c.x// (1)

in the space L2.Rn/, where �1 < t <1; i2 D �1, k.x/ is a piecewise continuous
and bounded function in R

n:

As well-known, when t D 0 the spectral properties of the Schrödinger operator
� C c.x/ are highly dependent on the behavior of c.x/ at infinity. In this case
the spectral characteristics of the Schrödinger operator are well studied by A.M.
Molchanov, T. Kato, T. Carleman, M. Rid and B. Saymon, M.Sh. Birman, V.G.
Maz’ya, M. Otelbaev, T. Carleman, B.S. Pavlov, Yu.M. Berezanskii, R.S. Ismagilov,
Ya.T. Sultanaev, K.H. Boymatov, and others.

Issues about the discreteness of the spectrum and the estimates of approximate
numbers (s-numbers) of the Schrödinger operator

��C q1.x/C iq2.x/; .q1.x/ � 0; q2.x/ � 0/

are studied by V.B. Lidsky, M. Otelbaev, T. Kato, and others.
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Here we will study for the operator (1) such issues as:
(1) the existence of the resolvent; (2) the discreteness of the spectrum.
Further, we assume that the coefficients a.x/ and c.x/ satisfy the condition
(i) ja.x/j � ı0 > 0; c.x/ � ı > 0 are continuous function in R

n.

Theorem 1 Let the condition i) be fulfilled. Then the operator L C �E is continu-
ously invertible for � � 0.

It is known that the question of the discreteness of the spectrum is closely related
to the concept of capacity in the case 2 � n. Avoiding complicated formulations and
definitions, we do not consider this case.

Consider the operator

Lu D .��/luC .�k.x/t2 C ita.x/C c.x//u (2)

in L2.Rn/, l > 0 is an integer, u 2 D.L/.

Theorem 2 Let the condition i) be fulfilled and let 2l > n. Then the spectrum of (2)
is discrete if and only if for each cube Qd the quantity

R

Qd

c.t/dt tends to C1, when

the cube Qd goes to infinity keeping the length of the edge.

Remark The theorem holds also for 2l � n, but here one needs to use the concept
of capacity.

In particular, in the one-dimensional case, the operator (1) has the form

ltu D �u00 C .�k.x/t2 C ita.x/C c.x//u; u 2 D.l/:

Theorem 3 Let the condition i) be fulfilled. Then the operator lt C �E is continu-
ously invertible for � � 0.
Theorem 4 Let the condition i) be fulfilled. Then the resolvent of the operator lt is
compact if and only if for any w > 0

lim
jxj!1

Z xCw

x
c.t/dt D 1:

Suppose that in addition to the conditions i) the following condition: ii) �0 D
sup

jx�tj�1
c.x/
c.t/ < 1; �1 D sup

jx�tj�1
a.x/
a.t/ < 1I be satisfied. Then the following theorem

holds:

Theorem 5 Let the conditions i)–ii) be fulfilled. Then the resolvent of the operator
lt is compact if and only if

lim
jxj!1

c.x/ D1:

Let A be a completely continuous linear operator and let jAj D pA�A.



On Existence of the Resolvent and Discreteness of the Spectrum 107

The eigenvalues of the operator jAj are called s-values of the operator A (Schmidt
eigenvalues of the operator A).

The nonzero s-values are numbered according to decreasing magnitude and
observing their multiplicities and so

sj.A/ D �j.jAj/; j D 1; 2; : : : :

The nonzero s-values of the operator l�1t are also numbered according to decreasing
magnitude and observing their multiplicities and so

sk.l
�1
t / D �k.jl�1t j/; j D 1; 2; : : : :

Theorem 6 Let the conditions i)–ii) be fulfilled. Then the estimate

c�1�� 1
2mes.x 2 R W Qt.x/ � c�1��1/ � N.�/

� c��1mes.x 2 R W K 1
2
t .x/ � c��1/;

holds, where Qt.x/ D jt2C ita.x/Cc.x/j, Kt.x/ D jta.x/jCc.x/, the constant c > 0
does not depend on Qt.x/;Kt.x/ and �.

Example Let a.x/ D jxj C 1; c.x/ D jxj C 1 The singular numbers of the operator
l�1t are denoted by sk;t .k D 1; 2; : : :/. It is easy to verify that all the conditions of
Theorem 6 are satisfied. Hence, according to Theorem 6 we have

c�1 1

.jtj C 1/ 43 k 23
� sk;t � c

1

.jtj C 1/ 13 k 13
; k D 1; 2; : : : :

The results obtained in this study can be used to study as well the existence of the
resolvent, the discreteness of the spectrum, as the coercive estimates of differential
operators of hyperbolic type in the case of degeneration or the case of unbounded
domains.

Proof of Theorems 3–6 In space L2.R/ we consider the operator

.lt C �E/u D �u00 C .�k.x/t2 C ita.x/C c.x/C �/u

with the domain D.lt/ of compactly supported functions, which together with their
derivatives up to second order belong to L2.R/ .

The operator .lt C �E/ admits a closure, which is also denoted by .lt C �E/.
Remark We note that previously the following cases:

1) lu D �u00 C c.x/u; u 2 D.l/ (A.M. Molchanov, T. Carleman, T. Kato,
M.Sh. Birman, V.G. Maz’ya, M. Otelbaev, B.S. Pavlov, Yu.M. Berezansky, R.S.
Ismagilov, K.H. Baymatov and others);
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2) Nlu D �u00C .ia.x/C c.x//u; u 2 D.Nl/ (V.B. Lidsky, M. Otelbaev, T. Kato, K.H.
Baymatov and others)

have been well studied.

Lemma 1 Let the condition i) be fulfilled and � � 0. Then the estimate

k.lt C �E/uk2 � ckuk2
holds for u 2 D.l/, where c D c.ı0; ı/.

Lemma 2 Let the condition i) be fulfilled and � � 0. Then the following
estimates:

a) kpc.x/.lt C �E/�1k2!2 <1;
b) kpjta.x/j.lt C �E/�1k2!2 <1;
c) k d

dx .lt C �E/�1k2!2 <1
hold.

The proofs of Lemmas 1–2 follow from Lemmas 2.9–2.11 of the paper [6].

Proofs of Theorems 3–4 Let t D 0. Then the operator l0 C �E is a Sturm-Liouville
operator with the potential c. y/, i.e.

.l0 C �E/u D �u00 C .c.x/C �/u; u 2 D.l0/

In this case, we obtain the proofs of the theorems by reproducing all the
computations and arguments used in the papers [2, 7].

In the case t ¤ 0, we take Lemmas 1–2 into account and use methods of the
papers [3, 6] and the book [1].

Let us introduce the sets

M D fu 2 L2.R/ W k.ltuC �E/uk2 C kuk2 � 1g;
QMc D fu 2 L2.R/ W ku0k2 C k

p
jta.x/juk22 C k

p
c.x/C �uk22 � cg;

QQMc�1 D fu 2 L2.R/ W k � u00k2 C kt2uk22 C kita.x/uk22 C k.c.x/C �/uk22 � c�1g:

Lemma 3 Let the condition i) be fulfilled. Then the inclusions

QQMc�1 � M � QMc;

are valid, where c > 0 is a constant.

Lemma 4 Let the condition i) be fulfilled. Then the estimate

c�1 QQdk � skC1 � c Qdk; k D 1; 2; : : : ;
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holds, where c > 0 is a constant, sk are s-values of the operator l�1t , dk; Qdk; QQdk are
the Kolmogorov widths related to the sets M; QM; QQM.

Definition 1 The magnitude

dk D inf
fykg

sup
u2M

inf
v2yk
ku � vk2;

is called Kolmogorov k-widths of the set, where fykg is the set of all k-dimensional
subspaces of L2.R/.

Lemma 5 Let the condition i) be fulfilled. Then the estimate

QQN.c�/ � N.�/ � QN.c�1�/;

holds, where N.�/ D P

skC1>�

1 is the number of sk’s greater than � > 0, QN.�/ D
P

Qdk>�
1 is the number of Qdk’s greater than � > 0, QQN.�/ D P

QQdk>�
1 is the number of QQdk’s

greater than � > 0.

Lemmas 3–5 are proved in the same way as in papers [4, 5]. Hence, using the
properties of weighted spaces obtained in [7, 8], we prove Theorems 3–6.
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Source Identification for the Differential
Equation with Memory

S.A. Avdonin, G.Y. Murzabekova, and K.B. Nurtazina

Abstract We consider source identification problems for the heat equation with
memory on an interval and on graphs without cycles (trees). We propose a stable
efficient identification algorithm which reduces to the solving of linear integral
Volterra equations of the second kind.

Keywords Heat equation with memory • Identification algorithm • Metric
graphs • Source identification • Volterra equation
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93B30

1 Introduction

In this paper, we consider source identification problems for the heat equation with
memory on intervals and graphs. On an interval, the problem is described by the
equation

ut.x; t/ �
Z t

0

Q.t � s/uxx.x; s/ ds D f .t/g.x/; 0 < x < l; 0 < t < TI (1)

S.A. Avdonin
Department of Mathematics and Statistics, University of Alaska Fairbanks, Ambler Lane 513,
P.O. Box 756660, Fairbanks, AK 99775-6660, USA
e-mail: s.avdonin@alaska.edu

G.Y. Murzabekova (�)
Department of Information and Communication Technologies, S. Seifullin Kazakh Agrotechnical
University, Pobeda Ave. 62, Astana 010011, Kazakhstan
e-mail: guldenmur07@gmail.com

K.B. Nurtazina
Department of Mathematical and Computer Modelling, L.N. Gumilyov Eurasian National
University, Satpayev Str. 2, Astana 010008, Kazakhstan
e-mail: nurtazina.k@gmail.com

© Springer International Publishing AG 2017
P. Dang et al. (eds.), New Trends in Analysis and Interdisciplinary Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-48812-7_15

111

mailto:s.avdonin@alaska.edu
mailto:guldenmur07@gmail.com
mailto:nurtazina.k@gmail.com


112 S.A. Avdonin et al.

with the boundary and initial conditions

u.0; t/ D u.l; t/ D 0; u.x; 0/ D 0: (2)

The functions Q; f 2 H1.0;T/ are known, and we assume that f .0/ ¤ 0 and
Q.0/ > 0: The function g 2 L2.0; l/ is unknown and has to be recovered from
the observation �.t/ WD ux.0; t/; t 2 Œ0;T�: We will prove that this problem is
solvable for T � l=

p
Q.0/:

The heat equation with memory was proposed by Cattaneo [1] and, in a more
general form, by Gurtin and Pipkin [2]. After differentiation, Eq. (1) with the right-
hand side fg set to zero takes the form of the viscoelasticity equation:

utt.x; t/ �Q.0/ uxx.x; t/ �
Z t

0

Q0.t � s/ uxx.x; s/ ds D 0: (3)

Both Eqs. (1) and (3) possess a finite speed of the wave propagation equal top
Q.0/: Heat and wave equations with memory arise in many problems of physics

and engineering. Controllability problems for these equations were actively studied
in recent time (see, e.g., [3–5] and the references therein), source identification
problems for these equations on an interval were considered in [6, 7]. Source
identification problems for the wave and beam equations with constant coefficients
on trees were studied, correspondingly, in [8, 9]. The papers [6–9] are based on the
identification algorithm developed in [10, 11] for the hyperbolic type equations.

We propose a quite different approach to source identification problems for the
heat and wave equations with memory. It is similar to the method described in [12,
13] for the wave equation without memory. The main advantage of our approach
is its locality: to recover an unknown coefficient on a part of the interval we use
an information relevant only to this subinterval. This allows us to develop a very
efficient identification algorithm which is much simpler than algorithms proposed
in [6–9]. More of that, starting with identification problems on an interval we extend
our approach to equations on star graphs and arbitrary trees.

2 The Case of One Interval

Without loss of generality, we assume that Q.0/ D 1 (it can be achieved by a
simple change of variable x 7! p

Q.0/x). Solution of the initial boundary value
problem (1), (2) can be presented in the form

u.x; t/ D
1X

nD1
an.t/�n.x/; �n.x/ D

r
2

l
sin

	nx

l
:
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Substituting to (1), (2) leads to the following equations for an.t/ W

a0
n.t/C !2n

Z t

0

Q.t � s/ an.s/ ds D f .t/
Z l

0

g.x/�n.x/ dx; an.0/ D 0; n 2 N:

It follows that the coefficients an can be written as

an.t/ D �n
Z t

0

f .�/ sn.t � �/ d�; where �n D
Z l

0

g.x/�n.x/ dx; !n D 	n

l
;

and sn.t/ satisfies the initial value problem

s0
n.t/C !2n

Z t

0

Q.t � �/ sn.�/ d� D 0; sn.0/ D 1:

In [3, 4] it was proved that the functions sn.t/ are asymptotically close to cos!nt
and form a Riesz sequence in L2.0;T/ for T � l: Therefore we can justify the
following formal presentations of the observation:

�.t/ D ux.0; t/

D
1X

nD1
�0
n.0/

Z t

0

f .�/ sn.t � �/ d�
Z l

0

g.x/ �n.x/ dx D
Z l

0

g.x/w.x; t/ dx ;

where w.x; t/ D
1X

nD1

�
�0
n.0/

Z t

0

f .�/ sn.t � �/ d�
	
�n.x/: (4)

One can check (similar calculations are performed in [5]) that the function w is a
solution to the initial boundary value problem

wtt.x; t/ D wxx.x; t/C
Z t

0

Q0.t � s/wxx.x; s/ ds D 0I 0 < x < l; t > 0; (5)

w.0; t/ D h.t/; w.l; t/ D 0I w.x; 0/ D 0; wt.x; 0/ D 0; (6)

where h is uniquely determined by f W h.t/C R t
0
Q.t � s/ h.s/ ds D f .t/:

It is not difficult to prove (see [14, Sect. 1.2] for details) that for 0 < t < l the
function w can be presented in the form

�
w.x; t/ D h.t � x/C .Bh/.x; t/; x < t;
0; x > t;

(7)

where Bh is a more regular term compared with h, and .Bh/.x; t/ D 0 for x � t: In
particular, w satisfies the equality

w.t � 0; t/ D h.0/ D f .0/: (8)
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Therefore, formula (4) can be written in the form

�.t/ D
Z t

0

g.x/w.x; t/ dx D f .0/G.t/�
Z t

0

wx.x; t/G.x/ dx; 0 � t � l; (9)

where G.x/ D R x
0
g.�/d�. This is a second kind Volterra equation for G.x/. Solving

it, we find G.x/ and then, g.x/. We can summarize our results as follows.

Theorem 2.1 For any f 2 H1.0;T/; the observation ux.0; t/; t 2 Œ0;T�; belongs
to H1.0;T/: The function g is recovered by solving the Volterra equation of second
kind (9) on the interval Œ0;T�; and T D l is generally the minimal identification time.
The identification is stable, more exactly, for every T � l; the following estimates
are valid:

cjjux.0; 	/jjH1.0;T/ � jjgjjL2.0;T/ � Cjjux.0; 	/jjH1.0;T/ ; (10)

with positive constants c; C independent of g:

3 A Star Graph

Our method can be extended to source identification problems for the heat equations
with memory on graphs. First we consider a star graph � consisting of N edges
ej identified with intervals Œ0; lj�; j D 1; : : : ;N; connected at an internal vertex
�0 which we identify with the set of the left end points of the intervals. The
boundary vertices �j are identified with the right end points of the corresponding
intervals (Fig. 1). The following initial boundary value problem is considered on
each interval:

8
<

:

@tuj.x; t/ �
R t
0
Q.t � s/ @2xuj.x; s/ ds D fj.t/gj.x/; 0 < x < lj; 0 < t < T;

uj.lj; t/ D 0; 0 < t < T;
uj.x; 0/ D 0; 0 < x < lj:

(11)

Fig. 1 A star graph
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At the internal vertex we impose the standard Kirchhoff–Neumann matching
conditions

(
u1.0; t/ D 	 	 	 D uN.0; t/; 0 < t < T;PN

jD1 @xuj.0; t/ D 0; 0 < t < T:
(12)

In mechanical systems, the first condition expresses the continuity of the solution,
the second is the balance of forces (Newton’s second law).

The problem is to recover the unknown functions gj; j D 1; : : : ;N; from the
observations

�j.t/ WD @xuj.lj; t/; j D 1; : : : ;N � 1; t 2 Œ0;T�:

Note that we use the observations at all but one boundary vertices.
On the first step we recover the functions gj; j D 1; : : : ;N � 1; using

corresponding observations �j.t/; j D 1; : : : ;N � 1; with the help of a similar
algorithm to that described in Sect. 2. It can be done in the time interval of length
maxjD1;:::;N�1fljg: Indeed, to recover gj we use the solution w of the wave equation
with memory on the graph with zero right-hand side and the boundary conditions
w.lj; t/ D fj.t/; w.li; t/ D 0 for i ¤ j: (See the definition of a similar function in (17)
below.) This function is certainly different from the function used for one interval in
(5), (6), but our identification procedure requires only the observation at the point lj
in the time interval Œ0; lj�: Boundary observation in this time interval “does not feel”
the other edges of the graph, therefore, the identification algorithm is the same as
for one interval.

Then, since the gj, j D 1; : : : ;N � 1 are known, we can consider the initial
boundary value problem on the star graph where instead of the first line of (11) we
have

�
@tvj.x; t/ �

R t
0
Q.t � s/ @2xvj.x; s/ ds D fj.t/gj.x/; j ¤ N;

@tvN.x; t/ �
R t
0
Q.t � s/ @2xvN.x; s/ ds D 0:

Subtracting the solution of this problem from the solution of (11), we reduce our
identification problem to the case where all gj except gN are equal to zero:

8
ˆ̂
<

ˆ̂
:

@tuj �
R t
0
Q.t � s/ @2xuj.x; s/ ds D 0; j ¤ N; 0 < x < lj; 0 < t < T;

@tuN �
R t
0
Q.t � s/ @2xuN.x; s/ ds D fN.t/gN.x/; 0 < x < lN ; 0 < t < T;

uj.lj; t/ D 0; 0 < t < T;
uj.x; 0/ D 0; 0 < x < lj

(13)

with the Kirchhoff–Neumann conditions at x D 0:
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Our next step is to obtain the spectral representation of the solution of (13). Let
ˆn D .�n;1; : : : ; �n;N/ and !2n ; n 2 N; be eigenfunctions and eigenvalues of the
following eigenvalue problem on the graph � W

(
��00

j D !2�j; 0 < x < lj; j D 1; : : : ;N;
�j.lj/ D 0; �1.0/ D 	 	 	 D �N.0/; PN

jD1 �0
j .0/ D 0:

(14)

Applying the Fourier method, one can obtain the formula

uj.x; t/ D
1X

nD1
�n;j.x/

�Z lN

0

gN.x/ �n;N.x/ dx

	 Z t

0

fN.�/ sn.t � �/ d�; (15)

Now we demonstrate how to recover gN using any of the boundary observations
�j; j D 1; : : : ;N � 1; say, �1: Changing formally the order of summation and
integration in (15) (it can be justified similarly to the case of one interval considered
in the previous section) we get

@xuj.lj; t/ D
Z lN

0

gN.x/

" 1X

nD1
�n;N.x/ �

0
n.lj/

Z t

0

fN.�/ sn.t � �/ d�
#

dx: (16)

In this formula, the expression in the brackets (it will be denoted by wN.x; t/) is the
restriction to the edge eN of the solution, w.x; t/; of the homogeneous wave equation
with memory on � with the Dirichlet boundary control applied to the boundary
vertex �1:

8
<

:

@2t wj � @2xwj.x; t/ �
R t
0
Q0.t � s/ @2xwj.x; s/ ds D 0; j D 1; : : : ;N;

w1.l1; t/ D hN.t/; wj.lj; t/ D 0; j ¤ 1; 0 < t < T;
wj.x; 0/ D @twj.x; 0/ D 0; 0 < x < lj; j D 1; : : : ;N;

(17)

hN.t/ WD fN.t/C
Z t

0

Q.t � �/ fN.�/ d�:

This solution satisfies also the Kirchhoff–Neumann matching conditions at x D 0:
Taking into account that the speed of the wave propagation in our system is one,

we present the formula (16) as [compare with (9)]

�1.t/ D
Z t�l1

0

gN.x/wN.x; t/ dx; l1 � t � l1 C lN : (18)

From this formula one can recover gN in the time interval l1 � t � l1ClN : Indeed, for
0 < t < l1; w1.x; t/ D hN.tCx� l1/C .B1hN/.x; t/ [see (7)] and wi.x; t/ D 0; i ¤ 1:
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Using the Kirchhoff–Neumann matching conditions at x D 0; one can find the
values of wN at the front points:

wN.t � l1; t/ D 2

N
fN.0/

for l1 < t � lN [compare with (8)]. Substituting into (18) and putting t D � C
l1; GN.x/ D

R x
0
gN.�/ d�; we obtain a second kind Volterra equation for GN.x/ W

�1.� C l1/ D 2

N
fN.0/GN.�/�

Z �

0

GN.x/ @xwN.x; � C l1/ dx; 0 < � < lN : (19)

From this equation one can now find GN.x/ and, so, gN.x/ for 0 � x � lN :
Similarly, we can consider the case of the observation on the whole boundary.

The sharp identification time is generally smaller in this situation. We summarize
our results in the form of

Theorem 3.1 For a star graph described by Eqs. (11), (12), a stable reconstruction
of sources gj is possible using N or N � 1 boundary observations. In the first
case the sharp identification time is 1=2 maxi;jD1;:::;N; i¤j fli C ljg, in the second
maxjD1;:::;N�1 flj C lNg (assuming no observation at lN).
Remark 3.2 It can be proved that generally a stable source reconstruction for a star
graph is impossible if we use less than N � 1 boundary observations. However, a
uniqueness result for this inverse problem may take place for smaller number of
boundary observation. This number must be greater than or equal to the multiplicity
of the spectrum of the operator �d2=dx2 on the graph � with Dirichlet boundary
conditions and Kirchhoff–Neumann matching conditions.

4 A Tree

Let � be a finite compact metric graph without cycles (tree), E D fejgNjD1 is the set

of its edges and V D fvjgNC1
jD1 is the set of vertices. We denote the set of exterior

vertices by f�1; : : : ; �mg D @� � V: This set plays the role of the graph boundary.
On such a graph, we consider the heat equation with memory with Dirichlet

boundary conditions at boundary vertices and Kirchhoff–Neumann matching con-
ditions at internal vertices. The observations will be the set of normal derivatives
f@ujg evaluated at all �j 2 @�; or at all but one boundary vertices �j 2 @�m WD
@� n f�mg during the time interval Œ0;T�: The problem is to find the functions
gj.x/; j D 1; : : : ;N; from the observation and determine the sharp T:

We consider a subgraph of � which is a star graph consisting of all edges incident
to an internal vertex v: This star graph is called a sheaf if all but one of its edges are
the boundary edges adjacent to the boundary vertices of @�m. It is known that any
tree contains at least one sheaf.
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Fig. 2 A metric tree

Using the results of Sect. 3 we are able to solve the identification problem on
an arbitrary tree. First, applying the techniques of the previous section we find
the functions gi on the sheaves, and we can further consider these functions to be
zero there. Then we repeat the procedure to move further, on each step we use the
observations on the original boundary to recover the functions gi on the sheaves of
the reduced graph (i.e. the graph � without the sheaves). On the final step we come
to the edge incident to the root f�mg:

For the tree presented on Fig. 2 we use the boundary observations at the vertices
�1; �2; �3 to recover the functions gj on the sheaf with vertices �1; �2; �3; v4 and v1:
Similarly, we recover the functions gj on the sheaf with vertices �4; �5; v4 and v2
from the boundary observations at the vertices �4; �5 and on the sheaf with vertices
�6; �7; �8; v4 and v3 from the boundary observations at the vertices �6; �7; �8: Then
we can assume that all functions gj are zero on these sheaves and find gj on the edge
incident to the root �9 from the observation at any of the edges �1; : : : ; �8:

The identification problem can be solved using this algorithm at a finite number
of steps. Our results can be formulated as follows.

Theorem 4.1 For the heat equation with memory on a tree, a stable reconstruction
of sources gj is possible from the derivatives of the solution evaluated at all or all
but one boundary vertices. In the first case the sharp identification time is one half of
the tree diameter, in the second it is max

jD1;:::;m�1 distf�m; �jg (assuming no observation
at �m).

Analog of Remark 3.2 is valid for trees: for a stable reconstruction we need
not less than m � 1 boundary observations, for uniqueness of the identification the
number of observations has to be not less than the multiplicity of the spectrum of
the Laplacian on the graph.
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5 Conclusions

In this paper, we propose a recursive algorithm which allows the recovery of the
sources in the heat equation with memory on the original tree starting from the
leaves and reducing the problem to smaller and smaller subtrees up to the rooted
edge. In this sense, it can be considered as an analog of the leaf-peeling method
proposed in [15] and developed further in [16–18] for boundary inverse problems
on trees with unknown coefficients of differential equations.

Our approach works also for arbitrary graphs (with cycles). If the graph has
cycles, boundary observations do not guarantee unique solvability of the source
identification problem. We need also additional observations at the internal vertices.
It will be a topic of a forthcoming paper.
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New Methods for Volterra Type Integral
Equation with Boundary Singular Point

Rajabov Nusrat

Abstract In this work we suggest new methods for investigating the model
Volterra type integral equation with singularity and logarithmic singularity, the
kernel of which consists of a composition of polynomial functions with logarithmic
singularity and functions with singular points. The problem of investigating this type
of integral equation for n D 2m reduces to the problem to investigate the Volterra
type integral equation (4) for n D 2 and for n D 2mC 1, it is reduced to m Volterra
integral equation (4) and one integral equation (5) for n D 1.

Keywords Boundary singularity • Logarithmic singularity • Singular kernel •
Volterra type integral equation

Mathematics Subject Classification (2010) Primary 44A15; Secondary 35C10,
45E10

Let � D fx W a < x < bg be an interval at the real axis and consider an integral
equation

'.x/C
Z x

a

2

4
nX

jD1
Aj lnj�1

�x � a

t � a

�
3

5 '.t/

t � a
dt D f .x/; (1)

where Aj.1 � j � n/ are given constants, f .x/ is a given function on � , and '.x/ to
be found.

The solution of the integral equation (1) is sought in a class on functions '.x/ 2
C.�/ vanishing at the singular point x D a, i.e.,

'.x/ D oŒ.x � a/"�; " > 0 at x! a:

Assume that the solution of Eq. (1) is a function '.x/ 2 C.n/.�/. Besides let in
Eq. (1), the function f .x/ 2 C.n/.�/. Then differentiating integral equation (1) n
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times we obtain the following nth order degenerate ordinary differential equation

.Dx/
n'.x/C A1.Dx/

n�1'.x/C A2.Dx/
n�2'.x/

C2ŠA3.Dx/
n�3'.x/C 	 	 	 C .n � 1/ŠAn'.x/ D .Dx/

nf .x/; (2)

where Dx D .x � a/ d
dx .

The homogeneous differential equation (2) is corresponding to the following
characteristic equation

�n C A1�
n�1 C A2�

n�2 C 2ŠA3�n�3 C 3ŠA4�n�4 C 	 	 	 C .n � 1/ŠAn D 0: (3)

The papers [1–5] are devoted to the integral equation (1) for the different cases when
n D 1; 2; 3. The case of Eq. (1) when the parameters Aj.1 � j � n/ are such that the
roots of the characteristic equation (3) are real, different and positive is investigated
in [3]. But in the investigation of the other cases for the roots of the characteristics
equation (3) difficulties of analytical character arise for the representation of the
manifold of solutions to Eq. (1).

In this connection we offer here a method for representing the manifold of
solutions of integral equation (1) for n D 1 and n D 2. This theory was constructed
in [1] for n D 1 and in [2] for n D 2. In [2] other possible cases are investigated for
n D 2. Depending on the cases n D 2m and n D 2mC 1 this gives the possibility to
give the solution of Eq. (1) in explicit form connected with m second order algebraic
equations.

Here a new method is offered. When n D 2m the general solution of the integral
equation (1) is represented by the solutions of m integral equations of the type

Tpj;qj.'/ 
 '.x/C
Z x

a

h
pj C qj ln

�x � a

t � a

�i '.t/
t � a

dt D f .x/: (4)

and when n D 2mC 1 the general solution of (1) is representable by the solutions
to m integral equations of type (4) and one solution to the integral equation

…�.'/ 
 '.x/C �
Z x

a

'.t/

t � a
dt D g.x/: (5)

The respective theory is constructed in [1, 2].
Let in integral equation (1) n D 2m. Then we represent the integral equation in

the form

mY

jD1
Tpj;qj.'/ D f .x/; (6)

where pj; qj .1 � j � m/ are constants, which are the coefficients of the following
characteristic equations

.�. j//2 C pj�
. j/ C qj D 0 .1 � j � m/: (7)
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Later on we denote the roots of the characteristic equation (7) by �. j/k .k D 1; 2; 1 �
j � m/.

We can represent the integral equation (1) in the form (6) when the roots of the
characteristic equation (7) are connected with the parameters Aj.1 � j � n/ of
Eq. (1) by

A1 D �
mX

jD1
.�
. j/
1 C �. j/2 /; A2 D

mX

j;kD1
j¤k

.�
.k/
1 �

. j/
2 /C

mX

j;kD1
j¤k

.�
.k/
1 �

. j/
1 /C

mX

j;kD1
j¤k

.�
.k/
2 �

. j/
2 /;

2ŠA3 D
mX

j;k;sD1
j¤k¤s

.�
.k/
1 �

. j/
2 �

.s/
1 /C

mX

j;k;sD1
j¤k¤s

.�
.k/
2 �

. j/
1 �

.s/
2 /; : : : ; .n � 1/ŠAn D

mY

jD1
�
. j/
1 �

. j/
2 :

(8)
Equation (6) is written as the system

 m.x/ D Tpm;qm.'/;  m�1.x/ D Tpm�1;qm�1 . m/;

 m�2.x/ D Tpm�2;qm�2 . m�1/; : : : ;  2.x/ D Tp1;q1 . 1/;Tp1;q1 . 1/ D f .x/: (9)

So, in this case the problem of finding the general solution of the integral
equation (1) is reduced to the problem of finding the solution of the system (9)
of Volterra integral equations.

In particular if the roots of the characteristic equation (7) are real, equal, and
negative and the constants pj.1 � j � m/ satisfy the following inequalities

jpmj > jpm�1j > jpm�2j > 	 	 	 > jp1j; (10)

and the function f .x/ 2 C.�/, f .a/ D 0 with the asymptotic behavior

f .x/ D oŒ.x � a/ım�; ım > jpmj; at x! a; (11)

then the solution of the integral equation (1) is given by the formula

'.x/ D
mY

jD1

�
T
1C

m�jC1
1 ;C

m�jC1
2

pm�jC1;qm�jC1

��1
. f /; (12)

where Cm�jC1
1 ;Cm�jC1

2 .1 � j � m/ are arbitrary constants

�
T
1C

m�jC1
1 ;C

m�jC1
2

pm�jC1;qm�jC1

��1
. f / D .x � a/

jpm�jC1j

2 ŒCm�jC1
1 C ln.x � a/Cm�jC1

2 �

Cf .x/ �
Z x

a

�x � a

t � a

� jpm�jC1j

2
h
pm�jC1 � qm�jC1 ln

�x � a

t � a

�i f .t/

t � a
dt:
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So, we have proved the following confirmation.

Theorem 1 (Main Theorem) Let in integral equation (1) n D 2m, the parameters
Aj.1 � j � n/ be connected with the coefficients of the algebraic equation (7) given
by formula (8). Moreover, let the function f .x/ 2 C.�/, f .a/ D 0 with asymptotic
behavior (11) and in (7) the parameters pj.1 � j � m/ satisfy conditions (10). Then
the integral equations (1) in the class of functions '.x/ 2 C.�/ vanishing in the
point x D a are solvable, and its general solution contains 2m arbitrary constants
and is given by formula (12), where Cm�jC1

k .k D 1; 2; 1 � j � m/ are arbitrary
constants.

Remark 1 The representation of the manifold of solutions of the integral equa-
tion (1) in form (6) for the case n D 2m gives the possibility to write the general
solution in dependence of the roots of the characteristic equation (7).

When n D 2mC 1, we represent Eq. (1) in the form

mY

jD1
Tpj;qj. / D f .x/; (13)

where

 .x/ D '.x/C pmC1
Z x

a

'.t/

t � a
dt 
 …mC1.'/; (14)

pj; qj.1 � j � m/ are the coefficients of the algebraic equations

.�. j//2 C pj�
. j/ C qj D 0 .1 � j � m/: (15)

In this case Eq. (13) is represented in the form

 .x/C
Z x

a

2

4
2mX

jD1
Bj lnj�1

�x � a

t � a

�
3

5  .t/

t � a
dt D f .x/; (16)

where the parameters Bj.1 � j � 2m/ are connected with the roots of the algebraic
equations (15) defined by the formulas

B1 D �
mX

jD1
.�

. j/
1 C �. j/2 /; B2D

mX

j;kD1
j¤k

.�
.k/
1 �

. j/
2 /C

mX

j;kD1
j¤k

.�
.k/
1 �

. j/
1 /C

mX

j;kD1
j¤k

.�
.k/
2 �

. j/
2 /;

2ŠB3 D
mX

j;k;sD1
j¤k¤s

.�
.k/
1 �

. j/
2 �

.s/
1 /C

mX

j;k;sD1
j¤k¤s

.�
.k/
2 �

. j/
1 �

.s/
2 /; : : : ; .n � 1/ŠBn D

mY

jD1
�
. j/
1 �

. j/
2 ;

(17)
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where �. j/1 ; �
. j/
2 .1 � j � m/ are the roots of the algebraic equations (15).

Substituting  .x/ from (14) into formula (16) and taking the equation

Z x

a
lnj�1

�x � a

t � a

� �Z t

a

'.�/

� � a
d�

	
dt

t � a
D 1

j

Z x

a
lnj
�x � a

t � a

� '.t/
t � a

dt;

into account we obtain

'.x/C
Z x

a

2

4
2mC1X

jD1
Aj lnj�1

�x � a

t � a

�
3

5 '.t/

t � a
dt D f .x/; (18)

where A1 D pmC1 C B1, A2 D B2 C B1pmC1, A3 D B3 C B2pmC1

2
,

A4 D B4 C B3pmC1
3

; : : : ;A2m D B2m C B2m�1pmC1
2m� 1 ;A2mC1 D B2mpmC1

2m
:

Substituting into these equations the Bj.1 � j � 2m/ from formula (17), we have

A1 D pmC1 �
mX

jD1
.�

. j/
1 C �. j/2 /; A2 D

mX

j;kD1
j¤k

.�
.k/
1 �

. j/
2 /C

mX

j;kD1
j¤k

.�
.k/
1 �

. j/
1 /

C
mX

j;kD1
j¤k

.�
.k/
2 �

. j/
2 / �

mX

jD1
.�

. j/
1 C �. j/2 /pmC1;

2ŠA3 D
mX

j;k;sD1
j¤k¤s

.�
.k/
1 �

. j/
2 �

.s/
1 /C

mX

j;k;sD1
j¤k¤s

.�
.k/
2 �

. j/
1 �

.s/
2 /

CpmC1

2

6
6
4

mX

j;kD1
j¤k

.�
.k/
1 �

. j/
2 /C

mX

j;kD1
j¤k

.�
.k/
1 �

. j/
1 /C

mX

j;kD1
j¤k

.�
.k/
2 �

. j/
2 /

3

7
7
5 ; : : : (19)

where �. j/1 ; �
. j/
2 are the roots of the algebraic equations (15).

So we have proved the following confirmation.

Theorem 2 (Main Theorem) Let the parameters Aj.1 � j � n/ in integral
equations (1) be connected with the roots of the characteristic equations (15) and
the number pmC1 given by formula (19). Then the problem of finding the solution of
the integral equation (1) for n D 2mC 1, of the integral equation (18), reduces to
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the problem of finding the solution of the integral equation

mY

jD1
Tpj;qj .…mC1.'// D f .x/: (20)

Introducing in the equality (20) the new functions

 mC1.x/ D
Y

mC1
.'/;  m.x/ D Tpm ;qm. mC1/;  m�1.x/ D Tpm�1;qm�1 . m/;

 m�2.x/ D Tpm�2;qm�2 . m�1/; : : : ;  2.x/ D Tp1;q1 . 1/;Tp1;q1 . 1/ D f .x/:

this equation is reduced to the system of m integral equations of type (4) and one
integral equation of type (5).

In particular case, if all the roots of the characteristic equations (15) are real,
equal, negative and

jpmC1j > jpmj > jpm�1j > jpm�2j > 	 	 	 > jp1j; (21)

and the function f .x/ 2 C.�/, f .a/ D 0 with asymptotic behavior

f .x/ D oŒ.x � a/ımC1 �; ımC1 > jpmC1j; as x! a; (22)

then the solution of the integral equation (1) for n D 2mC 1 is given by the formula

'.x/ D
�
…

CmC1
pmC1

��1
2

4
mY

jD1

�
T
1C

m�jC1
1 ;C

m�jC1
2

pm�jC1;qm�jC1

��1
. f /

3

5 ; (23)

where Cm�jC1
1 ;Cm�jC1

2 .1 � j � m/, CmC1 are arbitrary constants,

�
…

CmC1
pmC1

��1
.!/ 
 .x � a/jpmC1jCmC1 C !.x/ � pmC1

Z x

a

�x � a

t � a

�jpmC1j !.t/
t � a

dt:

So, we have proved the following confirmation.

Theorem 3 (Main Theorem) Let in integral equation (1) n D 2m C 1, the
parameters Aj.1 � j � n/ be connected with coefficients of the algebraic
equation (15) by formula (19). Moreover, let the roots of the characteristic equation
(15) be real, equal, and positive, and the function f .x/ 2 C.�/, f .a/ D 0 with
asymptotic behavior (22) and in (15) parameters pj.1 � j � m/, pmC1 satisfy
conditions (21). Then integral equations (1) in the class of function '.x/ 2 C.�/,
vanishing at the point x D a are solvable, and its general solution contains 2mC 1
arbitrary constants and is given by formula (23), where Cm�jC1

k .k D 1; 2; 1 �
j � m/, CmC1 are arbitrary constants.
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Order Differential Equations with Unbounded
Drift Coefficient
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Abstract In this work we consider the three-member second order differential
equation with unbounded intermediate coefficient. We give the solvability results
and some conditions for compactness of the resolvent of corresponding operator.
Furthermore, we discuss the estimates for the k-diameters of the set of solutions.

Keywords Compactness • Maximal regularity • Schatten class • Solvability
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1 Introduction

Let 1 < p < C1. Consider the following differential equation

L0y WD �y00 C r.x/y0 C q.x/y D f .x/ .x 2 R/; (1)

where r is a continuously differentiable function, q is continuous, and f 2 Lp D
Lp.R/:

Definition 1.1 The function y 2 Lp is called a solution of Eq. (1), if there is a

sequence fyngC1
nD1 � C.2/0 .R/ such that kyn � ykp ! 0 and kL0yn � fkp ! 0 as

n ! C1: Here C.2/0 .R/ is the set of twice differentiable functions with compact
support, and k 	 kp is the norm of Lp.

Equation (1) has a number of applications. In the theory of stochastic processes
associated with the dynamics of the Brownian motion, the Ornstein–Uhlenbeck
differential equation (OU equation) is used, which in the one dimensional case is
Eq. (1) with some unbounded intermediate coefficient r. The OU equation first was
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studied in [1]. Its study is important for investigation of the known Fokker–Planck
and Kramer equations. In the third decade of the twentieth century OU equation
was studied also by M. Smoluchowski, A. Fokker, M. Plank, H.C. Burger, R. Furth,
L. Zernike, S. Goudsmitt, M.C. Wang and others.

Furthermore, Eq. (1) describes the propagation of small oscillations in the
viscoelastic compressible medium [2], the dynamics of a stratified compressible
fluid [3], the vibrational motion in media with resistance, which depends on
velocity [4].

Recently Eq. (1) and its multidimensional generalizations were studied by
J. Pruss, R. Shnaubelt, A. Rhandi, G. Da Prato, V. Vespri, P. Clement, G. Metafune,
D. Pallara, M. Hieber, L. Lorenzi (see, for example, [5], where there are some
references). However, in the above works it is assumed that in (1) the intermediate
term r.x/y0 is a small perturbation of �y00 C q.x/y.

If we denote p.x/ WD exp
xR

a
Œ�r.t/�dt, then Ly D p�1 Œ�. py0/0 C .qp/y�, and then

the problem is reduced to the Sturm–Liouville equation

�. py0/0 C .qp/y D f :

But this equation was less studied, when p! 0.jxj ! C1/ (the degenerate case).
Thus, for (1) the growth of the function jrj at infinity is important. If the growth

of jrj is weaker than the growth of q; and q > 0, then (1) becomes the well-known
cases of the Sturm–Liouville equation. The case where jrj increased faster than q
was studied relatively less [6, 7].

We discuss the conditions under which

(a) Eq. (1) is uniquely solvable in the space Lp,
(b) the inverse L�1 to the operator L corresponding to Eq. (1) is compact,
(c) some upper estimates of the Kolmogorov k-diameters of the set M D fy 2 Lp W
kLykp � 1g hold.

2 Results

Let 1 < p < C1, 1=pC 1=. p0/ D 1: For given g and h, we denote that

˛g;h.t/ WD kgkLp.0; t/

h�1

Lp0 . t;C1/
.t > 0/;

ˇg;h.�/ WD kgkLp.�; 0/

h�1

Lp0 .�1; �/
.� < 0/;

�g;h WD max

�
sup
t>0

˛g;h.t/; sup
�<0

ˇg;h.�/

�
:

In the future, we shall always assume that r is a continuously differentiable function
and q is continuous.
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Theorem 2.1 Let 1 < p < C1; f 2 Lp and

jr.x/j � 1; �1; ppjrj < C1; (2)

sup
x;2R; jx�j�1

jr.x/j=jr./j < C1: (3)

Assume that �q;r < C1. Then Eq. (1) has a unique solution y and for y the following
inequality holds:

k � y00kp C kry0kp C kqykp � C1kLykp; (4)

where C1 does not depend on y.

We recall that if the estimate (4) holds, then the operator L corresponding to
Eq. (1) is called separable in the space Lp by Everitt and Giertz [8].

Theorem 2.2 Assume that the conditions of Theorem 2.1 are fulfilled. Then the
operator L�1 is completely continuous in Lp, if and only if the condition

limx!C1 x

2

6
4

0

@
C1Z

x

jrj�p0

dt

1

A

p=p0

C
0

@
�xZ

�1
jrj�p0

dt

1

A

p=p0
3

7
5 D 0 (5)

holds.

Note that (3) is a condition on the oscillation of the function r. For example, y D ejxj
satisfies (3). But y D 1Cejxj sin2 x does not satisfy (3). In the following theorem the
expression (3) is replaced by other conditions.

Theorem 2.3 Assume that 1 < p < C1, f 2 Lp and r does not increase in the
interval .�1; 0/; does not decrease in .0;C1/; satisfies (2) and for some ˛ 2
.0; 1=p/ the condition

max

0

B
@sup
�<0

2

4
�Z

�1
Qr˛.s/ds

3

5

1=. p0/

; sup
t>0

2

4
C1Z

t

Qr˛.s/ds
3

5

1=. p0/
1

C
A < C1;

holds, where Qr˛.s/ D jsj1=. p�1/jr.s/j�p.1�˛/:
Let �q; ppr < C1. Then

i) Eq. (1) is uniquely solvable in Lp;
ii) for the solution y the inequality

k � y00kp C k p
p
ry0kp C k


jqj C jrj˛=p� ykp � C2k fkp (6)

holds, where C2 does not depend on y;
iii) the inverse operator L�1 is compact in Lp:
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Assume that the inverse L�1 to operator L corresponding to Eq. (1) is compact in
Lp: Let M be the set of such solutions y of (1) that kLykp 
 k fkp � 1: We recall
that the Kolmogorov k-diameters of M are

dk.M/ D inf
Q2Tk

sup
v2M

inf
u2Q ku � vkp; k D 1; 2; : : : ;

where Tk is the class of all subsets Q of Lp with dimQ � k:
We can see that the k-diameters dk describe the order of the approximation of

solutions of Eq. (1) by elements of finite-dimensional subspaces of Lp. The bounds
for dk are important for estimating the quality of the approximate methods for
solving equation (1).

Theorem 2.4 Assume that the conditions of Theorem 2.1 and (5) hold. Then

dk.M/ � C4 inf
n
� > 0 W

p
�� fx 2 R W jq.x/j � C5�

�pg � k
o
; (7)

where � is the Lebesgue measure.

Consider the particular case p D 2 (the Hilbert case). Assume that L�1 is
the inverse to the operator L corresponding to the equation (1). We denote by

sk.L�1/ .k D 1; 2; : : :/ the s-numbers of L�1 (eigenvalues of
q
L�1 .L�/�1 ). Recall

that �
 .0 < 
 < C1/ is the set of the compact operators A, which satisfy
C1P
kD1
Œsk.A/�
 <1: Note that �1 is the class of nuclear operators, and �2 is the class

of Hilbert–Schmidt operators. Then Theorem 2.4 gives the following result.

Corollary 2.5 Let p D 2; 
 > 1=2: Assume that the conditions of Theorem 2.2 are
fulfilled, and

Z

R

jq.x/j.1�2
/=2dx < C1:

Then L�1 2 �
 :
The following theorem gives the estimate for the k-diameters dk.M/ of the set of

solutions of Eq. (1) when r is an oscillating function.

Theorem 2.6 Assume that the conditions of Theorem 2.3 hold. Then

dk.M/ � C4 inf
n
� > 0 W

p
� �

˚
x 2 R W jq.x/j � C5�

�1� � k
o
; (8)

where � is the Lebesgue measure.
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3 Examples

Example 3.1 Consider the equation

Ly WD �y00 C .1C x2/!=2y0 C jxjmy D f ; (9)

where ! > 0, m > 0. Then:

A) It is easy to see that

sup
jx�zj�1

Œ.1C x2/!=2�=Œ.1C z2/!=2� � 3!=2:

Hence if

! � .mC 2=p/. p� 1/; (10)

then the conditions of Theorems 2.1 and 2.2 hold. So the equation (9) for any
f 2 Lp has a unique solution y and for y the following inequality holds: ky00kpC
k.1Cx2/!=2y0kpCkjxjmykp � C2k fkp; 0 < m � !=. p�1/�2=p: Furthermore,
the inverse operator L�1 is compact in Lp.

B) By Theorem 2.4

dk � C8k
�.2m/=mC4p; 0 < m � !=. p � 1/� 2=p: (11)

Example 3.2 Let

Ly WD �y00 C .1C x2/�=2s�.x/y
0 C jxj�y D f ; (12)

where � > 0 and � > 0; s�.x/ 2 C.1/loc.R/ given as

s�.x/ D
�
.1C x2/1=2Œ5C sin2 x�; if x 2 Œk	; .kC 1=2� �/	/
6.1C .kC 1=2/2	2/1=2; if x 2 Œ.kC 1=2/	; .kC 1/	 � �/; k 2 Z;

where 0 < � < 	=4: Then the conditions of Theorems 2.1 and 2.2 are not fulfilled.
However, it is easy to see that the conditions of Theorem 2.3 are fulfilled, if

� � p.� C 2=p/. p� 1/: (13)

By Theorem 2.3 Eq. (12) has a unique solution, and by Theorem 2.6

dk � C9k
�2�=.�C4p/; 0 < � � �=Œ p. p� 1/� � 2=p: (14)

The comparison between (10) and (13), (11) and (14) shows the following. Under
the condition (3), both Theorems 2.1 and 2.3 are applicable to Eq. (1), however,
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Theorem 2.1 covers a wider class of equations (1). For example, Theorem 2.3 is not
applicable to the equation

� y00 C .1C x2/2y0 C jxjy D f ; (15)

when p D 3: At the same time, by Theorems 2.1 and 2.2 Eq. (15) is uniquely
solvable, and for the k-diameters dk the upper estimate

dk � C10k
�2=13

holds. Note that Theorems 2.1 and 2.2 are not applicable in the case of a strongly
oscillating function r.x/:
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Associated Operators to the Space of Elliptic
Generalized-Analytic Functions

Gian Rossodivita and Judith Vanegas

Abstract We find all linear first order partial differential operators with elliptic
complex numbers-valued coefficients that are associated to an elliptic generalized-
analytic operator. As an application, the solvability of initial value problems
involving these operators is shown.

Keywords Associated spaces • Elliptic complex numbers • Elliptic generalized-
analytic functions • Initial value problems
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15A66

1 Introduction

Let F be a given differential operator. Then a function space X is called an
associated space to F if F transforms X into itself. An example is the space of
holomorphic functions which is associated to the complex differentiation because
the complex derivative of a holomorphic function is again holomorphic. The concept
of associated spaces leads to conditions under which an initial value problem of
Cauchy-Kovalevsky type has a solution. For example, consider the problem

@t! D F.t; z; !; @z!/; u.0; z/ D '.z/; (1)
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where ' satisfies a partial differential equation G.!/ D 0. Then this problem is
solvable provided that the initial function ' belongs to the associated space X of
F containing all the solutions for G.!/ D 0, and that the elements of X satisfy
an interior estimate, i.e., an estimate for the first order derivatives of the solutions
(see [5]).

Generalized Complex Numbers are defined as complex numbers of the form z D
x C iy where the product of two complex numbers is induced by the relation i2 D
�ˇi � ˛; for ˛ and ˇ real numbers subject to the ellipticity condition 4˛ � ˇ2 > 0
(see [6]).

In this work we show necessary and sufficient conditions on the coefficients of
the operator F defined by

F! D C.z/@z! C A.z/! C B.z/ N! CG.z/; (2)

where !, C.z/, A.z/, B.z/ and G.z/ are elliptic complex-valued functions and z D
xC iy, so that F and the generalized-analytic operator

G! D @Nz! � a.z/! � b.z/ N!; (3)

where a.z/; b.z/ are given functions, be an associated pair of operators.
Necessary and sufficient conditions for evolution operators transforming holo-

morphic functions into themselves are given in [3], and [2] in the framework of
complex analysis and elliptic complex analysis, respectively. Sufficient conditions
for evolution operators transforming generalized-analytic functions into themselves
are given in [4]. The results in our paper provide a generalization of all these results.
As an application, we show the solvability of initial value problems involving the
operators F and G.

2 The Elliptic Complex Numbers

Let ˛; ˇ 2 R be parameters such that 4˛ � ˇ2 > 0. If x; y 2 R, the set

C.˛; ˇ/ D f xC iy W i2 D �˛ � ˇig

is the set of the elliptic (or generalized) complex numbers.
In this algebra, the product is defined for two numbers z1 D x1 C iy1 and z2 D

x2C iy2 as z1z2 D .x1x2�˛y1y2/C i.x1y2C y1x2�ˇy1y2/: Taking this into account
it is easy to prove that

• x2 � ˇxyC ˛y2 is positive, if x2 C y2 > 0
• .

ˇC2ip
4˛�ˇ2 /

2 D �1.
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It can be also shown that the z D xC iy has a well defined inverse that is given
by z�1 D x�ˇy�iy

x2�ˇxyC˛y2 for every z ¤ 0.
In general for z D xC yi, we define

z D .x � ˇy/ � yi ; jzj2 D x2 � ˇxyC ˛y2 :

The norm also satisfies the property

jzwj D jzjjwj and

ˇ
ˇ
ˇ
ˇ
1

z

ˇ
ˇ
ˇ
ˇ D

1

jzj :

2.1 Differentiability in the Elliptic Complex Numbers

Let � be a bounded domain with sufficiently smooth boundary @�. Consider a
continuous function f W � � C.˛; ˇ/! C.˛; ˇ/ such that @f

@x and @f
@y are continuous

in �, then starting from

Qf .z/ WD f .z0/C @f

@x
.x0; y0/.x � x0/C @f

@y
.x0; y0/.y � y0/;

where z0 D x0 C y0i 2 �, and after a straightforward calculation we have

Qf .z/ D f .z0/C 1

ˇ C 2i
h


ˇ C i/

@f

@x
C @f

@y

�
.z� z0/C

�
i
@f

@x
� @f
@y

�
.z� z0/

i
:

Comparing these two representations, it is natural to describe the coefficients of
.z� z0/ and .z � z0/ as partial elliptic complex derivatives of f with respect to z and
Nz, respectively, at z0, i.e., we define

@z f WD .ˇ C i/@x f C @y f
ˇ C 2i and @Nz f WD i@x f � @y f

ˇ C 2i :

Therefore, for w D uC vi, we get

@Nzw D 1

ˇ C 2i Œ�.@yuC ˛@xv/C i.@xu � ˇ@xv � @yv/�:

and the expression @Nzw D 0 is equivalent to the following real system of equations

@yuC ˛@xv D 0; @xu � ˇ@xv � @yv D 0;

which is a generalization of the ordinary Cauchy-Riemann equations. In this case
we say the function w is holomorphic in C.˛; ˇ/. Since there exist differentiable
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functions that are not holomorphic in the ordinary sense, but they are holomorphic
for some suitable choice of real numbers ˛ and ˇ, a more encompassing concept of
holomorphicity is obtained in the framework of elliptic complex numbers.

The product rule holds for the Cauchy-Riemann operator: Direct computation
shows that for every pair of differentiable functions f1 and f2 it holds

@Nz. f1 	 f2/ D @Nz f1 	 f2 C f1 	 @Nz f2;

where the product is understood to be in the generalized complex algebra.

3 Associated Spaces

Definition 3.1 ([4, 5]) Let F be a first order differential operator depending on t,
x, u and @iu for i D 0; 1; : : : ; n, while G is a differential operator with respect to
the spacelike variables xi with coefficients not depending on time t. F is said to be
associated with G if F maps solutions for the differential equation Gu D 0 into
solutions of the same equation for a fixedly chosen t, i.e.,

Gu D 0) G.Fu/ D 0:

The function space X containing all the solutions for the differential equation
Gu D 0 is called an associated space of F .

Next we will determine necessary and sufficient conditions such that the operator
F defined by (2) be associated to the elliptic generalized-analytic operator (3).

3.1 Necessary and Sufficient Conditions on the Coefficients
of F

We consider the operator F defined by (2)

F! D C.z/@z! C A.z/! C B.z/ N! CG.z/;

where C.z/, A.z/, B.z/ and G.z/ are continuously differentiable functions and with
values in C.˛; ˇ/. We will determine conditions over C.z/, A.z/, B.z/ and G.z/ such
that

G! D @Nz! � a.z/! � b.z/ N! D 0) G.F!/ D 0; (4)

where a.z/; b.z/ are given continuous functions with values in C.˛; ˇ/.
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Applying the operator G to F.!/ and assuming that ! is a generalized-analytic
function, we get

G.F!/ D @NzF! � a.z/F! � b.z/F!

D .@NzC.z// @z! C .C.z/@za.z// !
C .C.z/@zb.z// N! C .C.z/b.z// @z N! C @NzA.z/!

C .A.z/b.z// N! C @NzB.z/ N! C B.z/@z!

� .a.z/B.z// N! �
�
b.z/C.z/

�
@z!

�
�
b.z/A.z/

�
N! �

�
b.z/B.z/

�
!

C@NzG.z/ � a.z/G.z/ � b.z/G.z/:

Using @z N! D @Nz!, we obtain

G.F!/ D .@NzC.z// @z! C
�
B.z/ � b.z/C.z/

�
@z!

C
�
C.z/@za.z/C C.z/b.z/b.z/C @NzA.z/ � b.z/B.z/

�
!

C 
C@zbC CbNaC AbC @NzB � aB � b NA� N!
C@NzG.z/� a.z/G.z/� b.z/G.z/:

Now we denote G1 D B.z/� b.z/C.z/, G2 D C.z/@za.z/CC.z/b.z/b.z/C @NzA.z/�
b.z/B.z/, G3 D C.z/@zb.z/CC.z/b.z/a.z/CA.z/b.z/C@NzB.z/�a.z/B.z/�b.z/A.z/
and G4 D @NzG.z/ � a.z/G.z/ � b.z/G.z/: Then G.F.!// can be rewritten as

G.F.!// D .@NzC.z// @z! C G1@z! C G2! C G3 N! C G4: (5)

Therefore we observe that if

@NzC.z/ D G1 D G2 D G3 D G4 D 0

are met, then G.F!/ D 0 if G.!/ D 0. It means that the following conditions

@NzC.z/ D 0 (6)

B.z/ D b.z/C.z/ (7)

C.z/@za.z/C @NzA.z/ D 0 (8)

C@zbC @NzbCC b@NzCC b


Ca � a NC�C b



A � A

� D 0 (9)

@NzG.z/ � a.z/G.z/ � b.z/G.z/ D 0: (10)

are sufficient conditions.
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Now we assume that .F ;G/ is an associated pair, i.e., G.F.!/ D 0 if only ! is a
generalized-analytic function. In order to obtain the conditions on the coefficients of
the operatorF we will start by choosing special functions of the associated space, in
this case generalized-analytic functions, and we will write out the relations assuming
that F is generalized analytic for those functions. Then choosing the generalized-
analytic function w D 0 we have @NzG.z/ � a.z/G.z/ � b.z/G.z/ D 0 and so G is
generalized analytic and the term G4 can be omitted from (5). We now look for a
function satisfying @z! D 0 and @Nz! D a.z/ !Cb.z/ N!; which is equivalent to look
for a function satisfying @y! C .ˇ C 2i/@x! D 0. Then we choose the functions
! D 1 and ! D i and observe that they are generalized-analytic functions if a.z/ D
�b.z/ and if a.z/ D � .ˇCi/2

˛
b.z/, respectively. So we can consider two cases for

Eq. (5): If ! D 1 then G2 ! C G3 N! D 0 and if ! D i then i G2 � .ˇ C i/G3 D 0.
This implies .ˇ C 2i/G2 D 0: Hence G2 D 0 and G3 D 0; and Eq. (5) becomes

G.F.!// D .@NzC.z// @z! C G1 @z! D 0: (11)

Now we look for a special generalized-analytic function ! satisfying @z! D 1, it
means satisfying the relation @y! C .ˇ C i/@x! D .ˇ C 2i/: We observe that the
function!.x; y/ D xCiy satisfies this relation and it is generalized analytic if a.z/ D
z�1.1 � b.z/Nz/: Next we look for another special generalized-analytic function !
satisfying @z! D i, i.e., satisfying @y! C .ˇ C i/@x! D i .ˇ C 2i/: In this case we
find the function !.x; y/ D �˛yC i.x�ˇy/ which is generalized analytic if a.z/ D
� .ˇCi/2

˛
z�1b.z/Nz: Therefore using the functions !.x; y/ D x C iy and !.x; y/ D

�˛y C i.x � ˇy/ in (11), we get @NzC.z/ C G1 D 0 and i @NzC.z/ � .ˇ C i/G1 D 0;
which implies �.ˇ C 2i/G1 D 0 and so @NzC.z/ D 0 and G1 D 0.

Therefore the following statement is true:

Theorem 3.2 The operator F is associated to the generalized-analytic operator G
if and only if the conditions (6)–(10) are satisfied.

4 Solvability of Initial Value Problems

We consider the initial value problem

@t!.t; z/ D F.t; z; !; @z!/ (12)

!.0; z/ D '.z/; (13)

where t 2 Œ0;T� is the variable time, z D x C iy and ' is a generalized-analytic
function. z, ! D !.t; z/ and ' are C.˛; ˇ/-valued functions.
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It is well known that this problem can be rewritten as

!.t; z/ D '.z/C
Z t

0

F.�; z; !.�; z/; @z!.�; z//d�: (14)

Consequently, the solution of the initial value problem (12), (13) is a fixed point of
the operator

T!.t; z/ D '.z/C
Z t

0

F.�; z; !.�; z/; @z!.�; z//d�: (15)

and vice versa.
To apply a fixed point theorem as the Contraction Mapping Principle, the

operator (15) should map a certain Banach space B of generalized-analytic functions
into itself. Since the operator F also depends on the derivative @z!, that map
exists in case the derivatives @z.T!.t; z// do exist and can be estimated accordingly.
Therefore, one has to restrict the operator to a space of generalized-analytic
functions for which the derivatives @z! of a generalized-analytic function ! can be
estimated by ! itself. This space is the so-called associated space and the estimates
for the derivatives @z! can be attained by using the so-called interior estimate.

First order interior estimates can be obtained via a generalized version of the
Cauchy Pompeiu operator for elliptic numbers [1] and thus the method of associated
operators [5] is applied to solve initial value problems with initial functions that are
generalized analytic in elliptic complex numbers.

In consequence, we have the following theorem:

Theorem 4.1 Let F be the operator defined by (2). Suppose F and the operator G
defined by (3) form an associated pair of operators, for each fixed t 2 Œ0;T�, and
the solutions of the corresponding equation Gu D 0, satisfy an interior estimate of
first order. Then the initial value problem (12) and (13) is solvable provided that the
initial function is an elliptic generalized-analytic function.

References

1. D. Alayón-Solarz, C.J. Vanegas, The Cauchy-Pompeiu integral formula in elliptic complex
numbers. Complex Var. Elliptic Equ. 57(9), 1025–1033 (2012)

2. D. Alayón-Solarz, C.J. Vanegas, Operators associated to the Cauchy-Riemann operator in
elliptic complex numbers. Adv. Appl. Clifford Algebras 22, 257–270 (2012)

3. L.H. Son, W. Tutschke, First Order differential operators associated to the Cauchy-Riemann
equations in the plane. Complex Var. Elliptic Equ. 48, 797–801 (2003)

4. W. Tutschke, Solution of Initial Value Problems in Classes of Generalized-Analytic Functions
(Teubner Verlagsgessellschaft, Leipzig and Sringer-Verlag, Berlin Heidelberg, 1989)

5. W. Tutschke, Associated spaces - a new tool of real and complex analysis, in Contained in
Function Spaces in Complex and Clifford Analysis (National University Publishers, Hanoi,
2008), pp. 253–268

6. I.M. Yaglom, Complex Numbers in Geometry (Academic, New York, 1968)



Identification of Nonlinear Differential Systems
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Influence
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Abstract A bacteria population under bactericidal antibiotics influence is consid-
ered. A part of the bacteria is resistant to the antibiotic. The system is described by
nonlinear differential equations.
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1 Introduction

The problem antimicrobial resistance (AMR) has achieved alarming dimensions. A
laboratory monitoring in India showed that proportion of strains Escherichia coli
resistance to carbapenem increased from 7% in 2008 to 12% in 2014, Klebsiella sp.
was 22% in 2008 and increased to 60% in 2014 [1]. In the USA, about two million
men contaminated of resistant bacteria at least for one antibiotic in the USA [2].
The same problem we observed in the EC [3]. However, the arsenal of antibiotics is
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practically exhausted, and those under clinical trials do not pass because of the high
toxicity [4]. In coming years, it can lead to a post-antibiotic era or a second pre-
antibiotic era, when death can occur because of infection with usual scratches [5].
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For solution this global challenge offers a variety of approaches, including
mathematical modeling of AMR [6]. There are many works on modeling the spread
of antibiotic resistance in the population and nosocomial epidemiology [7]. Some
models do not incorporate the history of antibiotic usage in patients [8]. Others
on the contrary involve the initial data about the history of the patient’s treatment
with antibiotics [9]. All this is aimed at the development and management of
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antibiotic therapy to prevent the development and spread of antibiotic resistance
[10]. There are other mathematical models describing the growth and behavior of
bacteria [11]. The best known model describing the dynamics of population growth
is the Logistic function of Verhulst which takes into account carrying capacity, as
well as others, including various modifications [12]. Usually, the characteristic of
the growth curve of bacteria is used in the pharmacodynamic models to optimize
therapy [13]. Furthermore, using the parameters of several growth curves of the
bacteria minimum inhibitory concentration (MIC) may be determined with specified
accuracy, whereas now widely used for this is the disk-diffusion method or the more
laborious tube dilution test [14]. The parameters of bacterial growth curve may be
used in different models, for example in the study of the development of antibiotic
resistance and the possibility of reversion [15].

2 Mathematical Model

For determining the considered phenomenon, we use the following suppositions.

1. The bacteria population is under bactericidal antibiotic influence.
2. The population is nonhomogeneous; it consists of antibiotic sensitive bacteria

and antibiotic resistant bacteria.
3. The sensitive bacteria are more viable in the absence of the antibiotic.
4. The habitat is limited.
5. Transitions from one to the other type of bacteria by mutation and transmission

of plasmids carrying the gene for resistance to the antibiotic are conceded.

We propose the following systems of nonlinear differential equations.

Px1 D a1x1 � b1.x1 C x2/x1 C a12x2 � c
.t/xd1;

Px2 D a2x2 � b2.x1 C x2/x2 C a21x1

with initial conditions

x1.0/ D x10; x2.0/ D x20:

The functions x1 and x2 describe the number of sensitive and resistant bacteria
(S-bacteria and R-bacteria) here; x10 and x20 are its initial values. The parameters
a1 and a2 are increase in the number of both types of bacteria; b1 and b2 describe
the influence of the habitat limitation; and a12 and a21 characterize the transitions
from one to the other type of bacteria by mutation and/or transmission of plasmids
carrying the gene for resistance to the antibiotic. The parameters c and d are
characteristics of the antibiotic. The function 
 is equal to one during the action
of antibiotics, and zero in the rest of the time.
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We get the following results.

Theorem 2.1 If the parameters x10, x20, a12, a21 are small enough, and 
 D 0, then
the functions x1 and x2 increase exponentially at the initial stage of the process.

Indeed, when the initial bacteria numbers are small enough, transitions from one
type of bacteria to the other are rare, and no antibiotic is applied by the suppositions
of the theorem. Then the last term on the right-hand side of the first equation is
absent, and we can neglect the second and third terms on the right-hand side of both
equations. As a result, for each type of bacteria we obtain the Malthus equation with
exponential solution.

Theorem 2.2 If x20 is much less than x10, and 
 D 0, then the function x1 increases
up to a certain value.

Indeed, suppose the absence of an antibiotic and a negligible number of sensitive
bacteria. Then the second term on the right-hand side of the first equation will be
most important after the increase of the function x1. Therefore, the system gradually
tends to the equilibrium typical for the Verhulst model.

Theorem 2.3 If the coefficients a12, a21 are small enough, and 
 D 0, then the
function x2 tends to zero.

Indeed, the vitality of sensitive bacteria is greater compared to the resistant
because of the inequality condition of the theorem. Then, in the absence of
antibiotics and the fairly rare intrapopulation transitions weaker resistant bacteria
are dying out, which corresponds to the model of Volterra.

Theorem 2.4 Suppose the conditions of Theorem 2.3 except the smallness of the
parameters a12 and a21. Then the function x2 decreases to a positive value, and the
equilibrium position of the function x1 is less than the value that was obtained under
the conditions of Theorem 2.2.

Indeed, in this case the presence of the third term on the right-hand side of the
second equation ensures a positive limit value of x2. The number of resistant bacteria
thereby supported by transitions, and reducing the value of the equilibrium position
of sensitive bacteria is due to a non-zero value of the maximum number of resistant
bacteria.

Theorem 2.5 If the function 
 is positive starting from a certain point in time, then
the function x1 decreases to a sufficiently small positive value, and the function x2
increases to an equilibrium position.

Indeed, the positive value of the function 
 indicates the presence of the
antibiotic. Then the last negative term is present on the right-hand side of the
first equation. Therefore the function x1 decreases. However, its velocity decreases
gradually to zero with decreasing values of this function. On the other hand, the
antibiotic does not affect the resistant bacteria. Thus, the number of resistant bacteria
x2 increases. This growth is constrained by the limited living space characterized by
the second term on the right-hand side of the second equation.
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Theorem 2.6 If starting from a certain point in time the function takes a positive
value, and then zero, then after some time the system tends to the same equilibrium
position, which was observed under the conditions of Theorem 2.4.

Indeed, if the function 
 is equal to zero (i.e., after the finish of the treatment),
the system is in the state described by Theorem 2.6. Thus, the stronger antibiotic-
sensitive bacteria supplant the resistant bacteria.

Computer calculations have confirmed the results of the qualitative analysis.

3 Identification of the Mathematical Model

The next step of the analysis is the identification of the systems. We determine
parameters of the equations by inverse problems with using test data. The necessary
experiments were conducted at the Scientific Center for Anti-infectious Drugs,
Almaty.

The bacterial growth rate was measured for susceptible (S) and resistant
(R) microorganisms. The tested microorganism was Escherichia coli (ATCC
8739). Resistant E. coli was selected from a susceptible one by cultivation on
medium with increasing concentrations of antibiotic (Ampicillin trihydrate, drug
substance, Sigma Aldrich). The microorganisms were cultivated between the wells
of microtiter plates at a temperature of 37 ıC. For cultivating minimal media
were containing salts, amino acids, glycerol, glucose, and fermentative peptone
(Himedia, India). The bacterial growth was estimated by changing the optical
density (OD) measured and recorded a microwell plate reader (Multiscan Ascent,
Agilent Technologies, USA). OD was determined at a wavelength of 540 nm. The
plate was shaken for 10 s just before each reading. The reading interval was 1 h.
For the first hour after adding antibiotic OD was measured every 15 min. Then
measurements were done every hour until growth curve shows steady trend for
increasing OD. Stock solution of antibiotic were added into the experimental wells
at the end of the exponential phase of growth—beginning of stationary phase of
growth. The equal volume was added to all wells (16�l). The final volume of
suspension in the wells was 286�l. The final concentration of ampicillin in the
wells was 3400�g/ml. This corresponds to 4.0 minimal inhibitory concentrations
(MIC) of ampicillin for resistant E. coli in MIC assays with initial concentration of
bacterial suspension 107 CFU/ml (colony forming unit per milliliter). MIC assays
of ampicillin were performed by broth microdilution method [16]. For the test
quality control positive and negative controls of growth were used. We consider two
stages of the phenomenon. This is the evolution of the bacteria population without
antibiotic, and the system under the antibiotic influence. We neglect the third term
on the right-hand side of the equations describing intrapopulation transitions for
both cases. Thus, we get two inverse problems.
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We determine the parameters a1, a2, b1, and b2 with using measuring of the
functions x1 and x2 for the first inverse problem. The results of computing are its
following values a1 D 0:399, a2 D 0:274, b1 D 4:77 	 10�9, and b2 D 3:92 	 10�10.

We chose the value d D 3 for the second inverse problem. This is explained
by the following considerations. The linear terms of the equations characterize the
natural exponential increase of the population by the Malthus model. The square
terms of the system describe the bounded increase of the population because of the
habitat limitedness by the Verhulst model. Therefore decreasing of the population
by antibiotic must be described by higher-order term. Thus, we find the coefficient
c by the second inverse problem. We get c D 2:71 	 10�5.

These results will be used for further study of antibiotic resistance, in particular,
the phenomenon of reversion, i.e. restore the sensitivity of bacteria to antibiotics.
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Abstract In this paper the Cauchy problem for some system of n-th order nonlinear
ordinary differential equations is solved.
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1 Introduction

Let t1 > 0 and n � 1 be a natural number. We consider the system

dnu
dtn D f .t/u � g.t/v C h.t; u; v/

dnv
dtn D g.t/u � f .t/v C q.t; u; v/

(1)

in the interval Œ0; t1�, where f .t/; g.t/ 2 CŒ0; t1� and the functions h.t; u; v/; q.t; u; v/
are continuous in the set of variables in the domain

G D f.t; u; v/ W 0 � t < ı; ju � ˛1j < �1; jv � ˇ1j < �2g:

Here ı; ˛1; ˇ1; �1; �2 are real numbers so that �1 > 0; �2 > 0; 0 < ı < t1:
In the particular case n D 1 the general solution of system (1) and the solution

of the Cauchy problem for it are given in [1]. Solutions of system (1) will be sought
from the class

CnŒ0; t1�: (2)
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Let us consider the Cauchy problem for system (1).

Cauchy Problem Find the solution of system (1) from the class (2) satisfying
the conditions

u.0/ D ˛1; v.0/Dˇ1; u0.0/D˛2; v0.0/ D ˇ2; : : : ; u.n�1/.0/ D ˛n; v.n�1/.0/ D ˇn;
(3)

where ˛k; ˇk; .k D 1; 2; : : : ; n/ are given real numbers.

2 Construction of the General Solution of the Corresponding
Linear System

First we consider the system

dnu
dtn D f .t/u � g.t/v C h.t/;

dnv
dtn D g.t/u � f .t/v C q.t/

(4)

on Œ0; t1�; where f .t/; g.t/; h.t/; q.t/ 2 CŒ0; t1�:
In this work using the method employed in [1] we are obtaining an explicit form

of the general solution of the system (4) and are solving the Cauchy problem for it.
For simplicity we will study the system (4) in Œ0; t1�; the coefficients are taken from
the class of continuous functions in Œ0; t1�:Using the proposed method we can obtain
the general solution of system (4) in an arbitrary bounded domain of the real axis,
the coefficients can be taken from the class of measurable and essentially bounded
functions. But in this case the derivative of n-th order of the solutions belongs to
the class of measurable and essentially bounded functions. Solutions of system (4)
will be sought from the class (2). To construct the general solution we use a method
developed in [1]. To accomplish this multiplying the second equation of system (4)
by the imaginary unit i D p�1 and then adding it to the first equation we obtain

dnw

dtn
� p.t/w D s.t/; (5)

where p.t/ D f .t/C ig.t/; s.t/ D h.t/C iq.t/;w D uC iv:
Obviously, p.t/; s.t/ 2 CŒ0; t1�;w 2 CnŒ0; t1�: From (3) follows

w.0/ D ˛1 C iˇ1;w
0.0/ D ˛2 C iˇ2; : : : ;w

.n�1/.0/ D ˛n C iˇn: (6)

Integrating equation (5) n times gives

w.t/ D .Bw/.t/C s0.t/C
nX

kD1
ckt

n�1; (7)
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where ck; .k D 0; 1; 2; : : : ; n � 1/ are arbitrary complex numbers,

.Bw/.t/ D
Z t

0

Z y1

0

Z y2

0

: : :

Z yn�1

0

p.�/w.�/d�dyn�1dyn�2 : : : dy1;

s0.t/ D .Bs/.t/ D
Z t

0

Z y1

0

Z y2

0

: : :

Z yn�1

0

p.�/s.�/d�dyn�1dyn�2 : : : dy1:

Applying the operator .B	/.t/ to both sides of Eq. (7) we have

.Bw/.t/ D .B2w/.t/C s1.t/C
nX

kD1
ckak;1.t/; (8)

where

.B2w/.t/ D .B.Bw/.t//.t/; s1.t/ D .Bs0/.t/

D
Z t

0

Z y1

0

Z y2

0

: : :

Z yn�1

0

p.�/s0.�/d�dyn�1dyn�2 : : : dy1;

ak;1.t/ D
Z t

0

Z y1

0

Z y2

0

: : :

Z yn�1

0

� k�1p.�/d�dyn�1dyn�2 : : : dy1 .k D 1; 2; : : : ; n/:

From (7) and (8) follows

w.t/ D .B2w/.t/C s0.t/C s1.t/C
nX

kD1
ck.t

k�1 C ak;1.t//: (9)

Again applying the operator .B	/.t/ to both sides of Eq. (9) we obtain

.Bw/.t/ D .B3w/.t/C s1.t/C s2.t/C
nX

kD1
ck.ak;1.t/C ak;2.t//: (10)

where

.B3w/.t/ D .B.B2w/.t//.t/;

ak;2.t/ D .Bak;1/.t/ D
Z t

0

Z y1

0

Z y2

0

: : :

Z yn�1

0

p.�/ak;1.�/d�dyn�1dyn�2 : : : dy1:

From (10) and (7) follows

w.t/ D .B3w/.t/C s0.t/C s1.t/C s2.t/C
nX

kD1
ck.t

k�1 C ak;1.t/C ak;2.t//:
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Continuing this procedure m times we obtain the following integral representation
for the solutions of Eq. (5)

w.t/ D .Bmw/.t/C
m�1X

jD0
sj.t/C

nX

kD1
ck

0

@tk�1 C
m�1X

jD1
ak;j.t/

1

A ; (11)

where .Bmw/.t/ D .B.Bm�1w/.t//.t/;

sj.t/ D .Bsj�1/.t/ D
Z t

0

Z y1

0

Z y2

0

: : :

Z yn�1

0

p.�/sj�1.�/d�dyn�1dyn�2 : : : dy1;

. j D 1; 2; : : :/;

ak;j.t/ D .Bak;j�1/.t/ D
Z t

0

Z y1

0

Z y2

0

: : :

Z yn�1

0

p.�/ak;j�1.�/d�dyn�1dyn�2 : : : dy1;

.k D 1; 2; : : : ; n � 1/; . j D 2; 3; : : :/:

Taking the definition of the integrated operators .Bkf /.t/ and the integrated functions
ak;j.t/ into consideration the following estimates are obtained:

j.Bmw/.t/j � jwj0 	 .
n
pjpj0 t/nm
.nm/Š ; jsj.t/j � js0j0 	 .

n
pjpj0 t/jn
. jn/Š ;

jak;jj � jpjj0
.kCjn�1/Š 	 tkCjn�1; .m D 1; 2; : : :/; .k D 1; 2; : : : ; n � 1/;

(12)

where jf j0 D maxt2Œ0;t1�j f .t/j:
If we pass to the limit as m �!1 in (11) taking into account (12) we obtain the

solution of Eq. (5):

w.t/ D
1X

mD1
ckIk C F.t/; (13)

where ck; .k D 1; 2; : : : ; n/ are arbitrary complex numbers,

Ik.t/ D tk�1 C
1X

mD1
ak;m.t/; F.t/ D

1X

jD0
sj.t/:

From the form of the functions Ik.t/; .k D 1; 2; : : : ; n/ and F.t/ follow

I1.0/ D 1; Ik.0/ D 0; .k ¤ 1/; Fk.0/ D 0; .k D 1; 2; : : : ; n � 1/; (14)

I1.0/ D I0
2.0/ D I00

3 .0/ D 	 	 	 D I.n�1/
n .0/ D 1:
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By virtue of (12) we obtain the estimates

jIk.t/j � tk exp.jpj0tn/; jF.t/j � js0j0 exp.jpj0tn/; .k D 1; 2; : : : ; n � 1/:

From (14) follows that the Wronskian of the functions I1.t/; I2.t/; : : : ; In.t/ in the
point t D 0 is not equal to zero. Therefore, the functions I1.t/; I2.t/; : : : ; In.t/ are
linearly independent of Œ0; t1�. From the definition of Ik.t/; .k D 1; 2; : : : ; n/ and
F.t/ follow

dnIk
dtn
� p.t/Ik D 0; .k D 1; 2; : : : ; n/; dnF

dtn
� p.t/F D s.t/: (15)

Hence, the formula (13) defines the general solution of Eq. (5). Separating the real
and imaginary parts of the (13) we obtain the general solution of the system (4):

u.t/ DPn
kD1.ck1ReIk.t/ � ck2ImIk.t//C ReF.t/;

v.t/ DPn
kD1.ck2ReIk.t/C ck1ImIk.t//C ReF.t/;

(16)

where ck1; ck2; .k D 1; 2; : : : ; n/ are arbitrary real numbers. Thus, the following
theorem holds.

Theorem 2.1 The general solution of system (1) from the class (2) is given by the
formula (16).

3 The Solution of the Cauchy Problem for the
Corresponding Linear System

First we will solve the Cauchy problem for Eq. (5). To solve the problem we
use the formula (13). Substituting the function w.t/, given by (13) in the initial
conditions (6) and taking (14) into account we obtain

c1 D ˛1 C iˇ1; c2 D ˛2 C iˇ2; c3 D ˛3 C iˇ3; : : : ; cn D ˛n C iˇn

and hence the function

w.t/ D
nX

kD1
.˛k C iˇk/Ik.t/C F.t/ (17)

gives a solution of the Cauchy problem for the system (4). Highlighting the real
and imaginary parts of (17) we obtain the solution of the Cauchy problem for the
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system (4):

u.t/ DPn
kD1.˛kReIk.t/ � ˇkImIk.t//C ReF.t/;

v.t/ DPn
kD1.ˇkReIk.t/C ˛kImIk.t//C ImF.t/:

(18)

Thus, the following theorem holds.

Theorem 3.1 The Cauchy problem for the system (4) has a solution, which is given
by the formula (18).

The obtained results remain in force in the case:

f .t/; g.t/; h.t/; q.t/ 2 SŒt1; t2�;w.t/ 2 Cn�1Œt1; t2� \ Sn1 Œt1; t2� :

Here Sn1 Œt1; t2� is the class of functions f .t/, for which f n.t/ 2 SŒt1; t2�; SŒt1; t2� is
the class of measurable and essentially bounded functions in Œt1; t2� and �1 < t1 <
t2 <1.

4 Cauchy Problem for the System of n-th Order Nonlinear
Ordinary Differential Equations

Let t1 > 0: We consider the system (1) in the interval Œ0; t1�; where f .t/; g.t/ 2
CŒ0; t1� and the functions h.t; u; v/; q.t; u; v/ are continuous in the set of variables in
the domain

G D f.t; u; v/ W 0 � t < ı; ju � ˛1j < �1; jv � ˇ1j < �2g:

Here ı; ˛1; ˇ1; �1; �2 are real numbers so that �1 > 0; �2 > 0; 0 < ı < t1; u.0/ D
˛1; v.0/ D ˇ1: The connection between the numbers ı and �1; �2 will be defined
later.

Multiplying the second equation of the system (1) by i D p�1 then adding it to
the first equation of (1) we get

dnw

dtn
� p.t/w D s.t;w/; (19)

where w D u.t/C iv.t/; p.t/ D f .t/C ig.t/; s.t;w/ D h.t; u; v/C iq.t; u; v/:
Obviously, p.t/ 2 CŒ0; t1� and the function s.t;w/ is continuous in the set of

variables in the domain

G D f.t;w/ W 0 � t < ı; jw � �1j < �g;

where �1 D ˛1 C iˇ1; � D �1 C �2:
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We find the solution to Eq. (19) from the class (2) satisfying the following
conditions

w.0/ D �1;w0.0/ D �2; : : : ;wn�1.0/ D �n; (20)

where �k D ˛k C iˇk; .k D 1; 2; : : : ; n/: The equalities are given by (6).
Using formula (13) we have

w.t/ D
nX

kD1
ckIk C F.t;w/; (21)

where

F.t;w/ D
1X

jD0
sj.t;w/;

s0.t;w/ D
Z t

0

Z y1

0

Z y2

0

: : :

Z yn�1

0

p.�/s.�;w/d�dyn�1dyn�2 : : : dy1;

sj.t;w/D
Z t

0

Z y1

0

Z y2

0

: : :

Z yn�1

0

p.�/sj�1.�;w/d�dyn�1dyn�2 : : : dy1; . jD 1; 2; : : :/:

From (12) follows

jI1.t/ � 1j � exp.jpj0tn/ � 1; jIk.t/j � tk�1 exp.jpj0tn/; .k D 2; 3; : : : ; n/; (22)

j.I1.t3/ � Ik.t2//j � tkCn�2
1 .jpj0 C .k � 1/Š.exp.jpj0t1/ � 1// 	 .t3 � t2/;

.k D 1; 2; : : : ; n/; (23)

where 0 � t2 < t3 � t1: Let a1 be the maximum of the function js.t;w/j in the
domain G. From the form of the function F.t;w/ follows

jF.t;w/j � a1jpj0tn exp.jpj0tn/; (24)

jF.t3;w/ � F.t2;w/ � a1jpj0ın�1 exp.jpj0tn1/.t3 � t2/: (25)

From the form of the functions Ik.t/; .k D 1; 2; : : : ; n/; F.t;w/ and (15) follows that
the right-hand side of the equality (21) belongs to the class CnŒ0; t1�: If we take the
derivative n times of both sides of the equality (21), then we obtain (19). Therefore,
the following theorem holds.

Theorem 4.1 Any solution from the class CŒ0; t1� of Eq. (21) is a solution to
Eq. (19) from the class (2).

We consider the solution to Eq. (19) from the class (2) satisfying initial con-
ditions (20). We obtain ck D �k; .k D 1; 2; : : : ; n/ from (21) by taking the
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equalities (14) into account. Thus, any solution from the class CŒ0; t1� of the equation

w.t/ D .Dw/.t/; (26)

where .Dw/.t/ D Pn
kD1 �kIk C F.t;w/;, is a solution of the Cauchy problem for

Eq. (19).
Let

�1.exp.jpj0ın/�1/C exp.jpj0ın/ 	
1X

kD2
�kı

k�1Ca1jpj0ın 	 exp.jpj0ın/ < �; (27)

Inequality (27) always might be obtained for small values of the number ı. Let us
prove the existence of continuous solutions to the system (1) in some neighborhood
of the point t D 0:
Theorem 4.2 Let f .t/; g.t/ 2 CŒ0; t1� and the functions h.t; u; v/; q.t; u; v/ be
continuous in the set of variables in the domain

G D .t; u; v/ W 0 � t < ı; ju � ˛1j < �1; jv � ˇ1j < �2:

Then on the interval Œ0; ı�; where the number ı satisfies the condition (27) there
exists at least one solution to the system (1) from the class (2) satisfying the
conditions (3).

Proof If there exists a solution of Eq. (26) from the class C[0, t1], then by virtue of
Theorem 4.1 by highlighting real and imaginary parts of it we obtain a solution of
the system (1) from the class CnŒ0; t1�: Therefore, by Theorem 4.2 it is sufficient to
prove the existence of solutions from the class CŒ0; t1� of Eq. (26).

Let jjwjj D max0�t<ı jw.t/j: We consider the operator D which is defined by the
equality

.Dw/.t/ D
nX

kD1
�kIk.t/C F.t;w/

on the sphere jjw � �1jj � ı: For any element w.t/ of the sphere jjw � �1jj < ı in
force of the inequalities (22), (24) we get

j.Dw/.t/j � �1.exp.jpj0ın/� 1/C exp.jpj0ın/ 	
nX

kD2
j�kjık�1 (28)

If t2; t3; .t2 < t3/, are two arbitrary points of the interval Œ0; ı�, then by inequali-
ties (4), (25) we have

j.Dw/.t3/ � .Dw/.t2/j � .ıkCn�2.jpj0 C .k � 1/Š.exp.jpj0ı � 1//
Ca1jpj0ın�1.exp.jpj0ın//.t2 � t3/: (29)
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By the Arzela-Ascoli theorem from (28), (29) follows that the operatorD transforms
the sphere jjw � �1jj � ı into a compact set. We show that operator D transforms
this into itself. Indeed, inequalities (22), (24) give us

j.Dw/.t/ � �1j � �1.exp.jpj0ın/� 1/

C exp.jpj0ın/ 	
1X

kD2
�kı

k�1 C a1jpj0ın exp.jpj0ın/: (30)

Using the inequalities (27), (30) we have j.Dw/.t/��1j < �: Therefore, the operator
D satisfies all the conditions of Schauder’s theorem. Hence, there exists a fixed point
of this operator, i.e. such a function w.t/, so that

w.t/ D
nX

kD1
�kIk.t/C F.t;w/:

Therefore, by Theorem 4.1 there exists a solution to the Cauchy problem for the
system (1). ut

The theorem is proved.
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As in [2], we introduce some symbols as follows. Firstly, a rotation group with
respect to the origin is defined as follows:

G D
n
�k W �k.z/ D e

2k	i
m z; k D 0; 1; 2; : : : ;m � 1

o
(1)

with jGj D m 2 Z.

Definition 1.1 (See [2]) Suppose f be a polyanalytic function [1] of order n on �,
where� is a rotation-invariant open set under the group G. If

f .�1.z// D f .z/; 8z 2 �; (2)

then we say that f is a rotation-invariant polyanalytic function of order n under the
group G, or simply automorphic polyanalytic function. Here G and �1 are given
by (1). The collection of all the automorphic polyanalytic functions with respect to
G on� is denoted as HG

n .�/.

The symbol HG
1 .�/ represents the family of automorphic analytic functions on

�. As in [1], Hn.�/ D f f W @nNz f .z/ D 0; z 2 �g is denoted as the class of
polyanalytic functions of order n on �, where @Nz D 1=2Œ@=@x C i.@=@y/� is the
Cauchy-Riemann operator.

Next, a circular ring domain with center at the origin is denoted as

D.0I r;R/ D fz 2 C W r < jzj < Rg (3)

with 0 � r < R � C1. In particular, C0 D D.0I 0;C1/.
Definition 1.2 (See [2]) Suppose f 2 HG

n .D.0I 0; r// with r > 0. If there exists an
integer s such that

lim sup
z2S0.0I0;r/;z!0

jzmsf .z/j D ˛ with ˛ 2 .0;C1/;

then f is said to be order s at the origin, denoted as Ord.f ; 0/ D s.

The following results can be easily derived from Theorem 2.1 and Corollary 3.2
in [2].

Theorem 1.1 Let � be a rotation-invariant open set under the group G and 0 …
�. Then HG

n .�/ D HG
1 .�/ ˚ 	 	 	 ˚ .jzj2�1/j

jŠ HG
1 .�/ ˚ 	 	 	 ˚ .jzj2�1/n�1

.n�1/Š HG
1 .�/ with

.jzj2�1/j
jŠ HG

1 .�/ D
n
.jzj2�1/j

jŠ h.z/ W h 2 HG
1 .�/

o
for j D 0; 1; : : : ; n � 1:

Theorem 1.1 implies that f 2 HG
n .�/ admits a unique decomposition

f .z/ D
n�1X

jD0

.jzj2 � 1/j
jŠ

fj.z/ with fj 2 HG
1 .�/: (4)
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Theorem 1.2 If f 2 HG
n .D.0I 0; r// with r > 0, then

Ord.f ; 0/ D maxfOrd.f0; 0/; Ord.fk; 0/C 1; k D 1; 2; : : : ; n � 1g;

where fk is the k-component determined by (4).

Let D D fz W jzj < 1g; T D fz W jzj D 1g; T0 D
˚
ei
 W 
 2 �0; 2	m

��
and

T` D �`.T0/ for ` D 1; : : : ;m � 1. Obviously T D [m�1
jD0 Tj.

2 Rotation-Invariant Schwarz Operator

Now we consider the preliminary problem: Find a function ˆ 2 HG
1 .D n f0g/ \

C.D n f0g/ satisfying

�
RefŒa.t/C ib.t/�ˆC.t/g D c.t/; t 2 T;

Ord.ˆ; 0/ � �; (5)

where a; b; c are rotation-invariant, i.e., a.�1.t// D a.t/; b.�1.t// D b.t/, and
c.�1.t// D c.t/ on t 2 T. The real-valued functions a; b; c are also Hölder-
continuous on T, denoted as a; b; c 2 H.T/. In addition, a2.t/Cb2.t/ D 1; t 2 T and
� 2 Z. If a.t/C ib.t/ 
 1; t 2 T, the Hilbert problem (5) is reduced to the simplest
problem, usually called Schwarz problem. Similarly to [2], one has the following
lemma.

Lemma 2.1 The Schwarz problem RefˆC.t/g D c.t/; t 2 T; under the condition
Imˆ.0/ D 0; ˆ 2 HG

1 .D n f0g/\ C.D n f0g/ is uniquely solvable by

ˆ.z/ D m

2	i

Z

T0

c.�/
�m C zm

�m � zm
d�

�
D SmŒc�.z/; z 2 D; (6)

where Sm is called the rotation-invariant Schwarz operator, m D jGj and ˆ.0/ D
limz!0 ˆ.z/.

When m D 1, the operator Sm is the classical Schwarz operator. Let

X.z/ D izm� expfiSmŒ‚�.z/g with ‚.t/ D argft�m� Œa.t/ � ib.t/�g; (7)

where � D 1
2	
fargŒa.t/ � ib.t/�gT0 is the index. Then, by Plemelj’s formula [3],

XC.t/ D iR.t/Œa.t/ � ib.t/� with

R.t/ D exp

�
m

2	

Z 2	

0

‚.ei�/
sinŒm.� � 
/�

1� cosŒm.� � 
/� d�

�
> 0:
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Here R is also called the regularized factor as in [4]. The function X defined by (7)
is also called the canonical function.

If c.t/ 
 0, then the boundary condition in (5) turns into the following:

RefŒa.t/C ib.t/�ˆC.t/g D 0; t 2 T; (8)

which is equivalent to

Re

�
i
ˆC.t/
XC.t/

�
D 0; t 2 T0; (9)

where X is the canonical function defined by (7). Let '.z/ D ˆ.z/
X.z/ ; z 2 D n f0g:

Then ' 2 HG
1 .D n f0g/ and '.z/ D PC1

jD�� ajzmj; z 2 D n f0g: Now introduce the
rotation-invariant symmetric operator with respect to G

LmŒ'�.z/ D

8
<̂

:̂

Rea0 C
�1X

jD��
.ajz

mj C ajz
�mj/ if � � 0;

0; if � < 0;

(10)

where z ¤ 0. Clearly, Re fiLmŒ'�.t/g D 0; t 2 T0: By Lemma 2.1, one has

ˆ.z/ D X.z/LmŒ'�.z/; z 2 D n f0g: (11)

Introduce the set of the rotation-invariant symmetric Laurent polynomials

S…m;k D

8
ˆ̂
<

ˆ̂
:

8
<

:

kX

jD�k

cjz
mj W cj D c�j for j D 0; 1; 2; : : : ; k

9
=

;
if k � 0;

0; if k < 0:

(12)

Clearly S…1;k D S…k, where S…k is defined in [4]. To sum up the above discussion,
one has the following.

Lemma 2.2 The homogeneous Hilbert problem (8) under Ord.ˆ; 0/ � � is
solvable by

ˆ.z/ D X.z/q�C�.z/; (13)

where q�C� 2 S…m;�C� and X is the canonical function defined by (7).

By Lemmas 2.1 and 2.2, one immediately has the following result.
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Theorem 2.1 When � � 0, Hilbert problem (5) is solvable and its solution may be
written as

ˆ.z/ D mX.z/

2	i

�Z

T0

c.t/

Œa.t/C ib.t/�XC.t/
tm C zm

tm � zm
dt

t
C 2	iq�C�.z/

	
(14)

with q�C�.z/ 2 S…m;�C�; When � < 0, if and only if the condition

Z

T0

c.t/

Œa.t/C ib.t/�XC.t/
dt

tmjC1
D 0; j D 0; 1; : : : ;�� � 1 (15)

is satisfied, Hilbert problem (5) is solvable and its solution may be written as

ˆ.z/ D mY.z/

2	i

Z

T0

c.t/

Œa.t/C ib.t/�YC.t/
tm�1dt
tm � zm

; (16)

where Y D z�m�X.

3 Hilbert BVP for Rotation-Invariant Polyanalytic Functions

As in [2], a rotation-invariant operator is introduced as follows:

Kz;Nz D z�1@Nz; (17)

where @Nz is the Cauchy-Riemann operator.
Our first problem is to find a function V 2 HG

n .D n f0g/ satisfying n boundary
conditions on T and a growth condition at the origin

8
<

:
Re

��
Kj

z;NzV
�C
.t/

	
D 0; t 2 T; j D 0; 1; : : : ; n � 1;

Ord.V; 0/ � �;
(18)

where the operator Kz;Nz is defined by (17).

Theorem 3.1 The homogeneous Schwarz problem (18) is solvable and its solution

can be written as V.z/ DPn�1
jD0

.jzj2�1/j
jŠ qj.z/ with q0 2 S…m;� and qj 2 S…m;��1 for

j D 1; 2; : : : ; n � 1.
Next, we begin to discuss the following problem: find a functionV 2 HG

n .Dnf0g/
satisfying n boundary conditions on T and a growth condition at the origin

8
<

:
Re

�
Œa.t/C ib.t/�

�
Kj

z;NzV
�C
.t/

�
D 0; t 2 T; j D 0; 1; : : : ; n � 1;

Ord.V; 0/ � �;
(19)
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where the operatorKz;Nz is defined by (17), two given functions a; b satisfy the Hölder
condition (a; b 2 H.T/) and a2.t/ C b2.t/ D 1; t 2 T. Problem (19) is called the
homogeneous Hilbert problem.

Theorem 3.2 The homogeneous Hilbert problem (19) is solvable and its solution
can be written as

V.z/ D iX.z/
n�1X

jD0

.jzj2 � 1/j
jŠ

qj.z/ (20)

where q0 2 S…m;�C� and qj 2 S…m;�C��1 for j D 1; 2; : : : ; n � 1, and X is the
canonical function defined by (7).

Finally, one comes to investigate the problem: find a function V 2 HG
n .D n f0g/

satisfying n boundary conditions and a growth condition

8
<

:
Re

�
Œa.t/C ib.t/�

�
Kj

z;NzV
�C
.t/

�
D cj.t/; t 2 T; j D 0; 1; : : : ; n � 1;

Ord.V; 0/ � �;
(21)

where the operator Kz;Nz is defined by (17), all the given functions a; b; cj . j D
0; 1; : : : ; n � 1/ satisfy the Hölder condition on T and a2.t/ C b2.t/ D 1; t 2 T.
Problem (21) is called the nonhomogeneous Hilbert problem.

The rotation-invariant poly-Schwarz operator on the circumference T is intro-
duced as follows:

SŒ�0; : : : ; �n�1�.z/ D
n�1X

jD0

.jzj2 � 1/j
jŠ

SmŒ�j�.z/ (22)

in z 2 D n f0g with �j 2 H.T/ for j D 0; 1; 2; : : : ; n � 1, where Sm is the rotation-
invariant Schwarz operator defined by (6). By the boundary behavior of the rotation-
invariant Schwarz operator described in Sect. 2,

Re

��
Kj

z;NzSŒ�0; : : : ; �n�1�
�C

.t/

�
D �j.t/; t 2 T; j D 0; 1; : : : ; n � 1: (23)

Next, the boundary condition in (21) is reduced to

Re

(�
Kj

z;Nz
�
V

iX

	�C
.t/

)

D cj.t/

iŒa.t/C ib.t/�XC.t/
; t 2 T; j D 0; 1; : : : ; n � 1;

(24)
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where X is the canonical function defined in (7). Let

W.z/ D X.z/S

�
c0

.aC ib/XC ; : : : ;
cn�1

.aC ib/XC

	
.z/; z 2 D n f0g: (25)

From (23), W defined by (25) satisfies the relation (24), or say

Re

(�
Kj

z;Nz
�
W

iX

	�C
.t/

)

D cj.t/

iŒa.t/C ib.t/�XC.t/
; t 2 T; j D 0; 1; : : : ; n � 1:

(26)
Subtracting (26) from (24), one has

Re

(�
Kj

z;Nz
�
V �W

iX

	�C
.t/

)

D 0; t 2 T; j D 0; 1; : : : ; n � 1: (27)

Now we discuss the problem (21) in two cases.

Case 1: When �C � � 0, by Theorem 3.2, the solution of the nonhomogeneous
Hilbert problem (21) can be written as

V.z/ D W.z/C iX.z/
n�1X

jD0

.jzj2 � 1/j
jŠ

qj.z/ (28)

with q0 2 S…m;�C� and qj 2 S…m;�C��1 for j D 1; 2; : : : ; n � 1, where W is
given in (25).
Case 2: When � C � < 0, if the problem (21) is solvable, the solution can be
expressed as (28), or say

V.z/ D iX.z/

8
<

:
ŒW0.z/C c0�C

n�1X

jD0

.jzj2 � 1/j
jŠ

Wj.z/

9
=

;
; z 2 D n f0g (29)

with c0 2 C and

Wj.z/ D � 1

2	

Z

T0

cj.�/

Œa.�/C ib.�/�XC.�/
�m C zm

�m � zm
d�

�
; j D 0; 1; : : : ; n � 1:

(30)

By Theorem 1.2, V given by (29) is the solution if and only if Ord.W0 C c0; 0/ �
�C � and Ord.Wj; 0/ � �C � � 1 for j D 1; : : : ; n. Thus,

c0 D 1

2	

Z

T0

cj.t/

Œa.t/C ib.t/�XC.t/
dt

t
(31)
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and
8
ˆ̂
<

ˆ̂
:

Z

T0

c0.t/

Œa.t/C ib.t/�XC.t/
dt

tm`C1
D 0; ` D 1; 2; : : : ; �C � � 1;

Z

T0

cj.t/

Œa.t/C ib.t/�XC.t/
dt

tm`C1
D 0; ` D 0; 1; 2; : : : ; �C � � 2:

(32)

In general, the following result is obtained.

Theorem 3.3 For the nonhomogeneous Hilbert problem (21), there are two cases:
If � C � � 0, the solution of problem (21) can be written as (28); If � C � < 0,
if and only if all the conditions (32) are satisfied, problem (21) is solvable and its
solution can be written as (29), where c0 is given by (31).
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Riemann Boundary Value Problem with Square
Roots on the Real Axis
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Abstract In this paper, we consider the Riemann boundary value problem with
square roots on the real axis X

p
‰C.x/ D G.x/

p
‰�.x/C g.x/; x 2 X;

in which a sectionally holomorphic unknown function ‰.z/ having some zeros in
the upper and lower half-planes, and we obtain the solution and solvability condition
explicitly.
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holomorphic function • Square root
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1 Introduction

The Riemann boundary value problem with square roots for a sectionally holomor-
phic unknown function ‰.z/

p
‰C.t/ D G.t/

p
‰�.t/C g.t/; t 2 L
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has been solved in [1, 2], where L is a smooth closed contour, G.t/; g.t/ 2 H.L/
(Hölder continuous) and G.t/ ¤ 0. In this paper, the boundary curve is replaced
by the real axis X (including the point 1), and we investigate the corresponding
Riemann boundary value problem with square roots on the real axis, obtaining the
solutions and solvability conditions explicitly.

The difference to former investigations lies in the following. .1/ The assumption
of zeros for the unknown function ‰.z/ in the upper and lower half-planes Z˙ is
different from the case of a closed contour. .2/ When ‰˙.z/ has an odd number of
zeros of odd order in Z˙, ‰˙.z/must have a zero-point on X in order that

p
‰˙.z/

can be single-valued in Z˙, respectively. Since the zero-point is either a finite point
on the real axis or x D1, the discussion will be more complicated.

Let ‰C.1/ D lim
z2ZC;z!1

‰.z/; ‰�.1/ D lim
z2Z�;z!1‰.z/; then our problem

is to find a sectionally holomorphic function ‰.z/ with jump curve X, such thatp
‰˙.z/ are single-valued in Z˙, respectively, and ‰˙.1/ are finite. Moreover,p
‰˙.x/ are continuous and single-valued on X, satisfying the following condition

p
‰C.x/ D G.x/

p
‰�.x/C g.x/; x 2 X (1)

where G.x/ ¤ 0 and G.x/; g.x/ 2 bH.X/ (see [3]).

2 Structure of ‰˙.z/ in Z˙

Case 1: If ‰C.z/ has an even number of zeros of odd order in ZC, say,
a1; a2; : : : ; a2m. Let

…a.z/ D

2mQ

jD1
.z� aj/

.zC i/2m
; m � 0 (2)

with …a.z/ D 1 for m D 0, then we may write

‰C.z/ D …a.z/
�
ˆC
0 .z/

�2
(3)

or

p
‰C.z/ D

p
…a.z/ˆ

C
0 .z/; z 2 ZC; (4)

where
p
…a.z/ takes a definite single-valued branch for m non-intersecting cuts

in ZC, connected by m pairs of points arbitrarily taken from a1; a2; : : : ; a2m,
ˆC
0 .z/ is analytic in ZC and continuous to X. Moreover,ˆC

0 .1/ is finite.
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Now we prove that (4) holds. Actually, ‰C.z/=…a.z/ probably has zero-points
of even order in ZC. Suppose �.z/ is the product of all probable zero-divisors of
even order in ZC, then

p
�.z/ is a single-valued analytic function in ZC. Therefore,

‰C.z/=Œ…a.z/�.z/� is analytic and not equal to 0 in ZC. By the monodromy theorem
in [4], �.z/ D p

‰C.z/=Œ…a.z/�.z/� can be taken as a single-valued branch in ZC.
Let ˆC

0 .z/ D
p
�.z/�.z/, then (4) is true.

Similarly, if ‰�.z/ has an even number of zeros of odd order in Z�, say,
b1; b2; : : : ; b2n. Suppose

…b.z/ D

2nQ

kD1
.z � bk/

.z � i/2n
; n � 0 (5)

with …b.z/ D 1 for n D 0. Then we can write

‰�.z/ D …b.z/
�
ˆ�
0 .z/

�2
(6)

or

p
‰�.z/ D

p
…b.z/ˆ

�
0 .z/; z 2 Z�; (7)

where
p
…b.z/ takes a definite single-valued branch for n proper cuts in Z�, ˆ�

0 .z/
is analytic in Z� and continuous to X. Moreover,ˆ�

0 .1/ is finite.

Remark 2.1 According to the result in [1, 2], the corresponding expression of…a.z/

and …b.z/ are taken by f…a.z/ D
2mQ

jD1
.z � aj/ and f…b.z/ D

2nQ

kD1
.z � bj/, respectively.

Then f…a.z/ .f…b.z// has a singularity of order 2m (2n) at1, which involves us in
trouble when we apply the classical results in [3] for the following discussion. Here

we add the factor
1

.zC i/2m
and

1

.z � i/2n
, but…a.z/ and…b.z/ are still analytic and

have only zeros a1; a2; : : : ; a2m and b1; b2; : : : ; b2n in Z˙, respectively, and also
…a.1/ D …b.1/ D 1. Furthermore,‰C.z/=…a.z/ (‰�.z/=…b.z/) is analytic and
has no zero-point of odd order in ZC (Z�), and‰C.1/=…a.1/ (‰�.1/=…b.1/)
is finite.

Case 2: If ‰C.z/ has an odd number of zeros of odd order in ZC, say,
a1; a2; : : : ; a2m�1. In order that

p
‰C.z/ is single-valued in ZC, there must exist

a2m 2 X such that ‰C.a2m/ D 0. If a2m ¤ 1, …a.z/ is still given by (2). If
a2m D 1, …a.z/ is written as

…a.z/ D

2m�1Q

jD1
.z � aj/

.zC i/2m
; m > 0; (8)
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which already has a zero-point of order one at 1. By the similar reason as in
case 1, ‰C.z/ can be expressed as (3) and (4), with …a.z/ given by (2) or (8).
In this case, ˆC

0 .z/ is still analytic in ZC and continuous to X from ZC except
for possibly a singularity of order less than 1=2 (at most) at a2m, in which a2m is
finite on X or1.

Similarly, if ‰�.z/ has an odd number of zeros of odd order in Z�, say,
b1; b2; : : : ; b2n�1, there must exist b2n 2 X such that ‰�.b2n/ D 0. If b2n ¤ 1,
…b.z/ is still given by (5). If b2n D 1, then …b.z/ is defined by

…b.z/ D

2n�1Q
kD1

.z � bk/

.z � i/2n
; n > 0: (9)

Consequently,‰�.z/ can be expressed as (6) and (7), with…b.z/ given by (5) or (9).
In this case,ˆ�

0 .z/ is analytic in Z� and continuous to X from Z� except for possibly
a singularity of order less than 1=2 (at most) at b2n, in which b2n may be finite on X
or1.

3 Solution of the Problem

Substituting (4),(7) into (1) and let ….z/ D …a.z/…b.z/, (1) can be rewritten as

ˆC.x/ D G.x/ˆ�.x/C g.x/
p
….x/

(10)

where
p
….x/ D p

…a.x/
p
…b.x/ has taken a definite single-valued branch, and

ˆ.z/ D
�
ˆC
0 .z/=

p
…b.z/; z 2 ZC

ˆ�
0 .z/=

p
…a.z/; z 2 Z� (11)

which is analytic in Z˙, continuous to X from ZC and Z�, except for a2m 2 X or
b2n 2 X possibly having a singularity of order < 1=2 (when a2m ¤ b2n) or order
< 1 (when a2m D b2n).

Since1 is possibly a singular point, ˆ.z/ may be finite or has a singularity of
order less than 1=2 (or < 1) at1. Due to G.x/ 2 bH.X/, we still take the canonical
function Y.z/ as in [3], i.e.,

Y.z/ D
8
<

:

e�.z/; z 2 ZC;�
zC i

z� i

	�
e�.z/; z 2 Z�; (12)
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where � D 1
2	
ŒargG.x/�X , and

�.z/ D 1

2	i

Z C1

�1
logfŒ.xC i/=.x � i/��G.x/g

x � z
dx; z … X: (13)

Then we have the following result.

(i) When � � 0, (10) is always solvable with the general solution

ˆ.z/ D Y.z/

2	i

Z C1

�1
g.x/

p
….x/YC.x/.x � z/

dxC Y.z/Pk

�
1

zC i

�
; (14)

where Pk

�
1

zC i

�
is an arbitrary polynomial of degree � with respect to the

variable 1=.zC i/. By (4), (7), (11), the general solution to (1) is

p
‰.z/ D p

….z/Y.z/

"
1

2	i

Z C1

�1
g.x/

p
….x/YC.x/.x � z/

dxC Pk

�
1

zC i

�#

:

(15)

(ii) When � < 0, if and only if

Z C1

�1
g.x/

p
….x/YC.x/.xC i/kC1

dx D 0; k D 1; 2; : : : ;�� � 1; (16)

is satisfied, (10) has the unique solution

ˆ.z/ D Y.z/

"
1

2	i

Z C1

�1
g.x/dx

p
….x/YC.x/.x � z/

� 1

2	i

Z C1

�1
g.x/dx

p
….x/YC.x/.xC i/

#

; (17)

thus, the unique solution to (1) is

p
‰.z/ D p

….z/Y.z/

"
1

2	i

Z C1

�1
g.x/dx

p
….x/YC.x/.x � z/

� 1

2	i

Z C1

�1
g.x/dx

p
….x/YC.x/.xC i/

#

:

(18)
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4 Proof of ‰C.a2m/ D 0 and ‰�.b2n/ D 0 for a2m; b2n 2 X

By the solution in the last section, we need to check‰C.a2m/ D 0 and‰�.b2n/ D 0
for a2m; b2n 2 X. From (15) and (18), it is enough to prove that

I.z/ D 1

2	i

Z C1

�1
g.x/dx

p
….x/YC.x/.x � z/

; z … X (19)

has a singularity of order < 1=2 (when a2m ¤ b2n) or < 1 (when a2m D b2n) at a2m
and b2n.

(i) When a2m ¤ b2n; a2m; b2n ¤ 1, let

ga.x/ D g.x/
p
…a.x/YC.x/

; gb.x/ D g.x/
p
…b.x/YC.x/

: (20)

By applying the extended residue theorem in [5] to ZC and Z�, respectively,
we get

1

2	i

Z C1

�1
dx

p
…a.x/.x � z/

D 1

2
; z 2 ZC; (21)

and

1

2	i

Z C1

�1
dx

p
…b.x/.x � z/

D �1
2
; z 2 Z�; (22)

where …a.z/;…b.z/ are given by (2) and (5), respectively.
Substituting (20)–(22) into (19), we have

I.z/ D 1

2	i

Z C1

�1
gb.x/� gb.a2m/p
…a.x/.x � z/

dxC 1

2
gb.a2m/; z 2 ZC; (23)

and

I.z/ D 1

2	i

Z C1

�1
ga.x/ � ga.b2n/p
…b.x/.x � z/

dx � 1
2
ga.b2n/; z 2 Z�: (24)

From (23) and (24), we know I.z/ has a singularity of order < 1=2 at a2m and
b2n.
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(ii) When a2m D 1, b2n ¤ 1; the proof is the same as (i) for b2n. For a2m D 1,
by (20), we obtain

I.z/ D 1

2	i

Z C1

�1
gb.x/ � gb.1/p
…a.x/.x � z/

dxC gb.1/
2	i

Z C1

�1
dx

p
…a.x/.x � z/

WD J1.z/C gb.1/J2.z/;

where …a.z/ is defined by (8).
Putting (8) into J2.z/, the integrand of J2.z/ has order �1=2 at 1 with

respect to x. Therefore, by the extended residue theorem[5], J2.z/ 
 0 for
z 2 ZC. Taking the transformation

tC i D � 1

xC i
; wC i D � 1

zC i
(25)

and denoting the images of X; gb.x/; aj by �; g�
b .t/; a

�
j . j D 1; 2; : : : ; 2m�1/,

respectively, in particular, a�
j C i D � 1

aj C i
, then we have

I.z/ D J1.z/ D .�1/m
s
2m�1Q

jD1
.a�

j C i/

"
1

2	i

Z

�

�
g�
b .t/ � g�

b .�i/
�

dt
s

.tC i/
2m�1Q

jD1
.t � a�

j /.t � w/

� 1

2	i

Z

�

�
g�
b .t/ � g�

b .�i/
�

dt
s

.tC i/
2m�1Q

jD1
.t � a�

j /.tC i/

#

:

(26)

The second integral in (26) is a singular integral of higher order (order 3=2 at
�i, see [3, 5]) and furthermore is a constant. The first integral has a singularity
of order < 1=2 at �i, in other words, I.z/ has a singularity of order < 1=2 at
1.

(iii) When a2m ¤ 1, b2n D 1; the proof is similar to case (ii). Nevertheless, for
b2n D1, we can also take the following transformation instead of (25),

t � i D � 1

x � i
; w � i D � 1

z � i
: (27)

(iv) When a2m D b2n ¤ 1: If ‰C.a2m/ D ‰�.b2n/ D 0, then g.a2m/ D 0 by (1).
Conversely, when g.a2m/ D 0, from (19) we get that I.z/ has a singularity of
order < 1 at a2m and b2n, respectively.
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(v) When a2m D b2n D 1. Taking the transformation (25) and denoting
the images of g.x/; YC.x/; bj by g�.t/; Y�.t/; b�

j . j D 1; 2; : : : ; 2n � 1/,
respectively, in particular, b�

j C i D � 1

bj C i
, we get

I.z/ D .�1/mCn

s
2m�1Q

jD1
.a�

j C i/
2n�1Q
kD1

.b�
k C i/

�
"
1

2	i

Z

�

.2it � 1/ng�.t/dt
s
2m�1Q

jD1
.t � a�

j /
2n�1Q
kD1

.t � b�
k /Y

�.t/.tC i/.t � w/

� 1

2	i

Z

�

.2it � 1/ng�.t/dt
s
2m�1Q

jD1
.t � a�

j /
2n�1Q
kD1

.t � b�
k /Y

�.t/.t C i/2

#

:

(28)

The second integral in (28) (which is a singular integral of higher order, see
[3, 5] ) is a constant. Since g�.�i/ D g.1/ D 0, the first integral in (28) has
a singularity of order < 1 at �i, in other words, I.z/ has a singularity of order
< 1 at1.

Remark 4.1 In order to prove (v), we can also take the transformation (27) instead
of (25).

Remark 4.2 Combining this article with [6], we can consider the boundary value
problem with radicals

p
p
‰C.x/ D G.x/ q

p
‰�.x/C g.x/; x 2 X

for arbitrary positive integers p; q.

Remark 4.3 If we take the hypotheses on …a.z/ and …b.z/ as in [1, 2], we have to
extend the classical Riemann problem on X for further discussion.
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Picard Values and Some Normality Criteria
of Meromorphic Functions

Zhixue Liu and Tingbin Cao

Abstract In this paper, by making use of Nevanlinna theory and the Zalcman-Pang
lemma, we obtain some interesting results of normal criteria relating to the type of
differential polynomials f m.z/C a. f .k/.z//n, which may be seen as some significant
generalizations of normal criteria for meromorphic functions in a domain G.

Keywords Meromorphic functions • Normal family • Picard values
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1 Introduction

At the beginning of the twentieth century, P. Montel introduced the concept of
normal families and built the theory of normal families. One major study of normal
families theory is to seek normality criteria. Corresponding to the famous Picard’s
theorem which says that a nonconstant entire function can omit at most one value,
Montel obtained the following result called later as the Montel’s theorem (see [7]):
Let F be a family of holomorphic functions in G � C: If f .z/ ¤ 0, f .z/ ¤ 1 for all
f 2 F , then F is normal in G:

In recent years, various interesting results of normal criteria (for example, see
works [1–5, 8, 11]) including the form of differential polynomials for a family of
holomorphic or meromorphic functions have been established, which are benefited
from Zalcman’s lemma. One may ask whether there exist normal criteria of a family
of meromorphic functions with respect to more general differential polynomials
such as f mCa. f .k//n? In this paper, we mainly consider this and get some results as
showed in Theorems 2.1–2.3. In order to prove our theorems, we need the following
lemma by using the method of Xu [7, Lemma 1].
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Lemma 1.1 Let a.¤ 0/; b be two finite complex numbers. Suppose that f is a
meromorphic function on the complex plane with poles and zeros of orders at least
l.� 1/ and t.� 1/, respectively. If there exist three positive integers m; n; k such that
f m.z/ C a. f .k/.z//n ¤ b.m > nkC1

l C nC 1
t / or f

m C a. f .k//n 
 b.m > nk
l C n/,

then f is a constant identically.

Proof First we consider the case of f m.z/C a. f .k/.z//n ¤ b for the condition m >
nkC1

l CnC 1
t . Assume that f is not a constant, it follows from f m.z/Ca. f .k/.z//n ¤ b

that f is not a polynomial. Let

w.z/ WD a. f .k/.z//n � b

�f m.z/ ¤ 1:

Noting that w ¥ 0, we have

m 	 m.r; f / D m.r; f m/ D m

�
r;
a. f .k//n � b

�w
�

� m

�
r;
1

w

�
C n 	 m

�
r;
f .k/

f

�
C n 	 m.r; f /C O.1/:

Thus, we can get

.m � n/ 	 m.r; f / � m

�
r;
1

w

�
C S.r; f / .m > n/: (1)

On the other hand,

N

�
r;
1

w

�
D N

�
r;

f m

a. f .k//n � b

�

D .m � n/N.r; f / � nkN.r; f /C N

�
r;

1

a. f .k//n � b

�
:

Thus, we can get

�
m � n � nk

l

�
N.r; f / � N

�
r;
1

w

�
� N

�
r;

1

a. f .k//n � b

� �
m >

nk

l
C n

�
:

(2)
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Combining (1), (2) and using the first and second main theorem, we have

�
m � n � nk

l

�
T.r; f / � T.r;w/ � N

�
r;

1

a. f .k//n � b

�
C S.r; f /

� N

�
r;
1

w

�
C N.r;w/C N

�
r;

1

w � 1
�

� N

�
r;

1

a. f .k//n � b

�
C S.r; f /:

Noting that f m.z/C a. f .k/.z//n ¤ b and m > n.kC1/
l C nC 1

t , we know that

�
m � n � nk

l

�
T.r; f / � N.r; f /C N

�
r;
1

f

�
C S.r; f /

�
�
1

t
C 1

l

�
T.r; f /C S.r; f /

However, according to the given condition that m > nkC1
l C nC 1

t , it follows from
the above inequality that T.r; f / D S.r; f /, a contradiction. Hence, f should be a
constant.

Next we consider the other case of f mCa. f .k//n 
 b for the conditionm > nk
l Cn.

Then f must be a entire function. Suppose that f is not a constant. It follows from
the fact

jf jm�n � jbj C jaj 	
ˇ
ˇ
ˇ
ˇ
f .k/

f

ˇ
ˇ
ˇ
ˇ

n

C 1 .m > n/; (3)

for all f that

.m � n/T.r; f / D .m � n/ 	 m.r; f / � S.r; f /;

a contradiction for m > nk
l C n. Hence, f should be a constant. ut

As showed in the proof of Lemma 1.1, it is easy to verify that if f is an entire
function or f .z/ ¤ 0, then the restriction ofm in Lemma 1.1 is shown in Remarks 1.2
and 1.3, respectively, which will be used frequently and plays a vital role in the proof
of latter results of this paper.

Remark 1.2 Let a.¤ 0/; b be two finite complex numbers. Suppose that f is an
entire function on the complex plane with zeros of orders at least t.� 1/. If there
exist three positive integers m; n; k such that f m.z/C a. f .k/.z//n ¤ b.m > nC 1

t / or
f m C a. f .k//n 
 b.m > n/, then f is a constant identically.

Remark 1.3 Let a.¤ 0/; b be two finite complex numbers. Suppose that f is a
meromorphic function on the complex plane with poles of orders at least l.� 1/.
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If f has no zero and there exist three positive integers m; n; k such that f m.z/ C
a. f .k/.z//n ¤ b.m > nkC1

l C n/, then f is a constant identically.

2 Main Results and Proofs

Theorem 2.1 Let F be a family of meromorphic functions in a domain G and let
a.¤ 0/; b be two finite complex numbers. For each f 2 F , all zeros of every f 2 F
have multiplicity at least kC1, k 2 N

C. If there exist two positive integers m; n such
that n � mC 1 and f m.z/C a. f .k/.z//n ¤ b in G, then F is normal in G.

Proof of Theorem 2.1 Assume that F is not normal in the domain G � C: Without
loss of generality, we may assume that G is the unit disc. If b D 0, then we can
obtain f m.z/ C a. f .k/.z//n ¤ 0. It follows from the zeros of every f 2 F have
multiplicity at least kC 1 that f .z/ ¤ 0. Then by Pang-Zalcman Lemma (see works
[9, 11]), for �1 < ˛ D nk

n�m <1, there exist a sequence of points zj 2 G; zj ! z0,
a sequence of positive numbers �j ! 0 and a sequence of functions fj 2 F such that

gj.�/ D fj.zj C �j�/
�

nk
n�m
j

! g.�/

locally uniformly with respect to the spherical metric, where g.z/ ¤ 0 is a non-
constant meromorphic function on C. In addition, we know that gm.�/C a.g.k/.�//n

is the uniform limit of

gmj .�/C a.g.k/j .�//
n D � mnk

m�n
j . f mj .zj C �j�/C a. f .k/j .zj C �j�//n/ ¤ 0;

for all � 2 C. By Hurwitz’s theorem, gm.z/C a.g.k/.z//n ¤ 0 or gm C a.g.k//n 
 0
holds in C. Let’s divide into two cases:

• If gm.z/Ca.g.k/.z//n ¤ 0, then g must be a rational function (see work [10]) and
we may assume g.�/ D 1

P.�/ where P.�/ is a polynomial of degree p. Thus we
have

0 ¤ gm.�/C a.g.k/.�//n D 1

Pm.�/
C a

 �
1

P.�/

�.k/!n

D 1

Q.�/
:

where Q.�/ is a polynomial of degree q. Hence,

a

 �
1

P.�/

�.k/!n

D Pm.�/�Q.�/

Pm.�/Q.�/
; (4)
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It is easy to verify that the difference between the degree of the numerator and

denominator of a

��
1

P.�/

�.k/�n

is n. pCk/, and the difference between the degree

of the numerator and denominator of Pm.�/�Q.�/
Pm.�/Q.�/ is less than minfmp; qg. It is

impossible for (4) since n � mC 1.
• If gm C a.g.k//n 
 0, then g is an entire function. Note that g.z/ ¤ 0, by Pang-

Zalcman Lemma (see work [9, 11]), we can conclude that g.�/ D ec�Cd (note
here �.g/ � 1), where c.¤ 0/; d are two complex numbers. Thus

emc�Cmd C a.ckec�Cd/n D em.c�Cd/.1C acnke.n�m/.c�Cd// 
 0:

It is impossible since n > m, so F is normal in G.

Next we consider the case of b ¤ 0. By Pang-Zalcman Lemma (see works [9, 11]),
for ˛ D k, there exist a sequence of points zj 2 G; zj ! z0, a sequence of positive
numbers �j ! 0 and a sequence of functions fj 2 F such that

gj.�/ D fj.zj C �j�/
�kj

! g.�/

locally uniformly with respect to the spherical metric, where g is a non-constant
meromorphic function on C, all of whose zeros have multiplicity at least k C 1. In
addition, we know that a.g.k/.�//n � b is the uniformly limit of

�mkj gmj .�/C a.g.k/j .�//
n � b D f mj .zj C �j�/C a. f .k/j .zj C �j�//n � b ¤ 0:

By Hurwitz’s theorem, a.g.k/.z//n � b ¤ 0 or a.g.k//n � b 
 0 holds in C. If
a.g.k//n� b 
 0, noting that g.�/ is nonconstant, then g.�/must be a polynomial of
degree k. It is impossible since the zeros of g have multiplicity at least kC1. Hence,
a.g.k/.z//n � b ¤ 0. Based on Nevanlinna’s second main theorem, we have

T.r; g.k// � .n � 1/T.r; g.k//

� N.r; g.k//C N

�
r;

1

g.k/ � a1

�
C 	 	 	 C N

�
r;

1

g.k/ � an

�
C S.r; g.k//

� 1

kC 1T.r; g
.k//C S.r; g.k//;

where a1; a2; : : : ; an are n distinct solutions of zn D b
a (note here a ¤ 0). It follows

that T.r; g.k// D S.r; g.k//, a contradiction. In summary, F is normal in G. This
complete the proof of Theorem 2.1. ut

To show the conditions that n � m C 1 and all the zeros of f have multiplicity
kC 1 are necessary and best choices in Theorem 2.1, see the following examples.
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Example Take the family of meromorphic functions F D ffj.z/ D ejzjz 2 G; j 2
N

Cg in G D fz W jzj < 1g. Obviously, f .z/ ¤ 0 and f mj .z/C a. f .k/j .z//m D emjz.1C
ajmk/ ¤ 0 in G, but F is not normal at the point z D 0. This shows the condition
that n � mC 1 in Theorem 2.1 is necessary.

Example Take the family of meromorphic functions F D ffj.z/ D jzkjz 2 G; j 2
N

Cg in G D fz W jzj < 1g. Noting that all the zeros of f have multiplicity k, and we
know that in G, f mj C a. f .k/j /n D jmzmk C a. jkŠ/n ¤ 1 for j large enough, but F is
not normal at the point z D 0. This shows the condition that all the zeros of f have
multiplicity kC 1 in Theorem 2.1 is necessary.

Theorem 2.2 Let F be a family of meromorphic functions in a domain G and let
a.¤ 0/; b be two finite complex numbers. For each f 2 F , if there exist three positive
integers m; n; k such that m � n.kC 1/C 3 and f m.z/C a. f .k/.z//n ¤ b in G, then
F is normal in G.

Proof of Theorem 2.2 Assume that F is not normal in the domain G � C: In view
of Pang-Zalcman Lemma (see works [9, 11]), we may choose �1 < ˛ D nk

n�m < 1.
It follows from Remarks 1.2 and 1.3 that g must be a constant (note here m �
n.kC 1/C 1), similarly as in the proof of Theorem 2.1. This is a contradiction and
we complete the proof of Theorem 2.2. ut
Theorem 2.3 Let F be a family of meromorphic functions in a domain G and let
a.¤ 0/; b be two finite complex numbers. There exist three positive integers m; n; k
such that m � n.k C 1/C 1. For each f 2 F , if f has no simple pole and f m.z/ C
a. f .k/.z//n ¤ b in G, then F is normal in G.

Proof of Theorem 2.3 For the case of n D k D 1, we can see [6]. Next we consider
the fact that n.kC1/C1 > nkC1

2
CnC1 for the case of nk � 2. Assume that F is not

normal in the domain G � C: Then by Pang-Zalcman Lemma (see works [9, 11]),
we may choose �2 < ˛ D nk

n�m < 1 and in view of Remarks 1.2 and 1.3, g must be
a constant (note here m � n.k C 1/ C 3), a contradiction. Thus, we completes the
proof of Theorem 2.3. ut
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Rational Approximation of Functions in Hardy
Spaces

Deng Guantie, Li Haichou, and Qian Tao

Abstract We present some results on rational approximation, Laplace integral
representation and Fourier spectrum characterization of functions in the Hardy
Spaces. These generalize the results of Stein and Weiss in the same context for
p D 2; as well as the Poisson and the Cauchy integral representation formulas for
the H2 spaces to the Hp spaces on tubes for p 2 Œ1;1�:
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1 Hardy Space in the Half Plane

The classical Hardy space Hp.Ck/; 0 < p < C1; k D ˙1, consists of the functions
f analytic in the half plane Ck D fz D x C iy W ky > 0g: They are Banach spaces
under the norms

k fkHp
k
D sup

ky>0

�Z 1

�1
j f .xC iy/jpdx

� 1
p
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is finite. A function f 2 Hp.Ck/ has non-tangential boundary limits (NTBLs) f .x/
for almost all x 2 R; and the boundary function belongs to Lp.R/, and

k fkp D
�Z 1

�1
j f .x/jpdx

� 1
p

D k fkHp
k
:

For p D 1 the Hardy spaces H1.Ck/ .k D ˙1/ are defined to be the set of bounded
analytic functions in Ck: They are Banach spaces under the norms

k fkH1

k
D supfj f .z/j W z 2 Ckg:

As for the finite indices p cases any f 2 H1.Ck/ has non-tangential boundary limit
(NTBL) f .x/ for almost all x 2 R: Similarly, we have

k fk1 D ess supfj f .x/j W x 2 Rg D k fkH1.Ck/:

We note that g.z/ 2 Hp.C�1/ if and only if the function f .z/ D g.Nz/ 2 Hp.CC1/.
The correspondence between their non-tangential boundary limits and the functions
themselves in the Hardy spaces is an isometric isomorphism. We denote by Hp

k .R/

the spaces of the non-tangential boundary limits, or, precisely,

Hp
k .R/ D

�
f W R! C; f is the NTBL of a function in Hp.Ck/

�
:

For p D 2 the Boundary Hardy spaces H2
k .R/ are Hilbert spaces. We will need some

very smooth classes of analytic functions that are dense in Hp.CC1/ and will play
the role of the polynomials in the disc case. Garnett [1] has shown the following
results.

Theorem A ([1]) Let N be a positive integer. For 0 < p < 1; pN > 1, the class
AN is dense in Hp.CC1/, where AN is the family of Hp.CC1/ functions satisfying

(i) f .z/ is infinity differentiable in the closed upper plane CC1,
(ii) jzjNf .z/! 0 as z!1; z 2 CC1.

We shall notice that the condition pN > 1 implies the class AN is contained in
Hp.CC1/. Let ˛ be a complex number and RN.˛/ the family of rational functions
f .z/ D .z C ˛/�N�1P..z C ˛/�1/, P.w/ are polynomials. We notice that the class
RN.˛/ is contained in the class AN for Im˛ > 0.

The first, replaced the class AN by the class RN.i/, we will generalize Theorem
A to as follows.

Theorem 1 Let N be a positive integer. For 0 < p < 1; Np > 1, the class RN.i/
is dense in Hp.CC1/.

Corollary 2 Let N be a positive integer. For 0 < p <1; Np > 1, the classRN.�i/
is dense in Hp.C�1/.
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The second is decomposition of functions in Lp.R/; 0 < p < 1; into sums of
the corresponding Hardy space functions in Hp

C1.R/ and in Hp
�1.R/ for the same

range of the indices p through rational functions approximation, and, in fact, rational
atoms.

Theorem 3 (Hardy Spaces Decomposition of Lp Functions for Index Range 0 <
p < 1) Suppose that 0 < p < 1 and f 2 Lp.R/. Then, there exist two sequences of
rational functions fPk.z/g and fQk.z/g such that Pk 2 Hp.CC1/, Qk 2 Hp.C�1/ and

1X

kD1

�
kPkkpHp

C1

C kQkkpHp
�1

�
� Apk fkpp; (1)

lim
n!1 jj f �

nX

kD1
.Pk C Qk/jjp D 0; (2)

where Ap D 2C 4	.1� p/�1. Moreover,

g.z/ D
1X

kD1
Pk.z/ 2 Hp.CC1/; h.z/ D

1X

kD1
Qk.z/ 2 Hp.C�1/; (3)

and g.x/ and h.x/ are the non-tangential boundary values of functions for g 2
Hp.CC1/ and h 2 Hp.C�1/, respectively, f .x/ D g.x/ C h.x/ almost everywhere,
and

k fkpp � kgkpp C khkpp � Apk fkpp;

that is, in the sense of Lp.R/,

Lp.R/ D Hp
C1.R/C Hp

�1.R/:

For the uniqueness of the decomposition, we can ask the following question: what is
the intersection space Hp

C1.R/
T

Hp
�1.R/? Aleksandrov [2, 3] has given an answer

for this problem.

Theorem B ([2] and [3]) Let 0 < p < 1 and Xp denote the Lp closure of the set of
f 2 Lp.R/ which can be written in the form

f .x/ D
NX

jD1

cj
x � aj

; aj 2 R; cj 2 C:

Then

Xp D Hp
C1.R/

\
Hp

�1.R/:
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Aleksandrov’s proof [2, 3] is quite complicated and makes use of the vanishing
moments and the Hilbert transform, so it is necessary to give more simple proof for
his result.

Schwarz’s class S.Rn/ is defined to be the class of all those C1 function ' on
R
n(i.e., all the partial derivatives of ' exist and are continuous) such that

sup
x2Rn
jx˛Dˇ'.x/j <1;

for all n-tuples ˛ D .˛1; ˛2; : : : ; ˛n/ and ˇ D .ˇ1; ˇ2; : : : ; ˇn/ of nonnegative
integers. The Fourier transform of a function f 2 L1.R/ is defined, for x D
.x1; : : : ; xn/ 2 R

n, by

Of .x/ D
Z

R

f .t/e�2	 ix�tdt; x 	 t D
nX

kD1
xktk:

We recall that the Fourier transformation of a tempered distribution T is defined
through the relation .bT; '/ D .T; O'/ for ' in the Schwarz class S.Rn/: This
coincides with the traditional definition of Fourier transformation for functions
in Lp.Rn/; 1 � p � 2. A measurable function f such that f .x/.1 C jxj2/�m 2
Lp.Rn/ .1 � p � 1/ for some positive integer integer m is called a tempered Lp

function (when p D 1 such a function is often called a slowly increasing function).
The Fourier transform is a one to one mapping from S.Rn/ onto S.Rn/. It is proved
in T. Qian’s paper [4], that a function in Hp

C1.R/; 1 � p � 1; induces a tempered
distribution Tf such that supp OTf � Œ0;1/: In T. Qian, Y. S. Xu, D. Y. Yan, L.
X. Yan and B. Yu’s paper [5], the converse of the result is proved: Let Tf be the
tempered distribution induced by f in Lp.R/; 1 � p � 1: If supp OTf � Œ0;1/; then
f 2 Hp

C1.R/: The classical Paley-Wiener Theorem deals with the Hardy H2.CC1/
space asserts that f 2 L2.R/ is the NTBL of a function in H2.CC1/ if and only if
suppOf � Œ0;1/: Moreover, in such case, the integral representation

f .z/ D
Z 1

0

e2	 itz Of .t/dt (4)

holds. The third is to extend the formula (4) to 0 < p < 1.

Theorem 4 (Integral Representation Formula for Index Range 0 < p � 1) If
0 < p � 1; f 2 Hp.CC1/, then there exist a positive constant Ap, depending only
on p, and a slowly increasing continuous function F whose support is contained in
Œ0;1/, satisfying that, for ' in the Schwarz class S,

.F; '/ D lim
y>0;y!0

Z

R

f .xC iy/ O'.x/dx;

and that

jF.t/j � Apk fkHp
C1
jtj 1p �1

; .t 2 R/ (5)



Rational Approximation of Functions in Hardy Spaces 193

and

f .z/ D
Z 1

0

F.t/e2	 itzdt .z 2 CC1/: (6)

At page 197 of the book [6], P. Duren explicitly says the argument of the integral
representation (4) can be generalized to give a similar representation for Hp.CC1/
functions, 1 � p < 2. But the detained argument is not given in his book [6], only
one conclusion for p D 1 is given.

Theorem C ([6], Integral Representation Formula for Index Range 1 � p � 2)
Suppose 1 � p � 2; f 2 Lp.R/. Then f 2 Hp

C1.R/ if and only if supp Of � Œ0;C1/.
If the condition is satisfied, then the integral representation (4) holds.

We, in fact, prove analogous formulas for all the cases 0 < p � 2: For the
range 0 < p < 1 we need to prove extra estimates to guarantee the integrability.
The idea of using rational approximation is motivated by the studies of Takenaka-
Malmquist systems in Hardy Hp spaces for 1 � p � 1 [7, 8]. For the range of
1 � p � 1 this aspect is related to the Plemelj formula in terms of Hilbert transform
that has immediate implication to Fourier spectrum characterization in the case. For
the range of 0 < p < 1 the Plemelj formula approach is not available.

2 Hp Space on Tube

The Fourier spectrum properties of the functions as non-tangential boundary limits
of those in the classical Hardy spaces Hp.Ck/; 1 � p � 1; are completely
characterized. The characterization is in terms of the location of the supports of the
classical or distributional Fourier transforms of those boundary limit functions. It is
shown that, for f 2 Lp.R/; 1 � p � 1; f is the non-tangential boundary limit of a
function in such a Hp.CC1/ if and only if suppOf , for 1 � p � 2; or, alternatively, the
distributional suppOf ; for 2 < p � 1; is contained in Œ0;1/: For p D 2 this property
of the Hardy space functions is known as one of the two types of the Paley-Wiener
Theorems.

Let B be an open subset of Rn. Then, the tube, TB, with base B is the subset of all

z D .z1; z2; : : : ; zn/ D .x1 C iy1; : : : ; xn C iyn/ D xC iy 2 C
n

such that y 2 B. In other words, tube can be represented as follows:

TB D fz D xC iy 2 C
nI x 2 R

n; y 2 B � R
ng:

For example, CC is the tube in C with base B D fy 2 RI y > 0g. Obviously, the tube
TB is the generalization of CC.
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A function holomorphic on the tube TB is said to belong to the space Hp.TB/; 0 <
p <1; if there exists a positive constant A such that

Z

Rn

jF.xC iy/jpdx � Ap;

for all y 2 B. That is to say, Hp.TB/ can be defined as follows:

Hp.TB/ D
8
<

:
F W F 2 H.TB/; sup

8
<

:

Z

Rn

jF.xC iy/jpdx W y 2 B

9
=

;
<1

9
=

;
:

Let F be a distribution and f .x C iy/ an analytic function in T� , where � is the
first octant:

� D fy D .y1; : : : ; yn/ 2 R
n W yk > 0; k D 1; : : : ; ng:

If for any ' in the Schwarz class S.Rn/,

Ff .'/ D .F; '/ D lim
y>0;y!0

Z

Rn
f .xC iy/'.x/dx

exists, then we say F is a Hardy distribution and f .xC iy/ is an analytic representa-
tion of F, where y D .y1; : : : ; yn/ > 0 means that each yk > 0; k D 1; : : : ; n.

Theorem 5 If � is the first octant, F is the Hardy distribution represented by the
boundary value of a function in Hp.T�/; 1 < p < 1, then supp OF � � , that is
. OF; '/ D 0, for all ' 2 S.Rn/, such that supp' � .�/c D R

n n � .
Theorem 6 If � is the first octant and f 2 Lp.Rn/; 1 < p <1, and . Of ; '/ D 0, for
for any ' in the Schwarz class S.Rn/ with supp� � .�/c. Then f is the boundary
value of a function in Hp.T�/; 1 < p <1.

Let � be a open set in R
n satisfying the following two conditions:

.1/ 0 does not belong to �;

.2/ For any x; y 2 � , and any ˛; ˇ > 0, there holds ˛xC ˇy 2 �: then we call �:
open convex cone with vertex at 0, we note that such a � is convex.

We need to introduce the dual cone of � , denoted by ��, which is defined as
�� D fy 2 R

n W y 	 x � 0; for any x 2 �g: An open convex cone � is said
to be regular if the interior of its dual cone �� is nonempty. An open subset �
of Rn is called a polygonal cone if it is the interior of the convex hull of a finite
number of rays meeting at the origin among which we can find at least n sides that
are linearly independent. We call a polygonal cone an n-sided polygonal cone if
the minimum number of linearly independent rays convex-spanning � is exactly n.
There are two important kernels related to Hardy spaces Hp.T�/. They are Cauchy
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kernel and Poisson kernel, whose definitions and the relationship between them had
been given by some reference. If � is a regular open convex cone of Rn, then the
function

K.z/ D
Z

��

e2	 iz�t dt (7)

for z 2 T� acts as the Cauchy kernel in the tube T� . The function P.x; y/ D
jK.z/j2=K.2iy/ .z D x C iy 2 T�/ may be verified to play the role of Poisson
kernel in the tube T� . For the classical one-dimensional upper-half plane case the
Poisson kernel P.x; y/ D 1

	

y
x2Cy2

coincides with the one obtained from the above
definition.

As mentioned previously, if � is the first octant of Rn, then its dual cone is the
closure of � , viz., �� D � . The Cauchy kernel associated with the first octant of

C
n can be computed explicitly. We have [9] K.z/ D

nQ

jD1
�1
2	 izj

for z 2 T� . That is, the

Cauchy kernel K.z/ associated with the first octant is simply the product of n copies
of the one-dimensional Cauchy kernels associated with the upper-half plane.

It follows that the Poisson kernel associated with the tube T� , that is the first
octant of C

n, is the product of n copies of the one-dimensional Poisson kernels
associated with the upper-half plane:

P.x; y/ D jK.z/j2=K.2iy/ D
nY

jD1

1

	

yj
x2j C y2j

: (8)

Theorem 7 Let � be a regular open cone in R
n and F.x/ 2 Lp.Rn/; 1 � p � 2:

Then F.x/ is the boundary limit function of some F.xC iy/ 2 Hp.T�/ if and only if
the support supp OF � ��. Moreover, if the condition is satisfied, then

F.z/ D
Z

��

e2	 iz�t OF.t/ dt D
Z

Rn
F.t/K.z � t/ dt D

Z

Rn
P.x � t; y/F.t/ dt;

where K.z/ and P.x; y/ are, respectively, the Cauchy kernel and the Poisson kernel
for the tube T� :

Theorem 8 Let � be a regular open cone in R
n, and F.z/ 2 Hp.T�/; 2 < p � 1:

Then F.x/, as the boundary limit of F.z/, is the tempered holomorphic distribution
represented by the function F.z/: Moreover, d-supp OF � ��, that is . OF; '/ D 0 for
all ' 2 S.Rn/ with supp' � Rn n ��:

Theorem 9 Let � be a regular open cone in Rn. Suppose that F.z/ 2 Hp.T�/; 1 �
p � 1; and F.x/ is the boundary limit function of the function F.z/. If F.x/ 2
Lq.Rn/; 1 � q � 1, then F.z/ 2 Hq.T�/.
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Theorem 10 Let � be a regular open cone in R
n. If F 2 Lp.Rn/; 2 < p � 1, and

. OF; '/ D 0, for all ' 2 S.Rn/ with supp' � Rn n ��, then F is the boundary value
of a function in Hp.T�/:

Theorem 11 Let K.z/ be the Cauchy kernel associated with the tube T� , where �
is the first octant of Rn, F.x/ 2 Lp.Rn/; 1 < p <1; and

C.F/.z/ D
Z

Rn
F.t/K.z � t/ dt:

Then C.F/.z/ 2 Hp.T�/; and there exists a finite constant Cp; depending only on p
and the dimension n such that

Z

Rn
jC.F/.xC iy/jp dx � Cp

Z

Rn
jF.x/jp dx:

Theorem 12 Let � be the fist octant of Rn. If F.z/ 2 Hp.T�/; 1 � p < 1; then
F.z/ is the Cauchy integral of its boundary limit F.x/; that is,

F.z/ D
Z

Rn
F.t/K.z � t/ dt; z 2 T� : (9)

where K.z/ is the Cauchy kernel of the tube T� .

Corollary 13 Let K.z/ be the Cauchy kernel associated with the tube T� , where �
is a polygonal cone in Rn, F.x/ 2 Lp.Rn/; 1 < p <1; and

C.F/.z/ D
Z

Rn
F.t/K.z � t/ dt:

Then C.F/.z/ 2 Hp.T�/; and there exists a finite number N depending on �; and a
constant Cp; the same as in Theorem 11, such that

Z

Rn
jC.F/.xC iy/jp dx � NCp

Z

Rn
jF.x/jp dx:

Corollary 14 Let � be a polygonal cone in R
n. If F.z/ 2 Hp.T�/; 1 � p < 1;

then F.z/ is the Cauchy integral of its boundary limit F.x/; that is,

F.z/ D
Z

Rn
F.t/K.z � t/ dt; z 2 T� : (10)

where K.z/ is the Cauchy kernel of the tube T� .
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Suita Conjecture for a Punctured Torus

Robert Xin Dong

To my family

Abstract For a once-punctured complex torus, we compare the Bergman kernel
and the fundamental metric, by constructing explicitly the Evans-Selberg potential
and discussing its asymptotic behaviors. This work aims to generalize the Suita type
results to potential-theoretically parabolic Riemann surfaces.

Keywords Arakelov-Green function • Arakelov metric • Bergman kernel •
Evans-Selberg potential • Fundamental metric • Suita conjecture

Mathematics Subject Classification (2010) Primary 32A25; Secondary 14K25,
31A05

1 Introduction

The Suita conjecture [12] asks about the precise relations between the Bergman
kernel and the logarithmic capacity. For potential-theoretically hyperbolic Riemann
surfaces, it was conjectured that the Gaussian curvature of the Suita metric (induced
from the logarithmic capacity) is bounded from above by�4. The relations between
the Suita conjecture and the L2 extension theorem were first observed in [7] and later
contributed by several mathematicians. The Suita conjecture proved to be true for
the hyperbolic case (see [1, 2, 5, 8]), and it might be interesting to generalize similar
results to non-hyperbolic cases. In this article, for a once-punctured complex
torus X�;u WD X�nfug, which is a typical potential-theoretically parabolic Riemann
surface, we construct a so-called Evans-Selberg potential and further derive a so-
called fundamental metric.

R.X. Dong (�)
Instytut Matematyki, Uniwersytet Jagielloński, Łojasiewicza 6, 30–348 Kraków, Poland
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Theorem 1.1 On X�;u, let K�;u and c�;u be the Bergman kernel and the fundamental
metric, respectively. In the local coordinate w, write K�;u D k�;u.w/jdwj2 and c�;u D
c�;u.w/jdwj2. Then, as w! u,

	k�;u.w/

c2�;u.w/
� 	 	 jw � uj2

2 	 Im � ! 0C:

We also study the degenerate case when a once-punctured complex torus
becomes a singular curve and obtain the following result.

Theorem 1.2 Under the same assumptions as in Theorem 1.1, as Im � ! C1; it
follows that

	K�;u.w/

c2�;u.w/
! 0C:

As we can see, either Theorem 1.1 or Theorem 1.2 will imply that the Gaussian
curvature of the fundamental metric on X�;u can be arbitrarily close to 0�, which is
different from the hyperbolic case.

Corollary 1.3 The Gaussian curvature of the fundamental metric on a once-
punctured complex torus cannot be bounded from above by a negative constant.

2 Preliminaries

On a potential-theoretically parabolic Riemann surface R, there exists a so-called
Evans-Selberg potential, which is a counterpart of the Green function for the
hyperbolic case. Let us recall the definition of an Evans-Selberg potential and the
so-called fundamental metric (cf. [10, p. 351], [11, p. 114], [6]).

Definition 2.1 On an open Riemann surface †, an Evans-Selberg potential Eq.p/
with a pole q 2 † is a real-valued function such that:

.i/ For all p 2 † n fqg, Eq.p/ is harmonic with respect to p,
.ii/ Eq.p/! C1, as p! a1 (the Alexandroff ideal boundary point),
.iii/ Eq.p/� log j'.p/�'.q/j is bounded near q, with ' being the local coordinate.

Definition 2.2 On a potential-theoretically parabolic Riemann surface †, the fun-
damental metric under the local coordinate z D '.p/ is defined as

c.z/jdzj2 WD exp lim
q!p



Eq.p/� log j'.p/� '.q/j� jdzj2:

The fundamental metric is a non-compact counterpart of the Arakelov metric,
and it coincides at the hyperbolic case with the Suita metric. The Gaussian curvature
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form of the fundamental metric is

� 4 @2

@z@Nz log c.z/ D �4	k.z/; (1)

where k.z/ .� 0/ is the coefficient of the Bergman kernel .1; 1/-form in the local
coordinate z. For a compact complex torus X� WD C= .ZC �Z/, where � 2 C and
Im � > 0, its Bergman kernel by definition is K� .z/ D .Im �/�1dz ^ dNz; where z is
the local coordinate induced from the complex plane C.

Definition 2.3 A once-punctured complex torus X�;u WD X�nfug is an open
Riemann surface obtained by removing one single point u from a compact complex
torus X� .

Proposition 2.4 There exists no non-constant subharmonic function which is
bounded from above on X�;u.

On the one hand, the parabolicity of X� follows straightforwardly from Remov-
able Singularity Theorem, which also applies to finitely punctured Riemann sur-
faces. On the other hand, there exists a proof (by using Maximum Principle and
finding a harmonic function, as we will see below) that works for an open Riemann
surface X of infinitely many genus. Equivalently, we could say that X admits an
Evans-Selberg potential.

Proposition 2.5 There exists no non-constant subharmonic function which is
bounded from above on the algebraic curve

X WD
(

.y; x/ 2 C
2

ˇ
ˇ
ˇ̌
ˇ
y2 D x

1Y

nD1



1 � x2=n2

�
)

:

Sketch of proof The idea is by contradiction and suppose there exists a subharmonic
function u which is bounded from above on X. On X, we define

f .y; x/ WD
�
0; jxj � 1
log jxj; jxj > 1;

and consider v WD u � �f . Taking a limit as � tends to 0, one will prove that the
maximum is attainable at the “lift” of the unit circle (away from the boundary). By
Maximum Principle, one concludes that u is constant. ut

Explicit formulas of Evans-Selberg potentials and fundamental metrics on planar
domains are provided in [4].
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3 A Compact Torus

The Arakelov-Green function on a complex torus X� with a pole w satisfies

@2gw.z/

@zN@z D
	

2

�
ı.z� w/� 1

Im �

�
; (2)

and can be expressed via the theta function as

gw.z/ D log

ˇ
ˇ
ˇ̌
1.z� wI q/

.�/

ˇ
ˇ
ˇ̌� 	 	 .Im.z� w//2

Im �
: (3)

Here .�/ D q
1
12 	Q1

mD1.1 � q2m/ and


1.zI q/ WD 2q1=4 sin.	z/
1Y

nD1
.1 � q2n/.1 � 2 cos.2	z/q2n C q4n/;

for q D exp.	i�/. In this case, it is possible to compare the Bergman kernel
and the Arakelov metric. For X� , the author in [3] numerically obtained a sharp
negative upper bound for the Arakelov metric by computing via elliptic functions.1

Alternatively, the Gaussian curvature of the Arakelov metric can be computed by
Mathematica (Version 10.3). Recall that for the hyperbolic case, the Green function
is always less than 0 in the interior. However, the supremum of an Arakelov-Green
function on a torus can be positive at some points, illustrated in Fig. 1 (plotted by
Mathematica).

4 A Once-Punctured Torus

Theorem 4.1 There exists an Evans-Selberg potential on X�;u with a pole w given
by

E�;uw .z/ D log

ˇ
ˇ̌
ˇ

1.z � wI q/

1.z � uI q/

ˇ
ˇ̌
ˇ ;

for z 2 X�;u n fwg:
Proof of Theorem 4.1 We see that the two terms on the right-hand side of (3) are
responsible for the two terms on the right-hand side of (2), respectively. Keeping

1The author apologizes for several mistakes contained in [3].
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Fig. 1 An Arakelov-Green function on a torus

this in mind, we can construct the Evans-Selberg potential by attaching physics
meanings. We regard the potential as an electric flux generated at the pole w and
terminates at the boundary point u (see [9] for detailed physics explanations). So,
the Evans-Selberg potential E�;uw .z/ with a pole w satisfies

@2E�;uw .z/

@zN@z D 	

2
.ı.z� w/ � ı.z� u// ;
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and can be expressed via the theta function as

E�;uw .z/ D log

ˇ
ˇ
ˇ̌
1.z � wI q/

.�/

ˇ
ˇ
ˇ̌ � log

ˇ
ˇ
ˇ̌
1.z � uI q/

.�/

ˇ
ˇ
ˇ̌ D log

ˇ
ˇ
ˇ̌
1.z � wI q/

1.z � uI q/

ˇ
ˇ
ˇ̌

D log

ˇ̌
ˇ
ˇ
sin.	.z � w// 	Q1

mD1.1 � 2 cos.2	.z� w// 	 q2m C q4m/

sin.	.z � u// 	Q1
mD1.1 � 2 cos.2	.z� u// 	 q2m C q4m/

ˇ̌
ˇ
ˇ :

ut
Corollary 4.2 There exists a fundamental metric c�;u on X�;u in the local coordinate
w given by

c�;u.w/jdwj2 D 2	 	 j.�/j3
j
1.w � uI q/j jdwj

2:

Proof This can be verified by definition, since

c�;u.w/ D exp lim
z!w

�
log

ˇ
ˇ
ˇ
ˇ

1.z � wI q/

1.z � uI q/

ˇ
ˇ
ˇ
ˇ� log jz� wj

�

D
ˇ
ˇ
ˇ
ˇ

	 	Q1
mD1.1 � q2m/2

sin.	.w � u// 	Q1
mD1.1 � 2 cos.2	.w� u// 	 q2m C q4m/

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ̌
ˇ

	 	 .�/2
q
1
6 	 sin.	.w � u// 	Q1

mD1.1 � 2 cos.2	.w� u// 	 q2m C q4m/

ˇ
ˇ
ˇ̌
ˇ

D
ˇ
ˇ
ˇ
ˇ̌
	 	 .�/2 	 2q 1

4 	Q1
mD1.1 � q2m/

q
1
6 	 
1.w � uI q/

ˇ
ˇ
ˇ
ˇ̌

D

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

	 	 .�/2 	 2q 1
4 	 .�/

q
1
12

q
1
6 	 
1.w� uI q/

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
D
ˇ
ˇ
ˇ
ˇ
2	 	 .�/3

1.w � uI q/

ˇ
ˇ
ˇ
ˇ :

ut
By the second equality above, c�;u has the following asymptotic behavior, which

will yield Theorem 1.2 for any fixed � .

Corollary 4.3 Under the same assumptions as in Corollary 4.2, as w ! u, it
follows that

c�;u.w/ � 1

jw � uj ! C1:
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5 The Degenerate Case

By studying the asymptotic behaviors of the fundamental metric under degeneration
with respect to the complex structure, we will prove Theorem 1.2. Relating
Theorem 1.2 with (1), we further get Corollary 1.3.

Proof of Theorem 1.2 Let Im � ! C1; and q 
 exp.	i�/ will tend to 0. Then, it
holds that

c�;u.w/!
ˇ
ˇ
ˇ
ˇ

	 	Q1
mD1.1 � 02m/2

sin.	.w � u// 	Q1
mD1.1 � 2 cos.2	.w� u// 	 02m C 04m/

ˇ
ˇ
ˇ
ˇ

! 	

j sin.	.w � u//j :

Therefore, it follows that

	K�;u.w/

c2�;u.w/
! j sin.	.w � u//j2

2 	 Im � 	 	 ! 0C;

since the denominator is uniformly bounded by 1 for any fixed w. ut
On the one hand, at the degenerate case of potential-theoretically hyperbolic

Riemann surfaces, we are not sure whether Gaussian curvatures of the Suita metrics
are still bounded from above by �4. On the other hand, for a compact complex
torus, the Gaussian curvature of the Arakelov metric is always 0 by the genus reason,
although our earlier result in [3] shows that as Im � ! C1;

	K� .w/

c2� .w/
! C1:
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Plemelj Formula for Bergman Integral on Unit
Ball in Hermitean Clifford Analysis

Min Ku and Fuli He

Abstract In this paper, we construct the Bergman kernel on the unit ball of R2n in
the setting of Hermitean Clifford analysis, and then derive the Plemelj formula for
the Bergman integral on the unit ball.

Keywords Bergman kernel • Hermitean Clifford analysis • Plemelj formula
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1 Introduction

The well-known Bergman kernel arose from the works of Bergman. It is a repro-
ducing kernel of the Hilbert space of all square integrable holomorphic functions
defined in a domain of Cn [1]. To our knowledge, the study of the Bergman kernel
has deeply influenced the development of the theory of functions of several complex
variables [2, 3]. Moreover, the Bergman integral has provided a tool to solve partial
differential equations of several complex variables [2, 3]. However, because of the
dependence on the domains considered of the Bergman kernel, in general it is
difficult to give an explicit and closed formula. Nowadays, such problems are being
widely investigated by many scholars. As a principal reference for this theory we
mention [4].

In parallel to the theory of functions of several complex variables, Clifford
analysis is an elegant generalization of the classical complex analysis into higher
dimensions [5, 6]. In the past decays, the theory of the Bergman space has been

M. Ku
CIDMA, Department of Mathematics, University of Aveiro, P-3810-193 Aveiro, Portugal
e-mail: kumin0844@163.com

F. He (�)
School of Mathematics and Statistics, Central South University, Changsha 410083, People’s
Republic of China
e-mail: hefuli999@163.com

© Springer International Publishing AG 2017
P. Dang et al. (eds.), New Trends in Analysis and Interdisciplinary Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-48812-7_26

207

mailto:kumin0844@163.com
mailto:hefuli999@163.com


208 M. Ku and F. He

extended to the setting of Clifford analysis. In [7], the authors constructed the
explicit formulas for the monogenic Bergman kernel on the unit ball and on the half-
space using the general approach of constructing the reproducing kernels in a Hilbert
space. In [8], the Bergman kernel function in Clifford analysis had been studied
on the unit ball using the Bergman projection. In [9, 10] the authors developed
the Bergman kernel and the Bergman integral in Clifford analysis in virtue of the
Green function, analogous to the relationship between the Green function and the
Bergman kernel function in the classical complex analysis. More results involving
the construction of monogenic Bergman kernel functions in an explicit form on the
special domains in the framework of hyper-complex function theory can be also
found in references, e.g., [11, 12]. In the recent years, as a refinement of the Clifford
analysis, the Hermitean Clifford analysis centres on the h-monogenic functions (see
Sect. 2), and links to the holomorphic function theory of several complex variables,
see, e.g., [13–15]. As far as we know, although the Cauchy formula, the Hilbert
transform and Taylor series for h-monogenic functions (c.f. [14–16]) were gotten,
so far few results about the explicit integral formulae for the h-monogenic functions
defined in a domain of the higher dimensional Euclidean space of even dimension.
Thus, it is natural to know do such these problems look like. In this paper we will
devote to find the Bergman kernel on the unit ball in the setting of the Hermitean
Clifford analysis, and get an explicit Plemelj formula for the Bergman integral on
the unit ball.

2 Bergman Kernel in Hermitean Clifford Analysis

Let e1; : : : ; e2n be an orthogonal basis of the Euclid space R
2n. C2n is the com-

plex associate but non-communicative Clifford algebra constructed over R2n. The
Euclidean space R

2n is embedded in the Clifford algebra C2n by identifying
.x1; : : : ; x2n/ with the real Clifford vector x given by x D P2n

iD1 eixi. For j D
1; : : : ; n, the Witt basis .ej; e

�
j /

n
jD1 for the algebra C2n are obtained through the action

of˙.12n ˙ iJ/ on the orthogonal basis elements

ej D .1C iJ/Œej� D .e2j�1 � ie2j/; e
�
j D �.1 � iJ/Œej� D �.e2j�1 C ie2j/;

where the complex structure J is a particular element of SO.2n/, satisfying
J2 D�12n. The Hermitean Clifford variables z and its conjugate z� are

z D.1C iJ/Œx� D xC ixj D
nX

jD1
ejzj; z

� D�.1 � iJ/Œx� D �.x � ixj/ D
nX

jD1
e
�
j z

c
j ;

where n complex variables zj D x2j�1 C ix2j have been introduced, with complex
conjugates zcj D x2j�1� ix2j; j D 1; : : : ; n. The Hermitean Dirac operators @z and @z�
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are derived from the following orthogonal Dirac operator @x DPm
iD1 ei@xi , given by

@z D 1

2
.1C iJ/Œ@x� D

nX

jD1
e
�
j @zj ; @z� D �

1

2
.1 � iJ/Œ@x� D

nX

jD1
e
�
j @zcj ;

involving the classical Cauchy-Riemann operators @zj D 1
2
.@x2j�1 � i@x2j/ and their

conjugate @zcj D 1
2
.@x2j�1 C i@x2j/ on the complex zj-plane. The (left) h-monogenic

function in � � R
2n is a function f .x/ D f .z; z�/(or f .z/ for short) taking values in

C2n for which @zf D @z� f D 0 in �. The space of all h-monogenic functions in � is
denoted by Mh.�/. More details about the Hermitean Clifford analysis can be seen
in references, e.g., [12–16].

In this context the Bergman space of the square integrable h-monogenic functions
is the space A2.�/ D Mh.�/ \ L2.�/. Given the complex Clifford inner product
< f ; g >D R

�

�
f .z/g�.z/

�
0
dV.z/, it is a Hilbert space, where Œ	�0 denotes the scalar

part. Its reproducing kernel, the so-called Bergman kernel, is uniquely defined,
and satisfies f .z/ D R

�
K�.z;w/f .w/dV.w/ for any square integrable h-monogenic

functions defined in � � R
2n. Moreover, its kernel is Hermitean conjugate

symmetric, i.e., K�.z;w/ D K��.w; z/.
The unit ball is Bn D

˚
z D xC iJŒx� 2 R

2n Š C
n W jzj < 1� : Restricted attention

to the unit ball Bn � R
2n Š C

n, the functions zˇ D Pn
jD1 ejz

ˇj
j ; ˇ D .ˇ1; : : : ; ˇn/

belong to A2.Bn/, and they are pairwise orthogonal by the symmetry of the ball.
Following the same arguments contained in [2–4], we announce the following
conclusions without proof.

Lemma 2.1 Let z 2 Bn � R
2n Š C

n: Then

KBn.z; re1/ D
nŠ

	n

1

.1 � rz1/nC1 ; 0 < r < 1;

where e1 D .e1 � ie2/ is the first element of the Witt basis, and z1 D x1 C ix2 is the
first complex variable.

Theorem 2.2 If z;w 2 Bn, then

KBn.z;w/ D
nŠ

	n

1

.1 � z 	 w�/nC1 ;

where z 	 w� D z1wc
1 C 	 	 	 C znwc

n.
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3 Plemelj Formula of Bergman Integral

Let f .z/ be a C2n-valued function defined in Bn, for 0 < ˛ � 1. We call f 2
H˛.Bn;C2n/ if

ˇ
ˇ f .z/ � f .w/

ˇ
ˇ D O



Œ.z � w/ 	 .z � w/��

˛
2

�
;8z;w 2 Bn. For arbitrary

t 2 @.Bn/, we define the principal value of the Bergman integral

p:v:
Z

Bn

KBn.t;w/f .w/dV.w/ D lim
"!0

Z

w2Bn ;
jw�tj�"

KBn.t;w/f .w/dV.w/:

Lemma 3.1 If n D 1, then

p:v:
Z

Bn

KBn.e;w/dV.w/ D
1

2
;

where e D .e1 � ie2/ and e� D �.e1 C ie2/ are the Witt basis.

Proof 8" > 0, write

I."/ D 1

	

Z

jwj<1
jw�1j�"

dV.w/

.1� wc/2
D 1

2	i

Z

jwj<1
jw�1j�"

dwc ^ dw

.1 � wc/2
;

we get by the Stokes theorem

I."/ D 1

2	i

Z

jwjD1
jw�1j�"

dw

1 � wc
C 1

2	i

Z

jwj<1
jw�1jD"

dw

1 � wc
D I1."/C I2."/:

Noticing that the intersections of curve jwj D 1 and curve jw � 1j D " are � D
1 � "2=2C i

p
"2 � "4=4 and �c, we derive the result from

lim
"!0

I1."/ D p:v:
1

2	i

Z

jwjD1
wdw

w � 1 D
1

2
;

lim
"!0

I2."/ D lim
"!0

1

2	i

Z �

�c

1 � w

"2
dw D lim

"!0

p
"2 � "4=4
2	

D 0:

ut
Lemma 3.2 If n > 1, then

p:v:
Z

Bn

KBn.e1;w/dV.w/ D 1:

Proof Denote

I."/ D nŠ

	n

Z

jwj<1

jw�tj�"

dV.w/

.1 � wc
1/

nC1 ; " > 0:
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Let w D e1w1 C e2w2 C 	 	 	 C enwn D e1w1 C w0, w0 2 R
2n�2 Š C

n�1, w0 D rew0,
r D jw0j; jw0j D 1, w1 D xw1 C iyw1 , then

I."/ D nŠ!2n�3
	n

Z

r2Cjw1j
2<1

r2Cjw1�1j2�"2

r2n�3

.1 � wc
1/

nC1 dxw1dyw1dr

D 2n.n� 1/
2	i

2

6
6
6
4

ıZ

0

r2n�3
Z

jw1j
2<1�r2

jw1�1j2�"2�r2

dwc
1 ^ dw1dr

.1 � wc
1/

nC1 C
1Z

ı

r2n�3
Z

jw1j2<1�r2

dwc
1 ^ dw1dr

.1 � wc
1/

nC1

3

7
7
7
5
;

where ı D p
"2 � "4=4, and !2n�3 D 2	n�1

�.n�1/ is the area of the unit sphere of

R
2n�2 Š C

n�1. Observing that

dwc
1 ^ dw1

.1� wc
1/

nC1 D
1

n
d

�
dw1

.1 � wc
1/

n

	
;

by the Stokes theorem, we have I."/ D I1."/C I2."/� I3."/; where

I1."/ D 2.n� 1/
Z 1

0

r2n�3dr 	 1
2	i

Z

jw1j2D1�r2

dw1
.1 � wc

1/
n
;

I2."/ D 2.n� 1/
Z ı

0

r2n�3dr 	 1
2	i

Z

jw1j
2<1�r2

jw1�1j2D"2�r2

dw1
.1 � wc

1/
n
;

I3."/ D 2.n� 1/
Z ı

0

r2n�3dr 	 1
2	i

Z

jw1j
2

D1�r2

jw1�1j2�"2�r2

dw1
.1 � wc

1/
n
:

Set s D p1 � r2, we get

1

2	i

Z

jw1jDs

dw1
.1 � wc

1/
n
D 1

2	i

Z

jw1jDs

dw1
.1� s2=w1/n

D 1

2	i

Z

jw1jDs

�
1C s2

w1 � s2

�n

dw1

D
nX

kD1

 
n

k

!

s2k
Z

jw1jDs

dw1
.w1 � s2/k

D ns2:

Hence, I1."/ D 2.n� 1/
R 1
0
r2n�3n.1 � r2/dr D 1:
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Noting that

ˇ
ˇ
ˇ̌
ˇ
1

2	i

Z

jw1j
2<1�r2

jw1�1j2D"2�r2

dw1
.1 � wc

1/
n

ˇ
ˇ
ˇ̌
ˇ
� 1

2	

Z

jw1�1j2D"2�r2

djw1j
j1 � wc

1jn
D."2�r2/� n�1

2 ;

jI2."/j � 2.n� 1/
Z ı

0

r2n�4."2 � r2/�
n�2
2

rdrp
"2 � r2

;

r2n�4."2 � r2/�
n�2
2 �ı2n�4."2 � ı2/� n�2

2 D."2 � "4=4/n�2.2="2/n�2�2n�2;

one has

jI2."/j � 2.n � 1/
Z ı

0

2n�2 rdrp
"2 � r2

D 2n�1.n � 1/."� "
2

2
/;

hence lim"!0 I2."/ D 0: Notice that

1

2	i

Z

jw1jDs

jw1�1j2�"2�r2

dw1
.1 � wc

1/
n
D 1

2	i

Z

jw1jD�

jw1�1j2�"2�r2

�
w1

w1 � s2

�n

dw1;

it easy to calculate that the distance of the point s2 to the two endpoints of the integral
path is d D s

p
"2 � r2. Since the integrand is holomorphic in D D fw1 W jw1j > sg,

by the Cauchy theorem in one complex analysis, we obtain

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

1

2	i

Z

jw1jDs

jw1�1j2�"2�r2

�
w1

w1 � s2

�n

dw1

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

D

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

1

2	i

Z

jw1�s2jDd
jw1j�s

�
w1

w1 � s2

�n

dw1

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

� 2nd�nC1:

Therefore, jI3."/j � C
R ı
0 r

2n�3."2 � r2/� n�1
2 dr; where C 2 R

C is a constant.
Similarly, we derive lim"!0 I3."/ D 0. Thus, the proof of the result completes. ut
Theorem 3.3 If f 2 H˛.Bn;C2n/,0 < ˛ � 1, 8t 2 @.Bn/, then the principal value
of the Bergman integral exists, and

lim
z2Bn
z!t

Z

Bn

KBn.z;w/f .w/dV.w/D
(
p:v:

R
Bn
KBn.t;w/f .w/dV.w/C 1

2
f .t/; n D 1;

p:v:
R
Bn
KBn.t;w/f .w/dV.w/; n > 1:

Proof p:v:
R
Bn
KBn.t;w/f .w/dV.w/; t 2 @.Bn/ can be decomposed into

Z

Bn

KBn.t;w/Œ f .w/� f .t/�dV.w/C f .t/ p:v:
Z

Bn

KBn.t;w/dV.w/;
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and
R

Bn

KBn.z;w/f .w/dV.w/ D �z.w/Cf .z/; z 2 Bn. Moreover, it is easy to verify that

�z.w/ D
R
Bn
KBn.z;w/Œ f .w/�f .z/�dV.w/ is uniformly integrable due to f 2 H˛.Bn/.

Then the map T W Bn ! L1.Bn/; T.z/ D �z is uniformly continuous on Bn. Taking
the limit on both sides, we have

lim
z2Bn
z!t

Z

Bn

KBn.z;w/f .w/dV.w/ D
Z

Bn

KBn.t;w/Œ f .w/ � f .t/�dV.w/C f .t/

D p:v:
Z

Bn

KBn.t;w/f .w/dV.w/C f .t/

�
1 � p:v:

Z

Bn

KBn.t;w/dV.w/

	
:

In terms of Lemmas 3.1 and 3.2,

1 � p:v:
Z

Bn

KBn.t;w/dV.w/ D
�
1
2
; n D 1;
0; n > 1:

So, the result follows. ut
Remark 3.4 Theorem 3.3 is the Plemelj formula of the Bergman integral in the
Hermitean Clifford analysis. If f 2 L1.Bn/, similar to [3, 4], it is easy to prove that
F.z/ D RBn

KBn.z;w/f .w/dV.w/ 2 Mh.Bn/. Moreover, if f 2 Mh.Bn/\ L1.Bn/, then
F D f .
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Meromorphic Functions Sharing Four Real
Values

Xiao-Min Li, Cui Liu, and Hong-Xun Yi

Abstract We study the uniqueness question of transcendental meromorphic func-
tions that share four distinct finite values a1; a2; a3; a4; where all the aj-points of
the transcendental meromorphic functions are real numbers for 1 � j � 4: The
results in this paper improve and extend the corresponding results from Czubiak–
Gundersen (Proc Am Math Soc 82:393–397, 1981) and Yi (Proc Am Math Soc
124:585–590, 1996). An example is provided to show that the results in this paper,
in a sense, are the best possible.

Keywords Meromorphic functions • Nevanlinna theory • Shared values •
Uniqueness theorems

Mathematics Subject Classification (2010) Primary 30D35; Secondary 30D30

1 Introduction and Main Results

In 1992, Czubiak-Gundersen [2] began to study the uniqueness question of entire
functions that share 0 and 1 IM, where all the zeros and 1-points are real numbers.
Later on, Yi [8] corrected the corresponding result from Czubiak-Gundersen [2]. We
will prove the following result deduced by Lemma 2.8 in Section 2 of the present
paper:

Theorem 1.1 (Main Theorem) Suppose that f and g share four distinct finite
values a1; a2; a3, and a4 IM, that f has only real aj-points for 1 � j � 4;
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and that there exists some value a 2 C [ f1g such that a … fa1; a2; a3; a4g and
ı D ı.a; f / > 0: If f ¥ g; then �. f / � 1:

By Theorem 1.1 we get the following uniqueness result:

Corollary 1.2 Suppose that f and g are two meromorphic functions such that
they share four distinct finite values a1; a2; a3; a4 IM, where f has only real
aj-points for 1 � j � 4, and that there exists some value a 2 C [ f1g such
that a … fa1; a2; a3; a4g and ı D ı.a; f / > 0: If �. f / > 1; then f D g:

The following example shows that the assumptions “a … fa1; a2; a3; a4g and ı D
ı.a; f / > 0” and “�. f / > 1” in Corollary 1.2 are necessary:

Example Let f .z/ D 1
eiz�2 and g.z/ D 1

e�iz�2 : Then, we can verify that f and g share
0; � 1

2
; �1; and � 1

3
CM. Moreover, all the aj-points of f and g are real numbers

for 1 � j � 4, where a1; a2; a3; a4 are four distinct finite real numbers such that
fa1; a2; a3; a4g D f0;�1=2;�1;�1=3g:Moreover, for any a 2 C [ f1g satisfying
a … fa1; a2; a3; a4g; we have ı.a; f / D ı.a; g/ D 0 and �. f / D �.g/ D 1: But
f ¥ g:

2 Preliminaries

In this section, we introduce some important lemmas to prove the main results in
this paper. We first introduce Nevanlinna theory on an angular domain, which can
be found in [5, pp. 23–26]: Let f be a meromorphic function on the angular domain
�.˛; ˇ/ D fz W ˛ � arg z � ˇg; where ˛; ˇ 2 Œ0; 2	� and so 0 � ˇ � ˛ < 2	:

Following Nevanlinna in [5, pp. 23–26], we define

A˛;ˇ.r; f / D !

	

Z r

1

�
1

t!
� t!

r2!

�
flogC j f .tei˛/j C logC j f .teiˇ/jgdt

t
; (1)

B˛;ˇ.r; f / D 2!

	r!

Z ˇ

˛

logC j f .rei
 /j sin!.
 � ˛/d
 (2)

and

C˛;ˇ.r; f / D 2
X

1<jbmj<r

�
1

jbmj! �
jbmj!
r2!

�
sin!.
m � ˛/ (3)

respectively, where ! D 	=.ˇ � ˛/; 1 � r < C1 and bm D jbmjei
m are the poles
of f on �.˛; ˇ/ appearing often according to their multiplicities. C˛;ˇ is called the
angular counting function of the poles of f on X.˛; ˇ/ and the Nevanlinna angular
characteristic function is defined as S˛;ˇ.r; f / D A˛;ˇ.r; f /CB˛;ˇ.r; f /CC˛;ˇ.r; f /:
Similarly, for any finite value a; we define A˛;ˇ.r; fa/; B˛;ˇ.r; fa/; C˛;ˇ.r; fa/, and
S˛;ˇ.r; fa/; where fa D 1=. f � a/:
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Lemma 2.1 ([5, pp. 23–26] and [5, Theorem 3.1]) Let f be meromorphic on

�.˛; ˇ/: Then, for arbitrary complex number a 2 C we have S˛;ˇ
�
r; 1

f�a

�
D

S˛;ˇ .r; f /C O.1/:

Lemma 2.2 ([5, p.112, Theorem 3.3]) Let f be meromorphic on �.˛; ˇ/: Then
for arbitrary q distinct values aj 2 C[f1g (1 � j � q) we have .q�2/S˛;ˇ.r; f / �
qP

jD1
C˛;ˇ

�
r; 1

f�aj

�
C R˛;ˇ.r; f /; where R˛;ˇ.r; f / is such a quantity that if f is a

meromorphic function in the complex plane satisfying �. f / <1; then R˛;ˇ.r; f / D
O.1/; as r ! 1; if f is a meromorphic function in the complex plane satisfying
�. f / D 1; then R˛;ˇ.r; f / D O.log.rT.r; f ///; as r … E and r!1; where and in
what follows, E denotes a set of positive real numbers with finite linear measure. It
is not necessarily the same for every occurrence in the context.

Lemma 2.3 ([3]) Let f be a meromorphic function with ı.1; f / D ı > 0: Then,
given " > 0; we have mesE.r; f / > 1

.T.r;f //".log r/1C" ; r … F; where E.r; f / D
˚

 2 Œ�	; 	/ W logC j f .rei
 /j > ı

4
T.r; f /

�
: Here F is a set of positive real numbers

with finite logarithmic measure depending on ":

Lemma 2.4 ([6]) Let f be a transcendental meromorphic function in C: Then, for
each K > 1; there exists a set M.K/ of the lower logarithmic density at most d.K/ D
1 � .2eK�1 � 1/�1 > 0; that is log densM.K/ D lim inf

r!1
1

log r

R
M.K/\Œ1;r�

dt
t � d.K/;

such that, for every positive integer k; we have lim sup
r!1

r…M.K/

T.r;f /
T.r;f .k/ /

� 3eK:

Lemma 2.5 ([4] or [7]) Let f be transcendental and meromorphic in C with the
lower order 0 � � < 1 and the order 0 < � < 1: Then for arbitrary positive
number � satisfying � � � � � and a set E with finite linear measure, there exist
a sequence of positive numbers frng such that (i) rn … E and lim

n!1
rn
n D 1; (ii)

lim inf
r!1

log T.rn;f /
log rn

� � and (iii) T.t; f / < .1C o.1//
�

t
rn

��
T.rn; f /:

A sequence frng satisfying (i)–(iii) in Lemma 2.5 is called a Pólya peak
of order � outside E in this paper. For r > 0 and a 2 C; we define

(iv) D.r; a/ WD
n

 2 Œ�	; 	/ W logC 1

j f .rei
 /�aj >
1

log r T.r; f /
o

and D.r;1/ WD
n

 2 Œ�	; 	/ W logC j f .rei
 /j > 1

log r T.r; f /
o
:

Lemma 2.6 ([1]) Let f be transcendental and meromorphic in C with the finite
lower order � and the order 0 < � � 1; and for some a 2 C [ f1g; ı.a; f / D
ı > 0: Then for arbitrary Pólya peak frng of order � > 0; � � � � �; we have

lim inf
n!1 mesD.rn; a/ � min

�
2	; 4

�
arcsin

q
ı
2

�
:

Remark 2.7 Lemma 2.6 was proved in [1] for the Pólya peak of order �, the same
argument of Baernstein [1] can derive Lemma 2.6 for the Pólya peak of order �; � �
� � �: Next we consider q real numbers ˛j .1 � j � q/ satisfying

� 	 � ˛1 < ˛2 < 	 	 	 < ˛q < 	; ˛qC1 D ˛1 C 2	; (4)



218 X.-M. Li et al.

and define

! D max

�
	

˛2 � ˛1 ;
	

˛3 � ˛2 ; : : : ;
	

˛qC1 � ˛q
�
: (5)

Lemma 2.8 Let f and g be two distinct transcendental meromorphic functions such
that for some a 2 C [ f1g we have ı D ı.a; f / > 0: Assume that q radii arg z D
˛j .1 � j � q/ satisfies (4), and assume that f and g share a1; a2; a3; a4 IM in

X D C n
qS

jD1
fz W arg z D ˛jg; where a1; a2; a3; a4 are four distinct values in the

extended complex plane such that a … fa1; a2; a3; a4g: Then �. f / � 	
min
1�j�q

f˛jC1�˛jg :

Proof Without loss of generality, we suppose that a1; a2; a3; a4 2 C: Then, by the
assumption f ¥ g; Lemmas 2.1 and 2.2 we deduce

S˛j;˛jC1
.r; f / � S˛j;˛jC1

.r; g/C R˛j;˛jC1
.r; f /; 1 � j � q;

S˛j;˛jC1
.r; g/ � S˛j;˛jC1

.r; f /C R˛j;˛jC1
.r; g/; 1 � j � q:

Therefore,

S˛j;˛jC1
.r; f / D S˛j;˛jC1

.r; g/; R˛j;˛jC1
.r; f / D R˛j;˛jC1

.r; g/; 1 � j � q: (6)

Again by (6) and Lemma 2.2 we deduce

A˛j;˛jC1

�
r;

1

f � a

�
C B˛j;˛jC1

�
r;

1

f � a

�

D R˛j;˛jC1

�
r;

1

f � a

�
� O.log rC logT.r; f //; 1 � j � q;

(7)

as r … E and r ! 1: Next we prove �. f / < 1: Indeed, for the exceptional
set F in Lemma 2.3 and the exceptional set E in (7), we have log dens.F [ E/ D
0; and so for M.K/ in Lemma 2.4, where K � 2 is a positive number, we have
log dens.M.K/[F[E/ � log dens.M.K// � d.K/; here d.K/ D 1�.2eK�1�1/�1:
Applying this and Lemma 2.3 to f , we can find that there exist a sequence of positive

numbers rn … M.K/ [ F [ E such that measE
�
rn;

1
f�a

�
> 1

.T.rn;f //".log rn/1C" ; as

rn !1: Set "n D 1
2qC1

1

.T.rn;f //".log rn/1C" : Then,

meas

0

@E
�
rn;

1

f � a

�
\

q[

jD1



˛j C "n; ˛jC1 � "n

�
1

A � measE

�
rn;

1

f � a

�

�meas

0

@
q[

jD1



˛j � "n; ˛j C "n

�
1

A > .2qC 1/"n � 2q"n D "n;
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which implies that there exists some j0 satisfying 1 � j0 � q such that

meas

�
E

�
rn;

1

f � a

�
\ 
˛j0 C "n; ˛j0C1 � "n

�� � "n

q
: (8)

Without loss of generality, we can assume that (8) holds for all n: Next we set

QEn D E

�
rn;

1

f � a

�
\ 
˛j0 C "n; ˛j0C1 � "n

�
: (9)

By (9) and the definition of E
�
rn; 1

f�a

�
we have

Z ˛j0C1�"n

˛j0C"n
logC 1

j f .rnei
 / � ajd
 �
Z

QEn

logC 1

j f .rnei
 /� ajd


� meas. QEn/
ı.a; f /

4
T.rn; f / � "nı.a; f /

4q
T.rn; f /:

(10)

On the other hand, by (7), Lemmas 2.1, 2.4 and the definition of B˛;ˇ.r; f / in (2)
we have

Z ˛j0C1�"n

˛j0C"n
logC 1

j f .rnei
 /� ajd
 �
	r

!j0
n B˛j0 ;˛j0C1

�
rn; 1

f .rnei
 /�a

�

2!j0 sin."n!j0 /

� QKj0;"r
!j0
n log.rnT.rn; f // D QKj0;"r

!j0
n .log rn C logT.rn; f //; (11)

as rn … M.K/ [ F [ E and rn ! 1; where !j0 D 	
˛j0C1�˛j0 ;

QKj0;" is a positive

constant depending only on j0 and ": By (10) and (11) we have

ı.a; f /.T.rn; f //
1�" � 4q.2qC 1/ QKj0;"r

!j0
n .log rn/1C".log.rnT.rn; f ///C O.1/;

(12)

as rn … M.K/ [ F [ E and rn ! 1: By (12) we derive �. f / � !j0 � !; which
implies �. f / <1: Combining this with (7), we will prove �. f / � !: Suppose, on
the contrary, that

�. f / > !: (13)

Then, by (13) and the assumptions of Lemma 2.8 we have a contradiction. To do
this, we consider the following two cases:

Case 1. Suppose that �. f / > �. f /: Then, by the fact � D maxf!;�g we have

�. f / > � � �. f /: (14)
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By (4), (5) and (14) we can find some sufficiently small positive number " such that

qX

jD1
.˛jC1 � ˛j/C 2" > 4

� C 2" arcsin

r
ı

2
; �. f / > � C 2" > �. f /: (15)

Applying Lemma 2.5 to f ; we can find that there exists a Pólya peak of order �C2"
outside E: Combining this with Lemma 2.6 and

� C 2" � ! C 2" � !j C 2" � 1C 2"; (16)

we have

measD.rn; a/ � 4

� C 2" arcsin

r
ı

2
� ": (17)

Without loss of generality, we can assume that (16) holds for all the n: Set

Kn D meas

0

@D.rn; a/\
q[

jD1
.˛j C "; ˛jC1 � "/

1

A : (18)

Then, by (15), (17), and (18) we have

Kn � measD.rn; a/�meas

0

@Œ0; 2	/ n
q[

jD1
.˛j C "; ˛jC1 � "/

1

A D measD.rn; a/

�meas

0

@
q[

jD1
.˛jC1 � "; ˛jC1 C "/

1

A D measD.rn; a/� 2q" � ": (19)

By (19) we can find that there exists some positive integer j0 satisfying 1 � j0 � q
such that for infinitely many positive integers n; we have

meas


D.rn; a/\ .˛j0 C "; ˛j0C1 � "/

� � Kn

q
>
"

q
: (20)

Without loss of generality, we can assume that (20) holds for all the positive integers
n: Next we set En D D.rn; a/\ .˛j0 C "; ˛j0C1� "/: Then, by (20) and the definition
of D.r; a/ in (iv) of Lemma 2.5 we have

Z ˛j0C1�"

˛j0C"
logC 1

j f .rnei
 / � ajd
 �
T.rn; f /

log rn
measEn >

"

q

T.rn; f /

log rn
: (21)
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On the other hand, by (7), Lemmas 2.1, 2.4 and the definition of B˛;ˇ.r; f / in (2)
we have

Z ˛j0C1�"

˛j0C"
logC 1

j f .rnei
 /� ajd
 �
	r

!j0
n

2!j0 sin."!j0 /
B˛j0 ;˛j0C1

�
rn;

1

f .rnei
 / � a

�

� Kj0;"r
!j0
n log.rnT.rn; f // D Kj0;"r

!j0
n .log rn C logT.rn; f //; (22)

where rn … E and !j0 D 	
˛j0C1�˛j0 ; Kj0;" is a positive constant depending only on j0

and ": By (21) and (22) we have

logT.rn; f / � log logT.rn; f /C !j0 log rn C 3 log log rn C O.1/; (23)

where rn … E and rn ! 1: Noting that frng is a Pólya peak of order � C 2"

of f outside E; we can get by (23) that � C 2" � lim
rn!1

log T.rn;f /
log rn

� !j0 � !;

which contradicts the assumption � D maxf!;�g; and so we have the conclusion
of Lemma 2.8.

Case 2. Suppose that �. f / D �. f /: By the same argument as in Case 1 with all
� C 2" replaced with � D �. f / D �. f /; we can derive �. f / D � � !; which
contradicts (13). This completes the proof of Lemma 2.8. ut
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The Minimal Cycles over Isolated Brieskorn
Complete Intersection Surface Singularities

Fanning Meng, Jianming Lin, Wenjun Yuan, and Zhigang Wang

Abstract In this paper, we study a complete intersection surface singularity of
Brieskorn type, and provide a condition for the coincidence of fundamental cycle
and minimal cycle on minimal resolution space.

Keywords Cyclic quotient singularities • Fundamental cycle • Minimal cycle •
Surface singularities
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1 Introduction

Let .X; o/ be a germ of a normal complex surface singularity and 	 W .eX;E/ !
.X; o/ be a resolution, where E D 	�1.o/ denotes the exceptional divisor. Let E DSr

iD1 Ei be the irreducible decomposition of E. A formal sum D DPr
iD1 diEi .di 2

Z/ is called a cycle on E. For any effective cycle D (i.e., di � 0 for any i) on E, the

F. Meng
School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006,
People’s Republic of China
e-mail: mfnfdbx@163.com

J. Lin
School of Economic and Management, Guangzhou University of Chinese Medicine, Guangzhou
510006, People’s Republic of China
e-mail: ljmguanli@21cn.com

W. Yuan (�)
Key Laboratory of Mathematics and Interdisciplinary Sciences, Guangdong Higher Education
Institutes, Guangzhou University, Guangzhou 510006, People’s Republic of China
e-mail: wjyuan1957@126.com

Z. Wang
School of Mathematics and Computing Science, Hunan First Normal University, Changsha
410205, People’s Republic of China
e-mail: zhigangwang@foxmail.com

© Springer International Publishing AG 2017
P. Dang et al. (eds.), New Trends in Analysis and Interdisciplinary Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-48812-7_28

223

mailto:mfnfdbx@163.com
mailto:ljmguanli@21cn.com
mailto:wjyuan1957@126.com
mailto:zhigangwang@foxmail.com


224 F. Meng et al.

arithmetic genus pa.D/ of D is defined by

pa.D/ D 1C 1

2
.D2 C KeXD/; (1)

where KeX is the canonical divisor oneX. If B;C are cycles, we have

pa.BC C/ D pa.B/C pa.C/ � 1C BC: (2)

The fundamental cycle ZE is the smallest one among the cycles F > 0 such that
FEi � 0 for every Ei of E. The arithmetic genus of ZE is called the fundamental
genus of .X; o/ and denoted by pf .X; o/. The minimal cycle A on E is the smallest
one among the cycles D > 0 such that pa.D/ D pa.ZE/; D � ZE. Clearly, we always
have A � ZE. It sometimes happens that A D ZE. This equality holds on the minimal
resolution for minimal Kulikov singularities (cf. [6]), hypersurface singularities of
Brieskorn type with certain conditions (cf. [7]). However, even for a particular class
of singularities, a more systematic study will be required in order to classify when
such a coincidence of important cycles occurs.

In this paper, we consider a germ .W; o/ � .C4; o/ of an isolated complete
intersection surface singularity of Brieskorn type defined by

W D f.xi/ 2 C
4jqj1xa11 C qj2x

a2
2 C qj3x

a3
3 C qj4x

a4
4 D 0; j D 3; 4g;

where ai � 2 are integers. By Serre’s criterion for normality, .W; o/ is a normal
surface singularity. The aim of this paper is to give a condition for the coincidence
of the fundamental cycle and the minimal cycle over .W; o/.

This paper is organized as follows. In Sect. 2, we mention fundamental facts
on cycles over a cyclic quotient singularity, and the minimal cycles over normal
surface singularities. In Sect. 3, we consider the minimal cycle over .W; o/ and give
a condition for the coincidence of the fundamental cycle and the minimal cycle on
the minimal resolution space.

2 Preliminaries

For 1 � i � 4, we define positive integers di4; ni4 and ei4 as follows:

di4 WD lcm.a1; : : : ; Oai; : : : ; a4/; ni4 WD ai
gcd.ai; di4/

; ei4 WD di4
gcd.ai; di4/

:

(The symbol ^ in the definition of di4 indicates an omitted term.) In addition, we
define integers �i4 by the condition:

ei4�i4 C 1 
 0 .mod ni4/; 0 � �i4 < ni4:
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Furthermore, for 1 � i � 4, we define integers Og and Ogi as follows:

Og WD a1 	 	 	 a4
lcm.a1; : : : ; a4/

; Ogi WD a1 	 	 	 Oai 	 	 	 a4
lcm.a1; : : : ; Oai; : : : ; a4/ :

2.1 Cyclic Quotient Singularities

For any x 2 R, we put bxc D maxfn 2 Zjn � xg, and dxe D minfn 2 Zjn � xg.
For integers ci � 2; i D 1; : : : ; r, we put ŒŒc1; : : : ; cr�� WD c1 �

1

c2 �
1

: : : � 1

cr

:

Let n and � be positive integers that are relatively prime and � < n. Let �n denote
the primitive n-th root of unity exp.2	

p�1=n/. Then the singularity of the quotient

C
2
.��

�n 0

0 �
�
n

��
is called the cyclic quotient singularity of type Cn;�. It is known (cf.

[1]) that if E DSr
iD1 Ei is the exceptional divisor of the minimal resolution of Cn;�,

then Ei ' P
1 and the weighted dual graph of E is chain-shaped as the following

picture, where n=� D ŒŒc1; : : : ; cr��.

Lemma 2.1 ([2, Lemma 1.2]) Let ei D ŒŒci; : : : ; cr��. Take a positive integer �0
and define the sequence f�igriD0 by the recurrence formula �i D d�i�1=eie for 1 �
i � r. Take relatively prime positive integers ni and �i satisfying ni=�i D ei for
1 � i � r. Put �rC1 WD �rcr � �r�1.
1. If �i�1 D �ici � �iC1 holds for 1 � i � r, then �1 D .�1�0 C �rC1/=n1.
2. If either �0 
 0 .mod n1/ or �1�0 C 1 
 0 .mod n1/, then �i�1 D �ici � �iC1

holds for 1 � i � r. Furthermore, �rC1 D 0 when �0 
 0 .mod n1/, and
�rC1 D 1 when �1�0 C 1 
 0 .mod n1/.

3. If �0 
 0 .mod n1/, then �r D �0=n1. If �1�0 C 1 
 0 .mod n1/, then �r D
d�0=n1e.

2.2 Minimal Cycles over Normal Surface Singularities

Let .X; o/ be a normal complex surface singularity, 	 W .eX;E/ ! .X; o/ be a
resolution of .X; o/, where 	�1.o/ D E D Sr

iD1 Ei is the decomposition of E.
Let ZE be the fundamental cycle on E.
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Definition 2.2 ([7, Definition 1.2]) Let A be a cycle on E satisfying 0 < A � ZE.
Suppose pf .X; o/ � 1. Then A is said to be a minimal cycle on E if pa.A/ D pf .X; o/
and pa.D/ < pf .X; o/ for any cycle D with D < A.

The existence and the uniqueness of the minimal cycle A can be shown as in [3].
Suppose that E D SN

iD0 Ei whose dual graph is star-shaped with central curve E0.
We consider a cyclic branch

Ss
iD1 Ei with E0

T
E1 ¤ ;. Suppose that the weighted

dual graph of
Ss

iD1 Ei is as the following picture, where E2i D �bi for i D 1; : : : ; s.

Let d; e be positive integers and d=e D ŒŒb1; : : : ; bs�� satisfying gcd.d; e/ D 1. Let
c0 D d, c1 D e and c2; c3; : : : ; cs be the integers which are inductively defined by
the relation ciC1 D bici�ci�1 .1 � i � s�1/, then cs D 1 by Lemma 2.1. Let l; � be
the integers defined by �d�el D 1, 0 < � < d. Then l=� D ŒŒb1; : : : ; bs�1; bs�1��:
Put �0 D l; �1 D � and define �2; : : : ; �s inductively by �i D bi�1�i�1 � �i�2 .i D
2; : : : ; s/. Then we have the following two lemmas.

Lemma 2.3 ([7, Lemma 3.2]) Suppose that the coefficient of E0 in ZE is dt, where
t is a positive integer. Then the coefficient of Ei in ZE is given by tci, i D 1; : : : ; s. In
particular, ZEEi D 0 for i D 1; : : : ; s.
Lemma 2.4 ([7, Lemma 3.3]) If the coefficient of E0 in ZE is l, then the coefficient
of Ei in ZE is given by �i; 1 � i � s. In particular, ZEEi D 0 for i D 1; : : : ; s � 1
and ZEEs D �1. Furthermore, if b dl c D 1, then bs � 3.

3 The Minimal Cycle over .W; o/

In this section, we consider the minimal cycle over .W; o/ defined as in Sect. 1, and
provide a condition for the coincidence of the fundamental cycle and the minimal
cycle on the minimal resolution space.

Let 	 W .eW;E/ ! .W; o/ be the minimal good resolution of .W; o/. Let ˛i WD
ni4; ˇi WD �i4 for i D 1; : : : ; 4 and d4 D lcm.a1; a2; a3; a4/.

Let l D gcd.a1; a2; a3; a4/; li D gcd.a1; : : : ; Oai; : : : ; a4/=l for i D 1; 2; 3; 4. Then
the Demazure’s divisor F is given as follows (cf. (4.3) in [7]):

F D F0 �
4X

iD1

lliX

jD1

ˇi

˛i
Pij;Pij 2 E0; (3)

where F0 is a divisor on E0 such that OE0 .F0/ is the restriction to E0 of the conormal
sheaf of E0 in eW and degD0 D l

˛1˛2˛3˛4
CP4

iD1
lliˇi
˛i

following Theorem 3.6.1 in [5].
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Let ŒkF� be a Z-coefficient divisor on E0 defined by:

ŒkF� WD kF0 �
4X

iD1

lliX

jD1

�
kˇi
˛i

�
Pij; Pij 2 E0; (4)

where k is a non-negative integer. Let m be an integer defined by minfk 2
ZjdegŒkF� � 0g. Thus, due to Theorem 3.1 in [7] and Riemann-Roch Theorem,
we have pf .W; o/ D m.g� 1/C 1 �Pm�1

kD1 degŒkF�.

Theorem 3.1 If a4 � maxfa1; a2; a3g, then m D minf˛1˛2˛3˛4; ˛1˛2˛3l4g.
Proof Assume ˛4 � l4, we show that m D ˛1˛2˛3l4. From (3) and (4), degŒkF� D
l
n

k
˛1˛2˛3˛4

�P4
iD1 li

�l
kˇi
˛i

m
� kˇi

˛i

�o
: Since ˛1˛2˛3l4ˇ4 C 1 
 0 .mod ˛4/, it is

easy to see that

degŒ˛1˛2˛3l4F� D l

�
˛1˛2˛3l4
˛1˛2˛3˛4

� l4

�
˛1˛2˛3l4ˇ4

˛4

�
C l4˛1˛2˛3l4ˇ4

˛4

�
D 0:

Hence it suffices to prove that degŒkF� < 0 for any k with 0 < k < ˛1˛2˛3l4. If ˛4
does not divide k with k < ˛1˛2˛3l4, then

1

l
degŒkF� D k

˛1˛2˛3˛4
�

4X

iD1
li

��
kˇi
˛i

�
� kˇi
˛i

�
< 0:

In other words, suppose ˛4jk, let k D ˛4t for some positive integer t, then

1

l
degŒkF� D t

˛1˛2˛3
�

3X

iD1
li

��
˛4ˇit

˛i

�
� ˛4ˇit

˛i

�
:

If .˛1˛2˛3/jt, then .˛1˛2˛3˛4/jk following the fact that .˛i; ˛j/ D 1 for i ¤ j, which
contradicts the inequality k < ˛1˛2˛3l4. Suppose that ˛j does not divide t for some
j 2 f1; 2; 3g, then

1

l
degŒkF� � t

˛1˛2˛3
� lj

��
˛4ˇjt

˛j
�
�
� ˛4ˇjt

˛j

�
� t

˛1˛2˛3
� lj
˛j

D ˛4t � lj
Q4

iD1;i¤j ˛i

˛1˛2˛3˛4
D k � lj

Q4
iD1;i¤j ˛i

˛1˛2˛3˛4
:

Following the assumption aj � a4 . j D 1; 2; 3/, ˛1˛2˛3l4 � lj
Q4

iD1;i¤j ˛i. It follows

that k � lj
Q4

iD1;i¤j ˛i < 0, which implies that degŒkF� < 0.
In the next, we show that m D ˛1˛2˛3˛4 if l4 > ˛4. Since degŒ˛1˛2˛3˛4F� D

l > 0, it suffices to prove that degŒkF� < 0 for any k with 0 < k < ˛1˛2˛3˛4.
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Following the above proof, we know that for the integer k, ˛i does not divide k for
some i 2 f1; 2; 3; 4g. Without loss of generality, we may assume that ˛1 does not
divide k. Then

1

l
deg ŒkF� D k

˛1˛2˛3˛4
�

4X

iD1
li

��
kˇi
˛i

�
� kˇi
˛i

�
� k � ˛2˛3˛4l1

˛1˛2˛3˛4
:

Since ˛4 < l4 and a1 � a4, we have k < ˛1˛2˛3˛4 < ˛1˛2˛3l4 � ˛2˛3˛4l1. It
follows that degŒkF� < 0. Thus we obtain the assertion. ut
Theorem 3.2 ([4, Theorem 5.1]) Let �w;� D ŒŒcw;� ; : : : ; cw;sw �� if sw > 0, and

ZE D 
0E0 CP4
wD1

Psw
�D1

POgw
�D1 
w;�;�Ew;�;� : Then 
0 and the sequence f
w;�;�g

are determined by the following: 
w;0;� WD 
0 WD min .e44; ˛1˛2˛3˛4/, 
w;�;� D
d
w;��1;�=�w;�e .1 � � � sw/:

Theorem 3.3 Let 	 0 W . OW;E/ ! .W; o/ be the minimal resolution. Assume
lcm.a1; a2; a3/ � a4 < 2 	 lcm.a1; a2; a3/, then ZE D A on E.

Proof We need only to prove that pa.ZE � Ei/ < pf .W; o/ for any irreducible
component Ei of E. By (1) and (2), we have pa.ZE/ D pa.ZE � Ei C Ei/ D
pa.ZE � Ei/C pa.Ei/� 1C .ZE � Ei/Ei; which implies that

pa.ZE � Ei/ D pa.ZE/ � pa.Ei/C 1 � ZEEi C E2i : (5)

Assume that 	 0 is the minimal good resolution, then E20 � �2 (or E20 D �1 and
g.E0/ � 1) and the weighted dual graph of the minimal resolution of .W; o/ is
given as in Figure 3 in [4]. Let B be any irreducible component of E � E0 �S4

wD1.
SOgw
�D1 Ew;sw;� /, by Lemma 2.1, Theorem 3.2, and (5), we have ZEB D 0

and pa.ZE � B/ < pf .W; o/: Since lcm.a1; a2; a3/ � a4, e44 � ˛4 � ˛1˛2˛3˛4.
From Theorem 3.2, the coefficient of E0 in ZE is e44. It follows from Theorem 3.2,
Lemma 2.3 and Lemma 2.1 (3) that for w 2 f1; 2; 3; 4g and � 2 f1; : : : ; Ogwg,

ZEEw;sw;� D
(
0 if w ¤ 4;
�1 if w D 4:

Since lcm.a1; a2; a3/ � a4 < 2 	 lcm.a1; a2; a3/, we have e44 � ˛4 < 2e44, which
implies b ˛4e44 c D 1. Following Lemma 2.4, we have



E4;s4;�

�2
< �2; � 2 f1; : : : ; Og4g.

Then by (5), we have pa.ZE � Ew;sw;� / < pf .W; o/: From Theorem 4.4 in [4],

�ZEE0 D c0e44 �
3X

wD1

Ogwe44ˇw
˛w

� Og4.e44ˇ4 C 1/
˛4

D e44 Og=d4 � Og4=˛4 D 0:

Therefore, by (5), pa.ZE � E0/ D pa.ZE/� g.E0/C 1C E20 < pf .W; o/:
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In other words, suppose that the minimal resolution does not coincide with the

minimal good resolution. Let 	 WD � ı 	 0 W . NW; NE/ ��! . OW;E/ 	 0

�! .W; o/ be the
minimal good resolution, where � is a birational morphism obtained by iterating
monoidal transforms centered at a point. We may assume that E has at least two
irreducible components, otherwise ZE D A obviously. So it suffices to show that
pa.ZE � Ei/ < pf .W; o/ for any Ei � E. Assume that pa.ZE � Ei/ D pf .W; o/ for
some Ei � E. It follows from Lemma 1.4 in [7] that Ei is a smooth rational curve and

ZEEi D .ZE � Ei C Ei/Ei D .ZE � Ei/Ei C E2i D 1C E2i :

Since Ei is smooth, g.Ei/ D 0. By (1) and the adjunction formula K OWEi D �E2i C
2g.Ei/� 2 for any Ei � E, where K OW is the canonical divisor on OW,

pa.ZE � Ei/ � pa.ZE/ D 1C 1

2



.ZE � Ei/

2 C K OW.ZE � Ei/
�

C 1C 1

2
.Z2E C K OWZE/ D �1 � ZEEi D 0;

which implies ZEEi D �1. Thus E2i D �2. Let NEi be the proper transform of Ei

by �. Then ZEEi D Z NE NEi D �1 by (0.2.2) in [8], which implies that NEi D E4;s4;� ,
� 2 f1; : : : ; Og4g, and the coefficient of NEi in Z NE is equal to 1 by Lemma 2.4. From
Proposition 2.9 in [8], the coefficient of Ei in ZE is equal to 1. It follows that
there exists only one irreducible component Ej � E that intersects Ei transversely,
which implies that � doesn’t contain any monoidal transform centered at a point
of Ei. Then E24;s4;� D NE2i D E2i D �2, which contradicts Lemma 2.4. Hence the
assertion holds. ut
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Properties and Characteristics of " Starlike
Functions

Ming-Sheng Liu

Abstract In this note, the author investigates some properties and characteristics
of subclass S�.U; "/ of " starlike functions on the unit disk U. In particular, several
sufficient criteria for " starlike functions are provided. From these, we may construct
many concrete " starlike functions on U. Furthermore, a covering theorem is also
provided. Some results, presented in this paper, generalize the related results of
earlier authors.

Keywords Convex function • Starlike function • " starlike function

Mathematics Subject Classification (2010) Primary 30C45

1 Introduction and Preliminaries

Let A denote the class of functions f normalized by f .z/ D zCP1
kD2 akzk, which

are analytic in the open unit disk U D fz 2 C W jzj < 1g. Let H.U/ denote the
subclass of A consisting of functions with f 0.z/ ¤ 0 on U. Suppose also that S�; K
denote the familiar subclasses of A consisting of functions which are, respectively,
starlike in U and convex in U.

For some recent investigations of these and related function classes, see (for
example) the works by Liu et al. [6, 7].

Gong and Liu [1, 2, 4] introduced the notion of " starlike mappings on Cn, in
purpose to treat the family of convex mappings and the family of starlike mappings
as one family. Moreover, they [2] also introduced the notion of " starlike mappings
on the complex Banach space, and they gave a criterion for the family of " starlike
mappings on the unit ball B in the complex Banach space. Liu and Zhu [5] proposed
the notion of " quasi-convex mapping on the unit ball B of the complex Banach
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space, in purpose to treat the family of quasi-convex mappings and the family of
starlike mappings as one family. We also extended the notion of " starlike mappings
on B from " 2 Œ0; 1� to " 2 Œ�1; 1�.

Setting X D C;B D U, both " starlike mappings and " quasi-convex mappings
are reduced to the following " starlike functions:

Definition 1.1 Suppose that f 2 H.U/ and " 2 Œ�1; 1�. If

Re
h f .z/ � "f .�z/

zf 0.z/

i
� 0; 8z 2 U;8� 2 U:

Then f .z/ is said to be an " starlike function on U, and let S�.U; "/ denote the class
of all " starlike functions on U.

From Theorem 4.1 in [5], we get the geometric explanation of " starlike function:
if " 2 Œ�1; 1� and f 2 H.U/, then f is " starlike if and only if "f .U/ � f .U/ and
f .U/ is starlike with respect to every point in "f .U/. This provides a new way to
describe the starlike function family how to transit to convex function family, which
is different from that of ˛-convex functions.

From Theorems 3.1–3.3 in [5], we have the following inclusion relations and
estimates of coefficient of " starlike functions on U.

Theorem A ([5])

(1) S�.U; "/ � S� for each " 2 Œ�1; 1�;
(2) If 1 � "1 > "2 � 0 or �1 � "1 < "2 � 0, then S�.U; "1/ � S�.U; "2/;

In particular, K � S�.U; "/ � S� for each " 2 Œ0; 1�.

Theorem B ([5]) Suppose f .z/ D zC
1P
kD2

akzk 2 S�.U; "/ and " 2 Œ�1; 1�.

(1) If 0 � " � 1, then ja2j � 2.1C "/
1C 3" .

(2) If �1 � " < 0, then ja2j � 2p
1 � " .

In our present sequel to the aforementioned works, we investigate several other
properties and characteristics of " starlike functions on the unit disk U. In particular,
a covering theorem is proven here. Several sufficient criteria for " starlike functions
are also provided. From these, we may construct many concrete " starlike functions
on U.

2 Main Results

In this section, we first derive a necessary and sufficient criterion for " starlike
functions on the unit disk U, which is one of the main results in this paper.
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Theorem 2.1 Suppose f 2 H.U/ and j"j < 1. Then f 2 S�.U; "/ if and only if f
satisfies the following inequality

ˇ̌
ˇ f .z/ � "f .�z/ � .1 � "�/zf 0.z/

ˇ̌
ˇ �

ˇ̌
ˇ f .z/� "f .�z/C .1 � "�/zf 0.z/

ˇ̌
ˇ; (1)

for all z 2 U;8� 2 U.

Proof Fix " 2 .�1; 1/ and � 2 U, then we have 1 � Re."�/ > 0.
Since f 2 H.U/, we get that f 0.z/ ¤ 0 for z 2 U. Then the inequality (1) is

equivalent to

ˇ
ˇ
ˇ
f .z/ � "f .�z/

zf 0.z/
� .1 � "�/

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ
f .z/� "f .�z/

zf 0.z/
C .1 � "�/

ˇ
ˇ
ˇ; 8z 2 Unf0g;8� 2 U;

or

ˇ
ˇ
ˇ

1

1 � Re."�/

h f .z/ � "f .�z/
zf 0.z/

C iIm."�/
i
� 1

ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ

1

1 � Re."�/

h f .z/ � "f .�z/
zf 0.z/

C iIm."�/
i
C 1

ˇ
ˇ
ˇ;

for all z 2 Unf0g and � 2 U, which is equivalent to

Re
f .z/ � "f .�z/

zf 0.z/
D Re

h f .z/ � "f .�z/
zf 0.z/

C iIm."�/
i
� 0; 8z 2 Unf0g;8� 2 U:

Evidently, we have

Re
f .z/ � "f .�z/

zf 0.z/

ˇ
ˇ
ˇ
zD0 D Re.1 � "�/ � 1 � j"j � 0; 8� 2 U:

Hence we conclude the conclusion of this theorem by Definition 1.1. ut
Next, we derive several sufficient criteria for " starlike functions on the unit

disk U.

Theorem 2.2 Let j"j < 1 and f .z/ D zC
1P
kD2

ak zk be an analytic function on U. If

f satisfies

1X

kD2
Œ.1C j"j/kC j"j�jakj � 1 � j"j: (2)

Then f 2 S�.U; "/.
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Proof Since f 0.z/ D 1C
1P
kD2

kak zk�1, we have

j f 0.z/j > 1 � 1

1C j"j
1X

kD2
Œ.1C j"j/kC j"j�jakj � 1 � 1 � j"j

1C j"j D
2j"j
1C j"j � 0

for all z 2 U. Thus we get f 2 H.U/.
On the other hand, by (2) and simple computation, we have

j f .z/� "f .�z/ � .1 � "�/zf 0.z/j

D j
1X

kD2
.1 � "�k � kC k"�/ak z

kj �
1X

kD2
Œk � 1C .kC 1/j"j�jakjjzj

� jzjf2 � 2j"j �
1X

kD2
Œk C 1C .kC 1/j"j�jakjg

� j f .z/ � "f .�z/C .1 � "�/zf 0.z/j;8z 2 U; � 2 U;

hence we conclude from Theorem 2.1 that f 2 S�.U; "/. ut
Notice that

k

�
j"jkC 1 � j"j

2

�
� Œ.1C j"j/kC j"j� D Œk

�
k � 3

2

�
� 1�j"j � 0;

for k � 2, we get the following corollary from Theorem 2.2.

Corollary 2.3 Let f .z/ D zC
1P
kD2

ak zk be an analytic function on U and j"j < 1. If
f satisfies

1X

kD2
k

�
j"jkC 1 � j"j

2

�
jakj � 1 � j"j; (3)

then f 2 S�.U; "/.

Remark 2.4 Setting " D 0 in Theorem 2.2 or Corollary 2.3, we get the related result
in [3].
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Notice that the inequality
1P
kD2

k2jakj � 1 implies the analytic function f .z/ D

zC
1P
kD2

ak zk 2 K. We propose the following conjecture:

Conjecture 2.5 Suppose f .z/ D z C
1P
kD2

ak zk is an analytic function on U and

j"j � 1. If f satisfies
1P
kD2

k.j"jkC 1 � j"j/jakj � 1, then f 2 S�.U; "/.

Theorem 2.6 Suppose f 2 H.U/ and j"j � 1. If f satisfies the following inequality

j f .z/ � "f .�z/ � zf 0.z/j � jzf 0.z/j; 8z 2 U;8� 2 U; (4)

then f 2 S�.U; "/.

Proof Since f 2 H.U/, we get that f 0.z/ ¤ 0 for z 2 U. Combining this fact
with (4), we obtain

ˇ
ˇ
ˇ
ˇ
f .z/ � "f .�z/

zf 0.z/
� 1

ˇ
ˇ
ˇ
ˇ � 1; 8z 2 Unf0g;8� 2 U:

This implies that

Re
f .z/ � "f .�z/

zf 0.z/
� 1 � 1 D 0; 8z 2 Unf0g;8� 2 U:

Evidently, we have

Re
f .z/ � "f .�z/

zf 0.z/

ˇ
ˇ̌
ˇ
zD0
D Re.1 � "�/ � 1 � j"j � 0; 8� 2 U:

Hence by Definition 1.1, we get that f 2 S�.U; "/. The proof is complete. ut

Theorem 2.7 Let j"j � 1 and f .z/ D zC
1P
kD2

ak zk be an analytic function on U. If

f satisfies

1X

kD2
.2k � 1C j"j/jakj � 1 � j"j: (5)

then f 2 S�.U; "/.
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Proof Since f 0.z/ D 1C
1P
kD2

kak zk�1, we have

j f 0.z/j � 1 �
1X

kD2
kjakj � 1 � 2

3C j"j
1X

kD2
.2k � 1C j"j/jakj

� 1 � 2 � 2j"j
3C j"j D

1C 3j"j
3C j"j > 0

for all z 2 U. Thus we get f 2 H.U/.
On the other hand, by (5) and simple computation, we have

j f .z/� "f .�z/ � zf 0.z/j �
 

j"j C
1X

kD2
.k � 1C j"j/jakj

!

jzj

� jzj
 

1 �
1X

kD2
kjakj

!

� jzf 0.z/j

for all z 2 U; � 2 U, we conclude from Theorem 2.6 that f 2 S�.U; "/. ut
Notice that for k � 2, we have

.2k � 1C j"j/ � .1C j"j/kC j"j , j"j � 1 � 1
k
;

combining Theorem 2.2 with Theorem 2.7, we get the following corollary.

Corollary 2.8 Let f .z/ D zC
1P
kD2

ak zk be an analytic function on U and j"j < 1. If
f satisfies

1X

kD2
Œ.1C j"j/kC j"j�jakj � 1 � j"j forj"j � 1

2
;

1X

kD2
.2k � 1C j"j/jakj � 1 � j"j for

1

2
< j"j < 1;

then f 2 S�.U; "/.

Now we construct some concrete " starlike functions on U by applying the above
sufficient criteria.

Example 1 Let j"j � 1=2 and f .z/ D zC
1P
kD2

1�j"j
2k�1..1Cj"j/kCj"j/ z

k. Then f 2 S�.U; "/.
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Example 2 Let 1
2
< j"j < 1 and f .z/ D zC

1P
kD2

1�j"j
2k�1.2k�1Cj"j/ z

k. Then f 2 S�.U; "/.

Finally, we establish a covering theorem for " starlike functions on U, which
extends the covering theorem of S� in [3].

Theorem 2.9 (Covering Theorem) Suppose that " 2 Œ�1; 1� and f .z/ D z C
1P
kD2

ak zk 2 S�.U; "/. Then the unit disk U is mapped by f .z/ onto a domain that

contains the disk jwj < r", where

r" D
(

1C3"
4.1C2"/ ; 0 � " � 1;p

1�"
2C2p

1�" ; �1 � " < 0:
(6)

Proof Suppose w0 is any complex number such that f .z/ ¤ w0 for z 2 U, then
w0 ¤ 0, and

w0f .z/

w0 � f .z/
D zC .a2 C 1

w0
/z2 C 	 	 	

is univalent in U by Theorem A, this leads to
ˇ
ˇ
ˇa2 C 1

w0

ˇ
ˇ
ˇ � 2.

On the other hand, by Theorem B, we get that jw0j � 1
2Cja2j � r", and the proof

is complete. ut
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Generalized Integration Operators from
QK. p; q/ to the Little Zygmund-Type Spaces

Yongmin Liu and Yanyan Yu

Abstract Let ' be an analytic self-map of the unit disk D, H.D/ the space of
analytic functions on D, g 2 H.D/ and n 2 N. The present paper continues the
line of research in Ren (Appl Math Comput 236:27–32, 2014). The boundedness
and compactness of the generalized integration operator

Cn
';gf .z/ D

Z z

0

f .n/.'.�//g.�/d�; z 2 D;

from QK. p; q/ space to the little Zygmund-type space are obtained.

Keywords Generalized integration operators • Little Zygmund-type space •
QK. p;q/ space

Mathematics Subject Classification (2010) Primary 47B38; Secondary 45P05,
46E15, 30H05, 30D45

1 Introduction

Let D be the unit disk in the finite complex plane C, @D boundary of D, H.D/ the
space of all analytic functions on D, N0 the set of all nonnegative integers and N the
set of all positive integers.
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Let � be a normal function on Œ0; 1/ (see, for example, [10]). Let Z� denote the
space of all f 2 H.D/\ C.D/ such that

sup
z2D

�.jzj/j f 00.z/j <1:

Under the norm

k fkZ� D j f .0/j C j f 0.0/j C sup
z2D

�.jzj/j f 00.z/j; (1)

it is easy to see that Z� is a Banach space.
The little Zygmund-type space Z�;0 is defined to be the subspace of Z�

consisting of those f 2 Z� such that

lim
jzj!1

�.jzj/j f 00.z/j D 0:

It is easy to see that Z�;0 is a closed subspace of Z� and the set of all polynomials
is dense in Z�;0.

Let p > 0; q > �2 and K be a nonnegative nondecreasing function on Œ0;1/.
Throughout the paper we assume that

Z 1

0

.1 � r2/qK.� log r/rdr <1:

For the definition of the space QK. p; q/ and QK;0. p; q/, see [8].
In this paper, we consider an integration operator Cn

';g which is defined as

Cn
';gf .z/ D

Z z

0

f .n/.'.�//g.�/d�; z 2 D;

where n 2 N0. This operator is called the generalized integral operator, which was
introduced in [9] and studied in [9, 11]. Also, the operator Cn

';g is a generalization
of the Riemann-Stieltjes operator Ig induced by g, defined as

Igf .z/ D
Z z

0

f .�/g0.�/d�; z 2 D:

Some related results see, for example, [1, 2, 4, 5, 7–9]. Motivated by the results
[1, 2, 5, 8, 14], we consider the boundedness and compactness of the operators Cn

';g
from QK. p; q/ (or QK;0. p; q/) to the little Zygmund-type space.

Now we are in a position to characterize the boundedness and compactness of
Cn
';g W QK. p; q/ .orQK;0. p; q//! Z�;0.
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2 The Boundedness and Compactness of Cn
';g from QK. p; q/

(or QK;0. p; q/) to the Little Zygmund-Type Space

First, we study the boundedness of the operator Cn
';g W QK;0. p; q/! Z�;0.

Theorem 2.1 Let p > 0I q > �2 and K be a nonnegative nondecreasing function
on Œ0;1/ such that

Z 1

0

K.� log r/.1 � r/minf�1;�qg
�

log
1

1 � r

���1.q/

rdr <1: (2)

Assume that ' is an analytic self-map of D, g 2 H.D/, � is normal, and n is a
positive integer. Then the operator Cn

';g W QK;0. p; q/! Z�;0 is bounded if and only
if the operator Cn

';g W QK;0. p; q/! Z� is bounded,

lim
jzj!1

�.jzj/jg0.z/j D 0; (3)

and

lim
jzj!1

�.jzj/ ˇˇ' 0.z/g.z/
ˇ
ˇ D 0: (4)

Proof Now assume that Cn
';g W QK;0. p; q/ ! Z�;0 is bounded, then Cn

';g W
QK;0. p; q/! Z� is bounded, and Cn

';gf 2 Z�;0, 8f 2 QK;0. p; q/. Note that

ˇ
ˇ
ˇ�.jzj/.Cn

';gf /
00.z/

ˇ
ˇ
ˇ D �.jzj/ ˇˇ f .nC1/.'.z//' 0.z/g.z/C f .n/.'.z//g0.z/

ˇ
ˇ :

By taking the function f .z/ D zn

nŠ 2 QK;0. p; q/, it follows that

lim
jzj!1

�.jzj/jg0.z/j D 0;

that is (3) follows. By taking the function f .z/ D znC1

.nC1/Š 2 QK;0. p; q/, we have

lim
jzj!1

�.jzj/j' 0.z/g.z/C '.z/g0.z/j D 0; (5)

from (3), (5) and the boundedness of ', we get

lim
jzj!1

�.jzj/j' 0.z/g.z/j D 0;

(4) holds.
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Conversely, assume that the operator Cn
';g W QK;0. p; q/ ! Z� is bounded, (3)

and (4) hold. By Ren [8, Theorem 1] we have

M1 WD sup
z2D

�.jzj/jg0.z/j
.1 � j'.z/j2/ 2Cq�p

p Cn
<1

and

M2 WD sup
z2D

�.jzj/jg.z/jj' 0.z/j
.1 � j'.z/j2/ 2Cq�p

p CnC1 <1:

It from [12, Theorem 2.2] and [13, Proposition 8] follows that for any � > 0, there
exists a ı 2 .0I 1/, such that ı < jzj < 1 implies

�.jzj/jg0.z/j < �=2; (6)

�.jzj/ ˇˇ' 0.z/g.z/
ˇ
ˇ < �=2; (7)

.1 � jzj2/ 2Cq�p
p Cn ˇ̌ f .n/.z/

ˇ̌
<

�

2M1

; (8)

and

.1 � jzj2/ 2Cq�p
p CnC1 ˇˇ f .nC1/.z/

ˇ
ˇ <

�

2M2

; (9)

for each function f 2 QK;0. p; q/. Hence writing D1 D fz 2 D W ı < jzj < 1g, using
(6) and (7), we deduce that for each function f 2 QK;0. p; q/

sup
fz2D1Wj'.z/j�ıg

ˇ̌
ˇ�.jzj/.Cn

';gf /
00.z/

ˇ̌
ˇ

D sup
fz2D1Wj'.z/j�ıg

�.jzj/ ˇˇ f .nC1/.'.z//' 0.z/g.z/C f .n/.'.z//g0.z/
ˇ
ˇ

� C


�.jzj/jg.z/jj' 0.z/j C �.jzj/jg0.z/j�

� C�; (10)

and using (8), (9) and [8, Theorem 1], we get that

sup
fz2D1Wı<j'.z/j<1g

ˇ
ˇ
ˇ�.jzj/.Cn

';gf /
00.z/

ˇ
ˇ
ˇ

D sup
fz2D1Wı<j'.z/j<1g

�.jzj/ ˇˇ f .nC1/.'.z//' 0.z/g.z/C f .n/.'.z//g0.z/
ˇ
ˇ



Generalized Integration Operators 243

� �

2
sup

fz2D1Wı<j'.z/j<1g

 
�.jzj/jg.z/jj' 0.z/j

M2.1 � j'.z/j2/
2Cq�p

p CnC1 C
�.jzj/jg0.z/j

M1.1 � j'.z/j2/
2Cq�p

p Cn

!

� �: (11)

From (10) and (11), we get that Cn
';gf 2 Z�;0 for each function f 2 QK;0. p; q/.

The boundedness of the operator Cn
';g W QK;0. p; q/! Z� implies that the operator

Cn
';g W QK;0. p; q/! Z�;0 is bounded. ut

Secondly, we characterize the compactness of the operator Cn
';g W QK. p; q/ !

Z�;0.

Theorem 2.2 Let p > 0I q > �2 and K be a nonnegative nondecreasing function
on Œ0;1/ such that (2) holds. Assume that ' is an analytic self-map of D, g 2
H.D/, � is normal and n is a positive integer. Then the following statements are
equivalent.

.i/ The operator Cn
';g W QK. p; q/! Z�;0 is compact;

.ii/ The operator Cn
';g W QK;0. p; q/! Z�;0 is compact;

.iii/

lim
jzj!1

�.jzj/jg0.z/j
.1 � j'.z/j2/ 2Cq�p

p Cn
D 0; (12)

and

lim
jzj!1

�.jzj/jg.z/jj' 0.z/j
.1 � j'.z/j2/ 2Cq�p

p CnC1 D 0: (13)

Proof .iii/ ) .ii/. Assume that conditions (12) and (13) hold. Then Cn
';g W

QK. p; q/ ! Z� is bounded by Ren [8, Theorem 1]. Using [12, Theorem 2.2] and
[13, Proposition 8], we get for any f 2 QK. p; q/

ˇ
ˇ̌
�.jzj/.Cn

';gf /
00.z/

ˇ
ˇ̌ D �.jzj/ ˇ̌ f .nC1/.'.z//' 0.z/g.z/C f .n/.'.z//g0.z/

ˇ̌

� C

 
�.jzj/jg.z/jj' 0.z/j

.1 � j'.z/j2/ 2Cq�p
p CnC1 C

�.jzj/jg0.z/j
.1 � j'.z/j2/ 2Cq�p

p Cn

!

k fkQK . p;q/; (14)

thus
ˇ
ˇ
ˇ�.jzj/.Cn

';gf /
00.z/

ˇ
ˇ
ˇ! 0 as jzj ! 1:

From this we see that Cn
';gf 2 Z�;0 for each f 2 QK. p; q/, it follows that Cn

';g W
QK. p; q/! Z�;0 is bounded. So Cn

';g W QK;0. p; q/! Z�;0 is bounded. Taking the
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supremum in inequality (14) over all f 2 QK;0. p; q/ such that k fkQK . p;q/ � 1 and
letting jzj ! 1 yields

lim
jzj!1

sup
k fkQK . p;q/�1

�.jzj/j.Cn
';gf /

00.z/j D 0:

Hence, by Li and Stević [3, Lemma 3.1] (also see [6, Lemma 1]), we see that the
operator Cn

';g W QK;0. p; q/! Z�;0 is compact.
.ii/) .i/. This implication is obvious.
.i/ ) .iii/. Now assume that Cn

';g W QK. p; q/ ! Z�;0 is compact. Then Cn
';g W

QK. p; q/! Z�;0 is bounded. By the proof of Theorem 2.1, (3) and (4) hold. Since
f'.z/; h'.z/ 2 QK. p; q/, we have Cn

';gf'.z/;C
n
';gh'.z/ 2 Z�;0. Because j'.z/j ! 1

implies jzj ! 1, we obtain

lim
j'.z/j!1

�.jzj/jg0.z/j
.1 � j'.z/j2/ 2Cq�p

p Cn
D 0; (15)

and

lim
j'.z/j!1

�.jzj/jg.z/jj' 0.z/j
.1� j'.z/j2/ 2Cq�p

p CnC1 D 0: (16)

We only prove that (4) and (16) imply (13). The proof of (3) and (15) imply (12) is
similar, hence it will be omitted.

From (16), it follows that for every � > 0, there exists ı 2 .0; 1/ such that

�.jzj/jg.z/jj' 0.z/j
.1 � j'.z/j2/ 2Cq�p

p CnC1 < �; (17)

when ı < j'.z/j < 1: Using (4) we see that there exists � 2 .0; 1/ such that

�.jzj/j' 0.z/g.z/j < � inf
t2Œ0;ı�.1 � t2/

2Cq�p
p CnC1

; (18)

when � < jzj < 1: Therefore, when � < jzj < 1 and ı < j'.z/j < 1, by (17) we
have

�.jzj/jg.z/jj' 0.z/j
.1 � j'.z/j2/ 2Cq�p

p CnC1 < �: (19)
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On the other hand, when � < jzj < 1 and j'.z/j � ı, by (18) we obtain

�.jzj/jg.z/jj' 0.z/j
.1 � j'.z/j2/ 2Cq�p

p CnC1 �
�.jzj/j' 0.z/g.z/j

inf
t2Œ0;ı�.1 � t2/

2Cq�p
p CnC1 < �: (20)

From (19) and (20), we obtain (13), as desired. The proof is completed. ut
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The Hyperbolic Metric on the Complement
of the Integer Lattice Points in the Plane

Katsuhiko Matsuzaki

Abstract A domain in the plane obtained by removing all integer lattice points
admits the hyperbolic metric, which is the rank 2 Abelian cover of the once-
punctured square tours. We compare the hyperbolic metric of this domain with a
scaled Euclidean metric in the complement of the cusp neighborhoods. They are
quasi-isometric. We investigate the best possible quasi-isometry constant relying on
numerical experiment by Mathematica.

Keywords Absolute norm • Continued fraction • Hyperbolic metric • Mathe-
matica • Once-punctured torus • Quasi-isometry • Simple closed geodesic

Mathematics Subject Classification (2010) Primary 30F45; Secondary 11J70,
46B20

1 Euclidean Metric vs. Hyperbolic Metric

In this note, we consider metrics on a planar domain

� D C � Z � Z:

Take the square torus T D C=hz 7! zC1; z 7! zCii and remove the point Œ0� from T
to make an once-punctured torus T�. It admits a complete hyperbolic metric by the
uniformization theorem. The universal cover C ! T with the deck transformation
group Z � Z induces an Abelian cover 	 W �! T�. The hyperbolic metric on � is
defined by the pull-back of that on T�. The Euclidean metric on � is the restriction
of the Euclidean metric on C with scaling (defined later).

We compare these two metrics on the complement of the cusp neighborhoods.
The hyperbolic metric gets much larger near to the punctures and there is no
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comparison there. For a given open neighborhood A of Œ0� 2 T�, set

T�
0 WD T� � AI �0 WD � � 	�1.A/:

The hyperbolic metric and the Euclidean metric on T�
0 are comparable (bi-Lipschitz)

since T�
0 is compact, and so are on the covering space �0. Hence the inner

distances induced by the integration of these metrics along the paths in �0 are
also comparable. However, the distances we deal with are just the restriction of
the hyperbolic and the Euclidean distances on � to �0.

2 A Problem on the Optimal Quasi-Isometry Constant

We denote the hyperbolic distance and the Euclidean distance on � by dH and dE
respectively, and use the same notation for their restriction to �0.

Definition 2.1 For metric spaces .X; dX/ and .Y; dY/ in general, a map f W X ! Y
is called a K-quasi-isometry .K � 1/ if there is a constant C � 0 such that

1

K
.dX.x1; x2/� C/ � dY. f .x1/; f .x2// � KdX.x1; x2/C C

for any x1; x2 2 X.

From the fact that any geodesic curve on .�; dH/ connecting any two points in
�0 cannot go deeply into the cusp, we see the following.

Proposition 2.2 The identity map id W .�0; dH/ ! .�0; dE/ is a K-quasi-isometry
with the constant C � 0 depending on the cusp neighborhood A.

We try to find the best possible constant K in this proposition. Note that this
is independent of the choice of the cusp neighborhood A. We put the following
normalization. The Euclidean metric is scaled so that the length of the unit interval
is equal to the hyperbolic length of the simple closed geodesic on the punctured
torus T� corresponding to the covering transformation z 7! zC 1 on �. (This also
coincides with that for z 7! zC i by the symmetry of the square torus.)

Due to the additive constant C, we can ignore small errors in distance without
changing the quasi-isometry constant K. Hence we do not have to consider any two
points in �0 for the comparison of the distances. Only the following measurement
is enough to determine K: for any coprime p; q 2 N, the distances between a fixed
z0 2 �0 and z0CpiCq 2 �0. The Euclidean distance is simply given by

p
p2 C q2

without scaling and the hyperbolic distance is comparable with the hyperbolic
length of the . p=q/-simple closed geodesic on the once-punctured torus T�.
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3 The Computation of Lengths of Simple Closed Geodesics

It is known that the hyperbolic length of the . p=q/-simple closed geodesic on
T�, which is denoted by Length. p=q/, can be computed recursively by the trace
identity from the lengths of .1=0/- and .0=1/-simple closed geodesics, which are
2 arccosh

p
2 for the square torus. The information about how many times we should

apply the recursive relations alternatively is represented by the coefficients of the
regular continued fraction of p=q, which is

p

q
D a0 C

1

a1 C
1

a2 C
1

	 	 	 	 	 	

an�1 C
1

an

D Œa0; a1; a2; : : : ; an�1; an�:

The idea of this algorithm can be found in Mumford et al. [2, Chap. 9]. For example,
30=13D Œ2; 3; 4�. Then, in the order of

0

1

1
0�! 1

1

1
0�! 2

1
;

1

0

2
1�! 3

1

2
1�! 5

2

2
1�! 7

3
;

2

1

7
3�! 9

4

7
3�! 16

7

7
3�! 23

10

7
3�! 30

13
;

we derive the lengths of their simple closed geodesics.
To obtain the desired estimate, we consider when the supremum of

Length. p=q/

2 arccosh
p
2 	 pp2 C q2

is achieved, where p; q 2 N run over coprime integers. At first, we expected that it
should be when p=q tend to the golden ratio � D .1C p5/=2 D Œ1; 1; 1; : : :� and
its inverse ��1 D Œ0; 1; 1; : : :�.

However, a numerical experiment tells us that this expectation is false. As Fig. 1
by Mathematica shows, the supremum 1:082085 	 	 	 is achieved when p=q converge
to 1:62024 	 	 	 and its inverse, which is slightly different from the golden ratio
� D 1:61803 	 	 	 .

We also observe the following state (Fig. 2) by Mathematica besides the fact
we have mentioned above. In this note, statements of experimental results without
rigorous proof are called “Claim.”

Claim 3.1 For a rational number p=q with coprime p; q 2 N, define a function

h. p=q/ WD Length. p=q/

2 arccosh
p
2 	 pp2 C q2

:
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h(t) - 1.08208

5.

1.615 1.620 1.625 1.630

10- 6

4. 10- 6

3. 10- 6

2. 10- 6

Fig. 1 Maximum of function h.t/

Fig. 2 Graph of h.tan.
// on Œ�	=2; 	=2� for square torus

Then h satisfies the following:

1. h is bounded and extends continuously to any t 2 R [ f�1;1g;
2. the range of h is 1 � h.t/ < 1:08209.

By these numerical experiments, we can obtain the optimal quasi-isometry
constant.

Claim 3.2 There is a constant C � 0 depending on the cusp neighborhood A
such that

edE.z1; z2/� C � dH.z1; z2/ < 1:08209 	edE.z1; z2/C C

for any z1; z2 2 �0 D � � 	�1.A/, whereedE D .2 arccosh
p
2/dE.
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4 Absolute Norm and Rough-Isometry

We introduce a new real norm to C D R
2 by using the above function h, which is

equivalent to the Euclidean norm k 	 k2. We use a general result concerning absolute
norm.

For a positive continuous function ' W Œ0; 	=2� ! .0;1/ with '.0/ D
'.	=2/ D 1, we define

k.x; y/k' WD k.x; y/k2 	 '.arctan . y=x//

for every non-trivial .x; y/ 2 R
2 with x; y � 0, and then extend it to R

2 by
k.x; y/k' D k.jxj; jyj/k' and k.0; 0/k' D 0. The following fact is known by Bonsall
and Duncan [1, Sect. 21, Lemma 3].

Proposition 4.1 Under the above notation, k.x; y/k' gives a real norm on R2 if and
only if  .t/ D k.1 � t; t/k' .0 � t � 1/ is a convex continuous function such that
 .0/ D  .1/ D 1 and maxf1 � t; tg �  .t/ � 1.

Now we set '.
/ D h.tan 
/ by using our function h. A numerical experiment
by Mathematica gives the following graph (Fig. 3) of  .t/ D k.1 � t; t/k' , which
satisfies the condition in the above proposition. Then k 	 khıtan is a norm on R

2.

Fig. 3 Graph of  .t/ D k.1� t; t/k' for '.
/ D h.tan 
/

If the above observation is true, we will have another claim from the ones in the
previous section.

Claim 4.2 The hyperbolic distance dH on �0 is rough-isometric to the distance
defined by the norm .2 arccosh

p
2/k 	 khıtan, where rough-isometry means K-quasi-

isometry for K D 1.
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5 Generalization: Another Example

We can consider the similar problem starting from a torus in general

T D C=hz 7! zC 1; z 7! zC �i

for � 2 H. A difficulty in this case is to describe explicitly the correspondence
between � and the hyperbolic structure on T�. Here, we only deal with another
special case: � D .�1C p3i/=2.

In this case, our function h becomes

h.t/ D Length. p=q/

2 arccosh.3=2/ 	 pp2 C q2 � pq
.t D p3p=.2q� p//

and its range is 1 � h.t/ < 1:06453 and the maximum is taken at t � 0:42949,
0:74692, 8:44047 and their symmetric points (Fig. 4).

Fig. 4 Graph of h.tan.
// on Œ�	=2; 	=2� for equilateral torus
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Further Results of a Normality Criterion
Related a Famous Hayman Conjecture

Wenjun Yuan, Fanning Meng, and Shengjiang Chen

Dedicated to Professor Yuzan He on the Occasion of his 80th
Birthday

Abstract In this paper, we study the normality criterion related a famous Hayman
conjecture, and get four normal criteria. Our results improve the related theorems
which were obtained by Pang (Kexue Tongbao (in Chinese) 33(22):1690–1693,
1988), Schwick (J Anal Math 52:241–289, 1989) and Xu (J Math 21(4):381–386,
2001), respectively.

Keywords Higher derivative • Meromorphic function • Normal family • Shared
value
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1 Introduction and Main Results

The following normality criterion is a famous Hayman conjecture [3].

Theorem 1.1 Let F be a family of holomorphic (meromorphic) functions defined
in a domain D , n 2 N; a ¤ 0; b 2 C. If f 0.z/C af n.z/ � b does not vanish in D for
each function f .z/ 2 F and n � 2.n � 3/, then F is normal in D.
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Remark 1.2 Many mathematicians contributed above theorem, the detailed
illustration can be found in [2].

If f 0 is substituted by f .k/ in above theorem. Pang [4] and Schwick [5] got the
following theorem, respectively.

Theorem 1.3 Let F be a family of meromorphic functions defined in a domain D ,
n; k 2 N; a ¤ 0; b 2 C. If f .k/.z/C af n.z/� b does not vanish in D for each function
f .z/ 2 F and n � kC 4, then F is normal in D.

In 1995, Chen and Fang [1] proposed the following conjecture.

Conjecture CF Let F be a family of meromorphic functions defined in a domain
D, k; n 2 N; a ¤ 0; b 2 C. If f .k/.z/ � af n.z/ � b does not vanish in D for each
function f .z/ 2 F and n � kC 2 and k � 2, then F is normal in D.

In response to Conjecture CF, Xu [6] proved the following result.

Theorem 1.4 Let F be a family of meromorphic functions in D, k and n.� k C 2/
be two positive integers. Let a.¤ 0/ and b be two finite complex numbers. If for
every function f 2 F

(i) f .k/ � af n � b has no zero in D,
(ii) f has no simple pole in D,

then F is normal in D.

In this paper, we relax conditions of Theorems 1.3 and 1.4, and get the following
results.

Theorem 1.5 Let D be a domain in C and let F be a family of meromorphic
functions in D. Let k; n 2 N

C such that n � k C 5, and let a and b be two finite
complex numbers with a ¤ 0. If f .k/ � af n � b has at most one distinct zero, and
any zero of f has multiplicity at least k in D for every function f 2 F , then F is a
normal family in D.

Theorem 1.6 Let D be a domain in C and let F be a family of meromorphic
functions in D. Let k; n 2 N

C such that n � k C 3 and k � 2, and let a and b
be two finite complex numbers with a ¤ 0. If for every function f 2 F ,

(i) f .k/ � af n � b has at most one distinct zero,
(ii) f has no simple pole, and any zero of f has multiplicity at least k in D,

then F is a normal family in D.

Theorem 1.7 Let D be a domain in C and let F be a family of meromorphic
functions in D. Let k; n 2 N

C such that n � k C 5, and let a and b be two finite
complex numbers with a ¤ 0. Suppose that any zero of f has multiplicity at least k
in D for every function f 2 F . If f .k/ � af n and g.k/ � agn share the value b IM for
every pair of functions . f ; g/ of F , then F is a normal family in D.
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Theorem 1.8 Let D be a domain in C and let F be a family of meromorphic
functions in D. Let k; n 2 N

C such that n � k C 3 and k � 2, and let a and b
be two finite complex numbers with a ¤ 0. If
(i) f .k/ � af n and g.k/ � agn share the value b IM in D for every pair of functions

. f ; g/ of F ,
(ii) f has no simple pole, and any zero of f has multiplicity at least k in D for every

function f 2 F ,

F is a normal family in D.

2 Preliminary Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 ([7]) Let F be a family of meromorphic functions on the unit disc
satisfying all zeros of functions in F have multiplicity� p and all poles of functions
in F have multiplicity � q. Let ˛ be a real number satisfying �q < ˛ < p. Then F
is not normal at 0 if and only if there exist

a/ a number 0 < r < 1I
b/ points zn with jznj < rI
c/ functions fn 2 F I
d/ positive numbers �n ! 0

such that gn.�/ WD ��˛fn.znC�n�/ converges spherically uniformly on each compact
subset of C to a non-constant meromorphic function g.�/ , whose all zeros have
multiplicity � p and all poles have multiplicity � q and order is at most 2.

Lemma 2.2 Let f .z/ be a meromorphic function such that f .k/.z/ ¥ 0 and c 2
Cnf0g, k; n 2 N

C with n � 2. Then

.n � 1/T.r; f / � .kC 1/N.r; f /C N.r;
1

f
/C N.r;

1

f .k/ � cf n
/C S.r; f /; (1)

where S.r; f / D o.T.r; f //, as r ! 1, possibly outside a set with finite linear
measure.

Proof Set

ˆ.z/ WD f .k/.z/

cf n.z/
:
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Since f .k/.z/ ¥ 0, we haveˆ.z/ ¥ 0. Thus

f n.z/ D f .k/.z/

cˆ.z/
: (2)

Hence

nm.r; f / D m.r; f n/ � m

�
r;
f .k/

ˆ

�
C logC 1

jcj

� m

�
r;
1

ˆ

�
C m.r; f .k//C logC 1

jcj

� m

�
r;
1

ˆ

�
C m

�
r;
f .k/

f

�
C m.r; f /C logC 1

jcj :

So that

.n � 1/m.r; f / � m

�
r;
1

ˆ

�
C m

�
r;
f .k/

f

�
C logC 1

jcj : (3)

On the other hand, (2) gives

nN.r; f / � N.r; f n/ D N


r; f

.k/

ˆ

�

� N.r; f .k//C N.r; 1
ˆ
/� N.r; ˆ D f .k/ D 0/; (4)

where N.r; ˆ D f .k/ D 0/ denotes the counting function of zeros of bothˆ and f .k/.
We obtain

nN.r; f / � N.r; f /C kN.r; f /C N

�
r;
1

ˆ

�
� N.r; ˆ D f .k/ D 0/;

.n � 1/N.r; f / � kN.r; f /C N

�
r;
1

ˆ

�
� N.r; ˆ D f .k/ D 0/: (5)

By (2), we have

N

�
r;
1

ˆ

�
C N.r; ˆ/ D N.r; f /C N

�
r;
1

f

�
C N.r; ˆ D f .k/ D 0/: (6)
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From (3) to (6), we obtain

.n � 1/T.r; f / � kN.r; f /C T

�
r;
1

ˆ

�
� N.r; ˆ D f .k/ D 0/C S.r; f /

� kN.r; f /C T.r; ˆ/ � N.r; ˆ D f .k/ D 0/C S.r; f /

� kN.r; f /C N.r;
1

ˆ
/C N.r; ˆ/C N

�
r;

1

ˆ� 1
�

� N.r; ˆ D f .k/ D 0/C S.r; f /

� .kC 1/N.r; f /C N

�
r;
1

f

�
C N

�
r;

1

f .k/ � cf n

�
C S.r; f /;

(1) holds. ut

3 Proofs of Theorems

Proof (The Proof of Theorem 1.5) Suppose that F is not normal in D. Then there
exists at least one point z0 such that F is not normal at the point z0. Without loss of
generality we assume that z0 D 0. By Lemma 2.1, there exist points zj ! 0, positive
numbers �j ! 0 and functions fj 2 F such that

gj.�/ D �
k

n�1

j fj.zj C �j�/) g.�/ (7)

locally uniformly with respect to the spherical metric, where g is a non-constant
meromorphic function in C and any zero of g has multiplicity at least k. Obviously,
g.k/ ¥ 0:

From (7) and by computation, we have

g.k/j .�/ D �
nk
n�1

j f .k/j .zj C �j�/) g.k/.�/

and

g.k/j .�/ � agnj .�/ � �
nk

n�1

j b

D � nk
n�1

j . f .k/j .zj C �j�/ � af nj .zj C �j�/ � b/
) g.k/.�/ � agn.�/

(8)

also locally uniform with respect to the spherical metric.
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If g.k/.�/ � agn.�/ 
 0, then

nT.r; g/ D T.r; gn/ D T.r; g.k//C O.1/

D m.r; g.k//C N.r; g.k//C O.1/

� m.r; g/C N.r; g/C kN.r; g/C S.r; g/

� .kC 1/T.r; g/C S.r; g/:

(9)

Note that n � k C 5, therefore, (9) gives that g.�/ is a constant, a contradiction.
So g.k/.�/ � agn.�/ ¥ 0. Furthermore, by (1) of Lemma 2.2, we have

T.r; g/ � 1

2
N.r;

1

g.k/ � agn
/C S.r; g/: (10)

If g.k/.�/�agn.�/ ¤ 0, then (10) implies that g.�/ is a constant. Hence, g.k/.�/�
agn.�/ is a nonconstant meromorphic function and has at least one distinct zero.

Next we prove that g.k/.�/�agn.�/ has at most one distinct zero. To the contrary,
let �0 and ��

0 be two distinct zeros of g.k/.�/ � agn.�/, and choose ı.> 0/ small
enough such that D.�0; ı/ \ D.��

0 ; ı/ D � where D.�0; ı/ D f� W j� � �0j < ıg and
D.��

0 ; ı/ D f� W j� � ��
0 j < ıg. From (8), by Hurwitz’s theorem, there exist points

�j 2 D.�0; ı/, ��
j 2 D.��

0 ; ı/ such that for sufficiently large j

f .k/j .zj C �j�j/ � af nj .zj C �j�j/� b D 0;
f .k/j .zj C �j��

j / � af nj .zj C �j��
j / � b D 0:

Note that zjC�j�j ! 0 and zjC�j��
j ! 0 as j!1, then f .k/j .z/�af nj .z/�b has at

least two distinct zeros zjC�j�j and zjC�j��
j for each large enough j, a contradiction

with hypothesis.
Thus (10) deduces that g.�/ is also a constant, a contradiction.
This completes the proof of Theorem 1.5. ut

Proof (The Proof of Theorem 1.6) The proof is the same as the proof of Theorem 1.5
except for g.�/ having no simple pole and (10). Here we omit the detailed statements
and only deduce an inequality (11) substituting into (10).

Since f has no simple pole, we get

N.r; f / � 1

2
N.r; f / � 1

2
T.r; f /:
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Note that n � kC 3 and k � 2, (1) of Lemma 2.2 gives that

T.r; f / � 2

3
N

�
r;

1

f .k/ � cf n

�
C S.r; f /: (11)

This completes the proof of Theorem 1.6. ut
Proof (The Proof of Theorem 1.7) We are proceeding the proof of Theorem 1.5 to
obtain (7)–(10).

If g.k/.�/ � agn.�/ ¤ 0, then (10) gives that g.�/ is a constant. Hence, g.k/.�/ �
agn.�/ is a non-constant meromorphic function and has at least one zero.

Next we prove that g.k/.�/ � agn.�/ has just a unique zero. To the contrary,
let �0 and ��

0 be two distinct zeros of g.k/.�/ � agn.�/, and choose ı.> 0/ small
enough such that D.�0; ı/ \ D.��

0 ; ı/ D � where D.�0; ı/ D f� W j� � �0j < ıg and
D.��

0 ; ı/ D f� W j� � ��
0 j < ıg. From (8), by Hurwitz’s theorem, there exist points

�j 2 D.�0; ı/, ��
j 2 D.��

0 ; ı/ such that for sufficiently large j

f .k/j .zj C �j�j/ � af nj .zj C �j�j/� b D 0;
f .k/j .zj C �j��

j / � af nj .zj C �j��
j / � b D 0:

By the hypothesis that for each pair of functions f and g in F , f .k/ � af n and
g.k/ � agn share b in D, we know that for any positive integer m

f .k/m .zj C �j�j/ � af nm.zj C �j�j/� b D 0;
f .k/m .zj C �j��

j / � af nm.zj C �j��
j / � b D 0:

Fix m, take j!1, and note zjC�j�j ! 0, zjC�j��
j ! 0, then f .k/m .0/�af nm.0/�

b D 0. Since the zeros of f .k/m � af nm � b has no accumulation point, we know

zj C �j�j D 0; zj C �j��
j D 0;

for large enough j. Hence �j D � zj
�j
; ��

j D � zj
�j
: This contradicts with �j 2

D.�0; ı/; ��
j 2 D.��

0 ; ı/ and D.�0; ı/ \ D.��
0 ; ı/ D �. So g.k/.�/ � agn.�/ has just a

unique zero.
Thus (10) deduces that g.�/ is also a constant, a contradiction.
This completes the proof of Theorem 1.7. ut

Proof (The Proof of Theorem 1.8) The proof is the same as the proof of Theorem 1.7
except for g.�/ having no simple pole and (10) being replaced by (11). Here we omit
the detail statements.

This completes the proof of Theorem 1.8. ut
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Remark 3.1 Obviously, by analyzing above proofs, we see that if F be a family of
holomorphic functions in D in Theorems 1.5–1.8, then the condition n � kC x can
be replaced by n � x � 1.
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Variable Integral Exponent Besov
and Triebel-Lizorkin Spaces Associated
with Non-negative Self-Adjoint Operators

Jingshi Xu and Xiaodi Yang

Abstract In this paper, variable integral exponent Besov and Triebel-Lizorkin
spaces associated with a non-negative self-adjoint operator are introduced. Then
equivalent norms and atomic decompositions of these new spaces are given.

Keywords Besov space • Non-negative self-adjoint operators • Triebel-Lizorkin
space • Variable exponent
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1 Introduction

In recent years, function spaces associated with non-negative self-adjoint oper-
ators have attracted many authors’ attention. Indeed, G. Kerkyacharian and P.
Petrushev introduced Besov and Triebel-Lizorkin spaces associated with non-
negative self-adjoint operators and gave their Heat kernel characterization and frame
decomposition in [15]. In [13] Hu gave their equivalent quasi-norms by Peetre type
maximal functions and atomic decompositions.

In recent decades variable exponent function spaces have been developed and
proved to be useful tools in the study of ordinary and partial differential equations
and image restoration. For details one can see [1–3, 5, 6, 8–12, 14, 16–20] and the
references therein.

Inspired by the mentioned references, in this paper we aim to introduce variable
integral exponent Besov and Triebel-Lizorkin spaces associated with non-negative
self-adjoint operators. The structure of the paper is as follows. In Sect. 2, we shall

J. Xu (�) • X. Yang
Department of Mathematics, Hainan Normal University, Haikou 571158, People’s Republic of
China
e-mail: jingshixu@126.com; 1093644224@qq.com

© Springer International Publishing AG 2017
P. Dang et al. (eds.), New Trends in Analysis and Interdisciplinary Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-48812-7_33

261

mailto:jingshixu@126.com
mailto:1093644224@qq.com


262 J. Xu and X. Yang

give the definitions of these spaces and equivalent quasi-norms by the Peetre type
maximal functions. In Sect. 3, we shall give atomic decompositions of these new
spaces.

2 Equivalent Norms

In the sequel, we assume .X ; �; �/ is a metric measure space satisfying the
conditions: .X ; �/ is a locally compact metric space with distance �.	; 	/ and � is a
positive Radon measure obeying the volume doubling condition

0 < �.B.x; 2r// 6 c0�.B.x; r// <1 for all x 2 X and r > 0;

where B.x; r/ is the open ball centered at x with radius r and c0 is a constant.
Let L be a self-adjoint non-negative operator on L2.X ; d�/ such that the

associated semigroup Pt D e�tL consists of integral operators with heat kernel
pt.x; y/ obeying the following conditions:

(a) Gaussian upper bound: for x; y 2 X ; t > 0;

jpt.x; y/j 6 C1expf�c2�2.x; y/=tgp
�.B.x;

p
t//�.B. y;

p
t//
:

(b) Hölder continuity: There exists a constant ˛ > 0 such that for x; y 2 X ; t > 0

and �. y; y0/ 6
p
t

jpt.x; y/� pt.x; y
0/j 6 C1

�
�. y; y0/p

t

�˛ expf�c2�2.x; y/=tgp
�.B.x;

p
t//�.B. y;

p
t//
:

We denote the domain of L by D.L/: We also denote N0 D N [ f0g:
Definition 2.1

(i) If �.X / < 1; the test function class D is defined as the set of all functions
� 2 \n2N0D.Ln/ with the topology induced by the family of seminorms

Pn.�/ WD kLn�kL2.X ;d�/; n 2 N0:

(ii) If �.X / D 1; the class D is defined as the set of all functions � 2 \n2N0D.Ln/

with the topology induced by the family of seminorms

Pn;l.�/ WD sup
x2X

.1C �.x; x0//ljLn�.x/j <1; n; l 2 N0;

where x0 2 X is a fixed point.
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In the case�.X / D 1; the class D is independent of the choice of x0: Therefore,
we choose a point x0 2 X and fix it in the sequel.

The set of all continuous linear functionals on D is denoted by D0: The duality
between the spaces is denoted by the map .	; 	/ W D0 �D! C:

Let p.	/ be a measurable function on X with range in Œ1;1/: The variable
Lebesgue space Lp.�/.X / denotes the set of measurable functions f on X such that

k fkLp.�/.X / WD inf

(

� > 0 W
Z

X

� j f .x/j
�

�p.x/

d�.x/ 6 1

)

<1:

If p.	/ is measurable function on X with values in .0;1/; we denote p� WD
ess infx2X p.x/ and pC WD ess supx2X p.x/: Let P.X / be the set of measurable
functions p.	/ on X such that p� > 1 and pC < 1: Define P0.X / to be the set
of measurable functions p.	/ on X such that p� > 0 and pC < 1: Given p.	/ 2
P0.X /; one can define the space Lp.�/.X / as above. Indeed, a quasi-norm on this
space is k fkLp.�/ D kj f jp0k1=p0Lq.�/

; where 0 < p0 < p�:
Let S.Œ0;1// denote the Schwartz class on Œ0;1/:

Definition 2.2 Let .�0; �/ be a pair of functions in S.Œ0;1// and M be an integer.
The pair .�0; �/ is said to be in the class AM.Œ0;1// if

j�0.�/j > 0 on Œ0; 4�/; (1)

j�.�/j > 0 on .�=4; 4�/ (2)

for some � > 0; and if .	/�M�.	/ 2 S.Œ0;1//:
In the sequel, given any pair .�0; �/ of functions in S.Œ0;1//; we denote the

system f�jg of functions in S.Œ0;1// by setting

�j.�/ WD �.2�2j�/ for j > 1:

Let ' 2 S.Œ0;1//; by Proposition 5.3 in [15], the integral kernel K'.L/.x; y/ of
the operator '.L/ belongs to D as a function of x and as a function of y: Thus, for
f 2 D0 and ' 2 S.Œ0;1//; one can define

'.L/f .x/ WD . f ;K'.L/.x; 	//;

which extends the action of the operator '.L/ from f 2 L2.X ; d�/ to f 2 D0:
After these preparations, we have the following definition.

Definition 2.3 Let s 2 R; 0 < q 6 1; p.	/ 2 P0.X /: Let �0; � be functions in
S.Œ0;1//:
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(i) The variable integral exponent Besov space Bs
p.�/;q.X ;L/ is the set of all f 2 D0

such that

k fkBs
p.�/;q.X ;L/ WD




˚
2sj�j.L/f

�1
jD0



`q.Lp.�//

<1I

(ii) The variable integral exponent Triebel-Lizorkin space Fs
p.�/;q.X ;L/ is the set of

all f 2 D0 such that

k fkFs
p.�/;q.X ;L/ WD



˚
2sj�j.L/f

�1
jD0


Lp.�/.`q/

<1:

Here to make these spaces definite, the primary point is to show them indepen-
dent of the choice of functions �0 and �: To this objective we need more notation.
Let 
0; 
 2 S.Œ0;1//; and a positive number a: For any f 2 D0 denote the system
of the Peetre type maximal functions by


�
j;a.L/f .x/ WD sup

y2X
j
j.L/f . y/j

.1C 2j�.x; y//a ; j 2 N0:

In the following, our key tool is the boundedness of Hardy-Littlewood maximal
operator on variable Lebesgue spaces. For a local integrable function f ; the Hardy-
Littlewood maximal function Mf is defined by

Mf .x/ WD sup
B3x

1

�.B/

Z

B
j f . y/jd�. y/; 8x 2 X ;

where B is any ball containing x: Let B.X / be the set of p.	/ 2 P.X / such that
the Hardy-Littlewood maximal operator M is bounded on Lp.�/.X /: For the detail,
see [1].

Now we state our results in this section.

Theorem 2.4 Let �0; � be functions in S.Œ0;1// satisfying (1) and (2), 0< q�1;
and p.	/ 2 P0.X /:

(i) If there exists p0 < minf p�; 1g such that p.	/=p0 2 B.X / and ap0 > 2d; then
there exists a constant C > 0 such that for all f 2 D0

kf2sj��
j;a.L/f g1jD0k`q.Lp.�// 6 Ckf2js�j.L/f g1jD0k`q.Lp.�//:

(ii) If there exists p0 < minfp�; 1; qg such that p.	/=p0 2 B.X / and ap0 > 2d;
then there exists a constant C > 0 such that for all f 2 D0

kf2sj��
j;a.L/f g1jD0kLp.�/.`q/ 6 Ckf2js�j.L/f g1jD0kLp.�/ .`q/:
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Theorem 2.5 Let a > 0;M > s=2 and let .�0; �/; .
0; 
/ 2 AM.Œ0;1//: Let 0 <
q � 1; and p.	/ 2 P0.X /:

(i) If there exists p0 < fp�; 1g such that ap0 > 2d; then there exists a constant
C > 0 such that for all f 2 D0

kf2sj��
j;a.L/f g1jD0k`q.Lp.�// 6 Ckf2js
�

j;a.L/f g1jD0k`q.Lp.�//:

(ii) If there exists p0 < fp�; 1; qg such that ap0 > 2d; then there exists a constant
C > 0 such that for all f 2 D0

kf2sj��
j;a.L/f g1jD0kLp.�/.`q/ 6 Ckf2js
�

j;a.L/f g1jD0kLp.�/.`q/:

From Theorems 2.4 and 2.5, we have the following result.

Corollary 2.6 Let a > 0;M > s=2 and let .�0; �/; .
0; 
/ 2 AM.Œ0;1//: Let
0 < q � 1; and p.	/ 2 P0.X /:

(i) If there exists p0 < minfp�; 1g such that p.	/=p0 2 B.X / and ap0 > 2d; then

kf2sj��
j;a.L/f g1jD0k`q.Lp.�//; kf2js
�

j;a.L/f g1jD0k`q.Lp.�//; kf2js�j.L/f g1jD0k`q.Lp.�//
and kf2js
j.L/f g1jD0k`q.Lp.�//

are equivalent quasi-norms on Bs
p.�/;q.X ;L/:

(ii) If there exists p0 < minfp�; 1; qg such that p.	/=p0 2 B.X / and ap0 > 2d;
then

kf2sj��
j;a.L/f g1jD0kLp.�/ .`q/; kf2js
�

j;a.L/f g1jD0kLp.�/ .`q/; kf2js�j.L/f g1jD0kLp.�/.`q/
and kf2js
j.L/f g1jD0kLp.�/.`q/

are equivalent quasi-norms on Fs
p.�/;q.X ;L/:

Theorems 2.4 and 2.5 can be proved by using the idea in [13, 20] and the
following lemma, which can be proved similarly to that of Corollary 2.1 in [7].
So we omit the detail here.

Lemma 2.7 If p.	/ 2 B.X /; and 1 < q 61; then there is a constant C such that

kfMfjg1jD0kLp.�/.`q/ 6 Ckffjg1jD0kLp.�/ .`q/
holds for all locally integrable functions ffjg1jD0 on X :
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3 Atomic Decompositions

To give atomic decompositions, we first recall the so-called dyadic type structure of
the space X :

Lemma 3.1 (See Theorem 11 in [4]) There exists a collection of open subsets
fQk

˛ W k 2 Z; ˛ 2 Ikg of X ; where Ik is some index set (possibly finite), and constants
ı 2 .0; 1/ and A1;A2 > 0; such that

(i) �.XnS˛2Ik Q
k
˛/ D 0 for each fixed k and Qk

˛

T
Qk
ˇ D ; if ˛ ¤ ˇI

(ii) for any ˛; ˇ; k; l with l > k; either Qk
˛ � Ql

ˇ or Q
k
˛

T
Ql
ˇ D ;I

(iii) for each .k; ˛/ and l < k; there exists a unique ˇ such that Qk
˛ � Ql

ˇI
(iv) diam.Qk

˛/ 6 A1ık; where diam.Qk
˛/ WD supf�.x; y/ W x; y 2 Qk

˛gI
(v) each Qk

˛ contains some ball B.z
k
˛;A2ı

k/; where zk˛ 2 X :

The set Qk
˛ in Lemma 3.1 is thought of as a dyadic cube on X with diameter

roughly ık and centered at zk˛: We denote by D the family of all dyadic cubes on
X : For k 2 Z; we set Dk D fQk

˛ W ˛ 2 Ikg; so that D D S
k2ZDk: For any dyadic

cube Q D Qk
˛; we denote by zQ WD zk˛ the “center” of Q: In the sequel, without loss

of generality, we assume that ı D 1
2
: In fact, if this is not the case, we only need

to replace 2j in the definition of Bs
p;q.X ;L/ by ı�j and make some other necessary

changes.

Definition 3.2 Let K; S 2 N0; and let Q be a dyadic cube in Dk;with k 2 N0:When
k > 1; a function aQ 2 L2.X ; d�/ is called a .K; S/-atom for Q if aQ satisfies the
following condition for m D K and also for m D �S:

(i) aQ 2 D.Lm/I
(ii) supp .LmaQ/ � B.zQ; .A1 C 1/2�k/I

(iii) supx2X jLmaQ.x/j 6 22kmŒ�.Q/��1=2:

When k D 0; a function aQ is called a .K; S/-atom for Q if it satisfies (i)–(iii) only
for m D K: Here, for m 2 N; L�m is defined via the spectral resolution associated
with the self-adjoint positive operator L:

Definition 3.3

(i) Let �1 < s <1; p.	/ 2 P0.X /; and 0 < q 61: The sequence space bsp.�/;q
consists all complex sequence w D fwQgQ2[k>0Dk such that

kwkbsp.�/;q WD






8
<

:
2ks







X

Q2Dk

.jwQjŒ�.Q/��1=2/





Lp.�/

9
=

;

1

kD0






`q

:
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(ii) Let �1 < s <1; p.	/ 2 P0.X /; and 0 < q <1: The sequence space f sp.�/;q
consists all complex sequence w D fwQgQ2[k>0Dk such that

kwkf sp.�/;q WD












8
<

:
2ks

X

Q2Dk

.jwQjŒ�.Q/��1=2/
9
=

;

1

kD0






`q






Lp.�/

:

Here �Q is the characteristic function of Q:

Next we give the atomic decomposition of the Bosov and Triebel-Lizorkin
spaces, respectively.

Theorem 3.4 Let �1 < s <1; and K 2 N0 such that K >
s
2
:

(i) Let 0 < q 6 1; and p.	/ 2 P0.X / with p0 < p� such that p.	/=p0 2 B.X /:
Let S 2 N0 such that S >

d
2min.1;p0/

� s
2
:

(ii) Let 0 < q < 1; and p.	/ 2 P0.X / with p0 < minfp�; qg such that p.	/=p0 2
B.X /: Let S 2 N0 such that S > d

2min.1;p0;q/
� s

2
:

Then there is a constant C > 0 such that for every sequence .K; S/-atoms
faQgQ2[k>0Dk we have







1X

kD0

X

Q2Dk

wQaQ






A

6 Ckwk� ; w D fwQgQ2[k>0Dk :

Conversely, there is a constant C0 such that given any distribution f 2 A and any
K; S 2 N0; there exist a sequence of .K; S/-atoms faQgQ2[k>0Dk and a sequence
of complex numbers w D fwQgQ2[k>0Dk such that

f D
1X

kD0

X

Q2Dk

wQaQ;

where the sum converge in D0; and moreover, kwk� 6 C0k fkA:
Here in cases (i) and (ii), A D Bs

p.�/;q.X ;L/ and Fs
p.�/;q.X ;L/; � D bsp.�/;q and

f sp.�/;q; respectively.

Theorem 3.4 can be proved by using the method in [13] and Lemma 2.7. We omit
the details here.
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A Decomposition Theorem for Null-Solutions
to Polynomial Slice Dirac Operator

Hongfen Yuan, Tieguo Ji, and Hongyan Ji

Abstract In this paper, a decomposition theorem for null-solutions to the polyno-
mial slice Dirac operator is established by the generalized Euler operator in R

mC1:
This is a generalization of the well-known Almansi decomposition theorem. In the
sequel our decomposition will be used in the study of boundary value problems for
slice monogenic functions.

Keywords Almansi decomposition • Euler operator • Polynomial slice Dirac
operator

Mathematics Subject Classification (2010) Primary 30G35; Secondary 33C45

1 Introduction

The classical Almansi decomposition theorem is a decomposition for poly-harmonic
functions in terms of harmonic functions defined in a star-like domain centred at the
origin, see, e.g., [1]. Nowadays, it has been extended to the case of complex analysis,
Clifford analysis and Clifford analysis in superspace, see, e.g., [2–5]. Recently,
Cerejeiras, Kähler, Ku and other scholars have studied the Riemann and Hilbert
boundary value problems in Clifford analysis making full use of the Almansi type
decomposition theorems for the null-solutions to the iterated Dirac and Cauchy-
Riemann operators defined in a domain, see, e.g., [6, 7]. In 2016, the first author
investigated the Riquier’s problem in superspace in terms of the Almansi type
decompositions for null-solutions to super Dirac operator (c.f. [8]). However, up
to now, the Almansi type decomposition for the kernel of the polynomial slice Dirac
operator, i.e., null-solutions to the polynomial slice Dirac operator, has not been
considered. In this paper, we will focus on this.
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From [9], the slice Dirac operator below allows us to establish the Lie super-
algebra structure behind the theory of slice monogenic functions, see [10, 11].

Let � be a bounded subdomain of RmC1: Then the slice Dirac operator is
defined as

D D e0@x0 C
x

jxj2E;

where the Euler operator E D
mP

iD1
xi@xi ; x D

mP

iD1
xiei; and eiej C ejei D

�2ıij; i; j D 0; : : : ;m: Functions belonging to the kernel of the slice Dirac operator
are called slice monogenic functions. In this paper, we investigate the Almansi-type
decomposition for null-solutions to polynomial slice Dirac operators in a starlike
domain. This will be a starting point for our further research, in particular on
boundary value problems for null-solutions to polynomial slice Dirac operators.

2 A Decomposition for the Kernel of the Operator Dk
�

Definition 2.1 Let � � RmC1: Let ClmC1 be the m C 1-dimensional real Clifford
algebra. The generalized Euler operator defined on the space C1.�/ ˝ ClmC1 is
given by

Es D sIC E D sIC
mX

iD0
xi@xi ;

where s is a complex number, I is the identity operator, and E is the Euler operator
in RmC1.

Lemma 2.2 ([9]) The operators D;E have the following property

ŒEC 1;D� D �D: (1)

Lemma 2.3 Let � � RmC1: If f .x/ 2 C2.�/˝ ClmC1; then

DEs f .x/ D EsC1Df .x/; (2)

where s is a complex number.

Proof It follows from Definition 2.1 and Lemma 2.2 that

DEs f .x/ D D.sIC E/f .x/ D sDf .x/C EDf .x/C Df .x/ D EsC1Df .x/:

ut
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Definition 2.4 We define the generalized slice Dirac operator by

D� D D � �;

where D is the slice Dirac operator and � is a complex number.

Denote kerDk
� D f f j.D � �/kf D 0; f 2 Ck.�/˝ ClmC1; k 2 Ng:

Lemma 2.5 If f 2 ker.D�/, then

CkD
k
�E

k
� f D f ; (3)

where Ck D 1
kŠ�k

and k 2 N:

Proof Let f 2 ker.D�/: Then for k D 1; it follows from Lemma 2.3 that

D�E� f D .D � �/E� f D DE� f � �E� f D E�C1Df � �E� f D �f :

Suppose that for k D l; ClDl
�E

l
� f D f ; where Cl D 1

lŠ�l
: For k D lC 1;

DlC1
� E

l
� f D D�D

l
�E

l
� f D

1

Cl
D� f D 0:

Then by Lemma 2.3, we get

DlC1
� E

lC1
� f D Dl

�D�E�E
l
� f

D Dl
�.E�C1D� C �/El

� f

D Dl�1
� D�E�C1D�El

� f C
�

Cl
f

D Dl�1
� E�C2D2�El

� f C
2�

Cl
f

D 	 	 	
D E�ClC1DlC1

� E
l
� f C

.lC 1/�
Cl

f D 1

ClC1
f :

Therefore, we have (3) by induction. ut
Theorem 2.6 If f .x/ 2 kerDk

�, then there exist unique functions f0; : : : ; fk�1 2
kerD� such that

f .x/ D f0.x/C E� f1.x/C E
2
� f2.x/C 	 	 	 C E

k�1
� fk�1.x/; (4)
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where f0; : : : ; fk�1 are given as follows:
8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:̂

f0.x/ D .I� C1E�D�/


I � C2E2�D

2
�

� 	 	 	 
I � Ck�1Ek�1
� Dk�1

�

�
f .x/;

f1.x/ D C1D�


I � C2E2�D

2
�

� 	 	 	 
I � Ck�1Ek�1
� Dk�1

�

�
f .x/;

:::

fk�2.x/ D Ck�2Dk�2
� .I� Ck�1Ek�1

� Dk�1
� /f .x/;

fk�1.x/ D Ck�1Dk�1
� f .x/;

(5)

and Ck D 1
kŠ�k
:

Conversely, if functions f0; : : : ; fk�1 2 ker D�; then f .x/ given by (4) satisfies the
equation Dk

�f D 0:
Proof If we let the operator Dk�1

� act on Eq. (4), then using Lemma 2.5, one has

Dk�1
� f .x/ D Dk�1

�

 

f0.x/C
k�1X

iD1
.E�/

ifi.x/

!

D Dk�1
� E

k�1
� fk�1.x/ D fk�1.x/

Ck�1
;

which implies that

fk�1.x/ D Ck�1Dk�1
� f .x/:

Similarly, if Dk�2
� acts on f .x/ � E

k�1
� fk�1.x/; then we have

fk�2.x/ D Ck�2Dk�2
� .I � Ck�1Ek�1

� Dk�1
� /f .x/:

Thus, one gets (5) by induction.
Conversely, suppose that f0; : : : ; fk�1 2 kerD�: Applying Lemma 2.5, we obtain

Dk
� f .x/ D Dk

�

"

f0.x/C
k�1X

iD1
.E�/

ifi.x/

#

D 0;

which completes the proof. ut

3 A Decomposition for the Kernel of the Operator P.D/

Let P.�/ D �k C b0�k�1 C 	 	 	 C bk�1; with bl 2 C; and l D 0; : : : ; k � 1: The
polynomial slice Dirac operator is defined as

P.D/ D Dk C b0D
k�1 C 	 	 	 C bk�1: (6)
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Denote ker P.D/ D f f jP.D/f D 0; f 2 Ck.�/˝ ClmC1; k 2 Ng:
If P.�/ has the decomposition

P.�/ D .� � �0/n0 	 	 	 .� � �l�1/nl�1 ; (7)

where �i 2 C; and �i ¤ 0; i D 0; : : : ; l � 1; then P.D/ has the following
decomposition

P.D/ D .D � �0/n0 	 	 	 .D � �l�1/nl�1 : (8)

Lemma 3.1 ([4]) Let 	.�/ D
l�1Q
kD0
.� � �k/nk be a polynomial of �; with �k 2

C; nk 2 N; and n0 C 	 	 	 C nl�1 D s: Then

1

	.�/
D

l�1X

kD0

nkX

jD1

1

.nk � j/Š

�
dnk�j

d�nk�j

.� � �k/nk
	.�/

	

�D�k

1

.� � �k/j : (9)

Lemma 3.2 If P.D/ in (6) has the decomposition (8), then

kerP.D/ D kerDn0
�0
˚ 	 	 	 ˚ kerDnl�1

�l�1
;

where kerDni
�i
D f f j.D � �i/ni f D 0; f 2 Cni.�/˝ ClmC1; ni 2 Ng:

Proof Inspired by Gong et al. [4], Cerejeiras et al. [6] and Ku et al. [7], we derive

kerP.D/ D kerDn0
�0
C 	 	 	 C kerDnl�1

�l�1

by Lemma 3.1.
Then, it is easy to prove that

kerP.D/ D kerDn0
�0
˚ 	 	 	 ˚ kerDnl�1

�l�1

by the division algorithm. ut
Theorem 3.3 If f 2 kerP.D/, then there exist unique functions fi;j 2 kerD�i ;
i D 0; : : : ; l � 1; j D 0; : : : ; ni � 1; such that

f D
l�1X

iD0
fi;0 C

l�1X

iD0

ni�1X

jD1
E
j
�fi;j:
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where fi;0; : : : ; fi;ni�1 are given as follows:
8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:̂

fi;0.x/ D .I� C1E�D�/


I � C2E2�D

2
�

� 	 	 	
�

I � Cni�1E
ni�1
� Dni�1

�

�
f .x/;

fi;1.x/ D C1D�


I � C2E2�D

2
�

� 	 	 	
�

I� Cni�1E
ni�1
� Dni�1

�

�
f .x/;

:::

fi;ni�2.x/ D Cni�2D
ni�2
� .I � Cni�1E

ni�1
� Dni�1

� /f .x/;

fi;ni�1.x/ D Cni�1D
ni�1
� f .x/;

(10)

and Ck D 1
kŠ�k
:

Proof Let f .x/ 2 kerP.D/: Then it follows by Lemma 3.2 that there exist unique
functions fi such that

f D
l�1X

iD0
fi;

where fi 2 kerDni
�i
: Theorem 2.6 shows that there exist unique functions fi;j; i D

0; : : : ; l � 1; j D 1; : : : ; ni � 1; such that

fi D fi;0 C
ni�1X

jD1
E
j
�fi;j;

where fi;j are given in (5). Therefore, the proof completes. ut
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Abstract In this paper, we consider some properties of meromorphic functions
sharing a set with their first derivatives. Our results extend and improve the related
theorems which were obtained by Lü and Xu (Houst J Math 34:1213–1223, 2008)
and Qi and Zhu (Math Slovaca 64(6):1421–1436, 2014). Moreover, examples show
that the condition is necessary and sharp.
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1 Introduction and Main Results

In this paper, a meromorphic function will always mean meromorphic in the whole
complex plane. We assume that the reader is familiar with the fundamental concepts
of Nevanlinna’s value distribution theory (see [3, 7]) and in particular with the most
usual of its symbols: m.r; f /, N.r; f /, T.r; f /.

For f a nonconstant meromorphic function and S a set of complex numbers, let

E.S; f / D
[

a2S
fz 2 C W f .z/ � a D 0g;

where a zero of multiplicity m is counted m times in the set E.S; f /. Similarly, let

E.S; f / D
[

a2S
fz 2 C W f .z/ � a D 0g;

where a zero of multiplicity m is counted only once in the set E.S; f /.
For two nonconstant meromorphic functions f and g, we say that f and g share

the set S CM when E.S; f / D E.S; g/. If E.S; f / D E.S; g/, it is said to be that f and
g share the set S IM.

The unicity theory of meromorphic functions sharing values with their deriva-
tives is the special case of uniqueness of meromorphic functions, and has found
a wide utilization in many fields. The classical result in the respect was obtained
by Rubel and Yang (see [7], Theorem 8.1) in 1976, which says that if f is an
entire function and shares two finite values CM with f 0, then f 
 f 0. Later, many
mathematicians (see [7], Chap. 8) contributed to this issue in the view of sharing
values.

From the point of view of sharing sets, Fang and Zalcman [2] obtained a result
in 2003 that there exists a finite set S containing three elements such that if f is a
nonconstant entire function and E.S; f / D E.S; f 0/, then f D f 0. In 2007, Chang et al.
[1] extended the above result to an arbitrary set having three elements as follows.

Theorem 1.1 Let f be a nonconstant entire function and let S D fa; b; cg, where
a; b, and c are distinct complex numbers. If E.S; f / D E.S; f 0/, then either

(i) f .z/ D Cez; or
(ii) f .z/ D Ce�zC 2

3
.aC bC c/ and .2a� b� c/.2b� a� c/.2c� a� b/ D 0I or

(iii) f .z/ D Ce
1˙i

p

3
2 z C 3˙i

p
3

6
.aC bC c/ and a2 C b2 C c2 � ab � bc � ca D 0,

where C is a nonzero constant.

Later, Lü and Xu [5] obtained a result as follows when the set S contains two
complex numbers by using the theory of normal families.

Theorem 1.2 Let a and b be two distinct finite complex numbers with a C b ¤ 0,
and let f be a nonconstant entire function. If f and f 0 share the set fa; bg CM, then f
has the form f .z/ D Aez or f .z/ D Ae�z C aC b where A is a nonzero constant.
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It is natural to ask: does the conclusions of Theorems 1.1 and 1.2 still hold
for meromorphic functions? In this direction, Lü [4] proved the following theorem
which improved Theorem 1.1 partially in 2011.

Theorem 1.3 Let f be a transcendental meromorphic function with at most finitely
many poles, and let S D fa; b; cg, where a; b, and c are distinct complex numbers. If
f and its derivative f 0 satisfy E.S; f / D E.S; f 0/, then the conclusion of Theorem 1.1
holds.

In 2014, Qi and Zhu [6] improved Theorem 1.2 to the next result.

Theorem 1.4 Let f be a transcendental meromorphic function with at most finitely
many poles, and let S D fa; bg where aC b ¤ 0 and a; b are two distinct complex
numbers. If f and f 0 share S CM, then the conclusion of Theorem 1.2 holds.

In [4, 6], they both said that they do not know whether the Theorems 1.3 and 1.4
still hold or not if f is a rational function, respectively. In this direction, Yuan et al.
[8] proved the following result very recently.

Theorem 1.5 Let f be a nonconstant meromorphic function with at most finitely
many poles, and let S D fa; b; cg, where a; b, and c are distinct complex numbers. If
f and its derivative f 0 satisfy E.S; f / D E.S; f 0/, then the conclusions of Theorem 1.1
hold.

In this paper, we will show that Theorem 1.4 does not hold for rational functions
and prove the following result firstly.

Theorem 1.6 Let f be a nonconstant meromorphic function with at most finitely
many poles, and let b be a nonzero finite complex number. If f and f 0 share S2 D
f0; bg CM, then f has the form f .z/ D Aez or f .z/ D Ae�zC b or f .z/ D b

2
� b

4.z�z0/
;

where A.¤ 0/, z0 are some constants.
For the case ab ¤ 0, we obtain the following result.

Theorem 1.7 Let a; b be two distinct finite complex numbers with ab ¤ 0, and let
R.z/ D P.z/

Q.z/ be a nonconstant irreducible rational function. If R.z/ and R0.z/ share
S2 D fa; bg CM, then degP D degQ C 1. Furthermore, if lim

z!1
P.z/
zQ.z/ ¤ a; b, then

R.z/ assume the form

R.z/ D ab

aC b
.z � z0/C aC b

2
� aC b

4.z� z0/

for some constant z0.

Remark 1.8 The following Example 1 shows that the conclusions of Theorem 1.7
could happen and hence the Theorem 1.4 does not hold for rational functions.
In addition, Example 2 as follows shows that the condition lim

z!1
P.z/
zQ.z/ ¤ a; b is

necessary.
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Example 1 Let S2 D f1; 2g and let R.z/ D 2
3
zC 3

2
� 3

4z . By a simple calculation, we
have E.S2;R/ D E.S2;R0/ D ˚˙ 3

2
;˙ 3

4

�
.

Example 2 Set a ¤ 0, b D 2a, S2 D fa; bg. Let R.z/ D P.z/
Q.z/ , where

P.z/ D az3 C a

2
z2 � a

4
z � a

8
; Q.z/ D z

�
z � 1

2

�
:

By a direct calculation, we have

.R � a/.R� b/D az3C a
2
z2 � a

4
z� a

8
� az.z� 1

2
/

z.z � 1
2
/

	 az
3C a

2
z2� a

4
z� a

8
� bz.z � 1

2
/

z.z � 1
2
/

D a2z6 � 2a2z5 C 7a2

4
z4 � a2z3 C 7a2

16
z2 � a2

8
zC a2

64

z2.z � 1
2
/2

and

.R0 � a/.R0 � b/ D az4 � az3 C a
4
z � a

16
� az2.z � 1

2
/2

z2.z� 1
2
/2

	az
4 � az3 C a

4
z � a

16
� bz2.z � 1

2
/2

z2.z � 1
2
/2

D a2z6 � 2a2z5 C 7a2

4
z4 � a2z3 C 7a2

16
z2 � a2

8
zC a2

64

4z4.z� 1
2
/4

Thus E.R; S2/ D E.R0; S2/. But R.z/ has two distinct poles.

2 Proofs of Theorems

Proof (The Proof of Theorem 1.6) From Theorem 1.4, we only need to deal with the
case that f is rational. We may assume that

f .z/ D H1.z/C H2.z/

Q.z/
; (1)

where the polynomial Q has q.� 1/ distinct zeros and satisfies degQ.z/ D n,
H1.z/;H2.z/ are two polynomials with degH2.z/ � degQ.z/ � 1. Clearly, f 0.z/ D
H0
1.z/CH3.z/

Q1.z/
, where degQ1.z/ D nCq and degH3.z/ D degH2.z/Cq�1 � nCq�2.

Next, we claim that f 0.z/ ¤ 0. Otherwise, if there exist a point z0 such that
f 0.z0/ D 0, then we can deduce from E.S2; f / D E.S2; f 0/ that both f .z0/ D 0 and
f .z0/ D b hold. But this is impossible. Thus, we have H0

1.z/ 
 0 and degH3 D
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degH2Cq�1 D 0, which imply H1;H2 are constants, saying d and c , respectively,
and hence q D 1. Without loss of generality, set Q.z/ D .z � z0/n. So, (1) becomes

f .z/ D dC c

.z � z0/n
; c ¤ 0: (2)

If d D 0, then we have #CMfE.S2; f /g D n, here and throughout this paper, we
denote by #CMfEg the number of elements of the finite set E counting multiplicities.
On the other hand, we have #CMfE.S2; f 0/g D nC1. This contradicts with E.S2; f / D
E.S2; f 0/. Similarly, we can deduce that d ¤ b.

So, d ¤ 0; b. Then, we have #CMfE.S2; f /g D 2n and #CMfE.S2; f 0/g D n C 1.
It follows from E.S2; f / D E.S2; f 0/ that n D 1 and that f .z/Œ f .z/�b�

f 0.z/Œ f 0.z/�b� D A.z � z0/2

holds for some nonzero constant A. That is,

Œd.z � z0/C c�Œ.d � b/.z� z0/C c� 
 AcŒcC b.z� z0/
2�: (3)

Comparing the coefficients of terms .z�z0/0, .z�z0/ and .z�z0/2 in (3), we deduce
that A D 1, d D b

2
and c D � b

4
.

This completes the proof of Theorem 1.6. ut

Proof (The Proof of Theorem 1.7) We may assume that the leading coefficient of
Q.z/ is equal to 1, Q.z/ has q.� 1/ distinct zeros, degQ.z/ D n and degP.z/ D m.
First of all, we suppose contrary that m ¤ n C 1. We consider the following two
cases.

Case 1. Suppose that m � n. Then, we have #CMfE.S2;R/g � 2n. Set

R0 D P1
Q1
; (4)

where P1.z/ and Q1.z/ are two mutually prime polynomials in z. Obviously, we
can see that degP1 � mC q � 1 < nC q D degQ1 in this case. Thus, we have
#CMfE.S2;R0/g D 2.nC q/. But this contradicts with E.S2;R/ D E.S2;R0/.

Case 2. Suppose that m � nC 2. Then, we have #CMfE.S2;R/g D 2m. Setting R0
as (4), we have degP1 D m C q � 1 > n C q D degQ1 in this case. Thus, we
have #CMfE.S2;R0/g D 2.mC q � 1/. It follows from E.S2;R/ D E.S2;R0/ that
q D 1. Without loss of generality, we can assume that Q.z/ D .z � z0/n. Clearly,
ŒR.z/�a�ŒR.z/�b�
ŒR0.z/�a�ŒR0.z/�b� D A.z� z0/2 holds for some nonzero constant A. Namely,

�
1 � a

R.z/

��
1 � b

R.z/

�
D
�
R0.z/
R.z/

� a

R.z/

��
R0.z/
R.z/

� b

R.z/

�
A.z � z0/

2:

(5)

Let z ! 1 and z ! z0 in both sides of (5), respectively, it follows that 1 D
A.m � n/2 and 1 D An2 in this case, respectively. Thus, we can obtain m D 2n
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and n � 2 (if n D 1, then m D n C 1). Further, set P.z/ D P2n
kD0 ak.z � z0/k,

where

a2n ¤ 0; a0 D P.z0/ ¤ 0: (6)

Hence, from E.S2;R/ D E.S2;R0/, we have

2

4
nX

jD1
anCj.z� z0/

nCj C .an � a/.z � z0/
n C

n�1X

tD0
at.z � z0/

t

3

5

�
2

4
nX

jD1
anCj.z� z0/

nCj C .an � b/.z� z0/
n C

n�1X

tD0
at.z� z0/

t

3

5


 A

2

4
nX

jD2
janCj.z� z0/

nCj C .anC1 � a/.z � z0/
nC1 �

n�1X

tD0
.n � t/at.z � z0/

t

3

5

�
2

4
nX

jD2
janCj.z � z0/

nCj C .anC1 � b/.z� z0/
nC1 �

n�1X

tD0
.n � t/at.z � z0/

t

3

5 :

(7)

Comparing the coefficient of term .z � z0/0 and .z � z0/4n in (7), we can obtain
from n � 2 that An2 D 1 and that 2a2na0 D 1

n2
Œ�2n2a2na0�, which contradicts with

a2na0 ¤ 0 in (6). Hence, case 2 can not occur too.
Thus, we obtain the desired conclusion degP D degQC 1 firstly.
Now, we will prove the latter work of Theorem 1.7. We may also assume

that Q.z/ has q.� 1/ distinct zeros fz0; z1; : : : ; zq�1g. Similarly, we can arrive
at (5), where A is polynomial. Let z ! 1 in both sides of (5) [in fact, here
A D A1

Pq�1
jD1 .z � zj/2 .A1 ¤ 0/ if q � 2], it follows from the assumption

lim
z!1

P.z/
zQ.z/ ¤ a; b that q D 1.

Next, we assume that Q.z/ D .z � z0/n and P.z/ D PnC1
kD0 ak.z � z0/k, where

anC1 ¤ 0, a0 D P.z0/ ¤ 0. Similarly, we have

h
anC1.z � z0/nC1 C .an � a/.z� z0/n CPn�1

tD0 at.z� z0/t
i

�
h
anC1.z � z0/nC1 C .an � b/.z� z0/n CPn�1

tD0 at.z � z0/t
i


 A
h
.anC1 � a/.z� z0/nC1 �Pn�1

tD0 .n � t/at.z� z0/t
i

�
h
.anC1 � b/.z� z0/nC1 �Pn�1

tD0 .n � t/at.z� z0/t
i
:

(8)

Comparing the coefficient of term .z�z0/0, .z�z0/, : : :, .z�z0/n�1 in (8) one by one,
we can obtain An2 D 1 and a1 D 	 	 	 D an�1 D 0. Furthermore, by comparing the
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coefficients of terms .z� z0/n and .z� z0/2n in (8), we deduce that n D 1 (otherwise,
if n � 2, then we have a D b, which is a contradiction). Finally, by comparing the
coefficients of terms .z� z0/, .z� z0/2 and .z� z0/4 in (8), we deduce from ab ¤ 0
that

aC b ¤ 0; a2 D ab

aC b
; a1 D aC b

2
; a0 D �aC b

4
;

which imply the assertion of Theorem 1.7 follows.
This completes the proof of Theorem 1.7. ut
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Normal Criterion on Differential Polynomials

Cuiping Zeng

Abstract Let k; q.� 2/ be two positive integers, b ¤ 0 be a complex number, and
let H. f ; f 0; : : : ; f .k// be a differential polynomial with �

�
jH < k C 1. Let F be a

family of meromorphic functions defined in D, all of whose zeros have multiplicity
at least kC 1. If for each pair of functions f and g in F , . f .k//q C H. f ; f 0; : : : ; f .k//
and .g.k//q C H.g; g0; : : : ; g.k// shared b in D, then F is normal in D.

Keywords Meromorphic functions • Normal families • Shared values

Mathematics Subject Classification (2010) Primary 30D45

1 Introduction

Let f and g be meromorphic functions on a domain D in C; and let a and b be
complex numbers. If g.z/ D b whenever f .z/ D a; we write f .z/ D a) g.z/ D b:
If f .z/ D a) g.z/ D a and g.z/ D a ) f .z/ D a; we say that f and g share a in
D:

Let k be a positive integer, ni.i D 0; 1; : : : ; k/ be non-negative integers. A
differential monomial of f is defined by M. f ; f 0; : : : ; f .k// D Qk

iD0 f .i/
ni . �M DPk

iD0 ni is called the degree of M. f ; f 0; : : : ; f .k// and �M DPk
iD0.iC 1/ni is called

the weight of M. f ; f 0; : : : ; f .k//.
Let H. f ; f 0; : : : ; f .k// D Pm

iD1 ai.z/Mi. f ; f 0; : : : ; f .k//, then H. f ; f 0; : : : ; f .k// is
called a differential polynomial of f . �H D max

1�i�k
f�Mig is called the degree of

H. f ; f 0; : : : ; f .k// and �H D max
1�i�k
f�Mig is called the weight of H. f ; f 0; : : : ; f .k//.

The ratio of the weight to degree of H is denoted by �
�
jH D max

1�i�k

n
�Mi
�Mi

o
:
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Fang and Hong [1] considered a differential polynomial of f which omitted a
value and proved the following theorem.

Theorem 1.1 Let F be a family of meromorphic functions defined in D, k, q.�
2/ be two positive integers, and H. f ; f 0; : : : ; f .k// be a differential polynomial with
�
�
jH < k C 1. If the zeros of f .z/ are of multiplicity at least k C 1 and . f .k//q C

H. f ; f 0; : : : ; f .k// ¤ 1 for each f 2 F , then F is normal in D.

In this paper, we improve Theorem 1.1 as follows

Theorem 1.2 (Main Theorem) Let k; q.� 2/ be two positive integers, b ¤ 0

be a complex number, and let H. f ; f 0; : : : ; f .k// be a differential polynomial with
�
�
jH < kC1. Let F be a family of meromorphic functions defined in D, all of whose

zeros have multiplicity at least k C 1. If for each pair of functions f and g in F ,
. f .k//q C H. f ; f 0; : : : ; f .k// and .g.k//q C H.g; g0; : : : ; g.k// shared b in D, then F is
normal in D.

Example Let D D fz W jzj < 1g, F D f fng, where fn.z/ D nzkC1. Then

. f .k/n .z//kC1 C fn.z/ D Œ.n.kC 1/Š/kC1 C n�zkC1:

We can see that for each pair of functions fn and fm in F , . f .k/n /kC1 C fn and
. f .k/m /kC1 C fm share 0, but F fails to be normal in D. This shows that b ¤ 0 is
necessary in Theorem 1.2.

2 Some Lemmas

For the proof of Theorem 1.2, we require the following results.

Lemma 2.1 ([2]) Let k be a positive integer, let F be a family of functions
meromorphic on the unit disc �, all of whose zeros have multiplicity at least k,
and suppose that there exists A � 1 such that j f .k/.z/j � A whenever f .z/ D 0.
Then if F is not normal at z0, there exist, for each 0 � ˛ � k,

(a) points zn 2 �; zn ! z0;
(b) functions fn 2 F ; and
(c) positive numbers �n ! 0C

such that ��˛
n fn.zn C �n�/ D gn.�/ ! g.�/ locally uniformly with respect to the

spherical metric, where g is a nonconstant meromorphic function on C, all of whose
zeros have multiplicity at least k, such that g#.�/ � g#.0/ D kAC 1: In particular,
g has order at most 2.

Lemma 2.2 ([3]) Let f .z/ D anzn C an�1zn�1 C 	 	 	 C a0 C q.z/=p.z/, where
a0; a1; : : : ; an are constants with an ¤ 0, and q and p are two co-prime polynomials,
neither of which vanishes identically, with deg q < deg p; and let k be a positive
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integer and b a nonzero complex number. If f .k/ ¤ b, and the zeros of f all have
multiplicity at least kC 1, then

f .z/ D b.z� d/kC1

kŠ.z � c/
;

where c and d are distinct complex numbers.

3 Proof of Theorem 1.1

Proof Let z0 2 D, we will show that F is normal at z0. Let Dı.z0/ D fz W jz� z0j <
ıg, D0ı.z0/ D fz W 0 < jz� z0j < ıg. For f 2 F , we consider two cases.

Case 1. Œ. f .k//qCH. f ; f 0; : : : ; f .k//�.z0/ ¤ b. Then there exists a ı > 0 such that
Œ. f .k//q C H. f ; f 0; : : : ; f .k//�.z/ ¤ b in Dı.z0/. Thus, for every g 2 F , the zeros
of g have multiplicity at least k C 1 and Œ.g.k//q C H.g; g0; : : : ; g.k//� ¤ b in Dı .
From the proof of Theorem 1.1 in [1], it is easy to see that the conclusion still
hold for Œ.g.k//qCH.g; g0; : : : ; g.k//� ¤ b.¤ 0/. Therefore, F is normal in Dı, so
F is normal at z0.
Case 2. Œ. f .k//q C H. f ; f 0; : : : ; f .k//�.z0/ D b. Next we consider two subcases.
Case 2.1 There exists a ı > 0 such that . f .k//q C H. f ; f 0; : : : ; f .k// ¤ b in D0ı .

Then, by the condition of Theorem 1.2, for every fn 2 F , we have . f .k/n /q C
H. fn; f 0

n; : : : ; f
.k/
n / ¤ b in D0ı , and Œ. f .k/n /q C H. fn; f 0

n; : : : ; f
.k/
n /�.z0/ D b.

We may assume that z0 D 0 and ı D 1. Then for zn C �n� ¤ 0

. f .k/n .zn C �n�//q C H. fn; f
0
n; : : : ; f

.k/
n /.zn C �n�/ ¤ b;

and

Œ. f .k/n /q C H. fn; f
0
n; : : : ; f

.k/
n /�.0/ D b:

We claim that F is normal in the unit disc �.
Suppose, on the contrary, that F is not normal in �. Then by Lemma 2.1, we

can find a subsequence of F , which we may denote by f fng, zn 2 �, zn ! 0 and
�n ! 0C such that gn.�/ D ��k

n fn.zn C �n�/ converges locally uniformly with
respect to the spherical metric to a nonconstant meromorphic function g on C, all of
whose zeros have multiplicity at least kC 1.
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Taking note of that

. f .k/n .zn C �n�//q C H. fn; f
0
n; : : : ; f

.k/
n /.zn C �n�/ � b

D .g.k/n .�//
q C

mX

iD1
ai.zn C �n�/Mi. fn; f

0
n : : : ; f

.k/
n /.zn C �n�/ � b

D .g.k/n .�//
q C

mX

iD1
ai.zn C �n�/�.kC1/�Mi��Mi

n Mi.gn; g
0
n; : : : ; g

.k/
n /.�/ � b

Considering ai.z/.i D 1; 2; : : : ;m/ are analytic on D , we have

jai.zn C �n�/j � M

�
1C r

2
; ai.z/

�
<1; .i D 1; 2; : : : ;m/;

for sufficiently large n.
Hence we deduce from �

�
jH < kC 1 that

mX

iD1
ai.zn C �n�/�.kC1/�Mi��Mi

n Mi.gn; g
0
n; : : : ; g

.k/
n /.�/

converges uniformly to 0 on D 1
2
.0/.

Thus we know that

.g.k/n .�//
q C

mX

iD1
ai.zn C �n�/�.kC1/�Mi��Mi

n Mi.gn; g
0
n; : : : ; g

.k/
n /.�/� b

converges uniformly to .g.k/.�//q � b on D 1
2
.0/.

Now we consider two subcases.

Case 2.1.1 zn
�n
!1. Then .g.k//q ¤ b. For q � 2, so by Nevanlinna Theory, we

have

T.r; g.k// � N.r; g.k//C N

�
r;

1

g.k/ � b1

�
C 	 	 	 C N

�
r;

1

g.k/ � bq

�
C S.r; g.k//

� 1

kC 1N.r; g
.k//C S.r; g.k//

� 1

kC 1T.r; g
.k//C S.r; g.k//:

where bi.i D 1; 2; : : : ; q/ are solutions of!q D b. Hence, we get that T.r; g.k// D
S.r; g.k//. It follows that g.k/ is a constant. Together with the zeros of g have
multiplicity at least kC 1, we get that g is a constant, a contradiction.
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Case 2.1.2 zn
�n
! �˛. By Hurwitz’s theorem, we deduce that .g.k/.�//q ¤ b

for � ¤ ˛ and .g.k/.˛//q D b. Let bi.i D 1; 2; : : : ; q/ be solutions of !q D b.
Without loss of generality, we may assume that g.k/.˛/ D b1, then g.k/.�/ ¤ b1
for � ¤ ˛, and g.k/.�/ ¤ b2.

Firstly, we will show that g.�/ is not a transcendental meromorphic function. By
Nevanlinna Theory, we have

T.r; g.k// � N.r; g.k//C N

�
r;

1

g.k/ � b1

�
C N

�
r;

1

g.k/ � b2

�
C S.r; g.k//

� 1

kC 1N.r; g
.k//C O.log r/C S.r; g.k//

� 1

kC 1T.r; g
.k//C O.log r/C S.r; g.k//:

Hence, we get that T.r; g.k// D O.log r/C S.r; g.k//, it follows that g.�/ is not a
transcendental meromorphic function. Obviously, g.�/ cannot be a polynomial, so
g.�/ is a rational function. For b2 ¤ 0, by Lemma 2.2 we have

g.�/ D b2.� � d/kC1

kŠ.� � c/
;

where c; d are distinct complex numbers. Thus

g.k/ D b2 C A

.� � c/kC1
;

where A is a nonzero complex number.
Obviously, g.k/.�/ D b1 has kC1 distinct solutions, which contradicts to the fact

that g.k/.�/ D b1 has only the solution � D ˛.
Hence F is normal in � and so F is normal at z0.

Case 2.2 Œ. f .k//qCH. f ; f 0; : : : ; f .k//�.z/ 
 b for all z in Dı.z0/. Then, by the con-
dition of Theorem 1.2, for every fn 2 F , we have . f .k/n /qCH. fn; f 0

n; : : : ; f
.k/
n / 
 b

in Dı.z0/.

Without loss of generality, we may again let z0 D 0 and ı D 1. We claim that
F is normal in the unit disc �. Suppose, on the contrary, that F is not normal in
�. Then by Lemma 2.1, we can find a subsequence of F , which we may denote by
f fng, zn 2 �, zn ! 0 and �n ! 0C such that gn.�/ D ��k

n fn.zn C �n�/ converges
locally uniformly with respect to the spherical metric to a nonconstant meromorphic
function g on C, all of whose zeros have multiplicity at least k C 1. As in case 2.1,
we have .g.k//q 
 b in D 1

2
.0/. Therefore, g is polynomial with deg.g/ � k. This

contradicts to the fact that the zeros of g have multiplicity at least k C 1. Hence F
is normal in � and so F is normal at z0.

Therefore F is normal in D. The proof of Theorem 1.2 is complete. ut
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A Conjecture Regarding Optimal Strichartz
Estimates for the Wave Equation

Neal Bez, Chris Jeavons, Tohru Ozawa, and Hiroki Saito

Abstract We propose a conjecture concerning the shape of initial data which
extremise the classical Strichartz estimates for the wave propagator with initial data
of Sobolev regularity d�1

4
in all spatial dimensions d � 3, complementing an earlier

conjecture of Foschi in the critical case of 1
2

regularity. Some supporting evidence
for the conjectures is given.

Keywords Extremisers • Strichartz estimates • Wave equation
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1 Introduction

The classical Strichartz estimates for the (one-sided) wave propagator state that
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where d � 2, s 2 Œ 1
2
; d
2
/, p D 2.dC1/

d�2s , and W.d; s/ is some finite constant which we
take to be the optimal constant. The initial data f lies in the homogeneous Sobolev
space with norm k fk PHs D kDsfkL2 andbDsf D j 	 jsbf . A difficult open problem is to
determine for all such admissible .d; s/ the exact shape of nontrivial extremal initial
data which attain equality in (1). The existence of such extremisers is known for all
admissible exponents as can be found in the work of Fanelli–Vega–Visciglia [5] for
s 2 . 1

2
; d
2
/ and Ramos [9] at the critical exponent s D 1

2
.

The value of W.d; s/ and a characterisation of extremisers have been obtained
only when .d; s/ is either .2; 1

2
/, .3; 1

2
/, .4; 3

4
/ or .5; 1/. In each case, the initial data

f? given by

bf?.�/ D j�j�1e�j�j

is an extremiser, and uniquely so up to the action of a group of symmetries. For
.2; 1

2
/ and .3; 1

2
/, this is due to Foschi [6] and, furthermore, he conjectured that in

the critical case s D 1
2
, the initial data f? is an extremiser for all d � 2; this is

currently still open for d � 4. Notice that p D 2.dC1/
d�1 when s D 1

2
and for d � 4 this

exponent ceases to be an even integer, which gives rise to the apparent difficulty in
resolving Foschi’s conjecture.

For .4; 3
4
/ and .5; 1/, it was shown in [1] and [2], respectively, that f? is an

extremiser (essentially uniquely). These cases (as well as .3; 1
2
/) each satisfy s D

d�1
4

or, equivalently, p D 4. Moreover, it was shown in [4] that amongst radially
symmetric initial data, f? is an extremiser when s D d�1

4
. Our main purpose here is

to propose a stronger version of Foschi’s conjecture which identifies the exponent
s D d�1

4
as another special case for which we expect f? to be an extremiser for all

d � 3, and moreover, f? is not expected to be an extremiser all for other regularity
exponents.

Conjecture 1.1 Suppose d � 2 and s 2 Œ 1
2
; d
2
/.

(1) Then f? is an extremiser for (1) if and only if s 2 f 1
2
; d�1

4
g.

(2) When s D 1
2
, the initial data f is an extremiser if and only if

bf .�/ D j�j�1eaj�jCb��Cc .jRe.b/j < �Re.a/; c 2 C/;

and when s D d�1
4

with d � 4, the initial data f is an extremiser if and only if

bf .�/ D j�j�1eaj�jCb��Cc .Re.a/ < 0;Re.b/ D 0; c 2 C/:

To reiterate, all statements in this conjecture concerning the critical case s D 1
2

were made by Foschi in [6] (see Conjecture 1.11). Part (1) is an “existence” claim
concerning the existence of the particular initial data f? as an extremiser, and Part (2)
is a counterpart “uniqueness” claim. We anticipate that the claims in Conjecture 1.1
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regarding the case s D d�1
4

are rather more tractable than s D 1
2

simply because we
always have p D 4 in the former case.

The presentation in terms of the Fourier transform of the initial data is to facilitate
a comparison with, say, the analogous questions for the free Schrödinger propagator
and the corresponding estimates

keit�fkLq.R�Rd/ � S.d; s/k fk PHs.Rd/

where d � 1, s 2 Œ0; d
2
/, q D 2.dC2/

d�2s . At the critical exponent s D 0 it is conjectured
that gaussian initial data should be extremal; that is,

bf .�/ D eaj�j2Cb��Cc

for Re.a/ < 0, b 2 C
d and c 2 C (see [6] and [8] for the conjectures, and verification

for d D 1; 2). It was observed in [3] that only when s D 0 can gaussians be extremal,
contrasting with the two special values s D 1

2
; d�1

4
expected to be associated with

the extremality of f? for (1).

2 Further Supporting Evidence

In order to show that f? is not an extremiser for (1) when s … f 1
2
; d�1

4
g, it may be

more fruitful to prove the stronger statement that f? is not a critical point of the
functional

f 7! ke
itDfkLp.R�Rd/

k fk PHs.Rd/

(2)

for such s. Based on this, we present the following partial result.

Theorem 2.1 Suppose s 2 Œ 1
2
; d
2
/ n f 1

2
; d�1

4
g and p 2 2N. Then f? is not a critical

point of the functional (2) and hence not an extremiser for (1).

Proof We assume f? is a critical point of (2). Equivalently, f? is a solution of the
Euler–Lagrange equation

Z

R

Z

Rd
e�i.x��Ctj�j/eitDf?.x/jeitDf?.x/jp�2 dxdt D �1D2sf?.�/ (3)

for almost every � 2 R
d, where � is some nonzero constant. Writing p D 2m for

some integer m, we may write

eitDf?.x/jeitDf?.x/jp�2 D C
Z Z

ei.x;t/�Ev
e�.Pm

jD1 j�jjCPm�1
kD1 jk j/

Qm
jD1 j�jj

Qm�1
kD1 jkj

d�d
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where � D .�1; : : : ; �m/ 2 .Rd/m,  D .1; : : : ; m�1/ 2 .Rd/m�1 and

Ev WD
� mX

jD1
�j �

m�1X

kD1
k;

mX

jD1
j�jj �

m�1X

kD1
jkj

�
:

Here C is a constant which depends on .d;m/; such notation is used throughout this
proof, although the precise value may change at each occurrence. The left-hand side
of (3) with the variable � replaced by m becomes

C
Z Z

ı

� mX

jD1
.�j; j�jj/ �

mX

kD1
.k; jkj/

�
e�.Pm

jD1 j�jjCPm�1
kD1 jk j/

Qm
jD1 j�jj

Qm�1
kD1 jkj

d�d

after performing the spatial and temporal integrations. Using the singular support of
the delta distribution, this can be written as

Ce�jmj
Z

.Rd/m�1

e�2Pm�1
kD1 jk j

Qm�1
kD1 jkj

Z

.Rd/m
ı

�
� �

mX

jD1
�j; � �

mX

jD1
j�jj
�

d�d
Qm

jD1 j�jj

where .�; �/ WD .
Pm

kD1 k;
Pm

kD1 jkj/: The inner �-integral may be computed
exactly; this is done in Lemma 3.1 in [2] and we directly obtain

Z

.Rd/m
ı

�
� �

mX

jD1
�j; � �

mX

jD1
j�jj
�

d�
Qm

jD1 j�jj
D C.�2 � j�j2/˛

where ˛ WD 1
2
.d � 1/.m � 1/� 1. Hence (3) is equivalent to

Z

.Rd/m�1

e�2Pm�1
kD1 jk j

Qm�1
kD1 jkj

� X

1�j<k�m

.jjjjkj � j 	 k/
�˛

d D Cjmj2s�1 (4)

for each m 2 R
d . However it is easily checked that m � 3 and ˛ > 0 for s …

f 1
2
; d�1

4
g, and therefore, by letting jmj ! 0, we obtain a contradiction. ut

We conclude by proving the following complementary result.

Theorem 2.2 The initial data f? is a critical point of the functional (2) if s D d�1
4

and any d � 3, or if s D 1
2
and any d � 3 which is odd.

Proof When s D d�1
4

, if we continue to use the notation from the above proof, then
we have m D 2 and ˛ D d�3

2
. Thus, the left-hand side of (4) is

Z

Rd
j1j�1e�2j1j.j1jj2j � 1 	 2/ d�3

2 d1
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and after changing to polar coordinates this is easily shown to be a constant multiple
of j2j d�3

2 . Based on this, it follows that f? is a critical point of (2).
Now suppose s D 1

2
and d D 2n� 1 with n � 2. Since p D 2.1C 1

n�1 / … 2N for
n � 3, we are forced to adopt a different approach and we proceed making use of an
explicit formula for eitDf?.x/. For n D 2, Lemma 5.3 in [6] provides the expression

eitDf?.x/ D C.jxj2 C .1 � it/2/�.n�1/ for .t; x/ 2 R � R
2n�1 (5)

and where C is some constant. For each t 2 R, if we write

ˆt.�/ D 't.j�j/ D j�j�1e�.1�it/j�j

then eitDf?.�x/ D b̂t.x/, and there is an amusing trick which allows us to conclude
that (5) is in fact valid for all n � 2. Indeed, sinceˆt is radially symmetric we know
that

b̂t.x/ D .2	/n� 1
2

Z 1

0

't.s/eJn� 3
2
.sjxj/ s2.n�1/ds DW F2n�1.'t/.jxj/

whereeJ�.x/ D x��J�.x/, and J� is the Bessel function of the first kind of order �.
Using Theorem 1.1 in [7], which ultimately rests on the identityeJ0

�.r/ D �reJ�C1.r/,
we immediately obtain the relation

F2n�1.'t/.r/ D �2	
r

d

dr
F2n�3.'t/.r/

for n � 3. Thus, from the fact that (5) holds for n D 2, we obtain the veracity of (5)
for all n � 2, as claimed.

For the rest of the proof, assume n � 3 (as mentioned, when n D 2 we know
from [6] the stronger fact that f? is a global extremiser for (2)). In order to show
that (3) holds, we pass to polar coordinates in the spatial integration, use (5) and the
fact that for surface measure on S

2.n�1/,

cd� D .2	/n� 1
2 j 	 j�.n� 3

2 /Jn� 3
2
.j 	 j/;

to obtain the equivalent goal of

Z 1

0

Z

R

e�itarn� 1
2 Jn� 3

2
.ar/

.r2 C .1 � it/2/n.r2 C .1C it/2/
dtdr D Can� 3

2 e�a (6)

for all a > 0. We observe that it is possible to write

z
1
2 Jn� 3

2
.z/ D Pn.z

�1/ sin.z/� Qn.z
�1/ cos.z/ (7)
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for polynomials Pn and Qn of degree n � 2 and n � 3, respectively, satisfying
Pn.�z/ D .�1/nPn.z/ and Qn.�z/ D .�1/n�1Qn.z/. One consequence is that
r 7! rn� 1

2 Jn� 3
2
.ar/ is even.

For each r 2 R n f0g, the integrand

Fr.t/ D .r2 C .1 � it/2/�n.r2 C .1C it/2/�1e�ita

is a holomorphic function in t in the lower half of the complex plane except for poles
of order n at t D ˙r � i and a computation shows that

res.FrI �r � i/ D e�aeiar
X

j

Cjaj1

rnCj2 .rC i/j4C1
;

where the summation is taken over 0 � j` � n � 1, j1 C j2 C j3 C j4 D n � 1,
and each Cj 2 C is some constant. Since Fr D F�r, we immediately obtain a
similar expression for res.FrI r � i/. Using Cauchy’s residue theorem we obtain an
expression for the integrable function r 7! R

R
Fr.t/ dt (which can be continued to

r D 0). Hence (6) is equivalent to

X

j

Cja
j1

Z

R

ˆj.r/ dr D Can� 3
2 (8)

with the r-integral taken in the principal value sense, and where

ˆj.r/ WD
eiarJn� 3

2
.ar/

rj2C 1
2 .rC i/j4C1

:

If �" denotes the semi-circle in the upper half of the complex plane centred at the
origin and radius " > 0, then using the asymptotics Jn� 3

2
.z/ � zn� 3

2 as jzj ! 0, one
can show that

lim
"!0

Z

�"

ˆj.z/ dz D
(
Can� 3

2 if Ej D .0; n � 1; 0; 0/
0 otherwise.

In order to show that the integral of ˆj over �R vanishes in the limit R ! 1, we
observe from (7) that

jeiazz 12 Jn� 3
2
.az/j � CR�.n�3/

for z 2 �R with R > 0 sufficiently large. It follows that jˆj.z/j � CR�.n�1/ for such
R, and hence

R
�R
ˆj.z/ dz ! 0 as R ! 1. This gives (8) and completes our proof

that f? is a critical point of (2) when s D 1
2

and d is odd. ut
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Uniform Regularity for the Time-Dependent
Ginzburg-Landau-Maxwell Equations

Jishan Fan and Tohru Ozawa

Abstract We study global weak solutions to the 3D time-dependent Ginzburg-
Landau-Maxwell equations with the Coulomb gauge. We obtain uniform bounds
of solutions with respect to the dielectric constant � > 0. Consequently, the
existence of global weak solutions to the Ginzburg-Landau equations follows by
a compactness argument.

Keywords Coulomb gauge • Superconductivity • Weak solutions
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1 Introduction

We consider the 3D time-dependent Ginzburg-Landau-Maxwell system in super-
conductivity [1, 2]:

@t C i�� C
�
i

�
r C A

�2
 C .j j2 � 1/ D 0; (1)

�.@2t AC @tr�/C @tACr� C rot 2AC Re

��
i

�
r C  A

�
 

�
D 0; (2)
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in QT WD .0;T/ ��, with boundary and initial conditions

r 	 � D 0; A 	 � D 0; rotA � � D 0; r� 	 � D on .0;T/ � @�; (3)

. ;A; @tA; �/.0; 	/ D . 0;A0;A1; �0/.	/ in � � R
3: (4)

Here, the unknowns  ;A, and � are C-valued, Rd-valued, and R-valued functions,
respectively, and they stand for the order parameter, the magnetic potential, and
the electric potential, respectively.  and � are Ginzburg-Landau positive constants,
� is the dielectric constant and is supposedly very small in superconductors, and
i WD p�1. � is a simply connected and bounded domain with smooth boundary
@� and � is the outward unit normal to @�.  denotes the complex conjugate of
 ;Re WD . C  /=2 is the real part of  and j j2 WD   is the density of
superconductivity carriers. T is any given positive constant.

It is well known that the Ginzburg-Landau-Maxwell system is gauge invariant,
that is, if . ;A; �/ is a solution of (1)–(4), then for any real valued smooth function
�; . ei��;A C r�; � � @t�/ is also a solution of (1)–(4). So in order to obtain
the well-posedness of the problem, we need to impose the gauge condition. From
physical point of view, one usually has four types of the gauge condition:

(1) Coulomb gauge: divA D 0 in � and
R
�dx D 0.

(2) Lorentz gauge of type I: � D �divA in �.
(3) Lorentz gauge of type II: @t� D �divA in �.
(4) Temporal gauge: � D 0 in �.

In 1999, Tsutsumi and Kasai [3] proved the existence and uniqueness of global
weak solutions to the problem with the Coulomb gauge under the assumption that
 0 2 H1 \ L1;A0 2 H1;A1 2 L2, and �0 2 H1. Very recently, Fan and Ozawa
[4] prove a similar result as that in [3] with initial data belonging to a larger space
 0 2 L1 \W

2
3 ;
3
2 . The aim of this paper is to give a further result, we will prove

Theorem 1.1 Suppose that 0 < � < 1;  0 2 L4 \W2� 2
r ;r for some r with 5

3
< r �

2; divA0 D 0; A0 2 H1; A1 2 L2, and �0 2 H1. Then for any T > 0 there exists a
unique weak solution . �;A�; ��/ of (1)–(4) satisfying

k �kL1.0;TIL4/\L6.QT / � C;
k@t �kL2.0;TILp/ C k �kL2.0;TIW2;p/ � C;
k �kL2.0;TIL1/\L2.0;TIW1;3/ � C;
kA�kL1.0;TIH1/ � C; k@tA�kL2.0;TIL2/ � C;
k��kL2.0;TIH1/ � C;

(5)

where C is independent of � > 0 and p D 3r
5�r .

Remark 1.1 Our proof is different from that of [3]. Our key estimate is to obtain
L2.0;TIW2;p/ estimates of  (Lp�Lq theory), while their proof in [3] is to get W2;1

2

estimates of  (L2 theory). Thus our assumption on the initial data  0 is weaker
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than that in [3]. By the definition of p; r is rewritten as r D 5p
pC3 and p ranges over

3
2
< p � 2 if 5

3
< r � 2.

Remark 1.2 As soon as the uniform a priori estimates with respect to � > 0 such
as (5) are established, the standard compactness arguments show the existence of
a convergent subsequence . �j ;A�j ; ��j / with �1 > �2 > 	 	 	 > �j # 0 as j ! 1
for (1)–(4). When � D 0, the Ginzburg-Landau-Maxwell system reduces to the
well-known Ginzburg-Landau equations, which have received many studies [5–13].

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The proof of uniqueness part has
been given in [4] and thus we omit the details here. To prove the existence part, we
only need to prove a priori estimates (5). From now on, we drop the subscript � for
simplicity. In the following calculations, we need to keep track of the independence
of � on constants C.

Multiplying (1) by  and integrating by parts, then taking the real part, we see
that



2

d

dt

Z
j j2dxC

Z ˇ
ˇ
ˇ̌ i
�
r C  A

ˇ
ˇ
ˇ̌
2

dxC
Z
j j4dx D

Z
j j2dx;

which gives

Z T

0

Z ˇ
ˇ
ˇ̌ i
�
r C  A

ˇ
ˇ
ˇ̌
2

dxdt � C: (6)

Similarly, multiplying (1) by j j2 and integrating by parts, then taking the real
part, we find that



4

d

dt

Z
j j4dxC

Z ˇ
ˇ
ˇ
ˇ
i

�
r C  A

ˇ
ˇ
ˇ
ˇ

2

j j2dxC
Z
j j6dx D

Z
j j4dx;

which implies

k kL1.0;TIL4/ C k kL6.QT / � C; (7)
Z T

0

Z ˇ
ˇ̌
ˇ
i

�
r C  A

ˇ
ˇ̌
ˇ

2

j j2dxdt � C: (8)



304 J. Fan and T. Ozawa

Testing (2) by @tACr� and using (8), we derive

1

2

d

dt

Z
.�j@tAj2 C �jr�j2 C jrotAj2/dxC

Z
.j@tAj2 C jr�j2/dx

D �
Z

Re

��
i

�
r C  A

�
 

�
.@tACr�/dx

� 1

2

Z
.j@tAj2 C jr�j2/dxC C

Z ˇ
ˇ̌
ˇ
i

�
r C  A

ˇ
ˇ̌
ˇ

2

j j2dx;

which yields

k@tAkL2.QT / C k�kL2.0;TIH1/ � C; (9)

kAkL1.0;TIH1/ � C; (10)

where we have used the well-known Poincaré inequality for vector-valued functions
of the form

kAkL2 � CkrotAkL2 : (11)

Inequalities (7), (8) and (10) lead to

k kL2.0;TIH1/ � C: (12)

Equation (1) can be rewritten as

@t � 1

�2
� D f WD �i�� � 2i

�
Ar � jAj2 � .j j2 � 1/ : (13)

By the well-known L2.0;TIW2;p/-regularity theory of the heat equation [14], and
using (9), (10), (12) and (7), we have

Z T

0

k@t k2LpdtC
Z T

0

k k2W2;p dt

� Ck 0k2
W2� 2

r ;r
C C

Z T

0

kfk2Lpdt

� CC C
Z T

0

k�k2L6k k2L3dtC C
Z T

0

kAk2L6kr k2Lqdt

CC
Z T

0

kAk4L6k k2L6dt
�
1

p
D 1

6
C 1

q

�
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� CC C
Z T

0

kr k2Lqdt

� CC C
Z T

0

kr k2.1�
/
L2

k k2
W2;p dt

�

 D 4p � 6

5p � 6
�

� CC C
Z T

0

kr k2L2dtC
1

2

Z T

0

k k2W2;pdt;

which yields

k@t kL2.0;TILp/ C k kL2.0;TIW2;p/ � C: (14)

By the Sobolev embedding, we arrive at

k kL2.0;TIL1/ C k kL2.0;TIW1;3/ � C: (15)

This completes the proof.
�
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Lp-boundedness of Functions of Schrödinger
Operators on an Open Set of Rd

Tsukasa Iwabuchi, Tokio Matsuyama, and Koichi Taniguchi

Abstract The purpose of this paper is to prove Lp-boundedness of an operator
'.HV/, where HV D �� C V.x/ is the Schrödinger operator on an open set �
of Rd (d � 1). Moreover, we prove uniform Lp-estimates for '.
HV/ with respect
to a parameter 
 > 0. This paper will give an improvement of our previous paper
(Iwabuchi et al., Lp-mapping properties for Schrödinger operators in open sets of
R
d, submitted); assumptions of potential V and space dimension.

Keywords Functional calculus • Lp-estimates • Schrödinger operators

Mathematics Subject Classification (2010) Primary 47F05; Secondary 26D10

1 Introduction

Let � be an open set in R
d (d � 1). We consider the Schrödinger operator

HV D ��C V.x/ D �
dX

jD1

@2

@x2j
C V.x/;
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where V.x/ is a real-valued measurable function on �. When HV is self-adjoint on
L2.�/, the operator '.HV/ can be defined on L2.�/ by

'.HV/ WD
Z 1

�1
'.�/ dEHV .�/

for a Borel measurable function ' on R, where fEHV .�/g�2R is the spectral
resolution of the identity for HV . This paper is devoted to obtaining Lp-boundedness
of '.HV/ for 1 � p � 1, and to proving uniform Lp-estimates for '.
HV/ with
respect to a parameter 
 > 0. In our previous work [5], we established these
estimates when the potential V is of the Kato class in the case d � 3. The aim
of this paper is to improve the results in [5] under a weaker assumption on V in all
space dimensions.

Throughout this paper we always assume that V satisfies

V D VC � V�; V˙ � 0; VC 2 L1loc.�/; V� 2 Kd.�/: (1)

Here Kd.�/ is the Kato class. More precisely, we say that V� belongs to Kd.�/ if

8
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

lim
r!0

sup
x2�

Z

�\fjx�yj<rg
jV�.y/j
jx � yjd�2 dy D 0; d � 3;

lim
r!0

sup
x2�

Z

�\fjx�yj<rg
logfjx � yj�1gjV�.y/j dy D 0; d D 2;

sup
x2�

Z

�\fjx�yj<1g
jV�.y/j dy <1; d D 1:

Then it is well known from Theorem VIII.15 in [10] (see also [5, 9]) that ��C V
has a self-adjoint realization on L2.�/, and we denote by HV its realization with the
domain

D.HV / D
n
u 2 H1

0.�/
ˇ̌
ˇ
p
VCu 2 L2.�/; HVu 2 L2.�/

o
;

where H1
0.�/ is the completion of C1

0 .�/ with H1.�/-norm. MoreoverHV is semi-
bounded, and the infimum of the spectrum of HV is finite. Hence

Z

�

.HVu/u dx � �M0kuk2L2.�/; 8 u 2 D.HV/;

where

M0 is the infimum of the spectrum of HV : (2)
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Here and below, we denote by S.R/ the space of rapidly decreasing functions on
R. We write k 	 kB.X;Y/ as the operator norm from X to Y, and in particular, k 	 kB.X/
when X D Y.

We shall prove the following.

Theorem 1.1 Let 1 � p � 1 and ' 2 S.R/. Assume that the measurable potential
V satisfies assumption (1). Then the following assertions hold:

(i) There exists a constant C D C.d; ';V/ > 0 such that

k'.
HV /kB.Lp.�// � C for any 0 < 
 � 1: (3)

(ii) Assume that V further satisfies

8
<̂

:̂

V� D 0; if d D 1; 2;
sup
x2�

Z

�

jV�.y/j
jx � yjd�2 dy <

	d=2

�.d=2� 1/ ; if d � 3; (4)

where �.	/ is the Gamma function. Then (3) holds for any 
 > 0.

When � D R
d, there are several known results. For example, Jensen and

Nakamura proved the assertion (i) in Theorem 1.1 (see [6, 7]). Georgiev and
Visciglia proved the assertion (ii) under V � 0 (see [3]), and then, D’Ancona and
Pierfelice extended [3] to the operators with Kato class potentials satisfying (4)
(see [1]). When � is an open subset of R

d or of the metric measure space with
doubling volume property, several authors studied Lp-boundedness of '.L/ for any
non-negative self-adjoint operator L such that the integral kernel of semigroup e�tL

satisfies Gaussian upper bound (see, e.g., [2, 8, 9]). Duong, Ouhabaz, and Sikora also
proved the estimate (3) of '.
L/ for any 
 > 0 by using several estimates for the
integral kernel of '.

p
L/. However they need non-negativity of L and the condition

of compact support of ' to prove (3) (see [2]). In Theorem 1.1 we obtain (3) under
the assumption that HV admits negative eigenvalues and ' does not necessarily have
compact support. The strategy is different from them. In our previous work [5],
we proved the assertion (ii) for Kato class potentials on open sets of Rd (d � 3)
satisfying assumption (4). Theorem 1.1 will be proved by some slight modifications
of argument in [5]. Later on, we will use the scaled amalgam spaces to prove
uniform Lp-estimates. So, let us define the spaces `p.Lq/
 as follows:

Definition 1.2 (Scaled Amalgam Spaces `p.Lq/
 ) Let 1 � p; q � 1 and 
 > 0.
The space `p.Lq/
 is defined as

`p.Lq/
 D `p.Lq/
 .�/ WD
n
f 2 Lqloc.�/

ˇ
ˇ
ˇ
X

n2Zd

k fkpLq.C
 .n// <1
o
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with norm

k fk`p.Lq/
 D
�X

n2Zd

k fkpLq.C
 .n//
�1=p

;

where C
 .n/ is the intersection of � and the cube centered at 
1=2n.n 2 Z
d/ with

side length 
1=2.

When � D R
d and 
 D 1, the scaled amalgam spaces `p.Lq/
 coincide with

the classical amalgam spaces due to Holland and Wiener (see [4, 12, 13]). It can be
checked that `p.Lq/
 is a Banach space with norm k 	 k`p.Lq/
 and has the property
that

`p.Lq/
 ,! Lp.�/\ Lq.�/ for 1 � p � q � 1:

This paper is organized as follows. In Sect. 2 we will prepare key lemmas to
prove Theorem 1.1, which state the estimates for the resolvent of HV and '.
HV /

on the amalgam spaces. In Sect. 3 we will prove Theorem 1.1.

2 Key Lemmas

In this section we prepare Lp-`p.Lq/
 -estimates for the resolvent of HV and uniform
`p.L2/
 -estimates for '.
HV/ with respect to 
 . These estimates play an important
role in proving Theorem 1.1.

Lp-`p.Lq/
 -estimates for the resolvent of HV can be proved by using the follow-
ing Gaussian upper bound for the integral kernel of semigroup e�tHV generated by
HV .

Proposition 2.1 Assume that V satisfies assumption (1). Let K.t; x; y/ be the
integral kernel of semigroup fe�tHV gt>0 generated by HV. Then there exists a positive
constant C D C.d;V/ such that

0 � K.t; x; y/ � Ct�d=2e�jx�yj2=8t; 0 < t � 1; x; y 2 �: (5)

If we further assume that V� satisfies assumption (4) in Theorem 1.1, then the
estimate (5) holds for any t > 0.

Proposition 2.1 can be proved along the same argument as Proposition 3.1 in [5]
(see also Ouhabaz [9]).

As a consequence of Proposition 2.1, we have the following.

Corollary 2.2 Let 1 � p � q � 1 and ˇ > d.1=p � 1=q/=2. Assume that V
satisfies assumption (1). Then for any M > M0, there exists a positive constant
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C D C.d; p; q; ˇ;M/ such that

k.
HV CM/�ˇkB.Lp.�/;`p.Lq/
 / � C
�d.1=p�1=q/=2; 0 < 
 � 1; (6)

where M0 is defined by (2). If we further assume that V� satisfies assumption (4),
then the estimate (6) holds for any 
 > 0.

Outline of proof of Corollary 2.2 The following formula is well known (see, e.g.,
(A9) in page 449 of Simon [11]): For any M > M0 and ˇ > 0,

.HV CM/�ˇ D 1

�.ˇ/

Z 1

0

tˇ�1e�Mte�tHV dt:

Combining this formula with Proposition 2.1, we can prove Corollary 2.2 along the
completely same argument of proof of Theorem 4.1 in [5] (see also [7]). ut

Next, we prepare uniform `p.L2/
 -estimates for '.
HV/ with respect to the
parameter 
 .

Lemma 2.3 Let 1 � p � 2. Assume that V satisfies assumption (1). Then there
exists a positive constant C D C.d; p;V/ such that

k'.
HV/kB.`p.L2/
 / � C; 0 < 
 � 1: (7)

If we further assume that V� satisfies assumption (4), then the estimate (7) holds for
any 
 > 0.

For the details of proof of Lemma 2.3, see [5, Section 6] (see also [7, Section 2.B,
Section 3]).

3 Proof of Theorem 1.1

We have only to prove the assertion (i) in Theorem 1.1, since the assertion (ii) can
be also proved in the same way. It is sufficient to show that there exists a positive
constant C such that

k'.
HV /fkL1.�/ � Ck fkL1.�/; f 2 L1.�/; 0 < 
 � 1: (8)

In fact, once (8) is proved, then L1-estimate for '.
HV/ is obtained by duality
argument, and hence, we obtain Lp-estimates for 1 � p � 1 by applying the Riesz-
Thorin interpolation theorem.

Recalling the definition (2) of the constant M0, let M > M0 and ˇ > d=4. Let us
take Q' 2 S.R/ as

Q'.�/ D .�CM/ˇ'.�/; � > �M:
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Then, by using Schwarz inequality, Corollary 2.2, and Lemma 2.3, we obtain for
any f 2 L1.�/,

k'.
HV /fkL1.�/ � 
d=4k'.
HV /fk`1.L2/

D 
d=4k Q'.
HV/.
HV CM/�ˇfk`1.L2/

� C
d=4k.
HV CM/�ˇ fk`1.L2/

� C
d=4 	 
�d=4k fkL1.�/
D Ck fkL1.�/;

where the constant C is independent of 
 . The proof of Theorem 1.1 is finished.
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The Kirchhoff Equation with Gevrey Data

Tokio Matsuyama and Michael Ruzhansky

Abstract In this article the Cauchy problem for the Kirchhoff equation is consid-
ered, and the almost global existence of Gevrey space solutions is described.

Keywords Gevrey spaces • Kirchhoff equation

Mathematics Subject Classification (2010) Primary 35L40, 35L30; Secondary
35L10, 35L05, 35L75

1 Introduction

In this article we shall describe the recent result on the almost global existence of
Gevrey space solutions to the Cauchy problem for the Kirchhoff equation of the
form

8
<̂

:̂

@2t u �
�
1C

Z

Rn
jru.t; y/j2 dy

�
�u D 0; t > 0; x 2 R

n;

u.0; x/ D u0.x/; @tu.0; x/ D u1.x/; x 2 R
n:

(1)

G. Kirchhoff proposed Eq. (1) in his book on mathematical physics in 1876, as a
model equation for transversal motion of the elastic string, where � is a bounded
interval of R1 (see [16], and for a finite dimensional approximation problem, see
Nishida [24]). Since then, it was first in 1940 that Bernstein proved the existence of
global in time analytic solutions on an interval of real line in his celebrated paper [2].

T. Matsuyama (�)
Department of Mathematics, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, 112-8551 Tokyo,
Japan
e-mail: tokio@math.chuo-u.ac.jp

M. Ruzhansky
Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
e-mail: m.ruzhansky@imperial.ac.uk

© Springer International Publishing AG 2017
P. Dang et al. (eds.), New Trends in Analysis and Interdisciplinary Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-48812-7_40

313

mailto:tokio@math.chuo-u.ac.jp
mailto:m.ruzhansky@imperial.ac.uk


314 T. Matsuyama and M. Ruzhansky

After him, Arosio and Spagnolo discussed the global existence of analytic solutions
in higher spatial dimensions (see [1]), and D’Ancona and Spagnolo proved analytic
well-posedness for the degenerate Kirchhoff equation (see [5], and also Kajitani and
Yamaguti [15]).

As it is well known, Eq. (1) has a Hamiltonian structure. More precisely, let us
define the energy

H.uI t/ WD 1

2

˚kru.t/k2L2 C k@tu.t/k2L2
�C 1

4
kru.t/k4L2 :

Then we have

H.uI t/ D H.uI 0/

as long as a solution exists. Nevertheless it involves a challenging problem whether
or not, one can prove the existence of time global solutions corresponding to data in
Gevrey classes, H1-class or standard Sobolev spaces without smallness condition.
Up to now, there is no solution to these problems.

The global existence of quasi-analytic solutions is known, see Ghisi and Gobbino
[10], Nishihara [25], and Pohožhaev [26]. Here quasi-analytic classes are inter-
mediate ones between the analytic class and the C1-class. Manfrin discussed the
time global solutions in Sobolev spaces corresponding to non-analytic data having
a spectral gap (see [18]), and a similar result is obtained by Hirosawa (see [13]). For
the local existence in Geveray spaces, see [9].

On the other hand, global well-posedness in Sobolev space H3=2, or H2 with
small data is well established in [3, 6–8, 11, 14, 19, 20, 28, 30, 31]. There, the classes
of small data consist of compactly supported functions (see [11]), or more generally,
they are characterised by some weight conditions (see [3, 6–8]) or oscillatory
integrals (see [12, 14, 17, 19, 20, 27–31]). Recently, the authors studied the global
well-posedness for Kirchhoff systems with small data (see [21]), and generalised all
the previous results in the framework of small data. Here, the class of data in [21]
consists of Sobolev space .H1/m, m being the order of system, and is characterised
by some oscillatory integrals. The precise statements of the known results can be
found in the survey paper [22].

We shall now recall the definition of Gevrey class of L2 type. For s � 1, we
denote by � s

L2
D � s

L2
.Rn/ the Roumieu-Gevrey class of order s on R

n:

� sL2 D
[

>0

� s
;L2 ;

where f belong to � s
;L2

if

Z

Rn
ej�j1=s j Of .�/j2 d� <1:
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Here Of .�/ stands for the Fourier transform of f .x/. The class � s
L2

is endowed with
the inductive limit topology. In particular, if s D 1, then �1

L2
.Rn/ is the class AL2 of

the analytic functions on R
n. We will use the norm

k fk� s
;L2
D
�Z

Rn
ej�j1=s j Of .�/j2 d�

	1=2

and

k. f ; g/k� s
;L2

�� s
;L2
D
�Z

Rn
ej�j1=s

n
j Of .�/j2 C jOg.�/j2

o
d�

	1=2

for  > 0.
We have the following:

Theorem 1.1 Let T > 0 and s > 1. Let A > 0, R > 0 and denote

0.AIR;T/ D 2sC1.A/RT1C 1
s C C2.A/

with certain large constants Ci.A/.i D 1; 2/ depending only on A. If the functions
u0; u1 2 � sL2 , for some  > 0.AIR;T/, satisfy conditions

H.uI 0/ < A;


..��/3=4u0; .��/1=4u1/


2
� s
;L2

�� s
;L2
� R;

then the Cauchy problem (1) admits a unique solution u 2 C1.Œ0;T�I � s
L2
/.

We note that Theorem 1.1 does not seem to require the smallness of data. In fact,
A and R (measuring the size of the data) are allowed to be large. However, it follows
that  (measuring the regularity of the data) then also have to be big. So, we can
informally describe conditions of Theorem 1.1 that ‘the larger the data is the more
regular it has to be (but still within the same class � s

L2
)’.

We can also make the following observation concerning the statement of
Theorem 1.1. The formula for 0.AIR;T/ in Theorem 1.1 comes from condition

 >
2C1.A/RTq

q � 1 C C2.A/; (2)

where s and q related by

s D 1

q � 1 and 1 < q < 2: (3)
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The proof actually yields a more precise conclusion, namely, that the solution u
from Theorem 1.1 satisfies

u 2
1\

jD0
Cj
�
Œ0;T�I .��/�.3=4/C. j=2/� s

0;L2 \ .��/�.1=2/C. j=2/� s0;L2

�
;

with

0 D  � 0.AIR;T/ > 0: (4)

This and the order 0 in (4) can be found from the class of data of linear equation
and (8) in Proposition 1.2 below with s and q related by (3). Let us consider the
linear Cauchy problem

(
@2t u � c.t/2�u D 0; t 2 .0;T/; x 2 R

n;

u.0; x/ D u0.x/; @tu.0; x/ D u1.x/; x 2 R
n:

(5)

The assumptions for the following estimates are related with Theorem 2 from
Colombini et al. [4]. However, here we need more precise conclusions on the
behaviour of constants.

Proposition 1.2 Let � � 1 and 1 � s < q=.q � 1/ for some q > 1. Assume that
c D c.t/ 2 Liploc.Œ0;T// satisfies

1 � c.t/ � M; t 2 Œ0;T�; (6)

ˇ
ˇc0.t/

ˇ
ˇ � K

.T � t/q
; a.e. t 2 Œ0;T/; (7)

for some M > 1 and K > 0. If ..��/�=2u0; .��/.��1/=2u1/ 2 � s;L2 � � s;L2 for some
 satisfying

 >
2K

q � 1 C 4M
2; (8)

then the Cauchy problem (5) admits a unique solution

u 2
1\

jD0
Cj
�
Œ0;T�I .��/�.��j/=2� s

0;L2

�
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such that

k.��/�=2u.t/k2� s
0 ;L2
C k.��/.��1/=2@tu.t/k2� s

0 ;L2
(9)

� M2e4M
2 maxf1;T1�.qs�s/gk..��/�=2u0; .��/.��1/=2u1/k2� s

;L2
�� s

;L2

for t 2 Œ0;T�, where

0 D �
�
2K

q � 1 C 4M
2

�
> 0:

For the proof of Proposition 1.2, one can refer to Proposition 2.1 from our recent
paper [23].
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On Inverse Scattering on a Sun-Type Graph

Kiyoshi Mochizuki and Igor Trooshin

Abstract We treat an inverse scattering problem on a graph with an infinite rays
and a loop joined at different points. Our problem amounts to the reconstruction of
potential on the basis of the scattering data of operator.

Keywords Scattering • Schrödinger operator • Sun-type graph

Mathematics Subject Classification (2010) 34L25, 81Q35

1 Introduction and Main Results

Differential equations on graphs arise as simplified models in mathematics, physics,
chemistry and engineering (nanotechnology), when one considers the propagation
of waves of different natures in thin, tube-like domains (for more details, see
Exner and Seba [3], Pokornyi et al. [17], the papers of Kuchment [8, 9] and the
references within). Among several problems in this field, the scattering problems
have been studied by many authors (e.g. Pavlov [6], Gerasimenko [5, 6], Harmer
[7], Kurasov and Stenberg [10], Boman and Kurasov [2], Latushkin, Pivovarchik
[11]), Pivovarchik [16] because of the general importance of their applications.

Let � be a graph which consists of a loop � D fz j 0 < z < 2	g and N half lines
�i D fxi j 0 < xi < 1g; i D 1; : : : ;N, joined at the points fxi D 0g D fz D ˛ig,
where 0 < ˛1 < ˛2 < 	 	 	 < ˛N < 2	 . (We call such points the vertices of the
graph.)
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We consider on � the following spectral problem:

� u00 C ˚q.x/� �2� u D 0; x 2 �; (1)

u.xi D 0/ D u.z D ˛i/; i D 1; : : : ;N; (2)

u0.xi D 0C 0/C u0.z D ˛i C 0/� u0.z D ˛i � 0/ D 0; i D 1; : : : ;N: (3)

Here differentiation with respect to the variable x is understood as differentiation
with respect to xi, when x 2 �i, and as differentiation with respect to z, when
x 2 �. Differentiation is not defined at the vertices. The potential q.x/ is real-valued,
.1 C x/q.x/ 2 L1.�i/ and q.x/ 2 L2loc.�/. Later on we will associate x 2 �i with
x 2 <C and write also qi.x/; ui.x/; : : : ; x 2 <C instead of q.x/; u.x/; : : : ; x 2 �i:
The parameter � is a complex number such that Im� � 0.

The matching conditions (2)–(3) at the vertices guarantee the self-adjointness of
the resulting Schrödinger operator

L.u/ D �u00.x/C q.x/u.x/; x 2 �: (4)

Moreover, the essential spectrum of L consists of the half line Œ0;1/.
There exist N solutions �1.x; �/; : : : ; �N.x; �/ to the problem (1)–(3) behaving

asymptotically

�l.x; �/ D e�i�x C sll.�/e
i�x C o.1/; x 2 �l

�l.x; �/ D sjl.�/e
i�x C o.1/; x 2 �j; j ¤ l

for any real � ¤ 0.
Such solutions define the functions sij.�/; i; j D 1; : : : ;N; � 2 < n f0g uniquely.

By drawing an analogy with classical scattering on a half line (e.g. [1]), the matrix
function S.�/ D .sij.�//Ni;jD1 is called the scattering matrix for the boundary value
problem (1)–(3).

The matrix function S.�/ is unitary and continuous on the whole line�1 < � <

1 (except, possibly, at the point � D 0) and admits a representation

S.�/ D T.�/�1T.��/; (5)

T.�/ D E.0; �/C G.�/E0.0; �/: (6)

We defined here

E.x; �/ D diag.ei.x; �//NiD1; (7)

where ei.x; �/; i D 1; : : : ;N, are the so-called Jost solutions to the problem (1) on
the parts of the graph �i, which behave as

ei.x; �/ D ei�xf1C o.1/g; x 2 �i; jxj ! 1: (8)
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on the closed upper half-plane of the spectral parameter � and G.�/ is an N � N-
matrix valued entire function.

The scattering matrix S.�/ has an asymptotic behaviour

S.�/ D S0.�/C O

�
1

�

�
; j�j ! 1; (9)

where S0.�/ is the scattering matrix of (1)–(3) in the case q.x/ 
 0; x 2 � .
Later we suppose that

detT.�/ ¤ 0; Im� � 0:

This implies that the problem (1)–(3) can have eigenvalues only with compact
supported eigenfunctions.

Our inverse scattering problem is the following:

IScP Given the scattering matrix S.�/; � 2 <nf0g, recover the potential q.x/; x 2
� n K.

As is well known (see, for instance, [1], Chap. 1), that the Jost solutions ei.x; �/
of Eq. (1) in �i can be represented as

ei.x; �/ D ei�x C
Z 1

x
Ki.x; t/e

i�tdt; (10)

where the kernel Ki.x; t/ is continuous on 0 � x � t <1 and satisfies the equation

Ki.x; x/ D 1

2

Z 1

x
qi.t/dt; x > 0: (11)

As a function of the variable �, ei.x; �/ is analytic in the open half-plane Im� > 0

and continuous on Im� � 0.
We denote K.x; t/ D diag.Ki.x; t//. Then we can write

E.x; �/ D ei�xIN C
Z 1

x
K.x; t/ei�tdt (12)

The following theorem allows us to reconstruct the potential q.x/ on the half-lines
�i; i D 1; : : : ;N.

We define the function

F.x/ D 1

2	

Z 1

�1
.S0.�/� S.�//ei�xd�: (13)

which is understood as the Fourier transform of So � S 2 L2.�1;1/.
In the case detE.0; 0/ ¤ 0 and detT.�// ¤ 0; =� � 0 we have proved the

following theorem.
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Theorem 1.1

(i) For any fixed x � 0 the integral kernel K.x; t/ of the operator (8) satisfies the
equation

F.xC t/C K.x; t/C
Z 1

x
K.x; y/F.tC y/dy D 0; 0 < x < t <1: (14)

(ii) If the function F.t/ is constructed from the scattering data of problem (1)–(3)
according to (13), then Eq. (14) has a unique solution K.x; t/, belonging to
L1.x;1/ for each fixed x � 0.

Theorem 1.1 allows us to prove the uniqueness of the solution to the inverse
scattering problem (IScP) on the semi-lines �i in the following sense.

Let us consider a second boundary value problem

� u00 C ˚Qq.x/ � �2� u D 0; x 2 �; (15)

subject to matching conditions (2)–(3). Here function Qq.x/ is real-valued, required
to satisfy .1C x/Qq.x/ 2 L1.�/i and Qq.x/ 2 L2loc.�/.

This second boundary-value problem possesses the scattering function QS.�/.
Theorem 1.2 Let us suppose that the scattering matrices of problems (1)–(3)
and (15), (2)–(3) coincide, i.e., S.�/ D QS.�/; � 2 < n f0g. Then q.x/ D Qq.x/; x 2
�i; i D 1; : : : ;N.

Theorem 1.1 allows us also to reconstruct the potential q.x/ for any x 2 �i; i D
1; : : : ;N, based on the following procedure:

Reconstruction Procedure Given scattering matrix S.�/; � 2 < n f0g
Step 1. Construct F.x/ via formula (13)
Step 2. Find K.x; t/; 0 � x � t <1 by solving main Eq. (14).
Step 3. Recover the potential according to formula

qi.x/ D �2 d

dx
Ki.x; x/; x > 0: (16)

Remark Knowledge of the scattering matrix S.�/; � 2 < n f0g; allows us to
reconstruct the potential q.x/ only on semiinfinite lines �i. However, given some
additional information we can reconstruct the potential q.x/ on the whole graph � .
For example, in the case of a potential which is polynomial of degree � N � 1 on
the loop and continuous on � in the neighbourhood of each vertex, we can extend
the reconstruction procedure to the whole graph.

The case of the “loop-shaped” graph (“sun-type graph” with N D 1) was
previously investigated by the authors in [12, 13]. They also investigated the inverse
scattering problem on the star-shaped graph, containing a compact part [14, 15].

Now we mention some of the results closely related to ours.
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Pavlov and Gerasimenko [5, 6] started the rigorous investigation of scattering
problems on graphs. M. Harmer had deduced the Marchenko equation in the
case of a graph consisting of a finite set of semiinfinite lines, joined at one
point. Kurasov and Boman [2] had proved the existense of graphs equipped with
different potentials, which possesses the same scattering matrix. (Their results
do not mean a non-uniqueness in our case under consideration.) Pivovarchik and
Latushkin [11, 16] had investigated cases of loop-shaped and fork-shaped graphs
with potentials vanishing on semi-lines. They used a connection with the Regge-type
spectral problem on a finite interval to investigate spectral and scattering properties
of problem on graphs and they proved the existense of loop-shaped graphs equipped
with different potentials on the loop, which possesses the same scattering function.
Freiling and Ignatyev [4] had used the method of V. Yurko (see, e.g., [18]) to prove
the uniqueness result on the whole sun-type graph on the basis of the scattering data
and a-priori knowledge on the spectral properties on compact part of the graph.

2 Proof of the Theorems

(i) The function ˆ.x; �/ D E.x;��/ � S.�/E.x; �/; defined for any real � ¤ 0,
can be represented as

ˆ.x; �/ D �2i�E�1.0; �/
�
!.x; �/ � T�1.�/G.�/E.x; �/

�
; (17)

where the function !.x; �/ D diag .!i.x; �//, !i.x; �/ is the solution to Eq. (1)
on �i, satisfying initial conditions !i.0; �/ D 0; !0

i .0; �/ D 1. The function
ˆ.x; �/ can be analytically extended to a function, which is meromorphic
function in the half-plane Im� > 0, continuous up to the real axis, except for
its poles and, probably, � D 0. Using formula (12) we come to the following
equation.

� 2i�E�1.0; �/


!.x; �/C T�1.�/G.�/E.x; �/

�� e�i�xIN

C S0.�/E.x; �/ D
Z 1

x
K.x; t/e�i�tdt

C .S0.�/ � S.�//

�
ei�xIN C

Z 1

x
K.x; t/ei�tdt

�
(18)

We fix x > 0 and let �.t/ be a continuously differentiable compactly supported
function such that sup�.t/ 2 .x;1/.Then we denote by O�.�/ a Fourier

transform of �.t/ and multiply both sides of (18) by
1

2	
O�.�/ and integrate over

.�1;1/. The left side of (18) is analytic in the half-plane Im� > 0 except,
probably, zeros of det.E.0; �//. But we can show that Res�D�ˆ.x; �/ D 0

where � is zero of det.E.0; �// in the upper half-plane. As S0.�/ � S.�/ D
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Z 1

�1
F.t/e�i�tdt, we can use the differentiability of �.t/ to see by the use of

Jordan lemma that
Z 1

y
�.t/

�
F.xC t/C

Z 1

�1
F.t � �/K.x;��/d� C K.x; t/

	
dt D 0

Since the function �.t/ is arbitrary, the assertion (i) follows from these
equations.

(ii) The function F.x/ possesses the same properties as the corresponding function
in the case of scattering problem on a semi-axis, which allows us to repeat
arguments from [1], Chap. III, to prove the unique solvability of the Marchenko
Eq. (14).

Proof of the Theorem 1.2. In the case under consideration F.x/ D QF.x/ and, as a
result of unique solvability of the main Eq. (14), K.x; t/ D QK.x; t/; 0 < x < t <1
and, by continuity, K.x; x/ D QK.x; x/; 0 � x <1. Then, according to (16), q.x/ D
Qq.x/; x 2 � .
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On Certain Exact Solutions for Some Equations
in Field Theory

Łukasz T. Stȩpień

Abstract Some exact solutions (functionally invariant solutions) of self-dual Yang-
Mills equations in SU.2/ case, and generalized Yang’s equations, have been
presented.

Keywords Charap’s equations • Functionally invariant solutions • Generalized
Yang’s equations • R gauge • SDYM equations • Self-dual Yang-Mills equa-
tions • Yang gauge

Mathematics Subject Classification (2010) Primary 99Z99; Secondary 00A00

1 Motivation

Self-dual Yang-Mills (SDYM) equations play very important role in many branches
of mathematics and physics. Some important subclass of the solutions of Yang-
Mills equations (also of SDYM equations) are “nonabelian wave solutions.” They
were obtained and/or studied in many papers, among others, in: [4, 7, 11, 12, 21,
24, 29, 32]. Nonabelian waves are important, in the context of the color radiation
in the classical YM theory, [29, 39]. Moreover, some of these solutions are so-
called functionally invariant solutions and this paper is devoted to presentation of
some of them. Functionally invariant solutions were obtained and investigated firstly
(for wave equation) in Sobolev’s papers and next in Erugin’s papers [14] and in
many other papers (also for other PDEs), among others, in: [3, 16]. In [23] certain
functionally invariant solutions were obtained in the context of dynamics of the
classical continuous XY model. In this paper, we are dealt with SDYM equations
in R gauge (or Yang gauge). The SDYM equations (not only in R gauge) and
their solutions were discussed and/or investigated and/or solved in many books and
papers, among others, in: [4, 5, 7, 10, 11, 14, 16, 18, 19, 21, 23, 24, 29, 32, 34, 35, 39].
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In [28, 34], the so-called, generalized Yang’s equations were investigated, which are
some more general form than the form of SDYM equations in R-gauge in SU(2)
case. Some generalization of SDYM equations is also studied in [17].

In this paper we obtain some new classes of solutions (functionally invariant
solutions) of: self-dual Yang Mills equations (among others, in R gauge) and
generalized Yang equations. We find these solutions, by applying, by the so-called,
decomposition method (firstly presented and developed correspondingly, in the first
and the second paper in [38]). We give here a definition of functionally invariant
solution (basing on [26]):

Definition We call a solution f .x/; x 2 R
n of a PDE, as functionally invariant

solution, if for any function F W R �! R, the composition F.f .x// is also a solution
of the same PDE.

If f ;F 2 C, then this definition is analogical.
This paper is organized as follows. In Sect. 2, we briefly describe SDYM

equations in the SU(2) case, for the cases: R gauge and non-R gauge. In the next
section, we shortly describe the decomposition method, which allows to obtain
functionally invariant solutions. In the next section we present the new solutions of
the self-dual Yang-Mills equations, in the case SU(2). We investigate the equations
derived in [41], studied in [40] and in the second and the third paper in [20].
As one can see, our approach, applied here for SDYM equations and generalized
Yang’s equations, differs from the approaches presented in: [17, 21], in [26] and
in other papers devoted to finding the exact solutions of these equations. In these
papers, the group analysis were applied to investigated equations. The solutions of
SDYM equations in R-gauge, found in these above papers, are similar to these ones
presented in this talk, but they possess different form or the solutions presented in
this talk are more general than those.

2 Investigated Equations

2.1 SDYM Equations in the SU.2/ Case

2.1.1 The R Gauge Case

Self-dual Yang-Mills (SDYM) equations in the so-called Yang (or R) gauge were
described by Yang in [41]. There he has made an analytic continuation of gauge
potentials ai� into complex space with complex coordinates: y D x1Cix2p

2
; Ny D

x1�ix2p
2
; z D x3�ix4p

2
; Nz D x3Cix4p

2
. Of course, [41]: F�� D A�;� � A�;� � A�A� C

A�A�;A� D � 12 iai��i; i D 1; 2; 3, where �i are Pauli matrices. The self-duality
condition: 2F˛ˇ D "˛ˇ��F�� , has the form, [41]: Fyz D FNyNz D 0;FyNy C FzNz D 0.
Yang has obtained that the gauge potentials have the form, [41]: Ay D D�1 @yD;
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Az D D�1@zD;ANy D ND�1@Ny ND;ANz D ND�1@Nz ND, where det .D/ D 1 and for the SU(2)

case, we may write (this is just R or Yang gauge), [41]: D D R D 1p
u

�
1 0

v u

�
. If

x� 2 R4; � D 1; 2; 3; 4, then : ND D .D�/�1; u � real; Nv � v� and: A� D �A��.
The notation “�” means here “equal to” for real x�. When we write the equations
following from the duality condition, in four-dimensional Euclidean space (with
x�), they are of the form, (the first paper in [40]):

u4u� .ru/2 Crwrw� D �iN.w;w�/; c:c: (1)

u4w� 2rurw D 2iN.w; u/; c:c: (2)

N. p1; p2/ D . p1;x1p2;x2 � p1;x2p1;x1 /� . p1;x3p2;x4 � p1;x4p2;x3 /; (3)

where r and � denote also, correspondingly, the “nabla” operator and Laplace
operator, but in four-dimensional space. Takeno in the first paper in [40], has showed
that Eqs. (1)–(3) are identical to Ernst equations in 4d Euclidean space (original
Ernst equations were derived in [13]), if w D eiav; ! D uCiv; a D const;N.v; u/ D
N.� i

2
.! � !�/; 1

2
.! C !�// D 0; a 2 R:

.<.!//4! D .r!/2: (4)

The connection between Einstein equations, SDYM equations and equations of
nonlinear “sigma” model, was also investigated by Sanchez in the second paper in
[38]. Some results concerning an analogical connection between (1)–(3) and (4), but
in cylindrical coordinates, are included in [1].

2.1.2 The Non-R Gauge Case

Let us come back to general case (without R gauge), when the SDYM equations are:
Fyz D FNyNz D 0;FyNy C FzNz D 0; Fij 2 sl.nI C/; i; j 2 fy; Ny; z; Nzg, (first paper in [31]).
However, here the “bar” does not denote the complex conjugation “�”. If n ! 1,
then the potentials have the form Ai D ƒi;s

@
@r�ƒi;r

@
@s , where:ƒi D ƒi.y; z; Ny; Nz; r; s/,

ƒi;s 
 @ƒi
@s , etc. (r; s—coordinates on N 2), and the sl.n!1; C/ limit of the SDYM

equations has the form, [31]:ƒy;z�ƒz;yC .ƒy;rƒz;s�ƒy;sƒz;r/CJ1.y; z; Ny; Nz/ D 0;
ƒNy;Nz �ƒNz;Ny C .ƒNy;rƒNz;s �ƒNy;sƒNz;r C NJ1.y; z; Ny; Nz/ D 0;
ƒy;Ny �ƒNy;y Cƒz;Nz �ƒNz;z C .ƒy;rƒNy;s �ƒy;sƒNy;r Cƒz;rƒNz;s �
ƒz;sƒNz;r/CJ2.y; z; Ny; Nz/ D 0, where Ji; .i D 1; 2/ - arbitrary holomorphic functions
of their arguments. If ƒy D 
;s; ƒz D �
;r; ƒNy D ƒNz D 0; NJ1 D J2 D 0;J1 D
J1.y; z/; 
 D 
.y; z; r; s/ and: v D 
Cr 	 f .y; z/; f;y D J1.y; z/ and J1 is an arbitrary
holomorphic function of its arguments, then one can reduce SDYM equations to
second heavenly equation of Plebański: v;rrv;ss � v2;rs C v;ry C v;sz D 0, [31].



330 Ł.T. Stȩpień

2.2 Generalized Yang’s Equations and Extended Charap’s
Equations

If we write the system (1)–(3), in real terms p; v: w D pC i 	 v, and include there
some constants �; �, we have some generalization of the system (1)–(3), [34]:

u4.�/u D � 	 Œ.r.�/u/2 � .r.�/p/2 � .r.�/v/2 � 2N. p; v/�;
u

2
4.�/p D � 	 Œu;�p;� C N.u; v/�;

u

2
4.�/v D � 	 Œu;�v;� � N.u; p/�; (5)

where: r.�/ D Œ @
@x1
; @
@x2
; @
@x3
; � @

@x4
�; � D 1; : : : ; 4; � < 0; � ¤ 0 (in [34]: � D

˙1; � D 1 or � D 1
2
). Equation (5) are called as generalized Yang’s equations

(GYE) [34]. One can show that their structure is similar to the so-called extended
Charap’s equations (ECE), [34], which are some extension of Charap’s equations of
pion dynamics [8] (first paper).

3 The Concept of the Decomposition Method

The (non-Bogomolny) decomposition method can be used to find functionally
invariant solutions of some given PDE, which can be decomposed into some
fragments, homogeneous of the derivatives of the unknown functions !j:

F.x�; !1; : : : ; !m; !1;x� ; !1;x�x� ; : : : ; !m;x� ; !m;x�x� / D 0; �; � D 0; : : : ; 3,
[38]. For such equations, we apply the ansatz (where an; bn; cn; dn.n D 1; : : : ; 5/—
in general complex coefficients)

!j D ˇ1 C fj.k
1
nx

n C ˇ2; : : : ; k5nxn C ˇ6/; k1nxn D a1x1 C : : :C d1x4; (6)

ˇp D const; p D 1; : : : ; 6 (obviously, one can consider the term k1nx
n as something

similar to quaternion—the solutions written by using quaternions and biquaternions,
correspondingly, for SDYM equations, were found in the papers [10]). We require
vanishing of some algebraic terms, which appear by the terms consisting of
!j; !j;x1 ; !j;x1x1 ; : : : etc., after inserting the ansatz. Thus, the problem of solving the
given PDE (or of the system of PDEs) becomes the problem of solving of some
(very often nonlinear) algebraic equation (or system of them). We call such system
as determining algebraic system.

We stress here that many authors, engaged in looking for functionally invariant
solutions of investigated (non)linear PDEs, have looked for the solutions, where the
coefficients by the independent variables are equal to “1”, or if they have looked
for the solutions with the coefficients, they have not been engaged in solving of
such systems of algebraic equations, which must be satisfied by the coefficients.
For example, the functionally invariant solutions for nonlinear sigma model were
obtained in the first paper in [38], independent the analogical results obtained
in [16].
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4 Some Solutions for SDYM Equations, GYE and ECE

4.1 The Solutions for SDYM Equations

4.1.1 The R Gauge Case

We apply here the ansatz (6) for (4) and for the condition N.v; u/ D 0, and we
obtain rather complicated, algebraic determining system of nonlinear equations,
which must be satisfied by the coefficients. The non-zero solutions of this system
are: a3 D i; a5 D ��; d3 D 1; d5 D i� , hence, an example of the exact
solution, is: ! D f .ix1 C x4 C ˇ4;��x1 C i�x4 C ˇ6/, where f–an arbitrary, twice
differentiable function. Then the functions u D <.!/ and w D eia � =.!/ are the
new exact solutions of the SDYM Eqs. (1)–(3). The ansatz (6) can give in general,
the functionally invariant solutions for SU(2) SDYM equations in R gauge (when
the algebraic determining system is satisfied), possessing more general form than
the functionally invariant solutions (depending on the arguments of the kind given
in (6)) for SU(2) SDYM equations in R gauge, known until now, to the author’s
knowledge.

Obviously, the search for the solutions of other form is in proceed.

4.1.2 The Non-R Gauge Case

Because of limited numbers of pages, we mention here only that by using the fact
of reduction of SDYM equation to second heavenly equation of Plebański [30]
(paragraph 2.1.2), we can apply here the results from the third paper in [38], where
the non-invariant functionally invariant solutions for among others, second heavenly
equation, have been obtained, among others, in the form of infinite series, (after
linearization of Legendre transformed second heavenly equation this was done in
the paper of Malykh, Nutku and Sheftel in [15]): # DPn

jD1 gj.†j/, where gj is some
arbitrary holomorphic function of †j D ˛jr C �jqC �jt C �jz C ˇj; .ˇj D const:/
Legendre transformation: # D v � yv;y � sv;s; vy D t; v;s D q; y D �#;t; s D �#;q
and �j D �2j

˛j
; �j D �˛

2
j

�j
(first subclass) and ˛j D �2j

�j
; �j D � �

3
j

�2j
(second subclass),

ˇj—arbitrary constants. The series obtained by differentiation of this above series
need to be uniformly convergent, but they cannot be absolutely summable (third
paper in [36]). Some other solutions of SDYM equations, including certain infinite
series (but for sl.2;C/), were obtained by J. Schiff in [39].

4.2 The Solutions of GYE and ECE

The Case I: The Solutions of GYE We substituted for each of the functions u; p;w
in (5), the ansatz (6), where the real functions fm 2 C2; .m D 1; 2; 3/, are some
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arbitrary functions of their arguments. Of course, we are interested only in real
solutions of the algebraic determining system. Here we present an example of such

solutions of this system (� D � a22Cb22
d22

, f1 D f ; f2 D g; f3 D h—arbitrary functions of

their arguments): u D ˇ1 C f .a2x1 C b2x2 C d2x4 C ˇ2/;
p D ˇ3 C g

�
A3x1 C A3b2

a2
x2 C A3d2

a2
x4 C ˇ4;A4x1 C A4b2

a2
x2 C A4d2

a2
x4 C ˇ5

�
;

v D ˇ6 C h

�
a2�1
d2

x1 C b2�1
d2

x2 C �1x4 C ˇ7; a2�2d2
x1 C b2�2

d2
x2 C �2x4 C ˇ8;

a2�4
d2

x1C b2�4
d2

x2C �4x4C ˇ9
�
; ˇk D const: The forms of these above solutions are

different from the solutions found in [28] and [34].

The Case II: The Solutions of GYE and ECE If u D u.�/; p D p.�/; v D v.�/,
then one can find the exact solutions of GYE and ECE, by solving the nonlinear
O.3/ “sigma” model-like equations: �� D 0; �;��

;� D 0; � 2 C2. This possibility
was already mentioned in [6] (first paper) and in [34]. Then, the solutions have the
form: � D ˇ1C f . a3d1d3

x1C b3d1
d3

x2C c3d1
d3

x3C d1x4Cˇ2; a3d2d3
x1C b3d2

d3
x2C c3d2

d3
x3C

d2x4 C ˇ3; a3x1 C b3x2 C c3x3 C d3x4 C ˇ4/ and � D � a23Cb23Cc23
d23

. These solutions

have other form than these ones found in [6] (first paper), [8] and in [27].
The solutions found in these two above cases can be considered as describing

nonlinear waves or nonlinear superposition of the solutions of the investigated
equations. One can also notice that we can impact the presence of certain variable(s)
in one of these superposed solution(s), by putting a zero coefficient in other
superposed solution(s). This property has been mentioned in [38] (fourth paper), in
the case of the exact solutions of the so-called extended Skyrme-Faddeev model.
The ansatz (6) and these solutions can be regarded as somewhat more general
ansatz and solution, correspondingly, applied and obtained in [8] (third paper).
The searching of more general solutions, than presented in this paper, and the
investigation of the physical properties of these solutions are in proceed [38].
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Abstract We discuss basic principles for constructing the theory of boundary
value problems on manifolds with non-smooth boundaries. It includes studying
local situations related to model pseudo-differential equations in canonical domains.
The technique consists of Fourier transform, multi-dimensional Riemann boundary
value problem, wave factorization, and multi-variable complex analysis.
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lem • Pseudo-differential equation • Singularities • Wave factorization
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1 Introduction

One considers a general elliptic pseudo differential equation

.Au/.x/ D f .x/; x 2 M; (1)

in Sobolev–Slobodetskii spaces Hs.M/, where M is a smooth manifold with non-
smooth boundary, i.e. its boundary has some singularities like a cone, a wedge, etc.,
and the unknown function u is defined on M.

If A.x; �/; .x; �/ 2 R
m � R

m; is a symbol (in local coordinates of the co-tangent
bundle T�M) of a pseudo-differential operatorA, then to obtain a Fredholm property
for the operator A we need to describe invertibility conditions for some classes of
its local representatives.

V.B. Vasilyev (�)
Belgorod National Research University, Studencheskaya 14/1, Belgorod 308007, Russia
e-mail: vbv57@inbox.ru

© Springer International Publishing AG 2017
P. Dang et al. (eds.), New Trends in Analysis and Interdisciplinary Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-48812-7_43

337

mailto:vbv57@inbox.ru


338 V.B. Vasilyev

Such operators are defined by a well-known formula if M is a compact smooth
manifold because one can use the “freezing coefficients principle” or, in other
words, “local principle.” For a manifold with a smooth boundary we need a new
local formula for defining the operator A: more precisely near inner points of M we
use an usual formula, but near boundary points we need another formula

u.x/ 7�!
Z

R
m
C

Z

Rm

A.x; �/u. y/ei.x�y/��d�dy: (2)

For invertibility of such an operator with symbol A.	; �/ not depending on a
spatial variable x one can apply the theory of the classical Riemann boundary
value problem for upper and lower complex half-planes with a parameter � 0 D
.�1; : : : ; �m�1/. This step was systematically studied in the book [2]. But if the
boundary @M has at least one conical point, this approach is not effective.

A conical point at the boundary is such a point for which its neighborhood is
diffeomorphic to the cone CaC D fx 2 R

m W xm > ajx0j; x0 D .x1; : : : ; xm�1/; a >
0g; hence the local definition for pseudo-differential operator near the conical point
is the following

u.x/ 7�!
Z

Ca
C

Z

Rm

A.x; �/u. y/ei.x�y/��d�dy: (3)

To study an invertibility property for the operator (3) the author has introduced
the concept of wave factorization for an elliptic symbol near a singular boundary
point [5, 7, 9] and using this property has described Fredholm properties for Eq. (1).

Other approaches to the theory of boundary value problems one can find in
papers of V.G. Mazya, B.A. Plamenevskii, B.-W. Schulze, R.B. Melrose, M. Taylor,
V. Nistor, and many others. I cannot enumerate all authors but in author’s book [6]
very large survey of these approaches with names and papers is given.

2 Studying Model Operators

To describe Fredholm properties for a general pseudo-differential operator on the
manifold M one needs to study local situations separately. These correspond to
model operators in canonical domains.
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2.1 Simple and Complicated Singularities

2.1.1 Simple Singularities

A simple standard singularity in m-dimensional space is the cone CaC.

Example 1 A conical singularity can be stratified, i.e. for example the cone CaC �
CbC � R

nCm; where CaC � R
n;CbC � R

m, is a stratified cone

Example 2 A quadrant on the plane R
2 is represented as a direct product of two

half-axes.

Example 3 Octant in the space R
3 is a cone of 3-wedged angle type which can

be represented as a direct product of a quadrant (i.e., two-dimensional cone) and a
half-axis (one-dimensional cone).

Example 4 A wedge of codimension k in m-dimensional space is the set fx 2
R
m W x D .x0; x00; xm/; x0 2 R

m�k; x0 D .x1; : : : ; xm�k/; xm > ajx00j; x00 D
.xm�kC1; : : : ; xm�1/; a > 0g.
Example 5 A multi-wedged angle in m-dimensional space is the set Pm D fx 2
R
m W xm >

m�1P
kD1

akjxkj; ak > 0g.

2.1.2 Complicated Singularities

Such singularities arise if a singularity’s type cannot be described by the standard
cone CaC.

Example 6 A variant of the thin cone Tm�k D fx 2 R
m W xm > ajx00j; x00 D

.x1; : : : ; xm�k/; xm�kC1 D 	 	 	 D xm�1 D 0g.
Example 7 A union of m-dimensional cones with a common origin.

Example 8 A union of cones with distinct dimensions with a common origin.

2.2 Local Index and Local Solvability

Here we consider Eq. (1) for a model operator with the elliptic symbol A.�/ in a
canonical m-dimensional domain D (Examples 1–5). For this case we deal with a
convex cone which does not contain a whole straight line. For Example 4 we have
D D CaC � R

m�k;CaC � R
k; and the variable x00 2 R

m�k will be a parameter. Thus
a principal case is that the set D is a convex sharp cone in m-dimensional space
R
m. If so one needs to describe invertibility conditions for the model operator A for

this canonical domain. For this purpose the author has introduced a special variant
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of a multi-dimensional Riemann boundary value problem which is distinct from all
known ones. This problem can be solved by using a wave factorization concept,
moreover one can obtain an integral representation for the solution of the model
Eq. (1). For a model equation we use “local” constructions of Sobolev–Slobodetskii
spaces in R

m.

2.2.1 Spaces

By definition the space Hs.D/ consists of distributions from the space Hs.Rm/ [2]
for which their supports belong to D. A norm in the space Hs.D/ is induced by the
norm of the space Hs.Rm/. The right-hand side f is chosen from the space Hs�˛

0 .D/
which consists of distributions from S0.D/ admitting a continuation into the whole
space Hs�˛.Rm/. A norm in the space Hs�˛

0 .D/ is defined by the formula

jjf jjCs�˛ D inf jjlf jjs�˛;

where infimum is taken over all continuations l. Here we use notations like ones in
the Eskin’s book [2].

2.2.2 Wave Factorization

Let us denote
�
D a conjugate cone [1, 15]

�
DD fx 2 R

m W x 	 y > 0; y 2 Dg;

where x 	 y denotes an inner product.

Example 9 If D D CaC, then
�
DD fx 2 R

m W axm > jx0jg.
Definition 2.1 A radial tube domain T.D/ over the cone D is called a subset of
m-dimensional complex space C

m of the type Rm C iD.

Definition 2.2 The symbol A.�/ is called an elliptic symbol of order ˛ 2 R if
9c1; c2 > 0 such that

c1 � jA.�/.1C j�j/�˛j � c2; 8� 2 R
m:

Definition 2.3 Wave factorization with respect to the cone D for the elliptic symbol
A.�/ is called a representation in the form

A.�/ D A¤.�/AD.�/;
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where the factors A¤.�/;AD.�/ must satisfy the following conditions:

1) A¤.�/;AD.�/ are defined for all admissible values � 2 R
m, without possibility,

the points � 2 @.�
D
S
.� �

D//;

2) A¤.�/;AD.�/ admit an analytical continuation into radial tube domains T.
�
D/;

T.� �
D/ respectively with estimates

jA˙1
¤ .� C i�/j � c1.1C j�j C j� j/˙æ;

jA˙1D .� � i�/j � c2.1C j�j C j� j/˙.˛�æ/; 8� 2
�
CaC :

The number æ 2 R is called index of wave factorization.

2.2.3 Multi-Dimensional Riemann Problem

Taking into account that we will use the Fourier transform let us introduce the
following notations. We use notation Qu for the Fourier transform of function u, and
the notation eH for Fourier image of the Hilbert space H.

For small s, jsj < 1=2; we denote by A.Rm/ a subspace in the space eHs.Rm/ of

functions u.x/ which admit an analytical continuation into radial tube domain T.
�
D/

over conjugate cone
�
D, the subspace B.Rm/ is a direct complement of the subspace

A.Rm/ in the space eHs.Rm/, so that eHs.Rm/ D A.Rm/˚ B.Rm/:

The mentioned multi-variable Riemann problem is formulated as follows. One
seeks two functions ˆC.x/ 2 A.Rm/, ˆ�.x/ 2 B.Rm/ which satisfy the linear
relation

ˆC.x/ D W.x/ˆ�.x/C w.x/: (4)

almost everywhere on R
m, where W.x/;w.x/ are given.

The transfer from Eq. (1) to the problem (4) is very simple. If we will apply
the Fourier transform to the model Eq. (1) we obtain a certain multi-dimensional
singular integral equation with the kernel B.x/ like a characteristic one-dimensional

singular integral equation [3, 4]. This kernel B.z/; z 2�
D; is the Bochner kernel for

the cone D [1, 15] and

B.z/ D
Z

D

eiy�zdy; z D xC i�; z 2 T.
�
D/;

and a corresponding integral operator is the following

.BQu/.�/ D lim
�!0;�2�

D

Z

Rm

B.� � yC i�/Qu. y/dy: (5)
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Remark 2.4 The needed variant of Paley–Wiener theorem for this situation one can
find in the book [15], Chap. 5, Sect. 26. Principal point here is that representation

Qu D Qu1 C Qu2; 8Qu 2 eHs.Rm/;

where Qu1 2 A.Rm/; Qu2 2 B.Rm/, is unique for jsj < 1=2 only (see also [2, 5]).

Example 10 If D is a one-dimensional cone RC, then [1, 2, 15] B.z/ is the Cauchy
kernel i.2	z/�1, and the corresponding one-dimensional analogue of the singular
integral operator (5) is the following

Qu.�/ 7�! 1

2
Qu.�/C 1

	i
v:p:

C1Z

�1

Qu./d
� �  :

This follows from Plemelj–Sokhotskii formulas [3, 4].

2.2.4 Solvability and Boundary Conditions

The operator B and wave factorization give a possibility to describe solvability of
the model Eq. (1).

Proposition 2.5 If the elliptic symbol A.�/ admits wave factorization with respect
to the cone D with index æ, then

1) for jæ � sj < 1=2 there exists a unique solution u 2 Hs.D/ of the model Eq. (1)
for arbitrary right-hand side f 2 Hs�˛

0 .D/, and we have

Qu.�/ D A�1
¤ .�/.B.A�1D elf //.�/;

where A�1D elf means the function A�1D .�/elf .�/, lf is an arbitrary continuation of
f 2 Hs�˛

0 .D/ on the whole Hs�˛.Rm/;
2) for æ� s D nC ı; n 2 N; jıj < 1=2; there are a lot of solutions depending on n

arbitrary functions ck 2 Hsk.Rm�1/; sk D s � æC k � 1=2; k D 1; : : : ; n;
3) for æ � s D �n C ı; n 2 N; jıj < 1=2; then a solution from Hs.D/ exists iff

certain n additional integral conditions on right-hand side f 2 Hs�˛
0 .D/ hold.

Remark 2.6 Two-dimensional variant of the proposition was proved by the author
many years ago [5]. Some multi-dimensional constructions are described in [10–
12].

Some Comments to the Proposition 2.5. Indeed functions ck appear after wave factorization

and change of variables reducing the cone into a half-space. A certain special operator similar to a

pseudo-differential one takes part in this construction. All details are given in [10–12].
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For the case 2 of the Proposition 2.5 one needs some additional conditions to
extract a unique solution. These may be boundary conditions as usual or conditions
of another type. Some preliminary considerations are given in [10, 12].

3 Partition of Unity and Transfer to Manifolds

These ideas lead to many interesting deductions. To define correctly a pseudo
differential operator on a manifold with non-smooth boundary one needs to choose
a partition of unity and to consider boundary neighborhoods in dependence on the
type of singular point. Since pseudo differential operators are operators of a local
type, the Fredholm property will be conserved. It means the following. If we use a
change of variables diffeomorphic transforming singular neighborhood onto certain
cone we locally obtain an operator of the type (3) plus some compact operator. Since
the index of an operator is stable under compact perturbations we obtain operators
with same indices.

4 Conclusion

There are a lot of singularities types in a manifold with a non-smooth boundary. For
example, the author’s papers [8, 14] are related to thin singularities, and the paper
[13] concerns to the union of cones. The author hopes that the developed methods
will be useful for the general theory of boundary value problems.

Acknowledgements The author is very grateful to unknown referee for useful comments and
remarks.
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Learning Coefficients and Reproducing True
Probability Functions in Learning Systems

Miki Aoyagi

Abstract Recently, the widely applicable information criterion (WAIC) model
selection method has been considered for reproducing and estimating a probability
function from data in a learning system. The learning coefficient in Bayesian
estimation serves to measure the learning efficiency in singular learning models, and
has an important role in the WAIC method. Mathematically, the learning coefficient
is the log canonical threshold of the relative entropy. In this paper, we consider
the Vandermonde matrix-type singularity learning coefficients in statistical learning
theory.

Keywords Generalization error • Learning coefficient • Resolution of singulari-
ties • Training error

Mathematics Subject Classification (2010) Primary 62D05; Secondary 62M20,
32S10, 14Q15

1 Introduction

Let q.x/ be a true probability density function of variables x 2 RN and let
xn WD fxigniD1 be n training samples independently and identically selected from
q.x/. Consider a learning model that is written in probabilistic form as p.xjw/, where
w 2 W � Rd is a parameter. The purpose of the learning system is to estimate
the unknown true density function q.x/ from xn using p.xjw/. This procedure aims
to reproduce the true probability density function q.x/ by n training samples xn.
The generalization errors relate to the generalization losses via the entropy of the
true distribution. Hence, it is important to estimate the generalization errors from
the training errors that are calculated from the training samples xn using learning
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model p. The widely applicable information criterion (WAIC) model selection
method can estimate these training errors, and thus, we can use this method to
select a suitable model from among several statistical models. The WAIC method is
a generalized form of the Akaike information criterion (AIC) [1, 16]. For instance,
WAIC can be applied to singular learning models, whereas AIC cannot. The learning
coefficient in Bayesian estimation measures the learning efficiency in singular
learning models and has an important role in WAIC. Mathematically, the learning
coefficient is the log canonical threshold of the Kullback function (relative entropy).
Hironaka’s Theorem indicates a way to obtain such thresholds; however, additional
theorems are required to obtain these within learning theory. In this paper, we
consider a learning coefficient based on Vandermonde matrices-type singularities in
statistical learning theory. The Vandermonde matrix type is a generic and essential
concept in learning theory. These log canonical thresholds provide the learning
coefficients of normal mixture models, three-layered neural networks, and mixtures
of binomial distributions, which are widely used and effective learning models.

The learning coefficients for the restricted Boltzmann machine [3] have also been
considered recently. The authors of [15, 17], respectively, obtained these learning
coefficients for naive Bayesian networks and directed tree models with hidden
variables.

2 Log Canonical Threshold

The log canonical threshold is defined with respect to the complex or real field as
follows.

Definition 2.1 Let f be a nonzero holomorphic function on C
d or an analytic

function on R
d in a neighborhood U of w�. Let  be a C1 function with a compact

support. The log canonical threshold is defined as follows:

cw�. f ;  / D supfc W j f j�c is locally L2 in a neighborhood of w�g

over C, and

cw�. f ;  / D supfc W j f j�c is locally L1 in a neighborhood of w�g

over R. In addition, 
w�. f ;  / is defined to be its order.
If  .w�/ ¤ 0, then cw�. f / D cw�. f ;  / and 
w�. f / D 
w�. f ;  /, because the

log canonical threshold and its order are independent of  .

It is known that if f is a polynomial or a convergent power series, c0.Cd/ is the
largest root of the Bernstein-Sato polynomial b.s/ 2 CŒs� of f , where b.s/f s D Pf sC1
for linear differential operator P [6, 7, 10]. The log canonical threshold cw�. f / also
corresponds to the largest pole of

R
U j f j2z .w/dw over C or

R
U j f jz .w/dw over R.
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Hironaka’s Theorem [9] enables us to obtain the log canonical thresholds. In
algebraic geometry and algebraic analysis, these studies are usually done over an
algebraically closed field [11, 13]. However, many differences exist for real and
complex fields. For example, log canonical thresholds over the complex field are
less than one, whereas those over the real field are not necessarily so. In addition,
the following theorem over the complex field and a counterexample (Example 1)
over the real field also highlight these differences.

Theorem 2.2 ([11, 14]) Let f .w1; : : : ;wd;wdC1/ be a holomorphic function in a
neighborhood of the origin. Let g D f jwdC1D0 (or g D fH for a hyperplane H) denote
the restriction of f to wdC1 D 0 (or H). Then, c0.g/ � c0. f /.

Example 1 Consider the function f D .w21 C w22 C w23 C w24 C w25 C w6 � 1/2: We
have c.0;0;0;0;0;1/. f / D 1=2, whereas c0. f .w1;w2;w3;w4;w5; 1// D 5=4.

Therefore, we cannot apply results over an algebraically closed field directly to
our problems in learning theory. Moreover the Kullback functions are degenerated
with respect to their Newton polyhedra and these singularities are non-isolated [8].
It is a new problem in algebraic geometry to obtain the log canonical threshold of
the Kullback functions.

The next two theorems for the homogeneous cases are useful for obtaining the
log canonical thresholds of Vandermonde matrix-type singularities.

Theorem 2.3 ([4]) Let f1.w1; : : : ;wd/, : : :, fm.w1; : : : ;wd/ be homogeneous
functions of w1; : : : ;wd of degree ni in w1; : : : ;wd. Set f 0

1.w2; : : : ;wd/ D
f1.1;w2; : : : ;wd/, : : :, f 0

m.w2; : : : ;wd/ D fm.1;w2; : : : ;wd/. If w�
1 ¤ 0, then we

have c.w�

1 ;:::;w
�

d /
. f 21 C 	 	 	 C f 2m/ D c.w�

2 =w
�

1 ;:::;w
�

d =w
�

1 /
. f 02
1 C 	 	 	 C f 02

m /:

This theorem shows that Example 1 is valid if functions are homogeneous over
the real field.

Theorem 2.4 ([4]) Let f1.w1; : : : ;wd/, : : :, fm.w1; : : : ;wd/ be homogeneous func-
tions of w1; : : : ;wj. j � d/ with degree ni of w1; : : : ;wj. Furthermore, let  be a
C1 function such that  .0;:::;0;w�

jC1;:::;w
�

d /
�  .w�

1 ;:::;w
�

d /
and  w is homogeneous for

w1; : : : ;wj in a small neighborhood of .0; : : : ; 0;w�
jC1; : : : ;w�

d /.
We then have

c.0;:::;0;w�

jC1;:::;w
�

d /
. f 21 C 	 	 	 C f 2m;  / � c.w�

1 ;:::;w
�

j ;w
�

jC1;:::;w
�

d /
. f 21 C 	 	 	 C f 2m;  /:

In general, it is not true that cw0. f
2
1 C 	 	 	 C f 2m;  / � cw�. f 21 C 	 	 	 C f 2m;  / even

if w0 2 R
d satisfies fi.w0/ D @fi

@wj
.w0/ D 0; 1 � i � m; 1 � j � d:

Example 2 Let f1 D x.x � 1/2, f2 D .y2 C .x � 1/2/..y � 1/6 C x/, and f3 D
.z2 C .x � 1/2/..z � 1/6 C x/. We then have f1 D f2 D f3 D @f1

@x D @f2
@y D @f2

@x D
@f3
@z D @f3

@x D 0 if and only if x D 1; y D 0, and z D 0. In this case, we have
c.1;0;0/. f 21 C f 22 C f 23 / D 3=4 > c.0;1;1/. f 21 C f 22 C f 23 / D 2=3:
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3 Main Theorems

3.1 Vandermonde Matrix-Type Singularities

We denote constants such as a�, b�, and w� by the suffix �.

Lemma 3.1 ([2, 12]) Let U be a neighborhood of w� 2 R
d. Let J be the ideal

generated by f1; : : : ; fn, which are analytic functions defined on U.

(1) If g21C 	 	 	C g2m � f 21 C 	 	 	C f 2n , then cw�.g21C 	 	 	 C g2m/ � cw�. f 21 C 	 	 	C f 2n /.
(2) If g1; : : : ; gm 2 J, then cw�.g21C	 	 	Cg2m/ � cw�. f 21 C	 	 	C f 2n /. In particular, if

g1; : : : ; gm generate the ideal J, then cw�. f 21 C 	 	 	 C f 2n / D cw�.g21 C 	 	 	 C g2m/.

Definition 3.1 Assume b�
1 D 	 	 	 D b�

i�1 D 0; b�
i ¤ 0. Let �i D(

1 if Q is odd,

j b�

i
b�

i
j if Q is even.

Define Œb�
1 ; b

�
2 ; : : : ; b

�
N �Q D �i.0; : : : ; 0; b�

i ; : : : ; b
�
N/.

Definition 3.2 Let AM;H;r D

0

B
@

a11 	 	 	 a1H a�
1;HC1 : : : a�

1;HCr
:::

:::

aM1 	 	 	 aMH a�
M;HC1 : : : a�

M;HCr

1

C
A,

I D .`1; : : : ; `N/ 2 .N [ f0g/N,

BN;H;r;I D
0

@
NY

jD1
b
`j
1j;

NY

jD1
b
`j
2j; : : : ;

NY

jD1
b
`j
Hj;

NY

jD1
b�
HC1;j

`j ; : : : ;

NY

jD1
b�
HCr;j

`j

1

A

t

;

and B.Q/N;H;r D .BI/`1C���C`NDQnC1;0�n�HCr�1

D .B.1;0;:::;0/;B.0;1;:::;0/; : : : ;B.0;0;:::;1/;B.1CQ;0;:::;0/; : : :/:

(The superscript t denotes matrix transposition.)
Variables aki and bij.1 � k � M; 1 � i � H; 1 � j � N/ are in a neighborhood

of a�
ki and b�

ij , where a�
ki and b�

ij are fixed constants.
We call the singularities of the ideal generated by the elements of AB, Vander-

monde matrix-type singularities.
To simplify, we usually assume that .a�

1;HCj; a
�
2;HCj; : : : ; a

�
M;HCj/

t ¤ 0; .b�
HCj;1;

b�
HCj;2; : : : ; b

�
HCj;N/ ¤ 0 and Œb�

HCj;1; b
�
HCj;2; : : : ; b

�
HCj;N �Q ¤ Œb�

HCj0;1; b
�
HCj0;2; : : : ;

b�
HCj0;N �Q for 1 5 j ¤ j0 5 r.

In [4, 5], bounds were derived on the learning coefficients for the Vander-
monde matrix-type singularities. The next theorem shows that we need to obtain
c0.jjAM;H;0B

.Q/
H;N;0jj2/ and cw�.jjAM;H;1B

.Q/
H;N;0jj2/.

Theorem 3.4 ([4]) Consider a sufficiently small neighborhoodU of w� D fa�
ki; b

�
ijg

and variables w D faki; bijg in the set U. Set .b��
01 ; b

��
02 ; : : : ; b

��
0N/ D .0; : : : ; 0/.
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Let each .b��
11 ; b

��
12 ; : : : ; b

��
1N /; : : : ; .b

��
r01; b

��
r02; : : : ; b

��
r0N/ be a different real vector in

Œb�
i1; b

�
i2; : : : ; b

�
iN �Q ¤ 0; for i D 1; : : : ;H C r. Further, set .b��

i1 ; : : : ; b
��
iN / D

Œb�
HCi;1; : : : ; b

�
HCi;N �Q; for 1 � i � r.

Assume that

Œb�
i1; : : : ; b

�
iN �Q D

8
ˆ̂
<̂

ˆ̂
:̂

0; 1 � i � H0
.b��
11 ; : : : ; b

��
1N /; H0 C 1 � i � H0 C H1;

:::

.b��
r01
; : : : ; b��

r0N/; H0 C 	 	 	 C Hr0�1 C 1 � i � H0 C 	 	 	 C Hr0

and H0 C 	 	 	 C Hr0 D H.
We then have cw�.jjAM;H;rB

.Q/
H;N;rjj2/ D Mr0

2
C c

w
.0/
1

�.jjAM;H0;0B
.Q/
H0;N;0

jj2/ C
Pr

˛D1 cw.˛/1
�.jjAM;H˛�1;1B.1/H˛;N;0

jj2/CPr0

˛DrC1 cw.˛/1
�.jjAM;H˛�1;0B.1/H˛�1;N;0jj2/

where w.0/1
� D fa�

k;i; 0g1�i�H0 ;w
.˛/
1

� D fa�
k;H0C���CH˛�1Ci; 0g2�i�H˛ .

In this paper, we obtain explicit values for H D 1; 2; 3.
Let � D c0.kAM;H;0B

.Q/
H;N;0k2/; and 
 be its order. Further, let �0 D

c0.kAM;H�1;1B.Q/H;N;0k2/; and 
 0 be its order.

Theorem 3.5

Case 1 H D 1:

1. � D minfM
2
; N
2
g; and its order 
 D

�
1; if M ¤ N;
2; if M D N:

2. �0 D N
2
; and 
 0 D 1.

Case 2 H D 2:
1. If M > N C 1, then � D �0 D N and 
 D 
 0 D 1.
2. If M D N C 1, then � D �0 D N and 
 D 
 0 D 2.
3. If M D N, then � D �0 D 2NCQ.2N�1/

2.QC1/ and 
 D 
 0 D 1.
4. If M � N � 1, then � D M and 
 D 1.
5. If N � QC 1 5 M � N � 1, then �0 D 2NCQ.2N�1/

2.QC1/ and 
 0 D 1.
6. If M D N � Q, then �0 D NCM

2
and 
 0 D 2.

7. If M � N � Q � 1, then �0 D NCM
2

and 
 0 D 1.
Case 3 H D 3:

1. If M > N C 2, then � D �0 D 3N
2
and 
 D 
 0 D 1.

2. If M D N C 2, then � D �0 D 3N
2
and 
 D 
 0 D 2.

3. If M D N C 1, then � D �0 D 3NC.3N�1/Q
2.QC1/ and 
 D 
 0 D 1.

4. If M D N, then � D �0 D 3NC.3N�2/Q
2.QC1/ and 
 D 
 0 D 2.
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5. If M D N � 1, then

8
<̂

:̂

� D 3�QC3M.QC1/
2.QC1/ and 
 D 1 for Q > 3;

� D 3M
2

and 
 D 2 for Q D 3;
� D 3M

2
and 
 D 1 for Q < 3:

6. If M < N � 1, then � D 3M
2

and 
 D 1.
7. If M D N � S for S D 1; 2; : : :, then8
<̂

:̂

�0 D S.3CQ/�2QC3M.QC1/
2.QC1/ and 
 0 D 1 for Q > S;

�0 D 2MCN
2

and 
 0 D 2 for Q D S;
�0 D 2MCN

2
and 
 0 D 1 for Q < S:

We already have exact values for N D 1.

Theorem 3.6 ([2]) If N D 1, we have � D �0 D MQk.kC1/C2H
4.1CkQ/ where k D maxfi 2

ZI 2H � M.i.i � 1/QC 2i/g;


 D
�
1; if 2H > M.k.k � 1/QC 2k/;
2; if 2H D M.k.k � 1/QC 2k/; and


 0 D
8
<

:

1; if M D H D 1;
1; if 2H > M.k.k � 1/QC 2k/;
2; if 2H D M.k.k � 1/QC 2k/;H > 1:
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A Survey of Change of Scale Formulas on an
Analogue of Wiener Space

Dong Hyun Cho, Suk Bong Park, and Min Hee Park

Dedicated to Jerry

Abstract Let .CŒ0; t�;w'/ denote an analogue of Wiener space, that is, the space of
real-valued continuous paths on Œ0; t�. The measure w' and w' -measurability behave
badly under change of scale, and under translation. In this paper we introduce
several change of scale formulas on CŒ0; t� for the generalized analytic conditional
Wiener integrals of the cylinder functions and the functions in a Banach algebra
which corresponds to the Cameron-Storvick’s Banach algebra.

Keywords Analogue of Wiener space • Change of scale formula • Conditional
Wiener integral • Simple formula for conditional Wiener integral • Wiener mea-
sure

Mathematics Subject Classification (2010) Primary 28C20; Secondary 60G05,
60G15, 60H05

1 Introduction and Preliminaries

Let .CŒ0; t�;B.CŒ0; t�/;w' / be the analogue of Wiener space associated with a
probability measure ' on the Borel class of R, where B.CŒ0; t�/ denotes the Borel
class of CŒ0; t� [1–4]. For v 2 L2Œ0; t� and x 2 CŒ0; t� let .v; x/ denote the Paley–
Wiener–Zygmund integral of v according to x. The inner product on the real Hilbert
space L2Œ0; t� is denoted by h	; 	i.
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Let 0 D t0 < t1 < 	 	 	 < tn < tnC1 D t be a partition of Œ0; t�, where n is a fixed
nonnegative integer. Let h 2 L2Œ0; t� be of bounded variation with h ¤ 0 a.e. on
Œ0; t�. For j D 1; : : : ; nC 1 let ˛j D 1

k�.tj�1;tj �hk�.tj�1;tj�h and let V? be the orthogonal

complement of V which is the subspace of L2Œ0; t� generated by f˛1; : : : ; ˛nC1g. Let
P W L2Œ0; t� ! V? be the orthogonal projection. Let a be absolutely continuous
on Œ0; t� and define stochastic processes X;Z W CŒ0; t� � Œ0; t� ! R by X.x; s/ D
.�Œ0;s�h; x/ and Z.x; s/ D X.x; s/Cx.0/Ca.s/ for x 2 CŒ0; t� and for s 2 Œ0; t�. Define
random vectors Zn and ZnC1 on CŒ0; t� by Zn.x/ D .Z.x; t0/;Z.x; t1/; : : : ;Z.x; tn//
and ZnC1.x/ D .Z.x; t0/;Z.x; t1/; : : : ;Z.x; tn/;Z.x; tnC1// for x 2 CŒ0; t�. Let b.s/ D
k�Œ0;s�hk2 and for any function f on Œ0; t� define the polygonal function Pb;nC1.f /
of f by Pb;nC1.f /.s/ D PnC1

jD1 �.tj�1;tj�.s/Œ
b.tj/�b.s/

b.tj/�b.tj�1/
f .tj�1/ C b.s/�b.tj�1/

b.tj/�b.tj�1/
f .tj/� C

�f0g.s/f .0/ for s 2 Œ0; t�. For E�nC1 D .�0; �1; : : : ; �n; �nC1/ 2 R
nC2 define the

polygonal function Pb;nC1.E�nC1/ of E�nC1 as above, where f .tj/ is replaced by �j
for j D 0; 1; : : : ; n; n C 1. If E�n D .�0; �1; : : : ; �n/ 2 R

nC1, Pb;n.E�n/ is interpreted

as �Œ0;tn �Pb;nC1.E�nC1/ on Œ0; t�. Let A.s/ D a.s/ � Pb;nC1.a/.s/, Xb;nC1.x; s/ D
X.x; s/ � Pb;nC1.X.x; 	//.s/ and Zb;nC1.x; s/ D Z.x; s/ � Pb;nC1.Z.x; 	//.s/. For
˛; ˇ; u 2 R and � 2 C let ‰.�; u; ˛; ˇ/ D . �

2	ˇ
/
1
2 expf� �

2ˇ
.u � ˛/2g with ˇ ¤ 0.

For a function F W CŒ0; t� ! C let FZ.x/ D F.Z.x; 	// for x 2 CŒ0; t�. For � > 0

let F�Z.x/ D FZ.�
� 1
2 x/ and Z�nC1.x/ D ZnC1.�� 1

2 x/. Suppose that EŒF�Z � exists. By
Lemma 2.1 of [5]

EŒF�Z jZ�nC1�.E�nC1/ D EŒF.�� 1
2Xb;nC1.x; 	/C AC Pb;nC1.E�nC1//� (1)

for PZ�nC1
-a.e. E�nC1 2 R

nC2, where PZ�nC1
is the probability distribution of Z�nC1

on .RnC2;B.RnC2//. Moreover, by Lemma 2.2 of [5], we have for PZ�n
-a.e. E�n D

.�0; �1; : : : ; �n/ 2 R
nC1

EŒF�Z jZ�n �.E�n/ D
Z

R

‰.�; �nC1 � �n; a.t/ � a.tn/; b.t/� b.tn//EŒF.�
� 1
2

�Xb;nC1.x; 	/C AC Pb;nC1.E�nC1//�d�nC1; (2)

where E�nC1 D .�0; �1; : : : ; �n; �nC1/. If the right-hand side of (1) has an analytic
extension J�

� .FZ/.E�nC1/ on CC 
 f� 2 C W Re � > 0g, then it is called the
conditional analytic Wiener w'-integral of FZ given ZnC1 with the parameter �

and denoted by Eanw� ŒFZ jZnC1�.E�nC1/ D J�
� .FZ/.E�nC1/ for E�nC1 2 R

nC2. Moreover

if for nonzero real q, Eanw� ŒFZ jZnC1�.E�nC1/ has a limit as � approaches to �iq
through CC, then it is called the conditional analytic Feynman w'-integral of

FZ given ZnC1 with the parameter q and denoted by Eanfq ŒFZjZnC1�.E�nC1/ D
lim�!�iq Eanw� ŒFZjZnC1�.E�nC1/. Eanw� ŒFZjZn�.E�n/ and Eanfq ŒFZ jZn�.E�n/ are similarly
understood with the right-hand side of (2).
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2 The One-Dimensional Change of Scale Formulas

Let e be in L2Œ0; t� with kek D 1. For 1 � p � 1 let A.p/ be the space of the
cylinder functions F having the following form

F.x/ D f ..e; x// (3)

for w' -a.e. x 2 CŒ0; t�, where f 2 Lp.R/.
Throughout this paper, f�mg1mD1 denotes any sequence in CC converging to �iq

as m approaches1.

Theorem 2.1 Let 1 � p � 1 and F 2 A.p/ be given by (3). Then for � 2 CC, for
a.e. E�nC1 2 R

nC2 and for a.e. E�n D .�0; �1; : : : ; �n/ 2 R
nC1,

Eanw� ŒFZ jZnC1�.E�nC1/ D
Z

R

f .u/‰.�; u; .e;AC Pb;nC1.E�nC1//; kP.eh/k2/du

if eh … V, and letting .e;Pb;n.E�n// DPn
jD1he˛j; ˛ji.�j � �j�1/

Eanw� ŒFZjZn�.E�n/

D
Z

R

f .u/‰.�; u; .e;A/C .e;Pb;n.E�n//C he˛nC1; ˛nC1iŒa.t/

�a.tn/�; kP.eh/k2 C he˛nC1; ˛nC1i2Œb.t/ � b.tn/�/du

if eh … V or he˛nC1; ˛nC1i ¤ 0. Furthermore if p D 1, then Eanfq ŒFZ jZnC1� and
Eanfq ŒFZjZn� are given by the right-hand sides of the above equalities, respectively,
replacing � by �iq. If eh 2 V, then

Eanw� ŒFZjZnC1�.E�nC1/ D Eanfq ŒFZjZnC1�.E�nC1/ D f ..e;AC Pb;nC1.�nC1///;

and if eh 2 V and he˛nC1; ˛nC1i D 0, then

Eanw� ŒFZjZn�.E�n/ D Eanfq ŒFZ jZn�.E�n/ D f ..e;A/C .e;Pb;n.�n///:

Let fe1; e2; : : :g be any complete orthonormal basis of L2Œ0; t�. For m 2 N, � 2 C

and x 2 CŒ0; t� let Km.�; x/ D expf 1��
2

Pm
jD1.ej; x/2g:

Theorem 2.2 Let 1 � p � 1 and F 2 A.p/ be given by (3). Then for � 2 CC, for
a.e. E�nC1 2 R

nC2 and for a.e. E�n D .�0; �1; : : : ; �n/ 2 R
nC1,

Eanw� ŒFZjZnC1�.E�nC1/

D lim
m!1�

m
2 EŒKm.�; x/F.Zb;nC1.x; 	/C Pb;nC1.E�nC1//� (4)

D lim
m!1�

m
2 EŒKm.�; 	/f ..v; 	/kP.eh/k C .e;AC Pb;nC1.E�nC1///�
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and letting E�nC1 D .�0; �1; : : : ; �n; �nC1/ for �nC1 2 R

Eanw� ŒFZjZn�.E�n/

D lim
m!1�

m
2

Z

R

‰.�; �nC1 � �n; a.t/ � a.tn/; b.t/ � b.tn//EŒKm.�; x/

�F.Zb;nC1.x; 	/C Pb;nC1.E�nC1//�d�nC1 (5)

D lim
m!1�

m
2

Z

R

‰.�; �nC1 � �n; a.t/ � a.tn/; b.t/ � b.tn//EŒKm.�; 	/

�f ..v; 	/kP.eh/k C .e;AC Pb;nC1.E�nC1///�d�nC1

for any unit element v 2 L2Œ0; t�. Moreover if p D 1, then Eanfq ŒFZjZnC1� and
Eanfq ŒFZjZn� are given by the right-hand sides of the above equalities, respectively,
replacing � by �m.

Let M.L2Œ0; t�/ be the class of all complex Borel measures of bounded variation
on L2Œ0; t� and let Sw' be the space of all functions F which have the form

F.x/ D
Z

L2Œ0;t�
expfi.v; x/gd�.v/ (6)

for � 2M.L2Œ0; t�/ and for w' -a.e. x 2 CŒ0; t�.

Theorem 2.3 Let F be given by (6). Then for � 2 CC, for a.e. E�nC1 2 R
nC2 and for

a.e. E�n D .�0; �1; : : : ; �n/ 2 R
nC1

Eanw� ŒFZjZnC1�.E�nC1/

D
Z

L2Œ0;t�
exp

�
� 1

2�
kP.vh/k2 C i.v;Pb;nC1.E�nC1//

�
d�A.v/;

and letting .v;Pb;n.E�n// DPn
jD1hv˛j; ˛ji.�j � �j�1/

Eanw� ŒFZjZn�.E�n/

D
Z

L2Œ0;t�
exp

�
� 1

2�
ŒkP.vh/k2 C Œb.t/ � b.tn/�hv˛nC1; ˛nC1i2�

CiŒ.v;Pb;n.E�n//C Œa.t/� a.tn/�hv˛nC1; ˛nC1i�
�
d�A.v/;

where

d�A.v/ D expfi.v;A/gd�.v/:
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Moreover Eanfq ŒFZ jZnC1� and Eanfq ŒFZ jZn� are given by the right-hand sides of the
above equalities, respectively, replacing � by �iq.
Theorem 2.4 Let F be given by (6). Then for � 2 CC, Eanw

� ŒFZ jZnC1� and
Eanw� ŒFZ jZn� are given by (4) and (5), respectively. Moreover for any nonzero real
q, Eanf

q ŒFZ jZnC1� and Eanfq ŒFZ jZn� are given by the right-hand sides of the same
equalities, respectively, replacing � by �m.

3 The r-Dimensional Change of Scale Formulas

Let fv1; v2; : : : ; vrg be an orthonormal subset of L2Œ0; t� such that fP.hv1/; : : : ;
P.hvr/g is an independent set. Let fe1; : : : ; erg be the orthonormal set obtained from
fP.hv1/; : : : ;P.hvr/g by the Gram-Schmidt orthonormalization process. Now for
l D 1; : : : ; r let P.hvl/ D Pr

jD1 ˛ljej and let M be the transpose of the coefficient
matrix.

For 1 � p � 1 let A.p/
r be the space of the cylinder functions Fr having the

following form

Fr.x/ D fr..Ev; x// (7)

for w' -a.e. x 2 CŒ0; t�, where .Ev; x/ D ..v1; x/; : : : ; .vr; x// and fr 2 Lp.Rr/.

Theorem 3.1 Let 1 � p � 1 and let Km be as given in the previous section with
the orthonormal set fe1; : : : ; er; erC1; : : :g in this section. For an orthonormal set
fh1; : : : ; hrg in L2Œ0; t� let Hr.�; x/ D expf 1��

2

Pr
jD1.hj; x/2g. Then for � 2 CC and

for a.e. E�nC1 2 R
nC2

Eanw� Œ.Fr/Z jZnC1�.E�nC1/

D � r
2EŒKr.�; x/Fr.Zb;nC1.x; 	/C Pb;nC1.E�nC1//�

D � r
2EŒHr.�; x/fr..Eh; x/MT C .Ev;AC Pb;nC1.E�nC1///�;

where .Eh; x/ D ..h1; x/; : : : ; .hr; x//. Moreover if p D 1, then

Eanfq Œ.Fr/ZjZnC1�.E�nC1/

D lim
m!1�

r
2
mEŒKr.�m; x/Fr.Zb;nC1.x; 	/C Pb;nC1.E�nC1//�

D lim
m!1�

r
2
mEŒHr.�m; x/fr..Eh; x/MT C .Ev;AC Pb;nC1.E�nC1///�:



360 D.H. Cho et al.

Theorem 3.2 Let Gr D FFr, where F 2 Sw' and Fr 2 A.p/
r .1 � p � 1/ is given

by (7). Then for � 2 CC, Eanw
� Œ.Gr/Z jZnC1� is given by the right-hand side of (4)

replacing F by Gr. For a.e. E�nC1 2 R
nC2 it also can be expressed by

Eanw� Œ.Gr/Z jZnC1�.E�nC1/

D lim
m!1�

m
2

Z

L2Œ0;t�
expfi.v;Pb;nC1.E�nC1//gEŒKm.�; x/ expfi.P.vh/; x/g

�fr..Ee; x/MT C .Ev;AC Pb;nC1.E�nC1///�d�A.v/; (8)

where .Ee; x/ D ..e1; x/; : : : ; .er; x//. If p D 1, then Eanfq Œ.Gr/ZjZnC1� can be given
by the right-hand sides of (4) and (8), where � and F are replaced by �m and Gr,
respectively.

Let M̂.Rr/ be the space of all functions � on R
r defined by

�.Eu/ D
Z

Rr
expfihEu;Ezigd�.Ez/; (9)

where � is a complex Borel measure of bounded variation on R
r.

Theorem 3.3 Let ˆ.x/ D �..Ev; x//F.x/ for w' -a.e. x 2 CŒ0; t�, where � is given
by (9). Then Eanfq ŒˆZ jZnC1� is given by the right-hand side of (4) replacing � and F
by �m and ˆ, respectively. For a.e. E�nC1 2 R

nC2 it also can be expressed by

Eanfq ŒˆZ jZnC1�.E�nC1/

D lim
m!1�

m
2
m

Z

L2Œ0;t�

Z

Rr
A1.E�nC1; v;Ez/EŒKm.�m; x/

� expfiŒ.P.vh/; x/C h.Ee; x/;EzMi�g�d�A.Ez/d�A.v/;

where �A.Ez/ D expfih.Ev;A/;Ezig and A1.E�nC1; v;Ez/ D expfiŒ.v;Pb;nC1.E�nC1// C
h.Ev;Pb;nC1.E�nC1//;Ezi�g.
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Integrability and Uniform Convergence
of Multiplicative Transforms

B.I. Golubov and S.S. Volosivets

Abstract For multiplicative Fourier transforms the analogues of the results of the
papers (Dyachenko et al., J. Math. Anal. Appl., 372:328–338, 2010; Sampson and
Tuy, Pac. J. Math., 75:519–537, 1978; Moricz, Stud. Math., 199:199–205, 2010;
Liflyand and Tikhonov, C.R. Acad. Sci. Paris, Ser. 1, 346:1137–1142, 2008) on
uniform convergence and integrability with power weights of classical Fourier
transform are obtained. Some generalizations of the results of Onneweer (Lect.
Notes., Math 939:106–121, 1981; Monatsh. Math., 97:297–310, 1984) on belonging
of multiplicative Fourier transforms to Besov-Lipschitz or Herz spaces are stated.

Keywords Besov-Lipschitz space • Herz space • Modulus of continuity • Multi-
plicative Fourier transform • Uniform convergence
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1 Introduction

For the function f locally integrable on RC D Œ0;1/ that is f 2 L1loc.RC/ let us
introduce the cosine Fourier transform

bf c.x/ D
Z 1

0

f .y/ cos xy dy;
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where the integral is considered in improper sense with singular point C1. ByR b
a jdf .t/j we denote the variation of the function f on the interval Œa; b�. We say

that the pair of functions .f ; ˇ/ defined on .0;C1/ belongs to the class GM, if
f 2 VŒa; b� for any interval Œa; b� � .0;C1/ and the inequality

R 2x
x jdf .t/j � Cˇ.x/

holds for each x 2 .0;C1/, where the constant C does not depend on x. Let us set

St.bf c/.x/ D
Z t

0

f .y/ cos xy dy

In the paper [1] the following theorem was proved.

Theorem 1.1 If f .x/ > 0 on .0;C1/ or .f ; ˇ/ 2 GM and limx!C1 xˇ.x/ D
0, then the integral

R1
0

f .y/ cos xy dy converges uniformly on RC iff the integralR1
0

f .x/ dx converges. In the last case the following estimate

kbf c � SM.bf c/k1 � sup
x�M

ˇ
ˇ̌
ˇ

Z x

M
f .t/ dt

ˇ
ˇ̌
ˇC C sup

x�M=2

Z 2x

x
jdf .t/j

holds, where the constant C > 0 does not depend on M > 0.

The similar result for the sine Fourier transform holds [1]. In the papers [2] and
[3] the authors investigated the conditions on the functions under which their Fourier
transforms

F.f /.x/ D
Z

R

f .y/ exp.�ixy/ dy

belong to the class Lip˛ on R for ˛ 2 .0; 1/. We combine their results in the
following theorem.

Theorem 1.2

1) Let ˛ 2 .0; 1/ and the function f 2 L1loc.R/ satisfies the conditions

Z C1

1=h
f .y/ exp.�ixy/ dy D O.h˛/;

Z �1=h

�1
f .y/ exp.�ixy/ dy D O.h˛/; h > 0;

(1)

uniformly on R, where the integrals in (1) are considered in improper sense.
Then F.f / 2 Lip ˛ on R.

2) Let ˛ 2 .0; 1/, f 2 L1loc.RC/ and
Z

jxj<y
jxf .x/j dx D O.y1�˛/; y > 0: (2)

Then f 2 L1.R/ and F.f / 2 Lip˛ on R.
3) If F.f / 2 Lip˛ on R and xf .x/ � 0 for all x 2 R, then the condition (2) holds.
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The statement of the item 1) of this theorem was proved by Sampson and Tuy [2]
and the items 2) and 3) were proved by Moricz [3].

In the paper [4] E. Liflyand and S. Tikhonov introduced the class GM� of
functions f 2 Vloc.0;C1/ vanishing at C1 and satisfying the condition

Z 2x

x
jdf .t/j � C

Z bx

x=b
jf .u/jdu

u
; x > 0

for some b > 1 and C > 0. They proved the following theorem.

Theorem 1.3 Let 1 < p; q < 1, �1=p0 < � < 1=p, where 1=pC 1=p0 D 1, the
function f 2 GM� is nonnegative and the integral FC.f /.x/ DR C1
0 f .y/ exp.�ixy/ dy is considered in improper sense with singular points 0 and
C1. Then the following statements are valid:

1) if q � p and x1C��1=p�1=qf .x/ 2 Lq.RC/, then x��FC.f /.x/ 2 Lp.RC/;
2) if p � q and x��FC.f /.x/ 2 Lp.RC/, then x1C��1=p�1=qf .x/ 2 Lq.RC/.

In the paper [5] we proved an analog of Theorem 1.3 for multiplicative Fourier
transforms of monotone functions. In this paper we generalize that result using
functions f satisfying the condition

Z C1

x
jdf .t/j � Cx
�1

Z C1

x=b
u�
 jf .u/j du; x > 0; (3)

where b > 1, 
 2 .0; 1/ and the constant C > 0 does not depend on x > 0.
In this report we formulate some analogues of Theorems 1.1, 1.2 and a

generalization of Theorem 1.3 and some results of the papers [6, 7] for multiplicative
Fourier transforms.

2 Basic Definitions

Multiplicative Fourier transform was introduced by Vilenkin [8] as a generalization
of the Walsh transform, which has been defined by Fine [9]. We shall consider only
symmetric multiplicative Fourier transforms (see [10, p. 127]).

Let be given two-sided symmetric sequence of natural numbers P D fpjgj2N,
where pj 2 N, pj � 2 and p�j D pj for j 2 N. We set mj D p1 	 	 	 	 	 pj, m�j D 1=mj

for j 2 N and p0 D 1. Then each number x 2 RC can be expressed in the form

x D
k.x/X

jD1
x�jmj�1 C

1X

jD1
xjm�j; xj 2 Z \ Œ0; pj/ DW Z.pj/; jjj 2 N: (4)
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For x D k=mn, k 2 ZC D Z \ Œ0;C1/ we take the expansion (4) with finite
number of non-zero coordinates xj. Then the expansion (4) is unique for all x 2 RC.
Below we shall suppose that the sequence P D fpjgj2N is bounded, that is pj � C,
jjj 2 N. For the numbers x; y 2 RC with the expansions of the type (4) we set
x˚ y D z, where zj D xjC yj .mod pj/, jjj 2 N. The inverse operation is defined
in a similar way. Moreover we introduce the kernel �.x; y/ by the equality

�.x; y/ D exp

8
<

:
2	i

0

@
1X

jD1
.xjy�j C x�jyj/=pj

1

A

9
=

;
:

The multiplicative Fourier P-transformbf for the function f 2 L1.RC/ is defined
by the equalitybf .x/ D R

RC

f .y/�.x; y/ dy. For the functions f 2 Lp.RC/, 1 < p �
2, we set bf .x/ D .Lp

0

/ lima!C1
R a
0
f .y/�.x; y/ dy, where 1=p C 1=p0 D 1. The

existence of this limit is well known (see, for example, [10, p. 132]).
For functions f 2 Lp.RC/, 1 � p < 1, the Lp-modulus of continuity is defined

by the equality !�.f ; ı/p D sup0<h<ı k f .	/ � f .	 ˚ h/kp. Let ! D f!ng1nD0 be
non-negative sequence tending to zero. By H!

p we denote the class of functions
f 2 Lp.RC/, 1 � p < 1, for which !n.f /p D O.!n/, n 2 ZC, where
!n.f /p D !�.f ; 1=mn/p. The class H! D H!1 is defined in a similar way. We
shall say that non-negative tending to zero sequence ! D f!ng1nD0 belongs to the
class B, if

P1
kDn !k D O.!n/ for n 2 N and it belongs to the class Bl, l > 0, ifPn

kD0ml
k!k D O.ml

n!n/, n 2 ZC.
Let us introduce the multiplicative Dirichlet kernel Dy.x/ D

R y
0
�.x; t/ dt.

Definition 2.1 Let ˛ 2 R, 1 � p � 1 and 0 < q < C1. We say that the function
f 2 Lp.RC/ belongs to Besov-Lipschitz P-space ƒ.˛; p; q/, if

k fkƒ.˛;p;q/ D k fkp C
 
X

k2Z
km˛k .Dmk �Dmk�1 / � fkqp

!1=q
<1;

where

g � f .x/ D
Z

RC

g.y/f .x y/ dy

is P-convolution of the functions g and f . For q D C1 it is assumed that

k fkƒ.˛;p;1/ D k fkp C sup
k2Z
km˛k .Dmk �Dmk�1 / � fkp <1:
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Definition 2.2 Let ˛ 2 R, 1 � p � 1 and 0 < q < C1. We say that the function
f 2 Lp.RC/ belongs to Herz P-space K.˛; p; q/, if

k fkK.˛;p;q/ D
 
X

k2Z
km˛k XŒmk�1;mk/fkqp

!1=q
<1;

where XE is the indicator function of a set E. For q D C1 it is assumed that

k fkK.˛;p;1/ D sup
k2Z
km˛k XŒmk�1;mk/fkp <1:

Let jxjP D mk for mk�1 � x < mk, k 2 Z. Then it is easy to see that in the case
q D p we have

k fkK.˛;p;p/ D
 Z

RC

jxj˛pP jf .x/jp dx
!1=p

:

3 Main Results

Theorem 3.1 If .f ; ˇ/ 2 GM and limt!C1 tˇ.t/ D 0, then the improper integralR C1
0

f .y/�.x; y/ dy converges uniformly on RC if and only if the integral
R1
0

f .t/ dt
converges. In the last case the estimate

ˇ̌
ˇ
ˇ

Z C1

A
f .t/�.x; t/ dt

ˇ̌
ˇ
ˇ � B

 

sup
y�A

ˇ̌
ˇ
ˇ

Z y

A
f .t/ dt

ˇ̌
ˇ
ˇC sup

s>A=.2C/
s
Z 2s

s
jdf .t/j

!

is valid, where C is the upper bound of fpngn2N, the constant B > 0 does not depend
on A and x 2 RC.

This theorem be an analog of the result stated in the paper [1] for classic Fourier
transform.

Theorem 3.2

1) Let f 2 L1loc.RC/ and the sequence f!ng1nD0 decrease to zero while for n 2 N

the estimate
ˇ
ˇ
ˇ
R C1
mn

f .y/�.x; y/ dy
ˇ
ˇ
ˇ D O.!n/ holds uniformly in x 2 RC. Then

f 2 L1.RC/ andbf 2 H! . (Here the integral definingbf is assumed as improper
with singular pointC1).

2) Let f .t/ � 0, t 2 RC andbf 2 H! . Then
ˇ
ˇ̌R C1

mn
f .y/�.x; y/ dy

ˇ
ˇ̌ D O.!n/ for n 2 N

uniformly in x 2 RC.
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Corollary 3.3 Let f .t/ � 0, t 2 RC, f 2 L1.RC/ and ! 2 B \ Bl for some
l 2 .0;C1/. Then the following three conditions are equivalent: 1) f 2 H!; 2)R C1
mn

f .t/ dt D O.!n/, n 2 ZC; 3)
R mn

0 tlf .t/ dt D O.ml
n!n/, n 2 ZC.

The function f is said to be admissible on RC, if: 1) f 2 L1Œ0; 1�; 2) f 2
VŒ1;C1/, i.e. f has bounded variation on Œ1;C1/; 3) limt!C1 f .t/ D 0. For
the function f admissible on RC the multiplicative Fourier P-transformbf .x/ DR
RC

f .y/�.x; y/ dy exists as improper integral (see [11]). The following theorem
generalizes Theorems 4 and 5 from our paper [5].

Theorem 3.4 Let f is an admissible on RC non-negative function satisfying the
condition (3) for some 
 2 .0; 1�.
1) If 1 < q � p < C1, 1=p� 
 < � < 1=p and f .x/x�C1�1=p�1=q 2 Lq.RC/, then

x��bf .x/ 2 Lp.RC/.
2) If f 2 Lr.RC/ for some r 2 Œ1; 2�, 1 < p � q < C1, 1=p � 
 < � < 1=p and

x��bf .x/ 2 Lp.RC/, then f .x/x�C1�1=p�1=q 2 Lq.RC/.

Let us consider Besov-Lipschitz P-space ƒ.˛; p; q; ˇ/ with power weight
wa.x/ D jxjaP, where jxjP D mk for mk�1 � x < mk, k 2 Z. The space ƒ.˛; p; q; ˇ/,
where 1 � p <1, 0 < q � 1, ˛; ˇ 2 R, consists of functions f 2 Lpwˇp.RC/ with
finite norm

k fkƒ.˛;p;q;ˇ/ D k fkp;wˇp

C
0

@
X

k2Z

 Z

RC

ˇ
ˇm˛k .Dmk � Dmk�1 / � f .x/

ˇ
ˇp wˇp.x/ dx

!q=p
1

A

1=q

<1:

Here Dy.x/ D
R y
0
�.x; t/ dt is multiplicative Dirichlet kernel and

k fkp;wˇp D
 Z

RC

jf .x/jpwˇp.x/ dx
!1=p

:

Theorem 3.5 Let ˛ 2 R, 1 � p � 2, 0 < q � 1, ˇ 2 Œ0; 1 � 1=p�. Then the
following statements are valid: 1) if f 2 ƒ.˛; p; q; ˇ/, thenbf 2 K.˛�ˇ; p0; q/; 2) if
f 2 Lpwˇp \ K.˛; p; q/, thenbf 2 ƒ.˛; p0; q;�ˇ/.
Theorem 3.6 Let 1 � p � 2, 0 < q < 1, ˛ 2 R. Then the following statements
are valid. 1) If p0 � r < 1, ˇ 2 Œ0; 1=r� and f 2 K.˛ C ˇ; p; q/ \ Lr

0

wˇr0
, then

bf 2 ƒ.˛�1=p0C1=r; r; q;�ˇ/. 2) If 1 � r � p0, ˇ 2 Œ0; 1=p0� and f 2 ƒ.˛; p; q; ˇ/,
thenbf 2 K.˛ C 1=p0 � 1=r0 � ˇ; r; q/.

The proofs of all results from this section were published in [12].
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Shifting for the Fourier–Feynman Transform
on Wiener Space
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Abstract In this paper we survey results on the shifting for the Fourier–Feynman
transform. In particular we introduce some results on the shifting, scaling and
modulation proprerties for Fourier–Feynman transform of functionals in a Banach
algebra S.

Keywords Analytic Feynman integral • Convolution • Fourier–Feynman trans-
form • Modulation • Shifting property
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1 Introduction

In a 1945 paper [3], Cameron defined a “transform” of a functional which was
somewhat analogous to the “Fourier transform” of a function. Since then, many
results based on or inspired by this definition have appeared in the literature.

The concept of an L1 analytic Fourier–Feynman transform for functionals on
Wiener space was introduced by Brue in [2]. In [4], Cameron and Storvick
introduced an L2 analytic Fourier–Feynman transform. In [8], Johnson and Skoug
developed an Lp analytic Fourier–Feynman transform for 1 � p � 2 that extended
the results in [4].

In [6, 7], Huffman, Park and Skoug defined a convolution product for functionals
on Wiener space and showed that the Fourier–Feynman transform of a convolution
product is a product of Fourier–Feynman transforms. Recently Kim et al. [11]
obtained change of scale formulas for Wiener integrals related to Fourier–Feynman
transform and convolution.
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Let C0Œ0;T� denote the Wiener space, that is, the space of real valued continuous
functions x on Œ0;T�with x.0/ D 0. Let M denote the class of all Wiener measurable
subsets of C0Œ0;T� and let m denote Wiener measure. Then .C0Œ0;T�;M;m/ is a
complete measure space and we denote the Wiener integral of a functional F byR
C0Œ0;T�

F.x/ dm.x/.
A subset E of C0Œ0;T� is said to be scale-invariant measurable [9] provided �E

is measurable for each � > 0, and a scale-invariant measurable set N is said to be
scale-invariant null provided m.�N/ D 0 for each � > 0. A property that holds
except on a scale-invariant null set is said to hold scale-invariant almost everywhere
(s-a.e.).

Let CC denote the set of complex numbers with positive real part. Let F be a
complex valued measurable functional on C0Œ0;T� such that the Wiener integral

JF.�/ D
Z

C0Œ0;T�
F.��1=2x/ dm.x/

exists as a finite number for all � > 0. If there exists a function J�
F .�/ analytic in

CC such that J�
F .�/ D JF.�/ for all � > 0, then J�

F .�/ is defined to be the analytic
Wiener integral of F over C0Œ0;T� with parameter �, and for � 2 CC we write

Z anw�

C0Œ0;T�
F.x/ dm.x/ D J�

F .�/:

If the following limit exists for nonzero real q, then we call it the analytic Feynman
integral of F over C0Œ0;T� with parameter q and we write

Z anfq

C0Œ0;T�
F.x/ dm.x/ D lim

�!�iq

Z anw�

C0Œ0;T�
F.x/ dm.x/ (1)

where � approaches�iq through CC.
Now we briefly describe the class of functionals that we work with in this paper.

The Banach algebra S, which was introduced by Cameron and Storvick [5], consists
of functionals expressible in the form

F.x/ D
Z

L2Œ0;T�
expfihv; xig df .v/ (2)

for s-a.e. x in C0Œ0;T�, where f is a complex Borel measure on L2Œ0;T� and hv; xi
denote the Paley–Wiener–Zygmund stochastic integral

R T
0
v.t/ dx.t/.
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2 Fourier–Feynman Transform on Wiener Space

In this section we survey some of important properties on the Fourier–Feynman
transform of functionals in the Banach algebra S. Let 1 � p < 1 and let q be a
nonzero real number throughout this paper.

Definition 2.1 Let F be a functional on C0Œ0;T�. For � 2 CC and y 2 C0Œ0;T�, let

T�ŒF�. y/ D
Z anw�

C0Œ0;T�
F.xC y/ dm.x/: (3)

For 1 < p <1, we define the Lp analytic Fourier–Feynman transform T. p/q ŒF� of F
on C0Œ0;T� by the formula .� 2 CC/

T. p/q ŒF�. y/ D l: i:m:
�!�iq

T�ŒF�. y/; (4)

whenever this limit exists; that is, for each � > 0,

lim
�!�iq

Z

C0Œ0;T�
jT�ŒF�.�x/ � T. p/q ŒF�.�x/jp0

dm.x/ D 0

where 1=pC1=p0 D 1. We define the L1 analytic Fourier–Feynman transform T.1/q ŒF�
of F by .� 2 CC/

T.1/q ŒF�. y/ D lim
�!�iq

T�ŒF�. y/; (5)

for s-a.e. y 2 C0Œ0;T�, whenever this limit exists [1, 4, 6–8].

Huffman, Park and Skoug established the existence of Fourier–Feynman trans-
form on C0Œ0;T� for functionals in S.

Theorem 2.2 (Theorem 3.1 of [7]) Let F 2 S be given by (2). Then the Fourier–
Feynman transform T. p/q ŒF� exists, belongs to S and is given by

T. p/q ŒF�. y/ D
Z

L2Œ0;T�
exp

n
ihv; yi � i

2q
kvk2

o
df .v/ (6)

for s-a.e. y 2 C0Œ0;T�.

The most important property of the Fourier–Feynman transform is that the
Fourier–Feynman transform of the convolution product is equal to the product of
the Fourier–Feynman transforms.
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Theorem 2.3 (Theorem 3.3 of [7]) Let F and G be elements of S with correspond-
ing finite Borel measures f and g. Then,

T. p/q .F � G/q.z/ D T. p/q .F/
� zp

2

�
T. p/q .G/

� zp
2

�
(7)

for s-a.e. y 2 C0Œ0;T�.

In Theorem 2.3 above, .F �G/q denotes the convolution product of F and G. For
a definition and properties of convolution product, see [1, 6, 7, 13].

Theorem 2.4 (Theorem 3.4 of [7]) Let F and G be elements of S with correspond-
ing finite Borel measures f and g. Then, the Parseval’s identity

Z anf�q

C0Œ0;T�
T. p/q .F � G/q.z/ dm.z/ D

Z anfq

C0Œ0;T�
F.z=
p
2/G.z=

p
2/ dm.z/ (8)

holds.

Some of the other classes of functionals for which the relationship (7) holds are

(1) F.x/ D f .h˛1; xi; : : : ; h˛n; xi/, where f 2 Lp.Rn/ and f˛; : : : ; ˛ng is an
orthonormal set of functionals in L2Œ0;T�, and

(2) F.x/ D expfR T
0
f .t; x.t// dtg, where f 2 Lpr.Œ0;T� � R/.

For a detailed survey of the previous work on Fourier–Feynman transform and
related topics, see [14].

3 Shifting Properties for Fourier–Feynman Transform

The Fourier transform F turns a function f into a new function F Œf �. Because the
transform is used in signal analysis, we usually use t for time as the variable with f ,
and ! as the variable of the transform F Œf �. Engineers refer to the variable ! in the
transformed function as the frequency of the signal f [12].

We will use the same convention in this paper, that is, for a Fourier–Feynman
transform T. p/q ŒF�. y/ of F.x/, we call the variable x as a time and the variable y as a
frequency.

In this section, we give a very brief description of the shifting, scaling, and
modulation properties for the Fourier–Feynman transform of functionals in S. For
details, see [10].

By the definition of T�ŒF�, the time shifting and frequency shifting of T�ŒF� are
expressed as

R
C0Œ0;T�

F.��1=2x�x0Cy/ dm.x/. Hence we have the following theorem.
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Theorem 3.1 Let F be a functional on C0Œ0;T� and let x0 2 C0Œ0;T�. Then we have

T. p/q ŒF.	 � x0/�. y/ D T. p/q ŒF�. y � x0/ (9)

if each sides exist.

The following theorem is reminiscent of the time shifting theorem for the Fourier
transform. Hence we call the following theorem the time shifting formula for
Fourier–Feynman transform on Wiener space.

Theorem 3.2 (Time Shifting) Let F 2 S be given by (2) and let x0 2 C0Œ0;T�.
Then we have

T. p/q ŒF.	�x0/�. y/ D exp
n
�iqhx0; yiC iq

2
kx0k2

o
T. p/q ŒF.	/ expfiqhx0; 	ig�. y/ (10)

for s-a.e. y 2 C0Œ0;T�.

Proof Let G.x/ D F.x/ expfiqhx0; xig D
R
L2Œ0;T�

expfihw; xig dg.w/, where g.E/ D
f .E � qx0/ for a Borel subset E of L2Œ0;T�. Then by Theorem 2.2 we have

T. p/q ŒG�. y/ D
Z

L2Œ0;T�
exp

n
ihw; yi � i

2q
kwk2

o
dg.w/

D exp
n
iqhx0; yi � iq

2
kx0k2

o
T. p/q ŒF�. y � x0/

which completes the proof. ut
The next theorem is reminiscent of the frequency shifting theorem for the Fourier

transform. Using Theorem 3.2 we have the following property for the frequency
shifting of the Fourier–Feynman transform.

Theorem 3.3 (Frequency Shifting) Let F 2 S be given by (2) and let y0 2
C0Œ0;T�. Then we have

T. p/q ŒF�. y � y0/ D exp
n
�iqhy0; yi C iq

2
ky0k2

o
T. p/q ŒF.	/ expfiqhy0; 	ig�. y/ (11)

for s-a.e. y 2 C0Œ0;T�.

The following theorem is called a scaling theorem because we want the transform
not of F.x/, but of F.ax/. It can be proved by a similar method as in Theorem 3.2.

Theorem 3.4 (Scaling) Let F 2 S be given by (2) and let a be a nonzero real
number. Then we have

T. p/q ŒF.a	/�. y/ D T. p/
q=a2

ŒF�.ay/ (12)

for s-a.e. y 2 C0Œ0;T�.
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Putting a D �1 in (12), we have the following corollary.

Corollary 3.5 (Time Reversal) Let F 2 S be given by (2). Then we have

T. p/q ŒF.�	/�. y/ D T. p/q ŒF�.�y/ (13)

for s-a.e. y 2 C0Œ0;T�.

Our final theorem is useful in obtaining the Fourier–Feynman transforms of new
functionals from the Fourier–Feynman transforms of old functionals for which we
know their Fourier–Feynman transform.

Theorem 3.6 (Modulation) Let F 2 S be given by (2) and let x0 2 C0Œ0;T�. Then
we have

T. p/q ŒF.	/ cos.qhx0; 	i/�. y/ D 1

2
.KŒF�.x0; y/C KŒF�.�x0; y// (14)

and

T. p/q ŒF.	/ sin.qhx0; 	i/�. y/ D 1

2i
.KŒF�.x0; y/� KŒF�.�x0; y//; (15)

where

KŒF�.x0; y/ D exp
n
iqhx0; yi � iq

2
kx0k2

o
T. p/q ŒF.	 � x0/�. y/ (16)

for s-a.e. y 2 C0Œ0;T�.

Proof Putting cos.qhx0; 	i/ D 1
2
.expfiqhx0; 	ig C expf�iqhx0; 	ig/ and using the

linearity of the Fourier–Feynman transform and the time shifting theorem we
obtain (14). The second conclusion is proved similarly. ut

Since the Dirac measure concentrated at v D 0 in L2Œ0;T� is a complex Borel
measure, the constant function F 
 1 belongs to S. Hence, as a corollary of
Theorem 3.6, we have

T. p/q Œcos.qhx0; 	i/�. y/ D cos.qhx0; yi/ exp
n
� iq
2
kx0k2

o
(17)

and

T. p/q Œsin.qhx0; 	i/�. y/ D sin.qhx0; yi/ exp
n
� iq
2
kx0k2

o
(18)

for s-a.e. y 2 C0Œ0;T�.
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Abstract In Saitoh (Proc Am Math Soc 89:74–78, 1983), the general integral
transforms in the framework of Hilbert spaces were combined with the general
theory of reproducing kernels by Aronszajn (Trans Am Math Soc 68:337–404,
1950) and many applications were developped, for example, in Saitoh (Integral
transforms, reproducing kernels and their applications, vol 369, Addison Wesley
Longman, Harlow, 1997). The basic assumption here that the integral kernels belong
to some Hilbert spaces. However, as a very typical integral transform, in the case
of Fourier integral transform, the integral kernel does not belong to L2.R/ and,
however, we can establish the isometric identity and inversion formula.

On the above situations, we will develop some general integral transform theory
containing the Fourier integral transform case that the integral kernel does not
belong to any Hilbert space, based on the recent general concept of generalized
reproducing kernels in Saitoh and Sawano (Generalized delta functions as gen-
eralized reproducing kernels, manuscript; General initial value problems using
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1 Introduction

In order to fix our background in this paper, following [1, 4–8], we recall a general
theory for linear mappings in the framework of Hilbert spaces using the general
theory of reproducing kernels.

We assume that H D L2.I; dm/ and that HK.E/ is a closed subspace of
L2.E; d�/. For a simplicity statement we assume that I is an interval on the real
line. Furthermore, below we assume that .I; I; dm/ and .E; E ; d�/ are both �-finite
measure spaces and that

HK.E/ ,! L2.E; d�/: (1)

Suppose that we are given a measurable function h W I � E ! C satisfying
hy D h.	; y/ 2 L2.I; dm/ for all y 2 E. Let us set

K.x; y/ 
 hhy; hxiL2.I;dm/: (2)

Then, for the reproducing kernel Hilbert space HK.E/ admitting the kernel
K.x; y/, we have:

HK.E/ 
 f f 2 F.E/ W f .x/ D hF; hxiL2.I;dm/ for F 2 Hg: (3)

Let us now define

L W H! HK.E/.,! L2.E; d�// (4)

by

LF.x/ 
 hF; hxiL2.I;dm/ D
Z

I
F.�/h.�; x/ dm.�/; x 2 E (5)

for F 2 H D L2.I; dm/. Observe that LF 2 HK.E/.
The next result will give the inversion formula.

Proposition 1.1 Assume that fENg1ND1 is an increasing sequence of measurable
subsets in E such that

1[

ND1
EN D E (6)

and that
Z

I�EN

jh.�; x/j2 dm.�/ d�.x/ <1 (7)
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for all N 2 N. Then we have

L�f .�/
�
D lim

N!1.L
�Œ�EN f �/.�/

�
D lim

N!1

Z

EN

f .x/h.�; x/ d�.x/ (8)

for all f 2 L2.I; d�/ in the topology of H D L2.I; dm/. Here, L�f is the adjoint
operator of L, but it represents the inversion with the minimum norm for f 2 HK.E/.

2 Formulation of a Fundamental Problem

Our basic assumption is that h W I � E ! C satisfies hy D h.	; y/ 2 L2.I; dm/
for all y 2 E; that is, the integral kernel or linear mapping is in the framework of
Hilbert spaces. In this paper, we assume that the integral kernel hy D h.	; y/ does not
belong to L2.I; dm/, however, for any exhaustion fItgt>0 such that It � It0 for t � t0,S

t>0 It D I, hy D h.	; y/ 2 L2.It; dm/ for all y 2 E and fhyI y 2 Eg is complete in
L2.It; dm/ for any t > 0.

We will consider the integral transform

ft.x/ D hF; hxiL2.It;dm/ for F 2 L2.I; dm/ (9)

and the corresponding reproducing kernel

Kt.x; y/ D hhy; hxiL2.It;dm/: (10)

Here, we assume that Ht is the Hilbert space L2.It; dm/ and hx 2 Ht for any x.
We assume that the non-decreasing reproducing kernels Kt.x; y/, in the sense: for
any t0 > t, Kt0.y; x/ � Kt.y; x/ is a positive definite quadratic form function, do,
in general, not converge, when limt"1 Kt.x; y/. We write, however, the limit by
K1.x; y/ formally, that is,

K1.x; y/ WD lim
t"1

Kt.x; y/ (11)

D hhy; hxiL2.I;dm/:

This integral does, in general, not exist and the limit is a special meaning. We are
interested, however, in the relationship between the spaces L2.It; dm/ and L2.I; dm/
by associating the kernels Kt.x; y/ and K1.x; y/, respectively.
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At first, for the space Ht and the reproducing kernel Hilbert space HKt.E/, we
recall the isometric identity in (9), by assuming that fhx W x 2 Eg is complete in the
space Ht

k ftkHKt .E/ D kFkL2.It ;dm/: (12)

Next note that for any F 2 L2.I; dm/,

lim
t"1
kFkL2.It;dm/ D kFkL2.I;dm/: (13)

As the corresponding function to ft 2 HKt.E/, we consider the function, in the
viewpoint of (9)

f .x/ D hF; hxiL2.I;dm/ for F 2 L2.I; dm/: (14)

However, this function is not defined, because the above integral does, in general,
not exist. So, we consider the function formally, tentatively. However, we are
considering the correspondings

ft  ! f (15)

and

HKt .E/ ! HK1
.E/; (16)

however, for the space HK1
.E/, we have to give its meaning; here, when the kernel

K1.x; y/ exists by the condition hx 2 L2.I; dm/; x 2 E, HK1
.E/ is the reproducing

kernel Hilbert space admitting the kernel K1.x; y/.
In this paper, we will give the natural and precise theory for the above formal

idea.

3 Completion Property

We introduce a preHilbert space by

HK1
WD
[

t>0

HKt.E/:

For any f 2 HK1
, there exists a space HKt.E/ containing the function f for some

t > 0. Then, for any t0 such that t < t0,

HKt .E/ � HKt0
.E/
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and, for the function f 2 HK1
,

k fkHKt .E/ � k fkHKt0
.E/:

(Here, inequality holds, in general, however, in this case, equality, indeed, holds, for
the sake of the completeness of the integral kernel.) Therefore, there exists the limit:

k fkHK1
WD lim

t0"1
k fkHKt0

.E/:

Denote by H1 the completion of HK1
. Then we obtain:

Theorem 3.1 For the general situation such that Kt.x; y/ exists for all t > 0 and
K1.x; y/ does, in general, not exist, and for any function f 2 H1

lim
t"1



f .x0/;Kt.x

0; x/
�
H1

D f .x/; (17)

in the space H1.

Theorem 3.1 may be looked as a reproducing kernel in the natural topology
and by the sense of Theorem 3.1, and the reproducing property may be written
as follows:

f .x/ D h f ;K1.	; x/iH1
;

with (17). Here the limit K1.	; x/ does, in general, not need to exist.

4 Convergence of ft.x/ D hF;hxiL2.It;dm/IF 2 L2.I; dm/

As in the case of Fourier integral, we can prove the convergence of (9) in the
completion space H1.

In this sense, as in the Fourier integral of the cace L2.R; dx/ we will write, for

lim
t"1

ft D f in H1

as follows:

f .x/ D lim
t"1

.F.	/; h.	; x//L2.It;dm/ (18)

D .F.	/; h.	; x//L2.I;dm/ :
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5 Inversion of the Integral Transforms

We will consider the inversion of the integral transform (18) from the space H1
onto L2.I; dm/. For any f 2 H1, we take functions ft 2 HKt.E/ such that

lim
t"1

ft D f

in the space H1. For the functions ft 2 HKt .E/, we can construct the inversion in
the following way:

Ft.�/ D lim
N!1

Z

EN

ft.x/h.�; x/ d�t.x/ (19)

in the topology of L2.I; dm/ satisfying

ft.x/ D .Ft.	/; hx.	//L2.I;dm/ (20)

D .Ft; hx/L2.It ;dm/:

Here, of course, the function Ft of L2.I; dm/ is the zero extension of a function Ft

of L2.It; dm/. Note that the isometric relation that for any t < t0

k ft � ft0kH0 D kFt � Ft0kL2.I;dm/: (21)

Then, we see the desired result: The functions Ft converse to a function F in
L2.I; dm/ and

f .x/ D .F; hx/L2.I;dm/ (22)

in our sense. We can write down the inversion formula as follows:

F.�/ D lim
t"1

lim
N!1

Z

EN



f .x0/;Kt.x

0; x/
�
H1

h.�; x/ d�t.x/; (23)

where the both limits limN!1 and limt"1 are taken in the sense of the space
L2.I; dm/.

Of course, the correspondence f 2 H1 and F 2 L2.I; dm/ is one to one.
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6 Conclusion

When we consider the integral transform

LF.x/ D
Z

I
F.�/h.�; x/ dm.�/; x 2 E (24)

for F 2 H D L2.I; dm/, indeed, the integral kernel h.�; x/ does not need to belong
to the space L2.I; dm/ and with the very general assumptions that for any exhaustion
fItg of I,

h.�; x/ belongs to L2.It; dm/ for any x of E

and

fh.�; x/I x 2 Eg is complete in L2.It; dm/;

we can establish the isometric identity and inversion formula of the integral
transform (24) by giving the natural interpretation of the integral transform (24),
as in the Fourier transform.

In particular, note that recently, we obtained a very general inversion formula
based on the Aveiro Discretization Method in Mathematics [2, 3] by using the
ultimate realization of reproducing kernel Hilbert spaces.

Acknowledgements This work is supported in part by the Grant-in-Aid for the Scientific
Research (C)(2)(No. 26400192) for the first author.
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On Some Applications of Kontorovich–Lebedev
Transforms

Juri M. Rappoport
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Abstract The application of the Kontorovich–Lebedev integral transforms and
dual integral equations to the solution of some mixed boundary value problems
is considered. We reduce the diffusion and elastic problems to the solution of the
proper mixed boundary value problem for the Helmholtz equation.

The solution of this problem as derived by Lebedev is determined in the form
of the Kontorovich–Lebedev integral transform from the solution of dual integral
equation with modified Bessel function of pure imaginary order in the kernel.

It is shown that we can resolve the above-mentioned problem for the Helmholtz
equation in the form of single quadrature from the solution of the Fredholm integral
equation. The dimension of the problem is lowered on unit by this, which is the
essential advantage of this method. The examples permitting the complete analytical
solution of the problem are given.

Keywords Dual integral equations • Fredholm integral equation • Helmholtz
equation • Kontorovich–Lebedev integral transforms • Modified Bessel functions
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The application of the Kontorovich–Lebedev integral transforms and dual integral
equations to the solution of the mixed boundary value problems is considered. The
diffusion, elastic and other physical problems reduced to the solution of the proper
mixed boundary value problems for the Helmholtz equation in the wedge domains.

The solution of stationary and nonstationary diffusion and heat mass transfer
problems is given under the conditions that the concentration of the substance is
known on the part of the boundary and the flow of the substance is known on
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the other part of the boundary. Some properly mixed boundary value problems for
the complementary differential equation of plate’s deformation are considered. The
solution of model combustion problem in the sectorial domain is carried out. The
electrostatics problem on the point charge field near the boundary of fine composite
plate reducing to the proper mixed boundary value problem for the spatial Laplace
equation�u D 0 in the wedge domains is analyzed.

The mixed boundary value problems for the Helmholtz equation [1, 2]

�u � k2u D 0; (1)

are arised in some fields of mathematical physics.
The solution of this type of problems in the wedge domains is determined in the

next way in the form of the Kontorovich–Lebedev integral transform [1, 2]

u.r; '/ D
Z 1

0

M.�/
cosh '�

cosh ˛�
Ki� .kr/d�;

where M.�/ is the solution of dual integral equation.
It is shown that the above-mentioned problems solution for the Helm-holtz

equation is present in the form of single quadrature from the solution of Fredholm
integral equation type. The dimension of the problem is lowered on unit by this,
which is the essential advantage of this method. The examples permitting the
complete analitical solution of the problem are given.

The numerical solution of the mixed boundary value problems and received dual
integral equations is carried out. It consists of two parts. Firstly, the numerical
solution of the second kind Fredholm integral equation with symmetric kernels.
Secondly, the followed taking of quadratures from their solution. The estimation of
error is given. The control calculations results give the precision for the solution in
6–7 digits after comma. The considered examples demonstrate the efficiency of the
dual integral method in the solution of the mixed boundary value problems for the
Helmholtz equation in the wedge domains.

Let’s use the following notations here and further: r; '—polar coordinates of
the point; ˛—angle of the sectorial domain; u—desired function; —normal to the
boundary.

The numerical solution of some boundary value problems for the equation of
the form (1) in arbitrary sectorial domains is considered in our work under the
assumption that the function uj� is known on the part of the boundary and the
normal derivative @u

@
j� is known on the other part of the boundary. The Kontorovich–

Lebedev integral transforms [1, 2] and dual integral equations method [3–5] are used
for searching of the solution.
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Let’s consider the symmetric case for the simplicity of the calculations

8
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:

�u � k2u D 0;
@u

@
j'D˙˛.r/ D g.r/; 0 < r < a;

uj'D˙˛.r/ D f .r/; r > a;
ujr!0 � restricted;
ujr!1 � restricted:

(2)

The solution of (2) is determined by the following way in the form of
Kontorovich-Lebedev integral transforms [1, 2]

u.r; '/ D
Z 1

0

M.�/
cosh '�

cosh ˛�
Ki� .kr/d�; (3)

where M.�/ is the solution of dual integral equation

R1
0 M.�/� tanh.˛�/Ki� .kr/d� D rg.r/; 0 < r < a;

R1
0

M.�/Ki� .kr/d� D f .r/; r > a;
(4)

where g.r/ and f .r/—given functions and K�.z/—modified Bessel function (Mac-
donald function) of imaginary order.

The dual integral equations with Macdonald’s function of the imaginary order
Ki� .x/ in the kernel of the following form were introduced by Lebedev and
Skalskaya [1, 2]. It was shown in [1, 2] that the solutions of these equations may
be determined in the form of single quadratures from auxiliary functions satisfying
the second kind Fredholm integral equations with symmetric kernel containing
MacDonald’s function of the complex order K1=2Ci� .x/.

The economical methods of the evaluation of kernels of the integral equations
based on Gauss quadrature formulas on Laguerre polynomial’s knots are proposed.
The procedures of the preliminary transformation of integrals and extraction of
the singularity in the integrand are used for the increase of accuracy and speed
of algorithms. The cases of dual integral equations admitting complete analytical
solution are considered. Observed examples demonstrate the efficiency of this
approach in the numerical solution of the mixed boundary value problems of
elasticity and combustion in the wedge domains [5].

Let’s

P.�/ D 2 sinh.	�/ cosh.˛�/

	2 sinh.˛�/

Z a

0

g.r/Ki� .kr/dr;

f�.r/ D f .r/ �
Z 1

0

P.�/Ki� .kr/d�;
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h.t/ D �
p
kekt

	

d

dt

Z 1

t

e�krf�.r/p
r � t

dr;

K.s; t/ D 4

	

Z 1

0

sinhŒ.	 � ˛/��
sinh.˛�/

ReK1=2Ci� .ks/ReK1=2Ci� .kt/d�:

Then we obtain on the basis of [1, 2] the following formulas for M.�/

M.�/ D N.�/C P.�/; (5)

where

N.�/ D 2
p
2 sinh.	�/ cosh.˛�/

	
p
	 sinh.˛�/

Z 1

a
 .t/ReK 1

2Ci� .kt/dt;

and  .t/ is the solution of Fredholm integral equation of the second kind

 .t/ D h.t/� k

	

Z 1

a
K.s; t/ .s/ds; a � t <1: (6)

The kernel K.s; t/ is the analytic function on every variable s and t in the domain
a � s <1; a � t <1:

The integrals which give the expressions for the kernels K.s; t/ may be analyti-
cally calculated for special values of ˛; in particular for ˛ D 	

n ; n D 1; 2; : : :
We have for n D 1 W

K.s; t/j˛D	 D 0;

for n D 2 W

K.s; t/j˛D 	
2
D K0.k.sC t//C K1.k.sC t//;

for n D 3 W

K.s; t/j˛D 	
3
D p3K0.k

p
s2 C t2 C st/C

p
3.sC t/p

s2 C t2 C st
K1.k

p
s2 C t2 C st/;

and so on.
We obtain for the case g.r/ D 0 (impenetrable boundary)

P.�/ D 0; f�.r/ D f .r/
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and

M.�/ D 2
p
2 sinh.	�/ cosh.˛�/

	
p
	 sinh.˛�/

Z 1

a
 .t/ReK 1

2Ci� .kt/dt: (7)

The general case is reduced to the case g.r/ D 0 as it follows from [1, 2]. Let’s
consider this case for the simplicity further in this paper.

Let’s denote

h.t/ D �
p
kekt

	

d

dt

Z 1

0

e�krf .r/p
r � t

dr;

K.s; t/ D 4

	

Z 1

0

sinhŒ.	 � ˛/��
sinh.˛�/

ReK1=2Ci� .ks/ReK1=2Ci� .kt/d�;

(8)

where ReK1=Ci� .z/—real part of MacDonald’s function of complex order 1=2C i� .
Then we obtain the following procedure for the determination of M.�/ on the

basis of [1, 2]

M.�/ D 2
p
2 sinh.	�/ cosh.˛�/

	
p
	 sinh.˛�/

Z 1

a
 .t/ReK1=2Ci� .kt/dt; (9)

where  .t/—solution of the integral Fredholm equation of the second kind

 .t/ D h.t/ � k

	

Z 1

a
K.s; t/ .s/ds; a � t <1: (10)

It’s useful under the decision of boundary value problems to find the solution u
on the boundary of sectorial domain

uj�.r/ D
Z 1

0

M.�/Ki� .kr/d�: (11)

Substituting expression (5) for M.�/ in (11) and transposing the order of the
integration we obtain

uj�.r/ D 2
p
2

	
p
	

Z 1

a
 .t/Gr.t/dt; (12)

where

Gr.t/ D
Z 1

0

sinh.	�/ cosh.˛�/

sinh.˛�/
Ki� .kr/ReK1=2Ci� .kt/d�: (13)
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Let’s denote

Fr'.t/ D
Z 1

0

sinh.	�/ cosh.'�/

sinh.˛�/
Ki� .kr/ReK1=2Ci� .kt/d�: (14)

Then

u.r; '/ D 2
p
2

	
p
	

Z 1

a
 .t/Fr'.t/dt: (15)

So the values of the solution inside the wedge domain and on its boundary may be
obtained in the form of the single quadratures from the solution of integral Fredholm
equation as it may be seen from (12) and (15).

The integrals (13), (14) may be expressed from the known functions for the
special values of the angle ˛; in particular ˛ D 	

n ; n D 1; 2; : : :
So the numerical solution of the boundary value problem (2) consists from two

parts. One is the numerical solution of integral Fredholm equation of the second kind
with symmetric kernel. The other is from the consequent taking of the quadratures
from its solution.

Let’s truncate the integral equation (10) by the following way

 .t/ D h.t/ � k

	

Z b

a
K.s; t/ .s/ds; a � t � b: (16)

The conducted estimations show that we don’t obtain any loss of accuracy in the
bounds 10�7� 10�8 under the truncation of the integral equation (10) for b � 10 in
view of fast decrease of the kernels K.s; t/ for s; t!1:

The method of mechanical quadratures with the use of combined Simpson
formula with instant integration step is one of the most convenient methods of
numerical solution of Fredholm integral equation of the second kind. It’s necessary
to compute N2 values Kij D K.si; tj/; i D 1; : : : ;N; j D 1; : : : ;N; under the solution
of the system of algebraic equations of this form.

It’s convenient to use Gauss quadrature formulas by Laguerre polynomials knots
and to perform the computations of N integrand for one fixed variable s or t
by parallel for the economy of computer time under the integrals computation.
Let’s note moreover the symmetry K.s; t/ D K.t; s/ which gives the possibility
to decrease the number of computed integrals twice.

The numerical solution is conducted and the problems of the computational
methodology are discussed [5–7]. Examples demonstrate the efficiency of the
Kontorovich–Lebedev integral transform and dual integral methods in the numerical
solution of the mixed boundary value problems of elasticity, combustion, and
electrostatics in the wedge domains.
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Generalized Reproducing Kernels
and Generalized Delta Functions

S. Saitoh and Y. Sawano

Abstract In this paper, we shall state a simple and general meaning for reproducing
kernels. We would like to answer a general and essential question that: what are
reproducing kernels? By considering this basic problem, we were able to obtain
a general concept of the generalized delta function as a generalized reproducing
kernel and, as a general reproducing kernel Hilbert space, we can consider all
separable Hilbert spaces consisting of functions.

Keywords Complete orthonormal basis • Completion • Generalized delta func-
tion • Generalized reproducing kernel • Initial value problem • Positive definite
quadratic form function • Positive matrix • Reproducing kernel
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1 Introduction

We would like to introduce the concept of general reproducing kernels and at the
same time, we would like to answer clearly a general and essential question that:
what are reproducing kernels? By considering this basic problem, we obtained
a general concept of the generalized delta function as a generalized reproducing
kernel and, as a general reproducing kernel Hilbert space, we can consider all
separable Hilbert spaces consisting of functions.

For the background motivation and ideas, see [1, 2].
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2 What is a Reproducing Kernel?

We shall consider a family of any complex-valued functions fUn.x/g1nD0 defined on
an abstract set E that are linearly independent. Then, we consider the form:

KN.x; y/ D
NX

nD0
Un.x/Un.y/: (1)

Then, KN.x; y/ is a reproducing kernel in the following sense:
We will consider the family of all the functions, for arbitrary complex numbers

fCngNnD0

F.x/ D
NX

nD0
CnUn.x/ (2)

and we introduce the norm

kFk2 D
NX

nD0
jCnj2: (3)

The function space forms a Hilbert space HKN .E/ determined by the kernel KN.x; y/
with the inner product induced from the norm (3), as usual. Then, we note that, for
any y 2 E

KN.	; y/ 2 HKN .E/ (4)

and for any F 2 HKN .E/ and for any y 2 E

F.y/ D .F;KN.	; y//HKN .E/
D

NX

nD0
CnUn.y/: (5)

The properties (4) and (5) are called a reproducing property of the kernel KN.x; y/
for the Hilbert space HKN .E/, because the functions F in the inner product (5) are
appeared on the left-hand side. From this formula we learn that the functions F may
be represented by the kernel KN.x; y/ and that all the members of the Hilbert space
HKN .E/ are represented by the kernel KN.x; y/.



Generalized Reproducing Kernels 397

3 A General Reproducing Kernel

We wish to introduce a pre-Hilbert space by

HK1
WD

1[

ND0
HKN .E/:

For any F 2 HK1
, there exists a space HKM.E/ containing the function F for some

M � 0. Then, for any N such that M < N,

HKM .E/ � HKN .E/

and, for the function F 2 HKM .E/, by linearly independence of the functions
fUn.x/g1nD0,

kFkHKM .E/
D kFkHKN .E/

: (6)

Therefore, there exists the limit:

kFkHK1
WD lim

N!1 kFkHKN .E/
:

Denote by H1 the completion of HK1
with respect to this norm.

Note that for any M < N, and for any FM 2 HKM .E/, FM 2 HKN .E/ and
furthermore, in particular, that

h f ; giHKM.E/
D h f ; giHKN .E/

for all N > M and for any f ; g 2 HKM .E/.

Theorem 3.1 Under the above conditions, for any function F 2 H1 and for the
function F�

N defined by

F�
N.x/ D hF;KN.	; x/iH1

;

F�
N 2 HKN .E/ for all N > 0, and as N !1, F�

N ! F in the topology of H1.

Proof Just observe that the identity

KN.x; y/ D hKN.	; y/;KN.	; x/iH1
;

as we see from (6). Then, we see immediately that

F�
N 2 HKN .E/



398 S. Saitoh and Y. Sawano

and

kF�
NkHKN .E/

� kFkH1
:

The mapping F 7! F�
N being uniformly bounded, and so, we can assume that

F 2 HKL.E/ for any fixed L. However, in this case, the result is clear, because, since,
F 2 HKN .E/ for L < N and

lim
N!1F�

N.x/ D lim
N!1hF;KN.	; x/iH1

D lim
N!1hF;KN.	; x/iHKN .E/

D F.x/:

ut
Theorem 3.1 may be regarded as a reproducing kernel in the natural topology

and by the sense of Theorem 3.1, and the reproducing property may be written as
follows:

F.x/ D hF;K1.	; x/iH1
;

with

K1.	; x/ 
 lim
N!1KN.	; x/ D

1X

nD0
Un.	/Un.x/: (7)

Here the limit does, in general, not need to exist, however, the series are non-
decreasing, in the sense: for any N > M, KN.y; x/ � KM.y; x/ is a positive definite
quadratic form function.

4 Conclusion

Any reproducing kernel (separable case) may be considered as the form (7) by
arbitrary linear independent functions fUn.x/g on an abstract set E, here, the sum
does not need to converge. Furthermore, the property of linear independent is not
essential.

Recall the double helix structure of gene for the form (7).
The completion H1 may be found, in concrete cases, from the realization of the

spaces HKN .E/.
The typical case is that the family fUn.x/g1nD0 is a complete orthonormal system

in a Hilbert space with the norm

kFk2 D
Z

E
jF.x/j2dm.x/ (8)
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with a dm measurable set E in the usual form L2.E; dm/. Then, the functions (2) and
the norm (3) are realized by this norm and the completion of the space HK1

.E/ is
given by this Hilbert space with the norm (8).

For any separable Hilbert space consisting of functions, there exists a complete
orthonormal system, and so, by our generalized sense, for the Hilbert space there
exist approximating reproducing kernel Hilbert spaces and so, the Hilbert space is
the generalized reproducing kernel Hilbert space in the sense of this paper.

This will mean that we were able to extend the classical reproducing kernels
[3–5], beautifully and completely.

The form (7) may be considered as a generalized delta function in the very
general situation.

The fundamental applications to initial value problems using eigenfunctions and
reproducing kernels in the framework of Hilbert spaces, see [1, 2].

5 Remarks

The common fundamental definitions and results on reproducing kernels are given
in [3–5] as follows:

Definition 5.1 Let E be an arbitrary abstract (non-void) set. Denote by F.E/ the
set of all complex-valued functions on E. A reproducing kernel Hilbert spaces on
the set E is a Hilbert space H � F.E/ coming with a function K W E � E ! H,
which is called the reproducing kernel, having the reproducing property that

Kp 
 K.	; p/ 2 H for all p 2 E (9)

and that

f . p/ D h f ;KpiH (10)

holds for all p 2 E and all f 2 H.

Definition 5.2 A complex-valued function k W E � E ! C is called a positive
definite quadratic form function on the set E, or shortly, positive definite function,
when it satisfies the property that, for an arbitrary function X W E ! C and for any
finite subset F of E,

X

p;q2F
X. p/X.q/k. p; q/ � 0: (11)

Then, the fundamental result is given by: a reproducing kernel and a positive
definite quadratic form function are the same and are one to one correspondence
with the reproducing kernel Hilbert space.
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Pasting Reproducing Kernel Hilbert Spaces

Yoshihiro Sawano

Abstract The aim of this article is to find the necessary and sufficient condition for
the mapping

HK.E/ 3 f 7! . f jE1; f jE2/ 2 HKjE1�E2 .E1/˚ HKjE2�E2 .E2/

to be isomorphic, where K is a positive definite function on E D E1 C E2. As an
application, the Binet-Cauchy equality and its variant are considered.

Keywords Pasting • Reproducing kernel Hilbert spaces • Restriction
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1 Introduction

Let E be a set and K W E � E ! C be a positive definite function. For f 2 HK.E/,
we can easily check that f jE0 2 HKjE0�E0 .E0/ since

f jE0 ˝ f jE0 � k fkHK .E/
2KjE0 � E0 ˝ KjE0 � E0

in the sense that

X

j;kD1;2;:::;n


k fkHK .E/
2KjE0 � E0. pj; pk/� f jE0 ˝ f jE0. pj; pk/

�
zjzk

D
X

j;kD1;2;:::;n


k fkHK .E/
2K. pj; pk/ � f . pj; pk/

�
zjzk � 0
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for any finite set f p1; p2; : : : ; pkg � E0 and fz1; z2; : : : ; zkg � C. Therefore, when E
is partitioned into the sum E D E1CE2, the operation the mappingR W HK.E/ 3 f 7!
. f jE1; f jE2/ 2 HKjE1�E2 .E1/˚ HKjE2�E2 .E2/ makes sense. Note that R is injection,
since f jE1 D 0 and f jE2 D 0 imply f D 0.

2 Main Result

We show the necessary and sufficient condition for R to be isomorphic.

Theorem 2.1 The mapping R is isomorphic if and only if KjE1 � E2 D 0.
Proof Assume first that KjE1 � E2 D 0. Let us first show that R is surjection. To
this end, given g1 2 HKjE1�E1 .E1/ and g2 2 HKjE2�E2 .E2/, we define a function f on
E by f . p/ D g1. p/ on E1 and f . p/ D g2. p/ on E2. Let us check that f 2 HK.E/. To
this end, we set f1 D �E1 f and f2 D �E2 f . Then for l D 1; 2, we have

X

j;kD1;2;:::;n


k flkHK .E/
2K. pj; pk/� fl ˝ fl. pj; pk/

�
zjzk

�
X

j;kD1;2;:::;n ; pj;pk2El


k flkHK .E/
2K. pj; pk/ � fl ˝ fl. pj; pk/

�
zjzk

by assumption. Since

kglkHKjEl�El .El/ D inffkhkHK .E/ W hjE1 D glg � k flkHK .E/

from a general result on the reproducing kernel Hilbert spaces [2, 3], we have

X

j;kD1;2;:::;n


k flkHK .E/
2K. pj; pk/ � fl ˝ fl. pj; pk/

�
zjzk

�
X

j;kD1;2;:::;n
pj;pk2El

�
kglkHKjEl�El .El/

2K. pj; pk/� gl ˝ gl. pj; pk/
�
zjzk � 0:

Thus, fl 2 HKl.El/.
It remains to show that R is an isomorphism. In fact, fK.	; p/gp2El is a dense

subspace in HKjEl�El.El/, we have only to show that

0

@






LX

mD1
.zm1 K.	; pm1 /C zm2 K.	; pm2 //





HK .E/

1

A

2
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D
0

@






LX

mD1
zm1 K.	; pm1 /





HKjE1�E1 .E1/

1

A

2

C
0

@







LX

mD1
zm2 K.	; pm2 /






HKjE2�E2 .E2/

1

A

2

for any pm1 2 E1; pm2 2 E2; zm1 ; z
m
2 2 C with m D 1; 2; : : : ;L.

Conversely, if R is an isomorphism, then


kK.	; p1/C zK.	; p2//kHK .E/

�2

D
�
kK.	; p1/kHKjE1�E1 .E1/

�2 C jzj2
�
kK.	; p2/kHKjE2�E2 .E2/

�2

for any p1 2 E1 and p2 2 E2 and z 2 C. Thus KjE1 � E2 D 0. ut
This result is based on [3, 4].
We can generalize Theorem 2.1 as follows:

Theorem 2.2 Let E D E1 C E2 C 	 	 	 C EM be a partition. Then

f 2 HK.E/ 7! f f jEjgMjD1 2 ˚M
jD1HKjEj�Ej.Ej/

is an isomorphism if and only if KjEp � Eq D 0 whenever 1 � p < q � M.

3 Applications

3.1 Sobolev Type Spaces

Let HK1 .0;1/ be the set of all absolutely continuous functions f on .0;1/ such
that f and its derivative f 0 satisfy

lim
x#0

f .x/ D 0

and
Z 1

0

j f 0.x/j2ex dx <1:

Then a direct calculation shows that HK1 .0;1/ is a reproducing kernel Hilbert space
with reproducing kernel K1.x; y/ D 1 � e� min.x;y/. Sometimes HK1 .0;1/ is called
the Sobolev-type reproducing kernel Hilbert spaces. Likewise let HK2 .0;1/ be the
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set of all absolutely continuous functions g on .�1; 0/ such that g and its derivative
g0 satisfy

lim
x"0

g.x/ D 0

and

Z 0

�1
jg0.x/j2e�x dx <1:

Then HK2 .0;1/ is also a reproducing kernel Hilbert space with kernel K2.x; y/ D
1 � emax.x;y/. Note that

K.x; y/ D
(
1 � e� min.jxj;jyj/ xy � 0;
0 otherwise

is a reproducing kernel on R. The space HK..�1;1/nf0g/ is given as the set of all
absolutely continuous function h except at 0 such that h and its derivative h0 satisfy

h.0C/ D 0

and
Z 1

�1
jh0.x/j2e�jxj dx <1

according to Theorem 2.1. We refer to [1] for an example of application of
reproducing kernel Hilbert space HK1 .0;1/ to the real inversion formula.

3.2 The Binet-Cauchy Equality and Its Variant

Let ^n
R
m be the n-fold wedge product of Rm, where m � n. Let

L D .EL1; : : : ; ELn/;

where each ELj is a vector in R
m. Let e1; : : : ; em be elementary vectors in R

n. Note
that ^n

R
m is an inner product space with the inner product

hej1 ^ ej2 ^ 	 	 	 ^ ejn ; ek1 ^ ek2 ^ 	 	 	 ^ ekni^nRm D det.fhejp ; ekqignp;qD1/:
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Observe that

det.L�L/ D det.hELp; ELqinp;qD1/

D hEL1 ^ EL2 ^ 	 	 	 ^ ELn; EL1 ^ EL2 ^ 	 	 	 ^ ELni^nRm :

Next, we let

E D f. j1; j2; : : : ; jn/ 2 f1; 2; : : : ;mgn W ]f j1; j2; : : : ; jng D ng= �;

where

. j1; j2; : : : ; jn/ � .k1; k2; : : : ; kn/

if and only if

f j1; j2; : : : ; jng D fk1; k2; : : : ; kng:

When we are given a vector . j1; j2; : : : ; jn/ 2 f1; 2; : : : ;mgn such that

]f j1; j2; : : : ; jng D n

we denote by

Œ j1; j2; : : : ; jn�

the class to which . j1; j2; : : : ; jn/ belongs. Write

ELj D

0

B
B
B
@

Lj1
Lj2
:::

Ljm

1

C
C
C
A
D Lj1e1 C Lj2e2 C 	 	 	 C Ljmem:

Then we have

EL1 ^ EL2 ^ 	 	 	 ^ ELm

D
mX

j1;j2;:::;jnD1
L1j1L2j2 	 	 	Lnjnej1 ^ ej2 ^ 	 	 	 ^ ejn :

Let F � f1; 2; : : : ;mgn be chosen so that

E D fŒ j1; j2; : : : ; jn� W . j1; j2; : : : ; jn/ 2 Fg
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Then we have

EL1 ^ EL2 ^ 	 	 	 ^ ELm
D

X

. j1;j2;:::;jn/2F

X

�2Sn
L1�1. j1/L2�2. j2/ 	 	 	Ln�n. jn/

� e�1. j1/ ^ e�2. j2/ ^ 	 	 	 ^ e�n. jn/

D
X

. j1;j2;:::;jn/2F

X

�2Sn
sgn.�/L1�1. j1/L2�2. j2/ 	 	 	Ln�n. jn/

� ej1 ^ ej2 ^ 	 	 	 ^ ejn

D
X

. j1;j2;:::;jn/2F
det.fLpjqgnp;qD1/ej1 ^ ej2 ^ 	 	 	 ^ ejn :

Using this expression, we obtain

det.L�L/ D
X

. j1;j2;:::;jn/2F
j det.fLpjqgnp;qD1/j2:

This equality is known as the Binet-Cauchy formula.
Let e�1; : : : ; e

�
n be a linearly independent sequence of vectors in R

m. Write

EL�j D Lj1e
�
1 C Lj2e

�
2 C 	 	 	 C Ljne�n

and define

L� D .EL�1; EL�2; : : : ; EL�n/:

Then we have

det..L�/�L�/ D det.hEL�p; EL�qinp;qD1/

D hEL�1 ^ EL�2 ^ 	 	 	 ^ EL�n; EL�1 ^ EL�2 ^ 	 	 	 ^ EL�ni^nRm

and

EL�1 ^ EL�2 ^ 	 	 	 ^ EL�m
D

X

. j1;j2;:::;jn/2F
det.fLpjqgnp;qD1/e

�
j1
^ e�j2 ^ 	 	 	 ^ e�jn
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as before. Let H denote the set of all real-valued functions defined on F with the
bilinear form:

h f1; f2i
D

X

. j1;j2;:::;jn/2F
f1. j1; j2; : : : ; jn/f2. j1; j2; : : : ; jn/ det.hejp ; ejqinp;qD1/:

Then H is a Hilbert space with the reproducing kernel K W F � F! R satisfying

K.. j1; j2; : : : ; jn/; .k1; k2; : : : ; kn// det.hej1 ; elqinp;qD1/ D ık1;l1ık2;l2 	 	 	 ıkn;ln :

Choose a partitionF D F1CF2C	 	 	CFM so thatKjFp�Fq D 0 for 1 � p < q � M.
Then we have

det..L�/�L�/ D
MX

kD1







X

. j1;j2;:::;jn/2F
det.fLpjqgnp;qD1/e

�
j1
^ e�j2 ^ 	 	 	 ^ e�jn





^nRn

:
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Fundamental Solutions of Hyperbolic System
of Second Order and Their Graphical
Representations

G.K. Zakir’yanova

Abstract The system of hyperbolic equations of second order is considered.
By using the Fourier transform of generalized functions the fundamental and
generalized solutions are constructed. Are given the conditions on the wavefront,
that simulate the shock waves in continuous media. The results of the numerical
calculations which show the existence of lacunas for hyperbolic equations with
constant coefficients are presented.

Keywords Anisotropy • Continuous media • Fundamental solution • Hyperbolic
system
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An investigation of the waves propagation in continuous media under the
influence of various external and internal sources of natural or synthetic origin refers
to the actual problems of mechanics and mathematical physics, and is associated
with the solving of boundary value problems for systems of equations of the
hyperbolic and mixed types. Solutions of these equations can have characteristic
surface on which themselves solutions, or their derivatives are discontinuous [1].
In the study of wave processes the case of wave propagation from point source
takes a special place. Fundamental solutions obtained in this are important, because
they can be used to receive the solution for various mass forces. In addition, they
needed to build kernels of singular boundary integral equations for solving boundary
value problems. Here the fundamental and generalized solutions of the system of
hyperbolic equations of second order are constructed and results of the numerical
calculations for some constant coefficients of hyperbolic equations corresponding
to elastic anisotropic medium are presented.
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1 Equations of Motion, Conditions on the Fronts

Consider the system of the hyperbolic equations with second order derivatives with
constant coefficients:

Lij.@x; @t/uj.x; t/C Gi.x; t/ D 0; .x; t/ 2 RNC1 (1)

Lij .@x; @t/ D Cml
ij @m@l � ıij@2t ; i; j;m; l D 1;N; (2)

Cml
ij D Clm

ij D Cml
ji D Cij

ml; (3)

where @x D .@1; : : : ; @N/ D .@=@x1; : : : ; @=@xN/, @t D @=@t, ıij D ıij is Kronecker
symbol, Cml

ij is the matrix of constants satisfying the properties of symmetry under
the index permutation (3) and the strict hyperbolicity condition:

W.n; v/ D Cml
ij nmnlv

ivj > 0 8n ¤ 0; v ¤ 0 (4)

(everywhere the summation over repeated indices in the indicated range is assumed).
The system of Eq. (1) describes, for example, the movement of anisotropic elastic
medium. In physical problems N D 2 or 3 and G corresponds to the mass force
which acts in considered medium.

Further u is twice differentiated vector function almost everywhere by exception
characteristic surfaces—wavefronts Ft, on which the following conditions on gaps
are executed [2]:

Œui.x; t/�Ft
D 0; (5)

Œui;t ml C cui;l �Ft
D 0; (6)

�
� l
i ml C cui;t

�
Ft
D 0 (7)

where Œ f .x; t/�Ft
D lim

"!C0 . f .xC "n; t/� f .x � "n; t//, x 2 Ft, n.x; t/ is unit normal

to Ft, � l
i D Cml

ij uj;m, c is the velocity of a wavefront motion determined by the
solution of a characteristic equation of the system (1):

detfCml
ij nmnl � c2ıijg D 0

By virtue of (4) this equation has 2N real roots: c D ˙ck.n/, 0 < ck � ckC1,
k D 1;N and in general case depends on direction of motion of wavefront Ft. Note
that condition (6) is a consequence of continuity condition (5) and means that the
tangent derivatives of u on the front wave are continuous. In physical problems,
condition (7) corresponds to the conservation of the momentum on wavefronts.
On wavefronts, the derivatives of functions and even the functions themselves can
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have jump discontinuities. It is assumed that the number of wavefronts is finite and
each front is almost everywhere a Lyapunov surface of dimension N � 1. In [3]
conditions (1.5)–(1.7) were received by using the generalized functions theory.

2 Fundamental Solutions

Consider system (1) in the distribution space D0
M.R

NC1/. A fundamental solution
(Green tensor) of system (1) is a solution Uk

j .x; t/ corresponding to Gi D ıki ı.x; t/ D
ıki ı.x/ı.t/ and satisfying conditions

Uk
j .x; t/ D 0 for t � 0 and kxk � cmaxt

Here ı.x; t/ is the Dirac ı-function,


ıki ı.x; t/; 'i.x; t/

� D 'k.0; 0/ 8' 2 D0
N.R

NC1/.
Using Fourier transform leads our system to the system of linear equations of the
form

Ljk.i�; i!/U
k
l .�; !/C ılj D 0; j; k; l D 1;N (8)

where .�; !/ D .�1; : : : ; �N ; !/ are the Fourier transformation parameters cor-
responding to .x; t/, Ljk.�; !/ are the homogeneous second-order polynomials
corresponding to the differential operators (2). Solving the system (8), we obtain the
transform of the Green’s matrix, which, in view of the homogeneity of differential
polynomials has the form

Uk
j .i�; i!/ D �

Qjk.�; !/

Q.�; !/

Here Qjk.	/ are the cofactor of the element with the index .k; j/ of fL.i�; i!/g, Q.	/
is the symbol of L (2): Q.i�; i!/ D .�1/N detfLjk.�; !/g.

Polynomials Qjk;Q satisfy the conditions of symmetry by �; ! and to the
homogeneity conditions. In view of the strict hyperbolicity (1) the characteristic
equation Q.�; !/ D 0 has 2N roots that can be represented as

!q D k�kcq.e/; !2q D �!q; q D 1;N; e D �=k�k

Using Lemma Jordan residue, we find the inverse Fourier transform of Uk
j by time.

In [3] it is shown that the construction of the Green tensor reduces to the calculation
of integrals over the unit sphere. For odd N the above theorem allows to build only
approach of the Green tensor. For even N to determine approach must be multi-
dimensional integration of the surface integral over the unit sphere. However, in
some cases, this procedure could be simplified.
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2.1 Green Tensor for N D 2

Let N equal to 2 in the system (1). In physical problems it takes place for anisotropic
medium in the case of plane strain: u1 D u1.x1; x2/, u2 D u2.x1; x2/, u3 D 0.
The symmetry relations (3) allow the tensor Cml

ij to introduce as a square matrix

C˛;ˇ.˛; ˇ D 1; 6/ so the correspondence between the pairs of indexes .i; j/, .m; l/
and indexes ˛; ˇ, established by the scheme .11/ $ 1, .22/ $ 2, .33/ $ 3,
.23/ D .32/$ 4, .31/ D .13/$ 5, .12/ D .21/$ 6. In this case it is convenient
to use polar coordinates. Using Lemma Jordan residue and taking the limit in the
formula for the inverse Fourier transform in the sense of convergence of generalized
functions, we obtain the Green tensor, which is the sum of the residues of rational
functions [4, 5]:

Uk
j .x; t/ D

1

	t
Im

2X

qD1

Qjk.�q; 1; .x1�q C x2/=t/

Q;�.�q; 1; .x1�q C x2/=t/
(9)

for Im�q > 0, where �q are the roots of the equation

Q.�; 1; .x1�q C x2/ D 0; Q D Q11Q22 � Q212 (10)

For anisotropic medium the wave propagation velocity depends on the direction
of wave propagation, and the shape of the wavefronts depends significantly on the
coefficients of (1). In the expression for the Green’s tensor (9) are summed residues
of rational functions in the upper half, which requires knowledge of the values of
the roots of the polynomial (10). The roots of this equation of the fourth degree are
complex conjugate, so we always have two roots satisfying Im� � 0.

3 Graphical Representations of Fundamental Solutions

The existence of lacunas for hyperbolic equations with constant coefficients, which
include the equations of motion of the anisotropic elastic medium, was detected
by Petrovsky [6]. He introduced the necessary and sufficient conditions for the
existence of lacunas, components of the complement to the surface of the wavefront
in which the fundamental solution vanishes (strong lacunas). Below the results of
the numerical calculations of fundamental solutions of (1) for some constant coef-
ficients corresponding to elastic anisotropic (orthotropic) medium are presented.
Note that anisotropic medium with characteristics closest to the real environment,
in particular rocks. The stress-strain state of the medium depends strongly on the
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Fig. 1 Picture wavefronts (a) and the amplitude of movements (b) for Zn under the action of a
concentrated force

degree of anisotropy. For example, in medium with strong anisotropy of the elastic
properties there lacunas—moving unperturbed regions bounded by the wavefronts
and expanding over time, and the front of the wave is very different from the
classic, has a complex non-smooth shape. Here the calculations for C11 D 4; 219,
C12 D 0; 59, C22 D 1; 645, C66 D 1; 0 (Zn), C11 D 28; 2, C12 D 13; 1, C22 D 34; 9,
C66 D 12; 6 (topaz), and C11 D 5; 82, C12 D 2; 29, C22 D 3; 59, C66 D 0; 57

(potassium pentaborate) are presented.
The location of lacuna depends on the matrix of constants. Denote A1 D .C1111 �

C1212/.C
22
22 � C1212/ � .C2211 C C1212/

2, A2 D .C1111 � C1212/C
22
22 � .C2211 C C1212/

2, A3 D
.C2222 � C1212/C11 C C1212/

2. Computing show that the case A1 < 0; A2 > 0; A3 < 0

(Zn) corresponds to the existence of lacunas on the coordinate axis x2 (Fig. 1). For
topaz Ai < 0; i D 1; 2; 3 lacunas lie on both coordinate axes (Fig. 2). For potassium
pentaborate Ai > 0; i D 1; 2; 3 lacunas lie between coordinate axes (Fig. 3).

4 Generalized Solutions

A study of the propagation of waves from the earthquake source is connected with
the study of stress-strain state of the medium under the influence of distributed
mass forces Gk.x; t/. For regular mass forces we have uj.x; t/ D

R1
0

d�
R
RN Uk

j .x �
y; t � �/Gk.y; �/dV.y/. For remote source of earthquake, the distance to which
substantially exceeds its size, are used the models concentrated sources as singular
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Fig. 2 Picture wavefronts (a) and the amplitude of movements (b) for topaz under the action of a
concentrated force

Fig. 3 Picture wavefronts (a) and the amplitude of movements (b) for potassium pentaborate
under the action of a concentrated force

distributions with point support (dipole, multipole, etc.) [7]. The displacement field
is then given by the convolution Uk

j with the appropriate Gk :

uj.x; t/ D Uk
j .x; t/ � Gk.x; t/

which should be taken according to the rules determining the convolution of
distributions. Figure 4 shows the components of the Green tensor for topaz under
action of the dipole.



FS of Hyperbolic System and Their Graphical Representations 415

Fig. 4 Components of the Green tensor for topaz under action of the dipole

5 Conclusion

Here presents the fundamental and generalized solutions and their graphical repre-
sentations showing the presence of lacunas for solutions for system with constant
coefficients (1). The results of the numerical calculations of displacements for
elastic orthotropic medium under the influence of different types of sources can
be seen in [8].
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Learning with Reproducing Kernel Banach
Spaces

Haizhang Zhang and Jun Zhang

Abstract The major obstacle in building Banach space methods for machine
learning is the lack of an inner product. We give justifications of substituting inner
products with semi-inner-products in Banach spaces as a remedy. By using semi-
inner-products, we are able to establish the notion of reproducing kernel Banach
spaces (RKBS), and develop regularized learning schemes in the spaces.

Keywords Banach spaces • Machine learning • Reproducing kernels • Sparse
approximation
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1 Introduction

In the task of learning a function dependency from finite sample data, patterns
are usually preprocessed in order to obtain their features. In machine learning,
extracting features by mapping the patterns into a Hilbert space is dominant. There
are many advantages of this approach, thanks to the existence of an inner product
in a Hilbert space. In particular, the similarity between patterns can be measured by
the inner product of their features in the Hilbert space. This leads to reproducing
kernels and gives birth to the popular and successful kernel methods for machine
learning [3, 12, 13].

There are some occasions where it might be more appropriate to use a Banach
space, a generalization of Hilbert spaces. Firstly, Hilbert spaces constitute a very
limited class of Banach spaces. Any two Hilbert spaces over a common number
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field with the same dimension are isometrically isomorphic. By reaching out to
other Banach spaces, one obtains more variety in geometric structures and norms
that are potentially useful for learning and approximation. Secondly, many training
data come with intrinsic structures that make them impossible to be embedded into
a Hilbert space. Learning algorithms based on features in a Hilbert space may not
work well for them. Thirdly, in some applications, a norm from a Banach space is
invoked without being induced from an inner product for some particular purpose.
A typical example is the linear programming regularization in coefficient-based
regularization for machine learning [12]:

min
c2Rn

Q.Kx.x1/c;Kx.x2/c; 	 	 	 ;Kx.xn/c/C �kck1; (1)

where x WD .xj W j 2 Nn/ with Nn WD f1; 2; : : : ; ng is a given sequence of sampling
points,K is a positive-definite reproducing kernel, and Kx.xj/ denotes the row vector
.K.xi; xj/ W i 2 Nn/, Q is a loss function, � is a positive regularization parameter,
and kck1 WDPn

jD1 jcjj is employed to obtain sparsity in the resulting minimizer.
There has been research in understanding learning of functions in Banach spaces.

Minimizing a loss function subject to a regularization condition on a norm in Banach
space was studied by Bennett and Bredensteiner [1], Micchelli and Pontil [10],
Micchelli and Pontil [11], and Zhang [15]. Gentile [4] and Kimber and Long [7]
considered on-line learning in finite-dimensional Banach spaces, and learning of an
Lp function, respectively. Classifications in Banach spaces, and more generally in
metric spaces were discussed in [1, 2, 6, 14].

The major obstacle in learning with Banach spaces is caused by the absence
of an inner product. As a consequence, kernel methods were not developed
in those studies. In particular, it is unknown whether the linear programming
regularization (1) results from a minimization problem in an infinite-dimensional
Banach space. As a consequence, in the learning rate estimates, the hypothesis
error will not go away automatically as it does in the reproducing kernel Hilbert
space (RKHS) case. In Banach spaces, semi-inner-products [5, 9] in mathematics
seem to be a natural substitute for the inner product. The purpose of this note is
to introduce this useful tool for developing Banach space methods for machine
learning. To this end, we shall give the definition of semi-inner-products and justify
their capabilities of substituting the important roles of inner products in Sect. 2. The
notion of reproducing kernel Banach spaces (RKBS) was recently established in
[16, 17]. We shall review the main results in Sect. 3.

2 Semi-Inner-Products

Semi-inner-products were introduced for the purpose of extending Hilbert space
type arguments to Banach spaces [5, 9]. A semi-inner-product on a Banach space B
is a function, usually denoted by Œ	; 	�B , from B � B to R such that for all f ; g; h 2 B
and ˛; ˇ 2 R
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1. (linearity with respect to the first variable) Œ˛f C ˇg; h�B D ˛Œ f ; h�B C ˇŒg; h�B;
2. (norm compatibility) Œ f ; f � D k fk2B , where k fkB denotes the norm of f in B;
3. (homogeneity with respect to the second variable) Œ f ; ˛g�B D ˛Œ f ; g�B ;
4. (Cauchy-Schwartz inequality) jŒ f ; g�Bj � Œ f ; f �1=2B Œg; g�1=2B .

A Banach space always has a semi-inner-product [5, 9]. We see that the only
property of inner products that a semi-inner-product is not required to possess is
symmetry, that is, Œ f ; g� ¤ Œg; f � in general. Semi-inner-products were invoked in
the machine learning context by Der and Lee [2] for the study of large margin
hyperplane classification in Banach spaces. Below we give justifications for the
significant roles that semi-inner-products could play in learning and approximation
in Banach spaces.

The classical Riesz representation theorem states that every continuous linear
functional on a Hilbert space is representable as an inner product. This theoretical
result is of fundamental importance to kernel methods for machine learning, in
which finite sample data are usually modeled as the point evaluations of the desired
function at some inputs. In the general regularization framework for machine
learning, the desired function is approximated by functions from an RKHS through
a regularized minimization problem. In an RKHS, point evaluations are continuous
linear functionals. It follows by the Riesz representation theorem that the point
evaluation can be represented by the inner product with a kernel function. This is
the starting point for the development of kernel methods for machine learning. For
Banach spaces with appropriate conditions, we have an analogue to the classical
Riesz representation theorem. Some definitions and notations are needed to present
this fundamental fact.

A Banach space B is uniformly convex if for all " > 0 there exists a ı > 0 such
that

k f C gkB � 2 � ı for all f ; g 2 B with k fkB D kgkB D 1 and k f � gkB � ":

We also say that B is uniformly Fréchet differentiable if for all f ; g 2 B n f0g

lim
t2R; t!0

k f C tgkB � k fkB
t

(2)

exists and the limit is approached uniformly for all f ; g in the unit ball of B. For
simplicity, we call a Banach space uniform if it is both uniformly convex and
uniformly Fréchet differentiable.

Let B be a Banach space with the semi-inner-product Œ	; 	�B . For each f 2 B, the
mapping sending g 2 B to Œg; f �B is a continuous linear functional on B. We denote
this linear functional by f � and call it the dual element of f . The mapping f ! f �
is called the duality mapping from B to B� and is denoted by JB .

Lemma 2.1 ([5]) Let B be a uniform Banach space. Then it has a unique semi-
inner product Œ	; 	�B and the duality mapping JB is bijective and norm-preserving
from B to B�. In other words, for each � in the dual space B� there exists a unique
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f 2 B such that

�.g/ D Œg; f �B for all g 2 B:

and

k f �kB� D k fkB for all f 2 B: (3)

Moreover,

Œ f �; g��B� WD Œg; f �; f ; g 2 B (4)

defines a semi-inner-product on B�.

3 RKBS

In this section, we give a brief introduction to RKBS established in [16, 17]. This
class of Banach spaces of functions are applicable to learning a single task.

In machine learning, we are concerned with Banach space of functions with
bounded point evaluation functionals. Let X be an input space. We call B a Banach
space of functions on X if it is a Banach space consisting of certain functions on
X such that for every f 2 B, k fkB D 0 if and only if f vanishes everywhere on
X. We stress this definition to make sure that point evaluations are well defined. For
instance, the space of continuous functions on a compact metric space with the usual
maximum norm is a Banach space of functions, while Lp.Œ0; 1�/ is not. We call B
a pre-RKBS on X if it is a Banach space of functions on X and for each x 2 X, the
point evaluation functional

ıx. f / WD f .x/; f 2 B (5)

is continuous on B. When B is also a Hilbert space, it is well known that it possesses
a reproducing kernel. In this case, B is actually an RKHS. The term “pre” is used
because there might not exist a reproducing kernel for Banach spaces B. However,
when B is uniform, it does have a reproducing kernel induced by the semi-inner-
product. In the following, we always denote by Œ	; 	�V the unique semi-inner-product
on a uniform Banach space V .

Theorem 3.1 ([16, 17]) Let B be a uniform pre-RKBS on X. Then there exists a
unique function K W X � X ! R such that K.x; 	/ 2 B for all x 2 X and

f .x/ D Œ f ;K.x; 	/�B for all f 2 B and x 2 X:
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In view of the above theorem, we call a uniform pre-RKBS an RKBS and regard
the unique function K as the reproducing kernel of B. When B is also a Hilbert
space, it coincides with the reproducing kernel in the usual sense. Similar to the
RKHS case, we also have a feature map characterization of reproducing kernels for
RKBS.

Theorem 3.2 ([17]) A function K W X � X ! R is the reproducing kernel of some
RKBS on X if and only if there exists a mapping ˆ from X to a uniform Banach
spaceW such that

K.x; y/ D Œˆ.x/; ˆ.y/�W for all x; y 2 X: (6)

The function ˆ and the space W are called a pair of feature map and feature
space for K. Feature map representations lead to useful constructions of explicit
examples of RKBS. For a mapping ˆ from X to a uniform Banach space W , we
denote by ˆ� the associated mapping from X to W� defined by ˆ�.x/ WD .ˆ.x//�,
x 2 X.

Theorem 3.3 ([17]) Let W be a uniform Banach space and ˆ a mapping from X
toW such that

spanˆ.X/ DW ; spanˆ�.X/ DW�:

Then B WD fŒu; ˆ.	/�W W u 2Wg equipped with the semi-inner-product

�
Œu; ˆ.	/�W ; Œv;ˆ.	/�W

	

B
WD Œu; v�W

and norm


Œu; ˆ.	/�W




B
WD kukW

is an RKBS on X. Moreover, the reproducing kernel K of B is given by (6).

With the above theoretical preparations, regularized learning schemes were
investigated in [16, 17]. We shall present the major result on the representer theorem
of the minimizer. Consider a general regularized learning scheme in an RKBS B on
X:

inf
f2BQ. f .x//C ��.k fkB/; (7)

where x WD .xj W j 2 Nn/ is a sequence of sampling points in X, Q and � are
nonnegative loss function and regularization function, and � is a positive regulariza-
tion parameter. The loss function Q and the regularization function � should satisfy
some minimal requirements for (7) to be useful. For this consideration, the learning
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scheme (7) is said to be acceptable if both Q and � are continuous and

lim
t!1�.t/ D C1: (8)

The above condition is imposed on � to ensure that it can really put a constraint on
the complexity of functions in B used for learning.

Theorem 3.4 ([16]) Let B be an RKBS on X. Then every acceptable regularized
learning scheme (7) has at least one minimizer f0 of the form

f �
0 D

nX

jD1
cj.K.xj; 	//� (9)

for some constants cj 2 R. If additionally, � is strictly increasing, then every
minimizer of (7) must have the form (9). Furthermore, if Q is convex and � is strictly
increasing and strictly convex, then an acceptable (7) has a unique minimizer, which
satisfies (9).

When B is an RKHS then the dual element of a function in B is itself. Therefore,
in this case, Theorem 3.4 recovers the classical representer theorem [8].
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Mappings of Orlicz Type

Awad A. Bakery

Abstract LetE be the sequence space defined and studied by Tripathy and Mahanta
(Soochow J Math 29:379–391, 2003) which is invariant under the doubling operator
D W x D .x0; x1; x2; : : :/ 7! y D .x0; x0; x1; x1; x2; x2; : : :/: Using the approximation
numbers .˛n.T//1nD0 of operators from a Banach space X into a Banach space Y, we
give the sufficient conditions on E such that the finite rank operators are dense in

the complete space of operators Uapp
E .X;Y/, where Uapp

E .X;Y/ WD
n
T 2 L.X;Y/ W

..˛n.T//1nD0 2 E
o
: When M.t/ D tp, 1 � p < 1 with sups �s < 1 our results

coincide with that known for the space `p.

Keywords Approximation numbers • Operator ideal • Orlicz sequence space

Mathematics Subject Classification (2010) Primary 46B70; Secondary 47L20

1 Introduction and Basic Definitions

By L.X;Y/ we denote the space of all bounded linear operators from a normed
space X into a normed space Y and by w, we denote the space of all real sequences.
In [1], Pietsch by using the approximation numbers and p-absolutely summable
sequences of real numbers `p.0 < p < 1/ form the operator ideals. In [2], Faried
and Bakery have considered the space `M , when M.t/ D tp, .0 < p < 1/, which
match in special with `p. A map which assigns to every operator T 2 L.X;Y/ a
unique sequence .˛n.T//1nD0 is called an ˛-function of T and the number ˛n.T/ is

called the nth approximation of T which is defined by: ˛n.T/ D inf
n
kT �Ak W A 2
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L.X;Y/ and rank.A/ � n
o
: An operator ideal U is a subclass of L D fL.X;Y/ W X,

Y are Banach Spaces g such that its components satisfy the following conditions:

(i). F.X;Y/ � U.X;Y/, where F.X;Y/ is the space of all operators of finite rank
from the Banach space X into the Banach space Y.

(ii). If T1;T2 2 U.X;Y/, then �1T1 C �2T2 2 U.X;Y/ for any scalars �1; �2.
(iii). If T 2 L.X0;X/, S 2 U.X;Y/ and R 2 L.Y;Y0/, then RST 2 U.X0;Y0/.

See [3].

An Orlicz function [4] is a function M W Œ0;1/ ! Œ0;1/ which is convex,
positive, non-decreasing, continuous with M.0/ D 0 and lim

x!1M.x/ D 1. An

Orlicz function M is said to satisfy �2-condition for all values of x � 0, if there
exists a constant k > 0, such that M.2x/ � kM.x/.

Remark 1.1 An Orlicz function M satisfies the following inequality M.�x/ �
�M.x/, for all � with 0 < � < 1.

Let Ps be the class of all subsets of N those do not contain more than s number of
elements and f�ng be a non-decreasing sequence of positive real numbers such that
n�nC1 � .nC 1/�n, for all n 2 N. Tripathy and Mahanta [5] defined and studied the
following sequence space

m.�;M/ D
n
.xk/ 2 ! W sup

s�1;�2Ps

1

�s

X

k2�
M.
jxkj
�
/ <1; for some � > 0

o

with �.x/ D inf
n
� > 0 W sups�1;�2Ps

1
�s

P
k2� M.

jxk j
�
� 1

o
:

Lemma 1.2

(i). `M � m.�;M/, where `M is Orlicz sequence space defined by Lindentrauss
and Tzafriri [6].

(ii). `M D m.�;M/ if and only if sups �s <1.

Definition 1.3 ([2]) A class of linear sequence spaces E, called a special space of
sequences(sss) has three properties:

(1). en 2 E, for all n 2 N. We denote en D f0; 0; : : : ; 1; 0; 0; : : :g where 1 appears
at nth place for all n 2 N.

(2). If x D .xn/ 2 w, y D .yn/ 2 E and jxnj � jynj, for all n 2 N, then x 2 E “i.e. E
is solid”.

(3). If .xn/1nD0 2 E, then .xŒ n2 �/
1
nD0 2 E, where Œ n

2
� denotes the integral part of n

2
.

And we call such space E� a pre-modular special space of sequences if there exists
a function � W E! Œ0;1Œ, satisfies the following conditions:

(i). �.x/ � 0, for each x 2 E and �.
/ D 0, where 
 is the zero of E,
(ii). there exists a constant l � 1 such that �.�x/ � lj�j�.x/ for all x 2 E, and for

any scalar �,
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(iii). for some numbers k � 1 we have the inequality �.xC y/ � k.�.x/C �.y//,
for all x; y 2 E,

(iv). if jxnj � jynj, for all n 2 N, then �..xn// � �..yn//,
(v). for some numbers k0 � 1 we have the inequality,

�..xn// � �..xŒ n2 �// � k0�..xn//,
(vi). the set of all finite sequences is �-dense in E. This means for each x D

.x.i//1iDo 2 E there exists s 2 N such that �..x.i//1iDs/ <1,
(vii). for any positive real number � there exists a constant � > 0 such that

�.�; 0; 0; 0; : : :/ � ���.1; 0; 0; 0; : : :/.
Definition 1.4 ([2]) Uapp

E WD
n
Uapp

E .X;Y/; X and Y are Banach Spaces
o
, where

Uapp
E .X;Y/ WD

n
T 2 L.X;Y/ W ..˛n.T//1nD0 2 E

o
:

Theorem 1.5 ([2]) Uapp
E is an operator ideal, if E is a (sss).

Theorem 1.6 ([7]) Let E� be a pre-modular (sss). Then the linear space F.X;Y/g

is dense in Uapp
E�
.X;Y/, where g.T/ D �.˛n.T/1nD0/.

Theorem 1.7 ([7]) Let X and Y be Banach spaces and E� be a pre-modular (sss),
then Uapp

E�
.X;Y/ is complete.

2 Main Results

We give here the sufficient conditions on m.�;M/ such that the class of all bounded
linear operators between any arbitrary Banach spaces with nth approximation
numbers of the bounded linear operators in m.�;M/ form an operator ideal, the ideal
of the finite rang operators in the class of Banach spaces is dense in Uapp

m.�;M/.X;Y/.

Theorem 2.1 Let M be an Orlicz function satisfying �2-condition. Then

(a). Uapp
m.�;M/ is an operator ideal,

(b). the linear space F.X;Y/ is dense in Uapp
m.�;M/.X;Y/.

Proof We first prove that the space m.�;M/ is a special space of sequences(sss).

(1) Let �1; �2 2 R, and x; y 2 m.�;M/, then there exists �1 > 0, �2 > 0 be such
that

sup
s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�1

�
<1 and sup

s�1;�2Ps

1

�s

X

k2�
Mj
� jxkj
�2

�
<1:
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Let �3 D max
�
2j�1j�1; 2j�2j�2

�
. Since M is non-decreasing convex function

with �2-condition, we have

X

k2�
M
� j�1xk C �2ykj

�3

�
� 1

2

hX

k2�
M
� jxkj
�1

�
C
X

k2�
M
� jykj
�2

�i
:

So, we get

sup
s�1;�2Ps

1

�s

X

k2�
M
� j�1xk C �2ykj

�3

�
� 1

2

h
sup

s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�1

�

C sup
s�1;�2Ps

1

�s

X

k2�
M
� jykj
�2

�i
:

Thus, �1xC �2y 2 m.�;M/. Hence m.�;M/ is a linear space over the field of
numbers. Also since en 2 `M and `M � m.�;M/, we have en 2 m.�;M/ for all
n 2 N.

(2) Let x 2 !, y D .yk/1kD0 2 m.�;M/ with jxkj � jykj for each k 2
N, since M is non-decreasing, then we get sups�1;�2Ps

1
�s

P
k2� M

� jxk j
�

�
�

sups�1;�2Ps

1
�s

P
k2� M

� jykj
�

�
<1;

then x D .xk/1kD0 2 m.�;M/.
(3) Let x D .xk/1kD0 2 m.�;M/, we have

sup
s�1;�2Ps

1

�s

X

k2�
M
� jxŒ k2 �j

�

�
� 2 sup

s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�

�
<1;

then x D .xŒ k2 �/1kD0 2 m.�;M/.

Finally we have proven that the space m.�;M/ with �.x/ is a pre-modular special
space of sequences.

(i) Clearly �.x/ � 0 for all x 2 m.�;M/ and �.
/ D 0,
(ii) Let � 2 R, x 2 m.�;M/ without loss of generality, take � ¤ 0 then

�.�x/ D inf
n
� > 0 W sup

s�1;�2Ps

1

�s

X

k2�
M
� j�xkj

�

�
� 1

o

D inf
n
j�j� > 0 W sup

s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�

�
� 1

o
;
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where � D �

j�j . Thus

�.�x/ D j�j inf
n
� > 0 W sup

s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�

�
� 1

o
D j�j�.x/:

(iii) Let x; y 2 m.�;M/, then there exists �1 > 0 and �2 > 0 be such that

sup
s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�1

�
� 1 and sup

s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�2

�
� 1:

Let � D �1 C �2, since M is non-decreasing and convex, then we have

sup
s�1;�2Ps

1

�s

X

k2�
M
� jxk C ykj

�

�
� sup

s�1;�2Ps

1

�s

X

k2�
M
� jxkj C jykj
�1 C �2

�

� sup
s�1;�2Ps

1

�s

X

k2�

h� �1

�1 C �2
�
M
� jxkj
�1

�
C
� �2

�1 C �2
�
M
� jykj
�2

�i

�
� �1

�1 C �2
�

sup
s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�1

�
C
� �2

�1 C �2
�X

k2�
M
� jykj
�2

�
� 1:

Since the �’s are nonnegative, so we have

�.xC y/ D inf
n
� > 0 W sup

s�1;�2Ps

1

�s

X

k2�
M
� jxk C ykj

�

�
� 1

o

� inf
n
�1 > 0 W sup

s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�1

�
� 1

o

C inf
n
�2 > 0 W sup

s�1;�2Ps

1

�s

X

k2�
M
� jykj
�2

�
� 1

o
D �.x/C �.y/:

(iv) Let jxkj � jykj for each k 2 N, since M is non-decreasing, then we get

sup
s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�

�
� sup

s�1;�2Ps

1

�s

X

k2�
M
� jykj
�

�
;

thus

inf
n
� > 0 W sup

s�1;�2Ps

1

�s

X

k2�

M
� jxkj
�

�o
� inf

n
� > 0 W sup

s�1;�2Ps

1

�s

X

k2�

M
� jykj
�

�o
:

So, �.x/ � �.y/.



432 A.A. Bakery

(v) Since

sup
s�1;�2Ps

1

�s

X

k2�
M
� jxŒ k2 �j

�

�
� 2 sup

s�1;�2Ps

1

�s

X

k2�
M
� jxkj
�

�
;

we have

inf
n
� > 0 W sup

s�1;�2Ps

1

�s

X

k2�

M
� jxŒ k2 �j

�

�o
� 2 inf

n
� > 0 W sup

s�1;�2Ps

1

�s

X

k2�

M
� jxkj
�

�o
:

So, �..xk// � �..xŒ k2 �// � 2�..xk//.
(vi) For each x D .xk/1kD0 2 m.�;M/ then

�.xk/
1
kD0 D inf

n
� > 0 W sup

s�1;�2Ps

1

�s

X

k2�
M
� jxŒ k2 �j

�

�
<1

o
;

we can find t 2 N such that �.xk/1kDt <1.
(vii) For any � > 0 there exists a constant � 2�0; 1� such that

�.�; 0; 0; 0; : : :/ � ���.1; 0; 0; 0; : : :/:

By using Theorems (1.5) and (1.6) we get

(a). Uapp
m.�;M/ is an operator ideal,

(b). the linear space F.X;Y/ is dense in Uapp
m.�;M/.X;Y/. ut

As a special cases of the above theorem we can also obtain the following
corollaries:

Corollary 2.2 If sups �s <1, we get

(a). Uapp
`M

is an operator ideal,
(b). the linear space F.X;Y/ is dense in Uapp

`M
.X;Y/.

Corollary 2.3 If sups �s <1 and M.t/ D tp with 1 � p <1, we get

(a). Uapp
`p is an operator ideal,

(b). the linear space F.X;Y/ is dense in Uapp
`p .X;Y/. See [1]

By applying Theorems (1.7) and (2.1) on m.�;M/, we can easily conclude the next
corollaries:

Corollary 2.4 If X and Y are Banach spaces and M be an Orlicz function such that
M satisfies�2-condition. Then M is continuous from right at 0 and Uapp

m.�;M/.X;Y/ is
complete.
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Corollary 2.5 If X and Y are Banach spaces and M be an Orlicz function such that
M satisfies �2-condition with sups �s < 1. Then M is continuous from right at 0
and Uapp

lM
.X;Y/ is complete.

Corollary 2.6 If X and Y are Banach spaces and M.t/ D tp with 1 � p <1. Then
Uapp
`p .X;Y/ is complete.
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On Rate of Convergence of Sequences

Binod Chandra Tripathy

Abstract

Definition 0.1 The sequence .xn/ converges to � faster than the sequence . yn/
converges to �, defined by .xn/ < . yn/ if lim

n!1
xn��
yn�� D 0, provided yn � � ¤ 0 for

all n 2 N.

Definition 0.2 The regular matrix A D .ank/ accelerates the convergence of the
sequence x D .xk/ if Ax < x. The acceleration field of the matrix A is the class of
sequences fx D .xk/ 2 ! W Ax < xg.

At the initial stage, works on acceleration convergence sequences were done by
Smith and Ford (SIAM J Numer Anal 16(2):223–240, 1979), Keagy and Ford (Pac J
Math 132(2):357–362,1988), Salzer (J Math Phys 33:356–359, 1955), Dawson (Pac
J Math 24(1):51–56, 1968), Brezinski et al. (SIAM J Numer Anal 20:1099–1105,
1983), Brezinski (Rend Math 7(6):303–316, 1974), and many others.

The notion of acceleration convergence depends on the convergence of
sequences. Over the years, different types of convergent sequences such as
statistically convergent, I-convergent, etc. have been introduced. Accordingly,
Tripathy and Sen (Ital J Pure Appl Math 17:151–158, 2005) have introduced the
notion of statistical acceleration convergence. Tripathy and Mahanta (J Frankl Inst
347:591–598, 2010) have investigated about the ideal acceleration convergence of
sequences. Patterson and Savas (Hacettepe J Math Stat 41(4):487–497, 2012) have
studied about the acceleration convergence with respect to four dimensional matrix
maps.

The notion of fuzzy sets attracted research worker on sequence spaces to study
about the sequences of fuzzy real numbers. Tripathy and Dutta (Math Modell Anal
17(4):549–557, 2012) have studied about acceleration convergence of sequences of
fuzzy numbers. In this talk we shall discuss about the different developments on rate
of convergence of sequences.

Keywords Acceleration convergence • Filter • I-convergence • Ideal • Statisti-
cal convergence
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1 Introduction and Basic Definitions

Faster convergence of sequences particularly the acceleration of convergence of
sequence of partial sums of series via linear and nonlinear transformations are
widely used in finding solutions of mathematical as well as different scientific and
engineering problems (one may refer to Brezinski [1] and Brezinski et.al. [2]).
The problem of acceleration convergence often occurs in numerical analysis. To
accelerate the convergence, the standard interpolation and extrapolation methods of
numerical mathematics are quite helpful. It is useful to study about the acceleration
of convergence methods (we shall focus on matrix transformations), which trans-
form a slowly converging sequence into a new sequence, converging to the same
limit faster than the original sequence. The speed of convergence of sequences is of
the central importance in the theory of subsequence transformation.

There are many sequences (or series) those converge very slowly. Again the rate
of convergence of two convergent sequences (series) may not be equal. In order to
speed the convergence of slowly convergent sequences (series) many well-known
mathematicians like Salzer [8], Smith and Ford [10] established different methods.
Dawson [3] has studied matrix summability over certain classes of sequences
ordered with respect to rate of convergence.

Definition 1.1 The sequence .xn/ converges to � at the same rate as the sequence
. yn/ converges to �, written as .xn/ � . yn/ if

0 < lim � inf

ˇ
ˇ
ˇ
ˇ
xn � �
yn � �

ˇ
ˇ
ˇ
ˇ � lim � sup

ˇ
ˇ
ˇ
ˇ
xn � �
yn � �

ˇ
ˇ
ˇ
ˇ <1:

Example 1.1 Consider the sequences .xk/ and . yk/ defined by xk D 1 C k�1 and
yk D 23C 123k�1, for all k 2 N.

It can be easily verified that . yk/ converges to 23 faster than .xk/ converges to 1.

Definition 1.2 Let A D .ank/ be an infinite matrix. For a sequence x D .xk/, then

the A transform of X is defined by Ax D .Anx/, where Anx D
1P
kD1

ankxk, for all n 2 N.

Definition 1.3 The subsequence x D .xni/ of .xk/ can be represented as a regular
matrix transformation A D .ank/ times .xk/ by defining ai;ni D 1, for all i 2 N and
apq D 0, otherwise.

Definition 1.4 The convergence field of the matrix A D .ank/ is defined by fx D
.xk/ W Ax 2 cg, where c denotes the class of all convergent sequences.

Definition 1.5 The matrix A D .ank/ accelerates the convergence of x if Ax < x.
The acceleration field of A is defined by f.xk/ 2 ! W Ax < xg.

Let S0 denote the set of all sequences in c0 with non-zero terms. If a 2 S0, let
Œa� D fx 2 S0 W x � ag. Also let E0 D fŒx� W x 2 S0g. If Œa�; Œb� 2 E0, then we say Œa�
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is less than Œb�; Œa� <= Œb�, provided a < b. Then E0 is partially ordered with respect
to <=.

Open intervals in S0 will be denoted by .a; b/; .a;�/; .�; b/, where .a;�/ D
fx 2 S0 W a < xg and .�; b/ D fx 2 S0 W x < bg. On combining these two we have
.a; b/ D fx D .xk/ 2 S0 W a < x < bg.

The necessary and sufficient conditions for a matrix A D .apq/ to be convergence
preserving over (abbreviated c.p.o.) S0 are (deduced from the Silverman and
Toeplitz conditions)

(i) .apq/1pD1 converges for each q D 1; 2; 3; : : : and

(ii) there exists K such that
1P
qD1

apq < K, for each p D 1; 2; 3; : : :.

Dawson [3] has characterized the summability field of a matrix A by showing A
is convergence preserving over the set of all sequences which converges faster than
some fixed sequence. The following results are due to him.

Theorem 1.6 If A is c.p.o. Œb�, then there exists b= 2 S0 such that b < b= and A is
c.p.o. Œb=�.

Theorem 1.7 If A is c.p.o. each of the sets Œb.1/�; Œb.2/�; Œb.3/�; : : :, then there exists
d 2 S0 such that b. p/ < d, p D 1; 2; 3; : : : and A is c.p.o. Œd�.

It follows that A is convergence preserving over a set of the type .�; x/.
Keagy and Ford [5] proved that if a subsequence transformation A accelerates

x 2 S0, then it accelerates each y 2 S0 which converge at the same rate as x. They
also proved the following two results.

Theorem 1.8 If A is a subsequence transformation and x 2 S0, then there exists
y; z 2 S0, such that y < x < z and A does not accelerate y or z.

Theorem 1.9 If A is a subsequence transformation and x 2 S0, then there exists
y 2 S0 such that y < x and A accelerates y.

It is also proved by Keagy and Ford [5] that an analog to the above theorem does
not exist for x < z, that is the acceleration field of a subsequence transformation
cannot be any of the forms .x;�/, Œx;�/, .�; x�, .x; y/, Œx; y�, .x; y� or Œx; y/; nor it
include any of the first four of these forms. They showed that the acceleration field
for each subsequence transformation A is the union of collection of sets of the form
.x; y/. The result is given below.

Theorem 1.10 If x 2 S0 and A is a subsequence matrix that accelerates x, then
there exist y and z such that y < x < z and A accelerates each r 2 . y; z/.

They also proved that this algorithm cannot be extended to a larger class of
sequences defined in terms of rate of convergence.
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2 On Statistical Acceleration Convergence of Sequences

The notion of statistical convergence of sequences was introduced by Fast [4] and
Schoenberg [9] independently. Later on it was further investigated from different
aspects of sequence spaces and summability theory by many research workers.

A subset E of N is said to have asymptotic density ı.E/ if ı.E/ D lim
n!1

1
n

1P
kD1
�E.k/

exists, where �E is the characteristic function of E. Clearly all finite subsets of N
have zero asymptotic density and ı.Ec/ D ı.N � E/ D 1 � ı.E/.

A sequence .xk/ is said to be statistically convergent to L if for every " > 0,
ı.fk 2 N W jxk � Lj � "g/ D 0. We write stat�lim xk D L.

Throughout !, `1, c, c0, Nc, Nc0, m0, represent the spaces of all, bounded,
convergent, null, statistically convergent, statistically null and bounded statistically
null sequences, respectively. Further S0, NS0 denote the subsets of the spaces c0 and
m0, respectively, with non-zero terms.

Example 2.1 The sequence .xk/ defined by xk D i, for k D i2; i 2 N and xk D k�2,
otherwise, is statistically convergent to 0 and is unbounded.

Tripathy and Sen [13] introduced the notion of statistical acceleration conver-
gence of sequences as follows.

Definition 2.1 Let the sequence .xk/ be statistically convergent to � and the
sequence . yk/ statistically convergent to � with .xk � �/ … NS0 and . yk � �/ … NS0,
then the sequence .xk/ statistically converges to � statistically faster than . yk/
statistically convergent to �, written as .xk/ <stat . yk/ if

stat � lim xk��
yk�� D 0, provided . yk � �/ ¤ 0 for all k 2 N.

Definition 2.2 The sequence .xk/ statistically converges to � statistically at the
same rate as the sequence . yk/ statistically converges to �, written as .xk/ � . yk/ if

0 < stat � lim � inf

ˇ
ˇ̌
ˇ
xk � �
yk � �

ˇ
ˇ̌
ˇ � stat� lim � sup

ˇ
ˇ̌
ˇ
xk � �
yk � �

ˇ
ˇ̌
ˇ <1:

Tripathy and Sen [13] proved the statistical analogue of most of the above results
as well as they established the following decomposition theorem for acceleration
convergence.

Theorem 2.3 Let .xk/, . yk/ 2 NS0, then the following are equivalent.
(i) .xk/ <stat . yk/.
(ii) there exist .x=k/ and . y

=
k/ in S0 such that xk D x=k for a.a.k , yk D y=k for a.a.k

and .x=k/ < . y
=
k/.

(iii) there exists a subset K D fki W I 2 Ng of N such that ı.K/ D 1 and .xki/ <
. yki/.
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Remark 2.4 Keagy and Ford [5] conjectured “If A is any subsequence transforma-
tion and .xk/ 2 S0, then either Ax < x or Ax � x”. Tripathy and Sen [13] provided
the following example, which shows that this conjecture fails.

Example 2.2 Let the sequence .xk/ be defined by the subsequence .xki/ D
.x1; x3; x5; : : :/.

3 On I-Acceleration Convergence of Sequences

The notion of I-convergence was introduced by Kostyrko et al. [6]. Later on it was
further investigated from sequence space point of view and linked with summability
theory by many others.

The notion depends on the notion of ideals. Let X be a non-empty set, then a
family of sets I � 2X is an ideal if and only if for each A;B 2 I, we have A [ B 2 I
and for A 2 I and for each B � A, we have B 2 I. A non-empty family of sets
F � 2X is a filter on X if and only if ; … F, for each A;B 2 F, we have A \ B 2 F
and for each A 2 F and for each B � A, we have B 2 F. An ideal I is called
non-trivial if I ¤ ; and X … I. Hence I � 2X is a non-trivial ideal if and only if
F D F.I/ D fX � A W A 2 Ig is a filter on X.

A subset E of N is said to have logarithmic density d.E/ if d.E/ D
lim

n!1
1
sn

nP

kD1
�E.k/
k exists, where sn D

nP

kD1
1
k , for all n 2 N. Clearly all finite subsets of

N have zero logarithmic density and d.Ec/ D d.N � E/ D 1 � d.E/.
Let T D .tnk/ be a regular non-negative matrix. Then for E � N, if dT.E/ D

lim
n!1

1P
kD1

tnk�E.k/ exists, it is called the T-density of E. From the regularity of T it

follows that lim
n!1

1P
kD1

tnk D 1 and from this and non-negativeness of T it follows that

dT.E/ 2 Œ0; 1�.
Clearly the asymptotic density and logarithmic density can be obtained as the

particular cases of T-density. If one considers tnk D 1
n , for k � n and tnk D 0,

otherwise, then dT.E/ D ı.E/. If one considers tnk D k�1

sn
, for k � n and tnk D 0,

otherwise, then one will get dT.E/ D d.E/.
The uniform density of a subset E of N is defined as follows: For integers t � 0

and s � 1, let E.t C 1; s C 1/ D Cardfn 2 E W t C 1 � n � t C sg. Let ˇs D
lim inf
t!1E.t C 1; t C s/ and ˇs D lim sup

t!1 E.t C 1; t C s/. Then u.E/ D lim
s!1

ˇs
s and

Nu.E/ D lim
s!1

ˇs

s exist. If u.E/ D Nu.E/, then we say that the uniform density of E
exists and u.E/ D u.E/ D u.E/.

Remark 3.1 Throughout we consider I to be a non-trivial ideal of subsets of N, the
set of natural numbers

Definition 3.2 A sequence .xk/ is said to be I � convergent to L if for each " > 0,
fk 2 N W xk � L � "g 2 I. We write I � limxk D L.
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The following are the examples of ideals :

Example 3.1 The class If of all finite subsets of N is an ideal of 2N .

Example 3.2 The class IC D fE � N Wg is an ideal of 2N .

Example 3.3 The class I D fE � N W .E/ D 0g is an ideal of 2N .

Example 3.4 The class Id D fEN W d.E/ D 0g is an ideal of 2N .

Example 3.5 The classD fE � N W Td.E/ D 0g is an ideal of 2N .

Example 3.6 The class Iu D fE � N W u.E/ D 0g is an ideal of 2N .

Remark 3.3 All the ideals considered in the above examples are non-trivial ideals.

Tripathy and Mahanta [12] introduce the following definition on acceleration
convergence related to I-convergence of sequences:

Definition 3.4 Let I � limxk D � and I � limyk D � with .xk � �/, . yk � �/ 2 SI0.
Then we say .xk/ I-converges to � , I-faster than . yk/ I-converges to �, written as
.xk/ <I . yk/ if I � lim

k!1
xk��
yk�� D 0, provided yk � � ¤ 0, for all k 2 N.

Peterson and Savas [7] have studied the acceleration convergence for double
sequences, Tripathy and Dutta [11] have studied I-acceleration convergence for
sequences of fuzzy real numbers.
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Studies on Bounded Difference Sequence Space
`1.4/ with Statistical Metric

Paritosh Chandra Das

Abstract In this article we want to introduce the notion of bounded difference
sequence space `1.4/ with the concept of statistical metric and discuss some of
its properties such as completeness, solidness, symmetricity and convergence free.
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space • t-norm
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1 Introduction

The concept of statistical metric space or (briefly, SM-space) was introduced by
Menger [1] in 1942. This is also termed as probabilistic metric space (briefly, PM-
space). SM-space is the generalization of abstract metric space. It is a space in which
the distance notion between two points is a distribution function instead of a single
non-negative number and the concept of SM-space corresponds to the situations
when the distance is inexact. The scope for studies of the SM-space was developed
by Schweizer-Sklar [2]. Using the concept of SM-space, different authors have
worked in different fields but, only a very few work has been done on sequences
in SM-space [3, 4].
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2 Definitions and Preliminaries

Definition 2.1 A real valued function f on the set of real numbers is called a
distribution function if it is non-decreasing, left continuous and has inft2R f .t/ =
0 and supt2R f .t/ D 1:

In the sequel, H will denote the distribution function defined by

H.t/ D
(
0; t � 0
1; t > 0

Let X be a non-empty set and S denote the set of all distribution functions defined
on X. Let f be a mapping from X�X into S and for every pair . p; q/ of X, we denote
the distribution function F. p; q/ by Fpq whence the symbol Fpq.t/ will denote the
value of Fpq for the real argument t and Fpq.t/ interprets the probability that the
distance from p to q is less than t.

Definition 2.2 An ordered pair .X;F/ is called a statistical metric space (briefly,
SM-space) if it satisfies the following conditions (refer [2])

(1) Fpq.t/ D 1 for all t > 0 if and only if p D q:
(2) Fpq.0/ D 0:
(3) Fpq.t/ D Fqp.t/:
(4) If Fpq.t1/ D 1 and Fqr.t2/ D 1, then Fpr.t1 C t2/ D 1 for all p; q; r in X and

t1; t2 � 0:
A metric space .X; d/may be regarded as an SM-space, with metric F defined by

Fpq.t/ D H.t � d. p; q//, for all p; q in X.

Definition 2.3 A t-norm is a function T W Œ0; 1� � Œ0; 1� ! Œ0; 1� satisfying the
following conditions:

(1) T.0; 0/ D 0,
(2) T.a; 1/ D a,
(3) T.a; b/ D T.b; a/,
(4) T.c; d/ � T.a; b/ for c � a; d � b,
(5) T.T.a; b/; c/ D T.a;T.b; c// for all a; b; c in Œ0; 1�.

For example: T.a; b/ D ab.Product/ and T.a; b/ DMin .a; b/ are t-norms.

Definition 2.4 A Menger space (refer to [2]) is a statistical metric space .X;F/
satisfying Fpr.t1 C t2/ � T.Fpq.t1/;Fqr.t2//, for all p; q; r in X; t1; t2 � 0 and T is a
t-norm. This inequality is known as Menger’s triangle inequality.

Throughout the article, by a statistical metric space we mean that the statistical
metric space satisfying the Menger’s triangle inequality.
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Definition 2.5 A sequence x D .xk/ in a statistical metric space .X;F/ is said to
converge to a point l in X if for every � > 0 and � > 0, there exists a positive integer
n0.�; �/ such that Fxkl.�/ > 1 � � for all k � n0.�; �/.

Definition 2.6 A sequencex D .xk/ in a statistical metric space .X;F/ is said to be
a Cauchy sequence if for every � > 0 and � > 0, there exists a positive integer
n0.�; �/ such that Fxmxn.�/ > 1 � � for all m; n � n0.�; �/.

Definition 2.7 A statistical metric space .X;F/ with continuous t-norm is said to
be complete if every Cauchy sequence in X converges to point in X.

Definition 2.8 A class of sequences E is said to be normal (or solid) if .yk/ 2 E,
whenever jykj � jxkj, for all k 2 N and .xk/ 2 E.

Definition 2.9 Let K D fk1 < k2 < k3 : : :g � N and E be a class of sequences. A
K-step set of E is a set of sequences �EK D f.xkn/ 2 w W .xn/ 2 Eg:
Definition 2.10 A canonical pre-image of a sequence .xkn/ 2 �EK is a sequence
.yn/ 2 w defined as follows:

yn D
(
xn; if n 2 K;

0; otherwise.

Definition 2.11 A canonical pre-image of a step set �EK is a set of canonical pre-
images of all elements in �EK , i.e., y is in canonical pre-image �EK if and only if y is
canonical pre-image of some x 2 �EK .

Definition 2.12 A class of sequences E is said to be monotone if E contains the
canonical pre-images of all its step sets.

From the above definitions we have the following well-known Remark.

Remark 2.13 A class of sequences E is solid) E is monotone.

Definition 2.14 A class of sequences E is said to be symmetric if .x	.n// 2 E;
whenever .xk/ 2 E; where 	 is a permutation of N.

Definition 2.15 A class of sequences E is said to be convergence free if .yk/ 2 E;
whenever .xk/ 2 E and xk D 0 implies yk D 0.

Definition 2.16 A sequence x D .xk/ is called bounded difference sequence (in
traditional metric) if the sequence4x D .4xk/;4xk D xk � xkC1 is bounded.

Throughout w and `1.4/ denote the classes of all and bounded difference
sequences, respectively.
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In this article we want to introduce the notion of the bounded difference sequences
in a statistical metric space as follows:

Definition 2.17 A sequence x D .xk/ in a statistical metric space .X;F/ is said to
be bounded difference sequence if there exists h > 0 and 0 < ı < 1 such that

Fx0.h/ > 1� ı, where 0 (zero) is in x and the distance d between x D .xk/ and 0
(zero) is defined by d.x; 0/ D jx1j C supkj4xkj.

Let `1.4/ be a class of bounded difference sequences and F be a mapping from
`1.4/ � `1.4/ to S(a set of distributive functions) such that

Fxy.h/ D
(
e� d.x;y/

h ; h > 0

0; h D 0; (1)

for all x D .xk/ and y D .yk/ in `1.4/ and d.x; y/ D jx1 � y1j C supkj4xkj:
It is easy to see that d is a metric on `1.4/: It can be seen that .`1.4/;F/ is a

SM-space with the t-norm T.a; b/ D ab (Product).
Let x D .xk/; y D .yk/ in `1.4/. Then

(i) x D y) d.x; y/ D 0 so we have, Fxy.h/ D 1, for all h > 0:
Conversely,

Fxy.h/ D 1; for all h > 0: i.e., e� d.x;y/
h D 1 D e0 and we get, x D y:

(ii) Fxy.h/ D 0, for h D 0 (by given condition).
(iii) Fxy.h/ D Fyx.h/ as d.x; y/ D d.y; x/, for h � 0.
(iv) For all x D .xk/; y D .yk/ and z D .zk/ in `1.4/ and for all h; t > 0, we have

d.x; y/ � . hCt
h /d.x; z/C . hCt

h /d.z; y/ implies e
d.x;y/
hCt � e

d.x;z/
h :e

d.z;y/
t :

Since ex is an increasing function for x > 0: So

e� d.x;y/
hCt � e� d.x;z/

h :e� d.z;y/
t and thus Fxy.h C t/ � Fxz.h/:Fzy.t/, for h; t > 0. i.e.,

Fxy.hC t/ � T.Fxz.h/;Fzy.t//, for h; t > 0:
For h or t D 0; we have Fxy.hC t/ > Fxz.h/:Fzy.t/ D 0
and for h; t D 0, Fxy.hC t/ D T.Fxz.h/;Fzy.t//:
Hence Fxy.hC t/ � T.Fxz.h/;Fzy.t//, for h; t � 0.

3 Main Result

Theorem 3.1 The sequence space .`1.4/;F/ is a complete metric space with the
statistical metric F defined by

Fxy.h/ D
(
e� d.x;y/

h ; h > 0

0; h D 0;



Studies on Bounded Difference Sequence Space `1.4/ 445

under the t-norm T.a; b/ D ab (product), where the metric
d.x; y/ D jx1 � y1j C supkj4xk �4ykj; for x D .xk/; y D .yk/ in `1.4/:

Proof Let .x.n// be a Cauchy sequence in .`1.4/;F/ where x.n/ D .x.n/k /k D
.x.n/1 ; x

.n/
2 ; x

.n/
3 ; : : :/ 2 .`1.4/;F/, for all n 2 N. Then, for each � > 0, there exists a

positive integer n0 such that for all m; n � n0,
d.x.n/; x.m// D jx.n/1 � xm1 j C supkj4xnk �4xmk j:

) jx.n/1 � xm1 j < �; j4xnk �4xmk j < �; for each k 2 N; and m; n � n0: (2)

Hence we obtain jx.n/k � xmk j < �, for all m; n � n0 and for each k 2 N.
Now for a given h > 0; 0 < ı < 1;

Fx.n/x.m/ .h/ D
(
e� d.x.n/;x.m//

h ; h > 0

0; h D 0;

gives
Fx.n/x.m/ .h/ > 1 � ı, (for h > 0), for all m; n � n0.
) G

x
.n/
k x

.m/
k
.h/ > 1 � ı; for h > 0Im; n � n0 and each k 2 N; where G is a

statistical metric (can be easily verified as F is verified) on R, the set of real numbers
defined by

G
x
.n/
k x

.m/
k
.h/ D

8
<

:
e� jx

.n/
k �x

.m/
k j

h ; h > 0

0; h D 0;

Hence for each k, .x.n/k /
1
nD1 is a Cauchy sequence in R. Since R is complete, so for

each k, .x.n/k /
1
nD1 converges to some xk 2 R so that

lim
n!1G

x
.n/
k xk
.h/ D 1, for h > 0.

Let x D .x1; x2; x3; : : :/. We show that x 2 .`1.4/;F/ and x.n/ ! x.
Now fix n � n0 and let m!1 in inequalities (2), we have

jx.n/1 � x1j < � and j4x.n/k �4xkj < �; for each k 2 N: (3)

Hence, d.x.n/; x/ D jx.n/1 � x1j C supkj4x.n/k �4xkj, for all n � n0
and we have lim

n!1Fx.n/x.h/ D 1, for h > 0: i.e., x.n/ ! x as n!1:
Since x.n/ D .x.n/k /k 2 `1.4/, for all n 2 N, there exists a real no. h > 0 such

that G4x
.n/
k 0
.h/ > 1 � ı; 0 < ı < 1; for each k 2 N:

Again, j4xkj � j4xk �4x.n/k j C j4x.n/k jC < Mn, for some Mn 2 R; n � n0 and

each k 2 N (using the inequalities (3) and from the bounded sequence .4x.n/k /k).
Since G is statistical metric, so it obeys the triangle inequality with t-norm as well
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as the metric other properties. That is, for each k 2 N; n � n0 and for h1; h2 > 0, we
have

G4xk0.h1 C h2/ � T
�
G4xk4x

.n/
k
.h1/; G4x

.n/
k 0
.h2/

�
as T.a; b/ D ab (Product).

Thus, from the inequality j4xkj � Mn, for some Mn 2 R;we have for each k 2 N
and n � n0, there exists h > 0 such that G4xk0.h/ > 1 � ı; 0 < ı < 1: Since
d.x; 0/ D jx1jC supkj4xkj <1. So Fx0.h/ > 1� ıI h > 0; 0 < ı < 1 (F is defined
in(1)). Thus x 2 .`1.4/;F/. Hence the result. ut
Theorem 3.2 The sequence space .`1.4/;F/ is neither monotone nor solid.
Proof This result follows from the following sequence. Let us consider the sequence
x D .xk/, where xk D k. Therefore, j4xkj D 1, for all k 2 N and we have d.x; 0/ D
jx1j C supkj4xkj D 2: Thus Fx0.h/ > 1 � ı; for h > 0; ı > 0 (F is defined in (1)).
Hence .xk/ 2 .`1.4/;F/.

Let J D fk 2 N W k D 2i � 1; i 2 Ng be a subset of N and let `1.4/J be the
canonical pre-image of the J-step set `1.4/J of `1.4/, defined as follows.

.yk/ 2 `1.4/J , is the canonical pre-image of .xk/ 2 `1.4/ implies

yk D
(
xk; for k 2 J;

0 for k … J:

i.e., .yk/ D .1; 0; 3; 0; 5; : : :/. Then j4ykj D .1; 3; 3; 5; 5; : : :/.
We have, d.y; 0/ D jy1j C supkj4ykj which is unbounded. Therefore, Fy0.h/ >

1 � ı does not exist (F is defined in (1)). Thus .yk/ … .`1.4/;F/. Hence the space
.`1.4/;F/ is not monotone.

The space .`1.4/;F/ is not solid which follows from the Remark 2.13. ut
Theorem 3.3 The space .`1.4/;F/ is not symmetric.
Proof This result follows from the following sequence. Consider the sequence x D
.xk/, where xk D k: Hence .xk/ 2 .`1.4/;F/ as shown in the Theorem 3.2.

Let .yk/ be a rearrangement of the sequence .xk/, defined as follows:
.yk/ D .x1; x2; x4; x3; x9; x5; x16; x6; x25; x7; : : :/ :

i:e:; .yk/ D

8
ˆ̂̂
<

ˆ̂
:̂

x� kC1
2

�2 ; for k odd ;

x.nC k
2 /
; for k even and n 2 N;

satisfying n.n� 1/ < k
2
� n.nC 1/:

Thus .yk/ D .1; 2; 4; 3; 9; 5; 16; 6; 25; 7; : : :/:
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Again, for k odd and n 2 N; satisfying n.n� 1/ < kC1
2
� n.nC 1/;

�yk D x� kC1
2

�2 � x�
nC kC1

2

� D 

kC1
2

�2 � 
nC kC1
2

�
which diverges to1 and for

k even and n 2 N; satisfying n.n� 1/ < k
2
� n.nC 1/;

�yk D x.nC k
2 /
� x�

kC2
2

�2 D 
nC k
2

� � 
 kC2
2

�2
which diverges to �1.

Thus, d.y; 0/ is unbounded. Hence the space .`1.4/;F/ is not symmetric. ut
Theorem 3.4 The space .`1.4/;F/ is not convergence free.
Proof This result follows from the following two sequences. Consider the
sequences x D .xk/ and y D .yk/, defined as follows:

For k even, xk D 1
k and for k odd, xk D 0. Also, for k even, yk D k and for k

odd, yk D 0. Then j4xkj D


1
2
; 1
2
; 1
4
; 1
4
; : : :

�
and thus, d.x; 0/ D 1. Hence .xk/ 2

.`1.4/;F/.
Again, j4ykj is unbounded and thus d.y; 0/ is unbounded. Hence the space

.`1.4/;F/ is not convergence free. ut
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Rough Convergence in Metric Spaces

Shyamal Debnath and Debjani Rakshit

Abstract In this paper, we have introduced the notion of rough convergence in
general metric spaces and the set of rough limit points and proved several results
associated with this set.

Keywords Metric space • Rough cauchy sequence • Rough convergence •
Rough limit points
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1 Introduction and Preliminaries

The classical analysis is often based on fine behaviors which are valid for all points
of some subsets, even if some distance tends to zero. Since many things of the
material universe and many objects represented by digital computers cannot satisfy
such for all requirements, the so-called rough analysis is developed as an approach
to such rough worlds. The idea of rough convergence was first introduced by Phu
[5], in finite dimensional normed linear spaces.

Let .xn/ be a sequence in some normed linear space .X; k : k/; and r be a non-

negative real number. .xn/ is said to be r-convergent to x�, denoted by xn
r! x�, if

given � > 0 there exists a natural no n0 such that

k xn � x� k< rC �;8n � n0:

and the r-limit set of .xn/ is defined as LIMrxn D fx� 2 X W xn r! x�g
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They showed that the set LIMrxn is bounded, closed and convex; and introduced
the notion of rough Cauchy sequence. Also investigated the relations between rough
convergence and other convergence types and the dependence of LIMrxn on the
roughness degree r.

Later on several researchers, namely Aytar [1, 2], Pal et. al. [4] have generalized
this concept.

We have seen that in a metric space .X; d/, if a sequence .xn/ converges to a point
x 2 X then given � > 0 we can always find natural number n0 such that

d .xn; x/ < �;8n � n0

and usually denoted as xn ! x in .X; d/. x is called the limit of the sequence .xn/,
which is unique also [3].

Let us introduce another notion of convergence.

2 Main Results

Definition 2.1 A sequence .xn/ in .X; d/ is said to be r-convergent where r � 0, to
a point x� 2 X if given � > 0, there exists a natural no n0 such that

d


xn; x

�� < rC �;8n � n0:

This is the rough convergence with r as roughness degree.

For r D 0, we have the classical definition of convergence in .X; d/. But our proper
interest is the case r > 0. There are several reasons for this interest. Let . yn/ be a
sequence converging to classical sense to x�. Suppose that we do not set the terms
of . yn/ exactly, but we have that the terms of . yn/ differs from another terms of .xn/
in metric (distance) by a quantity less than equal to r, i.e., we have the situation:

d


yn; x

�� < �;8n � n0 and d . yn; xn/ � r;8n 2 N:

Thus we have d .xn; x�/ � d .xn; yn/C d . yn; x�/ < rC �;8n � n0.
Therefore, we see that .xn/ is r-convergent to the point x� 2 X.

Remark 2.2 Unlike the classical case, if .xn/ is a sequence in .X; d/, r > 0 is a real

no and xn
r! x�, then x�is not unique.

Thus we have the set

LIMrxn D
n
x� 2 X W xn r! x�o

D ˚x� 2 X W d 
xn; x�� < rC �;8n � n0
�
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It is clear that, if r D 0 then we have the classical case and therefore LIMrxn is
either a singleton set or an empty set.

Example ([5]) Let us consider the sequence yn D 0:5 C 2: .�1/nn , it is obvious that
. yn/ converges to 0.5. For machine calculation, yn cannot be calculated exactly for
large n. This occurs due to rounding off the numbers. But it can be rounded to some
machine number, i.e., to the nearest one.

Let, .xn/ be a sequence defined as xn D round . yn/ D z, where z is an integer
lies z � 0:5 � yn < zC 0:5.

Then x1 D �1, x2 D 2, x2k�1 D 0, x2k D 1, for k D 2; 3; : : :
It is easy to see that lim sup xn D 1 and lim inf xn D 0, so that the sequence .xn/

does not converge. However by definition LIMrxn D
(
�; if r < 0:5

Œ1 � r; r� if r � 0:5 :

Proof We see that from the definition of rough convergence, infinitely many terms
of the sequence .xn/ after a certain n must lie in an interval ( for the real line) centred
at x�(a r-limit point) with the interval width 2rC �, where � is predetermined.

Here the odd and even position terms are separated (after n D 2) by a distance 1.
Consequently, if 2r < 1 i.e., r < 0:5, then there exists no integer n0 such that all the
terms of the sequence will lie in the interval .x� � r � �; x� C rC �/, for n � n0.

Therefore, LIMrxn D �, for r < 0:5.
On the otherhand, we have the relation if r � 0:5
jxn � x�j < rC �, 8n � n0
i.e., x� < xn C rC � and x� > xn � r � �.
(Note that if r � 0:5, then r � 1 � r.)
Taking the odd integers after n0, the less than inequality gives x� < rC �.
Taking the even integers after n0, the greater than inequality gives x� > 1� r� �.
Since � is arbitrary, we obtain at once 1 � r � x� � r.
i.e., LIMrxn D Œ1 � r; r�, for r � 0:5. ut

Definition 2.3 Sometimes we are concerned about the set LIMrxn lying in a set
S � X.

We define LIMS;rxn D
n
x� 2 S W xn r! x�

o
.

In the above example, let S D fx1; x2; x3; : : : ::g be the set.
Observe that jxk � xjj D 1 or 0.
Therefore jxk � xjj � 1.
Now for r < 1, jxk � x�j D jxk � xsj � 1, which cannot be made less than rC �.
(Since, we are interested in the r-limit points lying in the set S, x� D xs 2 S)
But for r � 1, jxk � xsj � 1 � r < rC �.
Therefore we obtain LIMS;rxn D

(
�; if r < 1

fx3; x4; x5; : : :g if r � 1 .
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Definition 2.4 Let . yn/ be a classical Cauchy sequence in .X; d/ and .xn/ be
another sequence such that d .xn; yn/ � �

2
, 8n 2 N.

Then d .xm; xn/ � d .xm; ym/C d . ym; yn/C d . yn; xn/ < �C �, for all m; n � n0.
Such a sequence .xn/ is said to be a rough Cauchy sequence with � as the degree

of roughness.

2.1 Some Basic Properties of Rough Limit Sets

Proposition 2.5 The r-limit set LIMrxn of an arbitrary sequence .xn/ of .X; d/ is a
closed set.

Proof Let . yn/ be a sequence in LIMrxn which converges to y. We want to show
that y 2 LIMrxn. Since . yn/ converges to y, we have d . yn; y/ < �

2
, 8n � n0.

In particular, d . yn0 ; y/ <
�
2

By the definition of LIMrxn, d .xn; yn0 / <
�
2
C r, 8n � n1.

Therefore, d .xn; y/ � d .xn; yn0 /C d . yn0 ; y/ < rC �
2
C �

2
D rC �, 8n � n1.

Hence y 2 LIMrxn. Thus LIMrxn is a closed set. ut
Proposition 2.6 For any sequence .xn/ in .X; d/ the diameter of LIMrxn is not
greater than 2r.

Proof If possible let diam .LIMrxn/ > 2r.
Then there exists y; z in LIMrxn such that d . y; z/ > 2r. Let d . y; z/ D d1 (say).

Then d1 > 2r.
Since y and z are r-limit point of .xn/, therefore there exists a natural no n0 such

that
d .xn; y/ < rC �

2
and d .xn; z/ < rC �

2
;8n � n0:

Hence d . y; z/ � d .xn; y/C d .xn; z/ < 2rC �, 8n � n0.
i.e., d1 < 2rC �, 8n � n0.
since � is arbitrary, we put � D d1 � 2r and hence we obtain d . y; z/ D d1 < d1,

a contradiction.
Therefore diam .LIMrxn/ � 2r. ut

Proposition 2.7 A sequence .xn/ is bounded if and only if there exists an r � 0

such that LIMrxn ¤ ;.
Proof Let, x D .xn/ be bounded. i.e., sup fd .xn; yn/ W xn; yn 2 xg D Nr is finite.

Therefore, LIMNrxn ¤ ;.
Conversely, Let LIMrxn ¤ ;, for some r � 0.
i.e., for all but finite element of .xn/ are contained in some ball with any radius

greater than r. Therefore the sequence .xn/ is bounded. ut
Proposition 2.8 For all r > 0, a bounded sequence .xn/ always contains a
subsequence .xni/ with LIM.xni /;rxni ¤ �.
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Proof As .xn/ is a bounded sequence, it has a convergent subsequence .xni/. Let, x�
be its limit point , then LIMrxni D NBr .x�/ and for r > 0,

LIM.xni /;rxni D fxni W d .x�; xni/ � rg ¤ �. ut
Proposition 2.9 If



x0
n

�
is a subsequence of .xn/, then LIMrxn � LIMrx0

n.

Proof Let y 2 LIMrxn then d .xn; y/ < rC�8n � n0 and since


x0
n

�
is a subsequence

of .xn/ d


x0
n; y
�
< rC � 8n � n0.

i.e., y 2 LIMrx0
n. Hence proved. ut

Proposition 2.10 If a sequence .xn/ converges to x�, then LIMrxn D NBr .x�/.

Proof Let .xn/ be a convergent sequence with lim xi D x�.
Then for NBr .x�/ D fy 2 X W d .x�; y/ � rg.
Now d .xn; y/ � d .xn; x�/C d .x�; y/ < � C r for y 2 NBr .x�/.
i.e., y 2 LIMrxn and therefore NBr .x�/ � LIMrxn.
Similarly we can show that LIMrxn � NBr .x�/.
i.e., LIMrxn D NBr .x�/.
But the converse is not true.
For example, let .X; d/ be a metric space, where X D f�1; 0; 1g and d .x; y/ D(
0; if x D y

max fx; yg ; if x ¤ y
.

let xn D .�1/n be a sequence in .X; d/.
Then for r D 1, LIMrxn D f�1; 0; 1g D NBr .0/.
But .xn/ does not converge. ut

Proposition 2.11 Every rough convergent sequence is a rough cauchy sequence.

Proof Let .xn/ be a rough convergent sequence, i.e., for all � > 0 d .xn; x�/ <
rC �

2
8n � n0.

Now d .xn; xm/ � d .xn; x�/C d .x�; xm/ < 2rC �8n;m � n0.
i.e., d .xn; xm/ < �C � 8n;m � n0 where � D 2r. Hence proved. ut

Proposition 2.12 cl

�
[

0�r0<r
LIMr0

xn

�
� LIMrxn D \

r0>r
LIMr0

xn.

Proof It follows from the definition that LIMr1xn � LIMr2
n if r1 < r2.

By the monotonicity and the closedness property of r-limit set we have

cl

�
[

0�r0<r
LIMr0

xn

�
� LIMrxn � \

r0>r
LIMr0

xn:

Now consider an arbitrary y 2 X � LIMrxn. By definition, there is an � > 0 such
that 8k 2 N9n � k W d.xn; y/ � rC �:

This implies for r0 < r C � that �0 D r C � � r0 > 0 and 8k 2 N 9n � k W
d.xn; y/ � r0 C �0.

Thus y … LIMr0

xn for r0 < rC � which implies y … \
r0>r

LIMr0

xn.

Hence LIMrxn D \
r0>r

LIMr0

xn. ut
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Proposition 2.13 .X; d/ be a bounded metric space if and only if there exist r > 0

such that LIMrxn is dense in X.

Proof Let X be bounded and m D sup
x; y 2 X

d .x; y/.

From definition we have LIMrxn � X.
Let x� 2 X then for r D m, d .xn; x�/ < rC �.
Therefore x� 2 LIMrxn.
i.e., there exist a r for which LIMrxn is dense in X.
Now if LIMrxn is dense in X then LIMrxn D X for some r > 0. i.e., d .xn; x�/ <

rC � for all x� 2 X. Therefore X is bounded. ut
Proposition 2.14 Suppose r1 � 0 and r2 > 0. If a sequence yn in X such that

yn
r1! x� and d .xn; yn/ � r2, n D 1; 2; : : : : then .xn/ in X is .r1 C r2/-convergent to

x�.

Proof Since yn
r1! x� then for all � > 0 9 a n0 such that d . yn; x�/ < r1 C � for

n � n0.
So, d .xn; x�/ � d .xn; yn/C d . yn; x�/ < r1 C r2 C � for n � n0.
Therefore .xn/ is .r1 C r2/-convergent to x�. ut

Proposition 2.15 If c is a cluster point of the sequence .xn/, then LIMrxn � NBr .c/.

Proof Let, x� 2 LIMrxn then for all � > 09 a n0 such that d .xn; x�/ < r1 C �
2

for
n � n0 �!(i)

Let c be a cluster point of .xn/ then d .xn; c/ < �
2

for infinite elements .xn/ �!(ii)
Then there must exist a xn1 2 .xn/ which satisfies both (i) and (ii).
Therefore, d .x�; c/ � d .xn1 ; x

�/C d .xn1 ; c/ < rC �
implies d .x�; c/ � r. Hence proved. ut
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Class of p-Absolutely Summable Sequence
of Interval Number

Amar Jyoti Dutta

Abstract In this article we have introduced the class of sequence `i. p/ of interval
numbers. We established some properties like completeness, linearity, symmetric
and some inclusion relation.

Keywords Convergence free • Interval number • Sequence algebra • Solid •
Symmetric
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1 Preliminaries

The idea of interval arithmetic was first used by Dwyer [2, 3]. Ramon E. Moore has
applied interval arithmetic as an approach to bound rounding errors in mathematical
computation. Further development on interval arithmetic was done by Moore [7, 8],
Moore and Yang [9, 10] and Fischer [6].

An interval Nx D Œa; b� is the set of real numbers between a and b, i.e. Nx D
Œa; b� D fx W a � x � bg: If R denotes the set of all real valued closed intervals, an
interval number is an element of R and a closed subset of the set of real numbers,
represented by Nx D Œx`; xr�, where x` and xr are the left and right points, respectively.
Geometrically represents a line segment on the real line. In particular if x` D xr D x,
then reduced to a real number x D Œx; x�, called point interval or singleton. Thus
we can say that an interval number is the generalization of the point interval. We
define some arithmetic operations with the interval numbers Nx1 D Œx1`; x1r� and
Nx2 D Œx2`; x2r� as follows:

(i) Nx1 D Nx2) x1` D x2` and x1r D x2r:
(ii) Nx1 C Nx2 D Œx1` C x2`; x1r C x2r�:

(iii) Nx D Œx`; xr�;) �Nx D �Œx`; xr� D Œ�xr;�x`�:
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(iv) Nx1 � Nx2 D Œx1` C x2r; x1r C x2`�:
(v) Nx1:Nx2 D Œminfx1`:x2`; x1`:x2r; x1r:x2`; x1r:x2rg;maxfx1`:x2`; x1`:x2r; x1r:x2`;

x1r:x2rg�.
(vi) Nx1Nx2 D Œx1`; x1r� � 1

Œx2r ;x2`�D Œminfx1` � x2`; x1` � x2r; x1r � x2`; x1r � x2rg;
maxfx1` � x2`; x1` � x2r; x1r � x2`; x1rx2rg�; 0 … Nx2:

(vii) Let ˛ > 0, then ˛Nx D Œ˛x`; ˛xr� and if ˛ < 0, then ˛Nx D Œ˛xr; ˛x`�:
(viii) If Nx1 � Nx2, i.e. Œx1`; x1r� � Œx2`; x2r�) x2` < x1` < x1r < x2r:

Remark 1.1 This property can be generalized for more than two intervals and often
refereed as nesting property of intervals.

(ix) Let Nx1; Nx2; Nx3; Nx4 2 R, then Nx3.Nx1 C Nx2/ � Nx3 Nx1 C Nx3Nx2:
Remark 1.2 The equality Nx3.Nx1C Nx2/ D Nx3 Nx1C Nx3 Nx2 holds with the condition that if
a 2 Œx1`; x1r� D Nx1 and b 2 Œx2`; x2r� D Nx2 then ab � 0. It holds well with the point
interval a D Œa; a�; i.e. a.Nx1 C Nx2/ D aNx1 C aNx2:

(x) For Nx1; Nx2; Nx3; Nx4 2 R, if Nx1 � Nx2 and Nx3 � Nx4 then
(a) Nx1 C Nx3 � Nx2 C Nx4 (b) Nx1 � Nx3 � Nx2 � Nx4 (c) Nx1:Nx3 � Nx2:Nx4 (d) Nx1Nx3 � Nx2Nx4 , if
0 … Nx3; Nx4

The absolute value of Nx D Œx`; xr� is defined by

jNxj D
(
Œminfjx`jjxrjg;maxfjx`jjxrjg�; if x`:xr � 0;
0;maxfjx`jjxrjg�; if x`:xr < 0:

We consider the metric d.Nx1; Nx2/ D maxfjx1`�x2rj; jx1r�x2rjg. Since R is complete,
so it is easy to verify that the set of all interval numbers is a complete metric space
with respect to d. In the special case of Nx1 D Œa; a� and Nx2 D Œb; b�, we obtain usual
metric of the R with d.Nx1; Nx2/ D ja � bj:

2 Introduction

Consider the transformation f from N to R defined by k ! f .k/ D Nx then .Nxn/ is
called the sequence of interval numbers, where Nxn is the nth term of the sequence
.Nxn/. We denote the set of all sequences of interval number by wi. The addition and
scalar multiplication of .Nxn/; .Nyn/ 2 wi are defined as follows:

.Nxn/C .Nyn/ D ŒNxn` C Nyn`; Nxnr C Nynr�
.˛ Nxn/ D Œ˛Nxn`; ˛Nxnr�; if ˛ � 0

D Œ˛Nxnr; ˛Nxn`�; if ˛ < 0
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Definition 2.1 An interval sequence Nx D .Nxn/ is said to be convergent to the interval
number Nx0 if for each " > 0 there exists a positive integer n0 such that d.Nxn; Nx0/ <
" for all n � n0, and we write it as lim

n Nxn D Nx0 which imply lim
n Nxn` D Nx0` and

lim
n Nxnr D Nx0r.

Definition 2.2 An interval sequence Nx D .Nxn/ is said to be interval Cauchy
sequence if for every " > 0 there exists k0 2 N such that d.Nxn/; Nxk// < " for
n; k � k0.

We introduced the following concepts for the classes of sequences of interval
numbers.

Definition 2.3 An interval sequence Nx D .Nxn/ is said to be bounded if d.Nxn; 
/ <
1, equivalently, if there exist � 2 R such that jNxnj � � for all n 2 N.

Definition 2.4 An interval sequence space wi is said to be solid if .Nxn/ 2 wi

whenever .Nyn/ 2 wi and .Nxn/ � .Nyn/, for all n 2 N.

Definition 2.5 An interval sequence spacewi is said to be symmetric if .Nx	.n// 2 wi,
whenever .Nxn/ 2 wi, where 	 is a permutation on N.

Definition 2.6 An interval sequence space wi is said to be convergence free if
.Nyn/ 2 wi whenever .Nxn/ 2 wi and Nxn D N0 implies Nyn D 0.

Definition 2.7 An interval sequence space wi is said to be sequence algebra if for
.Nxn/; .Nyn/ 2 wi; .Nxn ˝ Nyn/ 2 wi.

Chiao [1] introduced sequence of interval numbers and studied the usual con-
vergence. Recently Esi [4, 5] has made several investigations on different classes of
sequence of interval numbers. Şengönül and Eryilmaz [11] introduced the following
sequence spaces of interval numbers and proved their completeness.

ci0 D
�
Nx D .Nxn/ 2 wi W lim

n
Nxn D 
; where 
 D Œ0; 0�

�

ci D
�
Nx D .Nxn/ 2 wi W lim

n
Nxn D Nx0; where Nx0 2 R

�

`i1 D
n
Nx D .Nxn/ 2 wi W sup

n
fjNxn`j; jNxnrjg <1

o

We introduced the class of p-absolutely summable sequence `i. p/ of interval
number, defined by

`i. p/ D
(

Nx D .Nxn/ 2 wi W
1X

nD1
fd.Nxn; 
/gpn <1

)

;

where Nx D Œx`; xr� and p D . pn/ is a bounded sequence of positive numbers so that
0 < pn � sup pn <1:
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We consider the following metric to study different properties on the space `i. p/

d.Nxn; Nyn/ D
(
X

k

fmax.jxn` � yn`j; jxnr � ynrj/gPn

) 1
M

;

where 0 < pn � sup pn <1 and M D max.1; sup pn/.

3 Main Result

Theorem 3.1 The class of sequence `i. p/ is closed with respect to addition and
scalar multiplication.

Proof Let .Nxn/; .Nyn/ 2 `i. p/ and ˛; ˇ be scalars such that

1X

nD1
fd.Nxn; 
/gpn <1 and

1X

nD1
fd.Nyn; 
/gpn <1:

Thus

1X

nD1
Œdf.˛Nxn C ˇNyn/; 
/g�pn �

1X

nD1
fd.Nxn; 
/gpn C

1X

nD1
fd.Nxn; 
/gpn <1

This completes the proof. ut
Theorem 3.2 The class of sequence `i. p/ is a complete metric space with respect
to the metric defined by

d.Nxn; Nyn/ D
(
X

n

Œd.Nxn; Nyn/�Pn

) 1
M

Proof It is easy to verify that d is a metric on `i. p/. Let Nxj D .Nxjn/ D
.Nxj1; Nxj2; Nxj3; : : : ::/ be a Cauchy sequence in `i. p/ for each j. Then for every " > 0

there exist an n0 2 N such that

d.Nxjn; Nxkn/ D
(
X

n

Œd.Nxjn; Nxkn/�pn
) 1

M

< "; for j; k � n0

) d.Nxjn; Nxkn/ < " for j; k � n0

)
(
X

k

Œmax jNxjn` � Nxkn`j; jNxjnr � Nxknrj�pn
) 1

M

< "
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This implies jNxjn`�Nykn`j and jNxjnr�Nyknrj < ". This shows that .Nxjn/ is a Cauchy sequence
in R. Since R is complete, .Nxjn/ is convergent. Let lim

n Nxjn D Nxn for each n 2 N. Thus
for each " > 0, there exists n0 such that d.Nxjn; Nxn/ < ", for j � n0. The proof will
complete once we show that Nxn 2 `i. p/ . We have

d.Nxn; 
/ � d.Nxn; Nxjn/C d.Nxjn; 
/ < "C K <1:

This completes the proof. ut
Theorem 3.3 The class of sequence `i. p/ is solid and hence monotone.

Proof Let .Nxn/ and .Nyn/ be two sequences of interval numbers such that jNxnj � jNynj,
for all k 2 N. Let Nxn 2 `i. p/, then

P

nD1
1 fd.Nxn; 
/gpn D

P

n Œmaxfjxn`j; jxnrjg�pn <
1. Now we have

1X

nD1
fd.Nyn; 
/gpn �

1X

nD1
fd.Nxn; 
/gpn <1

Thus .Nyn/ 2 `i. p/. This completes the proof. ut
Theorem 3.4 The class of sequence `i. p/ is a sequence algebra.

Proof Let .Nxn/ and .Nyn/ be two sequences of interval numbers taken from. Then we
have

1X

nD1
fd.Nxn; 
/gpn <1

and

1X

nD1
fd.Nyn; 
/gpn <1; for all n 2 N:

We have

1X

nD1
fd.Nxn ˝ Nyn; 
/gpn �

1X

nD1
fd.Nxn; 
/:d.Nyn; 
/gpn

�
" 1X

nD1
fd.Nxn; 
/gpn

#" 1X

nD1
fd.Nxn; 
/gpn

#

<1

Thus .Nxn ˝ Nyn/ 2 `i. p/: This completes the proof. ut
Theorem 3.5 The class of sequence `i. p/ is not convergence free.
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Proof We provide the following example in support of the proof.

Example 1 Consider the interval sequence .Nxn/ defined by Nxn D
�

1
nC1 ;

1
n

�
for n 2 N

and take pk D 1, for all k 2 N. Then we have

1X

nD1
fd.Nxn; 
/gpn D

1X

nD1

�
max

� ˇˇ̌
ˇ
1

nC 1
ˇ
ˇ̌
ˇ ;
ˇ
ˇ̌
ˇ
1

n

ˇ
ˇ̌
ˇ

�	pk
<1

Now consider the interval sequence .Nyn/ defined by Nyn D Œn; nC 1�, for n 2 N and
take pn D 1, for all k 2 N. Then we have

1X

nD1
fd.Nyn; 
/gpk D

1X

nD1
Œmaxfjnj; jnC 1jg�pk !1

Thus we can conclude that`i. p/ is not convergence free. This completes the proof.
ut

Theorem 3.6 The class of sequence `i. p/ is not symmetric.

Proof The proof follows from the following example.

Example 2 Consider the interval sequence .Nxn/ defined by

Nxn D
8
<

:

h
1

.nC1/2 ;
1
n2

i
; for n odd

h
1

.nC1/ ;
1
n

i
; for n even

Consider pk D 1, for all k odd and pk D 2, for all k even. Then we have

1X

nD1
fd.Nxn; 
/gpn D

1X

nD1

�
max

� ˇˇ
ˇ
ˇ

1

.nC 1/2
ˇ
ˇ
ˇ
ˇ ;
ˇ
ˇ
ˇ
ˇ
1

n2

ˇ
ˇ
ˇ
ˇ

�	
<1

Now consider the rearrangement .Nyn/ of .Nxn/ defined by

Nyn D . NX2; NX1; NX4; NX3; NX6; : : : : : : ::/

Then we have

1X

nD1
fd.Nyn; 
/gpk D

X

n odd

�
max

� ˇ̌
ˇ
ˇ
1

nC 1
ˇ̌
ˇ
ˇ ;
ˇ̌
ˇ
ˇ
1

n

ˇ̌
ˇ
ˇ

�	
!1

Thus it implies .Nyn/ … `i. p/. This completes the proof. ut
Theorem 3.7 For 0 < p < q; `i. p/ � `i.q/.
Proof The proof is simple, so omitted. ut
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Global Existence of Small Data Solutions
to the Semilinear Fractional Wave Equation

Marcello D’Abbicco, Marcelo Rempel Ebert, and Tiago Picon

Abstract In this paper, we find the critical exponent for the global existence
of small data solutions to the semilinear fractional wave equation in low space
dimension.

Keywords Critical exponent • Fractional partial differential equation • Global
existence • Small data

Mathematics Subject Classification (2010) Primary 35R11; Secondary 35A01

1 Introduction

In this note, we prove the global existence of small data solutions to

8
ˆ̂<

ˆ̂
:

@1C˛t u �4u D jujp ;
u.0; x/ D u0.x/ ;

ut.0; x/ D 0
(1)

with ˛ 2 .0; 1/, for p > Np, where

Np D max

�
p˛.n/ ;

1

1 � ˛
�
; p˛.n/ � 1C 2.1C ˛/

.n � 2/.1C ˛/C 2 : (2)

In (1), we write @1C˛t u to denote

@1C˛t u D D˛0jt.ut/; with D˛0jt f D @t
�
J1�˛0jt f

�
;

M. D’Abbicco (�) • M.R. Ebert • T. Picon
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where Jˇajt is the fractional Riemann–Liouville integral defined by

Jˇajtf D
1

�.˛/

Z t

a
.t � s/ˇ�1 f .s/ ds;

for 0 < ˇ < 1, a 2 R and � is the Euler gamma function.
Thanks to the assumption ut.0; x/ D 0, Cauchy problem (1) for the semilinear

fractional wave may be written in the form of a Cauchy problem for an integro-
differential equation:

(
@tu D J˛

0jt.4uC jujp/ ;
u.0; x/ D u0.x/ :

(3)

If ut.0; x/ does not identically vanish, the equivalence of (1) with (3) is no longer
true and the approach employed in this paper to treat the nonlinear problem is no
longer valid.

We have the following.

Theorem 1.1 Let p > Np, with Np as in (2). Then there exists " > 0, Nı > 0 such that
for any u0 2 L1 \ L1 with

ku0kL1\L1 � ";

and for any ı 2 .0; Nı/, there exists a unique global solution

u 2 C.Œ0;1/;L1Cı \ L1/

to (1). Moreover, it satisfies the following decay estimate:

ku.t; 	/kLq � C .1C t/�ˇqC˛ ku0kL1Cı\L1 ; q 2 Œ1C ı;1�; (4)

for any t � 0, where

ˇq D ˇq.ı/ � min

�
n.1C ˛/

2

�
1

1C ı �
1

q

�
; 1

�
: (5)

Moreover, when Np D p˛.n/ we are able to prove a counter-part of our existence
result, so that we can say that p˛.n/ is the critical exponent to (1) (at least) in space
dimension n � 2=.˛.1C ˛//.
Theorem 1.2 Let p 2 .1; p˛.n/�, with p˛.n/ as in (2), and u0 2 L1 in (1), be such
that

Z

Rn
u0.x/ dx > 0: (6)
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Then there exists no global weak solution u 2 Lploc.Œ0;1/ � R
n/ (see later,

Definition 3.1) to (1).

Remark 1.3 In space dimension n D 2, the critical exponent p˛.2/ D 2 C ˛ for
global small data solutions has been previously derived in [5].

Formally setting ˛ D 0, (1) becomes the Cauchy problem for the semilinear
heat equation, and the exponent in (2) reduces to the well-known Fujita critical
exponent 1 C 2=n. On the other hand, Np ! 1 as ˛ ! 1� in Theorem 1.1, in
particular, we do not obtain Strauss exponent for the nonlinear wave equation in
space dimension n � 2. This hints to the chance to improve the existence result
for large values of ˛, by using an approach different from the one employed in this
paper. It is an open problem to check if Strauss exponent could be approached taking
the limit as ˛ ! 1C, in a result obtained for ˛ > 1 in (1). We also remark that linear
estimates (10), which play a fundamental role to prove Theorem 1.1, are only valid
in the special case r D q D 2, if we formally set ˛ D 1 in (1).

1.1 Loss of Decay in Theorem 1.1

In decay estimate (5) for the nonlinear problem (1), it appears a loss of decay
rate which is not lesser than t˛ , with respect to the linear problem (see later, (10)
and (11)). This loss of decay rate influences the critical exponent, so that it can
no longer be determined by scaling arguments. This effect, which is related to the
presence of fractional integrals, has been already observed for the heat equation with
nonlinear memory [2], namely, for

(
@tu �4u D J˛

0jt.jujp/ ;
u.0; x/ D u0.x/ :

(7)

In this case, the critical exponent is

max

�
Qp˛.n/ ; 1

1 � ˛
�
; Qp˛.n/ � 1C 2.1C ˛/

n � 2˛ : (8)

We notice that Qp˛.n/ > p˛.n/ for any ˛ 2 .0; 1/.
Similar results about the critical exponent for global small data solutions have

been obtained for damped waves with nonlinear memory [3, 4].
Also, in Theorem 1.1, there is a ı-loss of decay, which can be taken arbitrarily

small as ı ! 0, described by the difference ˇq.0/ � ˇq.ı/ � 0. This arbitrarily
small loss of decay is related to the fact that linear Lr �Lq linear estimates to (1) are
currently available only for r > 1 (see later, (10)), so that our estimates are derived
on L1Cı basis instead of being derived on L1 basis.
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2 Proof of Theorem 1.1

The solution to the linear problem

8
ˆ̂
<

ˆ̂
:

@1C˛t u �4u D 0 ;
u.0; x/ D u0.x/ ;

ut.0; x/ D 0
(9)

satisfies the following estimates (see Lemma 4.3 in [1])

ku.t; 	/kLq . t�
n.1C˛/

2

�
1
r � 1

q

�

ku0kLr ; 1 < r � q � 1; (10)

provided that n .1=r � 1=q/ < 2. In particular, for any ˛ 2 .0; 1/ and for any
fixed ı > 0, the solution to (9) satisfies the following estimate

ku.t; 	/kLq . .1C t/�ˇq .ku0kL1Cı C ku0kLq/; 8 q 2 Œ1C ı;1� (11)

where ˇq is defined in (5).

Proof of Theorem 1.1 Thanks to Duhamel’s principle, the solution to (1) is given by

u.t; x/ D K.t; x/ �.x/ u0.x/C Nu.t; x/;

where K.t; x/ is the fundamental solution to (9) and

Nu.t; x/ D
Z t

0

K.t � �; x/ �.x/ .J˛0j� jujp/ d�:

Assume that ı < ˛. Then, for any n � 2, there exists Nq 2 .1C ı;1/ such that

n.1C ˛/
2

�
1

1C ı �
1

Nq
�
D 1:

We define the space

Xı � C.Œ0;1/;L1Cı \ L1/;

with norm

kukXı � sup
t�0
˚
.1C t/�˛ku.t; 	/kL1Cı C .1C t/ˇ1�˛ku.t; 	/kL1

�
;
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if n D 1, and

kukXı � sup
t�0
˚
.1C t/�˛ku.t; 	/kL1Cı C .1C t/1�˛.ku.t; 	/kLNq C ku.t; 	/kL1/

�
;

if n � 2. For any u 2 Xı, we consider the operator

P W Xı ! Xı; Pu � K.t; x/ �.x/ u0.x/C Nu;

and we prove that

kPukXı .
�
.1C t/�˛ku0kL1Cı\L1 C kukpXı

�
: (12)

Thanks to linear estimate (11), it only remains to prove kNukXı . kukpXı . If u 2 Xı,
by interpolation we derive

ku.t; 	/kLq . .1C t/�ˇqC˛ kukXı ; 8q 2 Œ1C ı;1� (13)

so that

kju.t; 	/jpkLq . ku.t; 	/kpLpq . .1C t/�p.ˇp�˛/ kukpXı ; (14)

for any q 2 Œ1 C ı;1�, due to ˇpq � ˇp. Thanks to (11) and to (14), we can now
estimate

kNu.t; 	/kLq . kukpXı Iq.t/; 8q 2 Œ1C ı;1�;

Iq.t/ �
Z t

0

.1C t � �/�ˇq
Z �

0

.� � s/˛�1 .1C s/�p.ˇp�˛/ ds d�:
(15)

We notice that p.ˇp � ˛/ > 1 for some Nı > 0 (and Nı < ˛ if n � 2) if, and only if,

p > Np D max

�
p˛.n/ ;

1

1 � ˛
�
:

Therefore, for any ı 2 .0; Nı/, we may estimate (see, for instance, Lemma 3.1 in [8]),

Iq.t/ .
Z t

0

.1C t � �/�ˇq .1C �/˛�1 d� . .1C t/�ˇqC˛;

thanks to the fact that ˇq 2 .0; 1� and ˛ 2 .0; 1/.
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Therefore, (15) gives

kNukXp . kukpXp

and (12) is proved. By standard contraction arguments, the global existence of small
data solutions to (1) follows by (12). ut

3 Sketch of the Proof of Theorem 1.2

Theorem 1.2 may be proved by using the test function method, as done by the first
author in [4] for a damped wave equation with nonlinear memory.

By virtue of integration by parts for fractional integrals (see (2.64), p. 46 in [7]
and (2.106) in [6]), it is possible to give the following definition of weak solution
to (1).

Definition 3.1 We say that u 2 Lploc.Œ0;T/ � R
n/, T 2 .0;1�, is a weak solution

to (1) if for any test functions ' 2 C2.Œ0;1//, with supp' D Œ0;T�, and ˆ 2
C2c .Rn/, it holds

�
Z T

0

Z

Rn
u.t; x/ˆ.x/ dx .@tD

˛
tjT'/ dt �



D˛0jT'

� Z

Rn
u0.x/ˆ.x/ dx

D
Z T

0

Z

Rn
.u.t; x/4ˆ.x/C ju.t; x/jpˆ.x//dx '.t/dt ; (16)

where

D˛tjT � �@t J1�˛tjT ; J˛tjT f �
1

�.˛/

Z T

t
.s� t/˛�1f .s/ ds :

Test function method may then be applied, by choosing a test function ' whose
fractional derivative in time is known. In particular, we set '.t/ D !.t/ˇ , for
sufficiently large ˇ (more precisely, ˇ > .˛ C 1/p0), where

!.t/ �

(
.1 � t=T/ if t 2 Œ0;T�;
0 if t > T:

(17)

It follows that supp' D Œ0;T� and ' 2 Ck
c .Œ0;1//, k � 0, for any ˇ > k. Moreover

(see Lemma 4.1 in [4]), for any ˛ 2 .0; 1/, there exists C D C.˛; ˇ/ such that

D˛tjT !.t/
ˇ D C.˛; ˇ/ T�˛!.t/ˇ�˛ ; for any ˇ > ˛: (18)
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We set ‰R.t; x/ � ‰.x=R/, for any R > 1, where ‰ 2 C2c is a suitable radial, non-
negative, test function, which assumes a positive constant value in a neighborhood
of the origin, and ˆ.x/ � ‰R.x/`, for sufficiently large ` > 0 (more precisely,
` > 2p0).

Then, after straightforward calculations, a standard application of the test
function method leads to derive that the integral

IT;R �
Z T

0

Z

Rn
ju.t; x/jpˆ.x/dx '.t/dt

verifies

IT;R � C TRn.T�.˛C1/p0 C R�2p0

/: (19)

For any p 2 .1; p˛.n//, setting R D R.T/ � T
˛C1
2 , it follows that

Z 1

0

Z

Rn
ju.t; x/jp dx dt D lim

T!1 IT;R.T/ D 0 I

hence u 
 0. The critical case p D p˛.n/ may be treated with minor modifications.
The proof follows by contradiction, since we assumed nontrivial initial data.
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On Strichartz Estimates in an Abstract Form

Andrei V. Faminskii

Abstract Classical Strichartz type argument is applied for an abstract one-
parameter set of linear continuous operators and a Strichartz type estimate in a
non-endpoint case is rigorously justified.

Keywords One-parameter set of linear operators • Strichartz estimate
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The goal of this short paper is to justify rigorously the derivation of the well-known
Strichartz estimate for the simple non-endpoint case in an abstract setting.

There is a great amount of papers where estimates of Strichartz type, that is
estimates on solutions in space-time norms, based both on general duality arguments
and certain specific properties of considered problems, were established for concrete
evolution equations (see, for example, [9]). In an abstract setting a good preliminary
work was done in [4, 5], where a group of unitary operators in a Hilbert space was
considered. However, the final estimates were obtained there not in general case, but
for the specific cases of Schrödinger and wave equations.

Strichartz estimates in a general form for the first time were obtained in
[6]. In particular, these estimates were established for a one-parameter set of
operators without any group structure. However, there were no assumptions even on
measurability of this set with respect to the parameter. In particular, it was assumed
by default that all the considered integrals in abstract spaces existed. No explicit
assumptions of this kind were introduced also in [8], where the results from [6]
were generalized for the inhomogeneous case.

In this paper we justify the scheme from [6] in the case of abstract functional
spaces. As a first step of the study we do not consider here a more complicated
endpoint case. The obtained abstract result is illustrated by two examples for
dispersive equations.
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Note that in the books [7, 9] no results for Strichartz type inequalities in an
abstract setting are considered.

Let H be a complex Hilbert space, T W H� ! H be an isomorphism defined
by hf ; xi D .x;Tf / for all f 2 H�, x 2 H. In particular, kfkH� D kTfkH . Change
the standard linear structure of H� in the following way: hcf ; xi D chf ; xi for any
c 2 C. Then it is easy to see that the space H� remains to be a linear space and T

becomes a linear isomorphism. Therefore, from now on we identify H� and H and
write hu; xi D .x; u/ for any u 2 H� D H and x 2 H.

Consider a certain Banach space B, let D be a dense linear subspace in B, D�
a its

algebraic dual space (then B� � D�
a , we again set hcf ; xi D chf ; xi for any f 2 D�

a ,
x 2 D and c 2 C).

Let A W D ! H be a linear operator, A� W H D H� ! D�
a its algebraic adjoint,

that is

hA�u; xi D hu;Axi D .Ax; u/ 8 x 2 D; 8 u 2 H:

Lemma 1 The following three conditions are equivalent:

1) there exists a constant c � 0 such that kAxkH � ckxkB for all x 2 D;
2) if u 2 H, then A�u 2 B� and there exists a constant c � 0 such that kA�ukB� �

ckukH for all u 2 H;
3) if x 2 D, then A�Ax 2 B� and there exists a constant c � 0 such that
kA�AxkB� � c2kxkB.
The constant c is the same in all three cases.

Proof See [4]. ut
Lemma 2 Let fU.t/; t 2 Ig for a certain interval I � R (bounded or unbounded)
be a one-parameter set of continuous linear operators in a separable Hilbert space
H such that the functions U.t/u;U�.t/u 2 .I ! H/ are Bochner measurable for
all u 2 H and kU.t/k are uniformly bounded on I. Consider a Banach space B D
L1.IIH/, let D be a dense linear subspace in B. For any f 2 D let

Af D
Z

I
U.�/f .�/ d�: (1)

Then A can be extended to a linear continuous operator from B to H. Moreover,
A�u D U�.t/u, where A� W H ! L1.IIH/ � D�

a is given by

hA�u; f i D
Z

I



f .t/;U�.t/u

�
dt 8u 2 H; 8 f 2 B:
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Proof First of all note that U.�/f .�/ 2 L1.IIH/. The properties of the operator A is
obvious. Note also that U�.t/u 2 L1.IIH/. Moreover, for f 2 B and u 2 H

hA�u; f i D .Af ; u/ D
�Z

I
U.�/f .�/ d�; u

�
D
Z

I



U.�/f .�/; u

�
d�

D
Z

I



f .�/;U�.�/u

�
d� D

Z

I
hU�.�/u; f .�/i d�:

ut
Remark 3 The hypothesis of Lemma 2 are obviously satisfied for I D R andU.t/ D
G.�t/P, where fG.t/; t 2 Rg is a continuous group of unitary linear operators and
P is a continuous linear operator in H.

Corollary 0.4 Under the hypothesis of Lemma 2 for any f 2 B

A�Af D
Z

I
U�.t/U.�/f .�/ d� 2 L1.IIH/: (2)

Proof The proof is obvious. ut
Theorem 0.5 Let fU.t/; t 2 Ig for a certain interval I � R (bounded or
unbounded) be a one-parameter set of continuous linear operators in a separable
Hilbert space H such that the functions U.t/u;U�.t/u 2 .I ! H/ are Bochner
measurable for all u 2 H and kU.t/k are uniformly bounded on I. Let B0 be
a separable Banach space such that both B0 and H are subspaces of a certain
Hausdorff topological space, B0 \ H is dense both in B0 and H. Let there exist
a linear subspace D0 dense in B0 \ H such that U�.t/U.�/x 2 B�

0 for any x 2 D0
and a.e. t; � 2 I, moreover, the mapping U�.t/U.�/x 2 .I� ! B�

0 / is Bochner
measurable for a.e. t 2 I. Assume that there exist constants a 2 .0; 1/ and c0 � 0
such that for any x 2 D0 and a.e. t; � 2 I the following inequality holds:

kU�.t/U.�/xkB�

0
� c0jt � � j�akxkB0 : (3)

Then U�.t/u 2 B�
0 for any u 2 H and a.e. t 2 I, moreover, there exists a constant

c D c.a; c0/ � 0 such that for any u 2 H

�Z

I


U�.t/u


2=a
B�

0
dt
�a=2 � ckukH : (4)

Proof Let p D 2

2 � a
, then p0 D 2=a, that is

1

p
C a

2
D 1. Note that p 2 .1; 2/,

p0 2 .2;C1/.
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Let B D Lp.IIB0/, then B� D Lp0 ;�w.IIB�
0 / — the space of functions u 2

.I ! B�
0 / such that the function hu.t/; xi is Lebesgue measurable for any x 2 B0

(further such functions are called �-weakly measurable) and kukB�

0
2 Lp.I/ (note

that Lp0 ;�w.IIB�
0 / D Lp0.IIB�

0 / if B0 is reflexive, see [1]).
Let D be the space of step-functions mapping I into D0, that is D D spanfx�I0.t/g

for all x 2 D0 and bounded intervals I0 � I (the symbol�I0 denoted the characteristic
function of I0). The space D is obviously dense in B D Lp.IIB0/ since p < C1 and
L1.IIH/.

Define the operator A on D by formula (1). Then according to Lemma 2, A is
a linear operator mapping D into H and A�u D U�.t/u for any u 2 H, where the
operator A� maps H into L1.IIH/ � D�

a .
By virtue of (2) for any f 2 L1.IIH/

A�Af D
Z

I
U�.t/U.�/f .�/ d� 2 L1.IIH/:

Now let f .�/ 
 x�I0.�/ for a certain x 2 D0 and a bounded interval I0. Then
U�.t/U.�/f .�/ D �I0.�/U�.t/U.�/x for all t; � 2 I.

Since U�.t/U.�/x 2 B�
0 for a.e. t; � 2 I and for the a.e. fixed value of

t the function U�.t/U.�/x 2 .I� ! B�
0 / is Bochner measurable, then the

function U�.t/U.�/f .�/ 2 .I� ! B�
0 / is also Bochner measurable. Besides that,

inequality (3) provides that for the a.e. fixed value of t and a.e. � 2 I


U�.t/U.�/f .�/



B�

0
� �I0.�/c0jt � � j�akxkB0 2 L1.I

� /;

since a < 1 and the interval I0 is bounded.
According to the definition of the space D we have that for any function f 2 D

for the a.e. fixed value of t 2 I the function U�.t/U.�/f .�/ 2 .I ! B�
0 / is Bochner

measurable and so U�.t/U.�/f .�/ 2 L1.I� IB�
0 /. Therefore, for a.e t 2 I

F.t/ 

Z

I
U�.t/U.�/f .�/ d� 2 B�

0 \H:

Remind that F D A�Af 2 L1.IIH/ for any function f 2 D � L1.IIH/, and so for
any u 2 B0 \ H the function hF.t/; ui is Lebesgue measurable.

Next, for any u 2 B0 choose a sequence fun 2 B0 \ Hgn2N convergent to u in
B0. Then since F.t/ 2 B�

0 , we have that hF.t/; uni ! hF.t/; ui while n ! C1
for a.e. t 2 I. Therefore, the function hF.t/; ui is Lebesgue measurable on I as a
limit of a sequence of Lebesgue measurable functions. In means that the function
F 2 .I ! B�

0 / is �-weakly measurable on I.
In particular, since the space B0 is separable, the function kF.t/kB�

0
is Lebesgue

measurable on I (see [1]).
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Finally, with the use of Hardy–Littlewood–Sobolev equation we derive that for
any function f 2 D

kA�AfkB� D kFkB� D




F.t/



B�

0




L2=a.I/

�
hZ

I

�Z

I


U�.t/U.�/f .�/



B�

0
d�
�2=a

dt
ia=2

� c0
hZ

I

�Z

I
jt � � j�akf .�/kB0 d�

�2=a
dt
ia=2 � ckfkLp.IIB0/ D ckfkB:

Therefore, A�Af 2 B� and so according to Lemma 1 A�u 2 B� for any u 2 H and

kA�ukB� D
�Z

I


U�.t/u


2=a
B�

0
dt
�a=2 � c1=2kukH ;

which coincides with (4). ut
Remark 6 Since .T�/� D T and kT�k D kTk for any linear continuous operator in
H, the operators U�.t/ and U.t/ can be interchanged (as in [6, 8]).

Remark 7 Consider the following important example. Let � be a domain in R
n.

Set H D L2.�/, B0 D Lp.�/ for 1 � p < C1 (here we consider the spaces of
complex-valued functions). Then H� D L2.�/, B�

0 D Lp0.�/. One can choose, for
example, D0 D C1

0 .�/.

Remark 8 As a simple example of an implementation of this result consider the
well-known Strichartz estimate for Airy equation (see, for example, [3])

ut C uxxx D 0:

Consider the associated continuous group of unitary operators in H D L2.R/:

G.t/' D F�1 heit�3b'.�/
i
; t 2 R: (5)

Let U.t/ 
 G.�t/ (then U�.t/ 
 G.t/), B0 D L1.R/ (then B�
0 D L1.R/), D0 D

C1
0 .R/. With the use of Airy function A 
 F�1

h
eit�

3
i

for ' 2 D0 one can write

down a formula



G.t/'

�
.x/ D 1

3
p
t

Z

R

A
�x � y

3
p
t

�
'.y/ dy 8 x 2 R; 8t ¤ 0:

Since Airy function is bounded on R it follows that

kG.t/'kB�

0
� c0jtj�1=3k'kB0
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and, therefore,

kU�.t/U.�/'kB�

0
� c0jt � � j�1=3k'kB0 ; t ¤ �:

Note that since the operators G.t/ form the continuous group of unitary operators
also, for example, in H1.R/, then G.t/' 2 C.RtIH1.R// � C.RtIB�

0 / for any ' 2
D0. In particular, the mapping U�.t/U.�/' D G.t � �/' 2 .R� ! B�

0 / is Bochner
measurable 8t 2 R.

Therefore, inequality (4) for a D 1=3 yields that


kG.t/'kL1.Rx/



L6.Rt/

� ck'kL2.R/:

Note that it follows from this inequality by density arguments that

kG.t/'kL6.RtICb.Rx// � ck'kL2.R/; (6)

where the symbol Cb.R/ denotes the space of continuous bounded on R functions.

Remark 9 The situation when the measurability simply follows from the continuity
seems to be typical but not necessary. Consider a more general equation

ut C b0.t/uxxx D 0: (7)

Let the function b be strictly monotone on a certain interval I � R, for example,
let it be increasing. It is known that then the function b is differentiable a.e. on I.
Without loss of generality assume that 0 2 I and b.0/ D 0.

The simple change of variable � D b.t/ transforms this equation to Airy equation
and, therefore, a solution to the initial value problem with initial data ujtD0 D ' 2
L2.R/ can be written in a form u.t; 	/ D G.b.t//', where G is defined in (5).

Define a one-parameter set of continuous linear operators in H D L2.R/

U.t/ 
 G.�b.t//; t 2 I: (8)

Then U�.t/ D G.b.t//. Since the function b is Lebesgue measurable, the functions
U.t/' and U�.t/' are Bochner measurable for all ' 2 H. Moreover, U�.t/U.�/ D
G.b.t/�b.�// and the mapping G.b.t/�b.�//' 2 .I� ! B�

0 D L1.R// is Bochner
measurable for all t 2 I and ' 2 C1

0 .R/. Since for t ¤ �

kU�.t/U.�/'kB�

0
� c0

ˇ
ˇb.t/� b.�/

ˇ
ˇ�1=3k'kB0

condition (3) is satisfied if for certain constants c > 0 and a 2 Œ1=3; 1/

b.t/ � b.�/ � c.t � �/3a; 8t; � 2 I; t > �: (9)
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By virtue of the properties of monotone functions inequality (9) is provided by the
following one:

Z t

�

b0.
/ d
 � c.t � �/3a; 8t; � 2 I; t > �: (10)

These conditions establish the upper bound of the degeneration rate of the function
b near its stationary points. For example, for b.t/ 
 t˛ , t 2 .0;T/, it means that
0 < ˛ < 3.

Under assumptions (9) or (10) the following analogue of (6) holds

kG.b.t//'kL2=a.IICb.R// � c1k'kL2.R/: (11)

Remark 10 Similar argument can be applied, for example, for the following
generalized linearized Zakharov–Kuznetsov equation

ut C b0.t/.uxxx C uxyy/ D 0: (12)

In [2] for the corresponding continuous group of unitary operators in L2.R2/

G.t/' D F�1
h
eit.�

3C�2/b'.�; /
i
; t 2 R;

the following estimate was obtained:

kG.t/'kL1.R2/ � c0jtj�2=3k'kL1.R2/:

Then if again the function b is increasing on a certain interval I � R and for c > 0,
a 2 Œ2=3; 1/

b.t/ � b.�/ � c.t � �/3a=2; 8t; � 2 I; t > �;

or

Z t

�

b0.
/ d
 � c.t � �/3a=2; 8t; � 2 I; t > �;

the following inequality holds:

kG.b.t//'kL2=a.IICb.R2// � c1k'kL2.R2/:
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A Remark on the Energy Estimates for Wave
Equations with Integrable in Time Speed
of Propagation

M.R. Ebert, L. Fitriana, and F. Hirosawa

Abstract We consider the energy estimates for the wave equation with time
dependent oscillating propagation speed. We expect that the kinetic energy and the
elastic energy are estimated by the same order. The main purpose of this paper is to
show that if the propagation speed is in L1.RC/, then the elastic energy satisfies a
better estimate than the kinetic energy.

Keywords Energy estimate • Time dependent coefficient • Wave equations

Mathematics Subject Classification (2010) 35L15; 35B40

1 Introduction

Let us consider the following Cauchy problem for the wave equation with time
dependent propagation speed:

( 

@2t � a.t/2�

�
u D 0; .t; x/ 2 RC � R

n;

.u.0; x/; .@tu/.0; x// D .u0.x/; u1.x//; x 2 R
n;
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where a.t/ > 0. Then the wave type energy of the solution to (1) is given as follows:

E.t/ D 1

2
a.t/2kru.t; 	/k2L2 C

1

2
kut.t; 	/k2L2 ; (2)

here the first and the second terms are called the elastic energy and the kinetic
energy, respectively. One can observe many different effects for the behavior of
E.t/ as t!1 according to the properties of the speed of propagation a.t/ (see [3]
and [4]).

Let us introduce the following hypothesis to a.t/:

Hypothesis 1 a 2 Cm.RC/ \ L1.RC/ with m � 2 and

Z 1

t
a.�/d� DW A.t/ .1 .1C t/a.t/: (3)

Hypothesis 2 There exist two monotone decreasing positive functions �.t/ and
„.t/ satisfying �.t/ 2 C1.RC/; a.t/ ' �.t/ and „.0/ D A.0/ such that

1 . .1C t/
p
�.t/ or .1C t/

p
�.t/ is monotone decreasing, (4)

and
Z 1

t
ja.s/� �.s/jds . „.t/ D o.A.t// .t!1/: (5)

Hypothesis 3 The following conditions are valid:

ˇ
ˇa.k/.t/

ˇ
ˇ � ˛k�.t/.t/k .k D 1; : : : ;m/

with a non-negative function .t/ satisfying .t/„.t/ . �.t/ and

Z t

0

�.s/

�
.s/

�.s/

�m

ds . „.t/1�m:

Under the assumptions Hypotheses 1–3, it was proved in [2] that the following
estimate is established:

a.t/kru.t; 	/kL2 C kut.t; 	/kL2 . ku0.	/kH1 C ku1.	/kL2 :

1Let f ; g W � ! R be two non-negative functions. We use the notation f . g if there exists a
positive constant C such that f .y/ � Cg.y/ for all y 2 �. Moreover, f ' g denotes if f . g and
g . f hold.
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On the other hand, if a 2 L1.RC/ and monotone decreasing, then there exists a
positive function d.t/ satisfying limt!1 d.t/ D 0 such that the estimate of the
elastic energy is developed in [1] as follows:

a.t/kru.t; 	/kL2 . d.t/

ku0.	/k PH1 C ku1.	/kL2

�
:

The main theorem of this paper is an extension of a result from [1] without the
assumption of monotonicity of a.t/.

Theorem 1.1 If Hypotheses 1, 2 and 3 are valid, then there exists a positive
constant N such that the following estimate is established:

a.t/kru.t; 	/kL2 . .1C t/�.t/

kF.jrj/u0.	/k PH1 C kF.jrj/u1.	/kL2

�
;

where F is defined by

F.r/ D 1; 0 < r < 1 and F.r/ D r
p
�.„�1.Nr�1//; r � 1 (6)

Example 1.2 (i) If �.t/ D .1C t/�l, „.t/ D .1C t/˛ and .t/ D .1C t/�ˇ with
l > 1, ˛ < �lC 1 and ˇ D lC ˛ � .lC ˛ � 1/=m, then F.j�j/ ' j�j1C l

2˛ for
l < �2˛ and F.j�j/ D 1 for l � �2˛.

(ii) If �.t/ D exp.�t�/ and „.t/ D .1 C t/�� exp.�t�/, .t/ D .1 C t/�ˇ with
� > 1, � > ��1 and ˇ D ��C .���C1/=m, then F.j�j/ ' j�j1=2.log j�j/ �2� .

Remark 1.3 The definition of F.r/ is independent of N for this example

2 Proofs of Theorem 1.1

Denoting v.t; �/ D Ou.t; �/, where Ou is the partial Fourier transformation with respect
to the x variable, (1) is rewritten as follows:

(
vtt C a.t/2j�j2v D 0; .t; �/ 2 RC � R

n;

.v.0; �/; vt.0; �// D .Ou0.�/; Ou1.�// ; � 2 R
n:

For a positive large constant N to be chosen later, we split the extended phase space
RC � R

n into three zones, the pseudo differential zone Zpd.N/, the stabilized zone
Zst.N/, and the hyperbolic zone Zhyp.N/. They are defined as follows:

Zpd.N/ D f.t; �/ 2 RC � R
n I A.t/j�j � Ng ;

Zst.N/ D f.t; �/ 2 RC � R
n I „.t/j�j � N � A.t/j�jg ;

Zhyp.N/ D f.t; �/ 2 RC � R
n I „.t/j�j � Ng :
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Here we denote by t� and Qt� the separating lines between Zpd.N/ and Zst.N/ and
between Zst.N/ and Zhyp.N/, respectively, that is

A.t�/j�j D „.Qt�/j�j D N:

2.1 Estimate in Zpd.N/

For t � t� , that is .t; �/ 2 Zpd.N/, we put V0.t; �/ D t.i
.t/v.t; �/; vt.t; �//, 
.t/ D
a.t/=A.t/, so that

@tV0 D A0.t; �/V0; A0 D
 


 0.t/

.t/ i
.t/

ij�j2a.t/2

.t/ 0

!

: (7)

Let us consider the fundamental solution E D E.t; s; �/ to (7), that is, the solution of

@tE D A0.t; �/E; E.s; s; �/ D I (8)

with t� � s � t, where I is the identity matrix. If we put E D .Eij/ijD1;2, thanks
to (7) we obtain, for j D 1; 2, the following integral equations:

E1j.t; s; �/ D 
.t/


.s/

�
ı1j C i

Z t

s

.s/E2j.�; s; �/d�

�
(9)

and

E2j.t; s; �/ D ı2j C ij�j2
Z t

s

a.�/2


.�/
E1j.�; s; �/d�: (10)

By (9), (10) and integrating by parts we get

E2j.t; s; �/ D ı2j C ij�j2ı1j
Z t

s

a.�/2


.s/
d� � j�j2

Z t

s
E2j.�; s; �/

�Z t

�

a.�/2d�

�
d�:

By using (3) [1] and Hypothesis 2 we have

Z t

s
a.�/2d� '

Z t

s
�.�/a.�/d� � �.s/

Z t

s
a.�/d� . a.s/A.s/

and

Z t

s

a.�/2


.s/
d� D A.s/

Z t

s

a.�/2

a.s/
d� ' A.s/ � A.s/2:
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Taking into account the inequalities

jE2j.t; s; �/j . 1C j�j2A.s/
Z t

s
a.�/

a.�/

a.s/
d� C j�j2

Z t

s
a.�/A.�/E2j.�; s; �/d�

. 1C j�j2A.s/
Z t

s
a.�/jE2j.�; s; �/jd�;

by Gronwall’s inequality, there exists a positive constant C such that

jE2j.t; s; �/j . exp.C.1C j�j2A.s/
Z t

s
a.�/d�// � exp.C.1C N2// . 1 (11)

for j D 1; 2 uniformly in Zpd.N/. Therefore, by (9) and (11) we conclude the
estimate

jE1j.t; s; �/j . 
.t/


.s/



ı1j C .1C t/
.s/

�
(12)

for j D 1; 2 uniformly in Zpd.N/. Summarizing, all the consideration above implies
the following estimates:

Lemma 2.1 In Zpd.N/ the following estimates are established:

jv.t; �/j .
(
.1C t/ .jv.0; �/j C jvt.0; �/j/ for j�j � N=A.0/;

.1C t/.
.t�/jv.t� ; �/j C jvt.t� ; �/j/ for j�j � N=A.0/:
(13)

Proof Noting the representation V0.t; �/ D E.t; s; �/V0.s; �/, we have

�
i
.t/v.t; �/
vt.t; �/

�
D
�
E11.t; s; �/i
.s/v.s; �/ C E12.t; s; �/vt.s; �/
E21.t; s; �/i
.s/v.s; �/ C E22.t; s; �/vt.s; �/

�
: (14)

For j�j � N=A.0/, (13) trivially follows by using (12) to (14). For j�j � N=A.0/,
by (3) and using (12) to (14) with s D t� we have

jv.t; �/j .
�

1


.t�/
C .1C t/

�

.t�/jv.t� ; �/j C .1C t/jvt.t� ; �/j

..1C t/.a.t� /j�jjv.t� ; �/j C jvt.t� ; �/j/:

ut
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2.2 Estimate in Zhyp.N/

We can follow the standard diagonalization procedure and Lemma 3.6 in [2] to get
the following estimates in Zhyp.N/.

Lemma 2.2 There exists a positive constant N such that the following estimate is
established in Zhyp.N/ :

�.t/j�jjv.t; �/j C jvt.t; �/j .
p
�.t/ .j�jjv.0; �/j C jvt.0; �/j/ :

2.3 Estimate in Zst.N/

For any Qt� � s � t � t� , we put V1.t; �/ D t.i�.t/j�jv; vt/, so that

@tV1.t; �/ D A1.t; �/V1.t; �/; A1 D
 

�0.t/
�.t/ i�.t/�j

ij�ja.t/2
�.t/ 0

!

:

Let M1 be a diagonalizer of the principal part of A1 defined by

M1 D
�
1 �1
1 1

�
:

If we put W D M�1
1 V1, then we get

@tW D QA1.t; �/W; QA1 D M�1
1 A1M1 D

�
�1 b1
b1 �1

�
;

where

�1 D �0.t/
2�.t/

C ij�j.a2.t/C �2.t//
2�.t/

; b1 D � �
0.t/

2�.t/
C ij�j.�2.t/ � a2.t//

2�.t/
:

Then we have

@tjWj2 D2< .W; @tW/C2 D 2< .�1/ jWj2 C 4< .b1w1w2/

�
�
�0.t/
�.t/

C 2jb1j
�
jWj2 �

 
�0.t/
�.t/

C
ˇ
ˇ
ˇ
ˇ
�0.t/
�.t/

ˇ
ˇ
ˇ
ˇC

ˇ
ˇa2.t/ � �2.t//ˇˇ j�j

�.t/

!

jWj2

�
ˇ
ˇa2.t/ � �2.t/ˇˇ j�j

�.t/
jWj2 . ja.t/� �.t/jj�jjWj2:
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By (5) and Gronwall’s inequality we have

jW.t; �/j2 � exp


C„.Qt� /j�j

� jW.Qt� ; �/j2 D exp .CN/ jW1.Qt� ; �/j2:

Thanks to jW.t; �/j ' �.t/j�jjv.t; �/j C jvt.t; �/j, we have the following lemma:

Lemma 2.3 In Zst.N/ the following estimate is established:

�.t/j�jjv.t; �/j C jvt.t; �/j . �.Qt�/j�jjv.Qt� ; �/j C jvt.Qt� ; �/j:

2.4 Proof of Theorem 1.1

The proof of Theorem 1.1 is concluded if the following estimate is proved in all
zones:

a.t/j�jjbu.t; �/j . .1C t/�.t/max

�
1; j�j

q
�.Qt�/

� 
j�jjbu0.�/j C jbu1.�/j
�
: (15)

If j�j � N=A.0/, then the estimate (15) is trivial by Lemma 2.1.
If .t; �/ 2 Zpd \ fj�j � N=A.0/g, then by using Lemma 2.1 with t D t� and

Lemma 2.2 with t D Qt� we have

a.t/j�jjbu.t; �/j . .1C t/a.t/j�j
�

.t�/jbu.t� ; �/j C jbut.t� ; �/j

�

. .1C t/a.t/j�j
�
a.t�/j�jjbu.t� ; �/j C jbut.t� ; �/j

�

. .1C t/�.t/j�j
q
�.Qt�/ .j�jjbu0.�/j C jbu1.�/j/ :

If .t; �/ 2 Zst, then by (3), Lemma 2.2 with t D Qt� and Lemma 2.3 we have

a.t/j�jjbu.t; �/j .
q
�.Qt�/

�
j�jjbu0.�/j C jbu1.�/j

�

..1C t/�.t/j�j
q
�.Qt�/

�
j�jjbu0.�/j C jbu1.�/j

�
:

Let .t; �/ 2 Zhyp. If
p
�.t/ . .1C t/�.t/, then (15) is trivial by Lemma 2.2. If

.1C t/
p
�.t/ is monotone decreasing, then by (3) we have

p
�.t/ � .1C t/�.t/

.1C Qt� /
p
�.Qt� /

.
.1C t/�.t/

p
�.Qt�/

A.Qt�/ . .1C t/�.t/j�j
q
�.Qt�/:

Thus we also have (15) by Lemma 2.2.



488 M.R. Ebert et al.

Summarizing these estimates in all zones and applying Parseval theorem we
conclude the proof of Theorem 1.1. ut
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Semilinear Wave Equation in the de Sitter
Spacetime with Hyperbolic Spatial Part

Anahit Galstian

Abstract For the Cauchy problem for the semilinear wave equation in the de Sitter
spacetime the global in time existence of the solutions is still an open problem. In
this paper we give estimates for the lifespan of the solutions of semilinear wave
equation in the de Sitter spacetime with flat and hyperbolic spatial parts under some
conditions on the order of the nonlinearity. In the case of hyperbolic spatial part the
order of nonlinearity is less than the critical value given by Strauss conjecture.
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1 Introduction

For the Cauchy problem for the semilinear wave equation in the de Sitter spacetime
the global in time existence of the solutions is still an open problem. In this paper
we give estimates for the lifespan of the solutions of the semilinear wave equation in
the de Sitter spacetime with flat and hyperbolic spatial parts under some conditions
on the order of the nonlinearity. In the case of hyperbolic spatial part the order of
nonlinearity is less than the critical value given by Strauss conjecture.

We consider the semilinear wave equation in the spacetime, which is produced
by an expanding universe, more exactly, in the de Sitter spacetime. The line element
of that spacetime is as follows:

ds2 D � c2dt2 C e2Htdr2 C e2Htr2.d
2 C sin2 
 d�2/ :
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Here H is the Hubble constant. The scale factor e2Ht represents an expansion. This
spacetime belongs to the family of the Friedmann–Lemaître–Robertson–Walker
spacetimes. For simplicity, we set H D 1.

The linear wave in the background generated by the metric g obeys the covariant
wave equation �g D f , where

�g D 1
pjgj

@

@xi

�p
jgjgik @ 

@xk

�
:

The fundamental solutions for the covariant wave equation in the de Sitter spacetime
with flat spatial part, as a particular case of Klein–Gordon massless equation, are
constructed in [10]. The Lp�Lq and energy estimates for the solutions of the Cauchy
problem are obtained in [10] and [2], respectively.

In the present paper we consider the Cauchy problem for the covariant semilinear
wave (massless field) equation in the de Sitter spacetime

(
 tt � e�2t�H C n t D F. / ; x 2 H

n ; t 2 Œ0;1/;
 .x; 0/ D  0.x/ ;  t.x; 0/ D  1.x/; x 2 H

n ;
(1)

whereHn is a hyperbolic space and�H is Laplace–Beltrami operator on L2.Hn/. The
real hyperbolic spaces Hn are the most simple examples of noncompact Riemannian
manifolds with negative curvature. For geometric reasons, one can expect better
dispersive properties and, consequently, stronger results than in the Euclidean
setting.

Henceforth we assume that n D 3. For the Cauchy problem for the semilinear
wave equation in Minkowski spacetime in this case,

@2t u ��u D juj1C˛ u.0; x/ D u0.x/ ; ut.0; x/ D u1.x/ ;

the surprising answer, which is due to John, is that for small data a global solution
always exists when ˛ >

p
2, but does not, in general, when ˛ <

p
2. For the

higher dimensional semilinear wave equations the following conjecture was stated
by Strauss [7]: for n � 2 blow-up for all data if p < pn and global existence for all
small data, if p > pn. Here p D ˛ C 1, and pn is the positive root of the equation
.n � 1/p2n � .nC 1/pn � 2 D 0. (For the history of the results which have validated
Strauss’s conjecture, see, e.g., [3, 6] and the bibliography therein.)

Consider now the semilinear wave equation in the de Sitter spacetime

�gu D F.u/ u.0; x/ D u0.x/ ; ut.0; x/ D u1.x/ :

To the best of our knowledge, the question of the small data global solution is
not examined for this equation. To formulate the results of this paper we need the
following description of the nonlinear term.
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Condition (L) The function F W R �! R is said to be Lipschitz continuous with
exponent ˛, if there exist ˛ � 0 and C > 0 such that

jF. 1/� F. 2/j � Cj 1 �  2j .j 1j˛ C j 2j˛/ for all  1; 2 2 R :

First we consider the semilinear covariant wave equation in the de Sitter
spacetime with flat spatial part

(
 tt � e�2t� C 3 t D F. /; x 2 R

3 ; t 2 I;

 .x; 0/ D  0.x/ ;  t.x; 0/ D  1.x/; x 2 R
3 :

(2)

For � < 2, .� � 1/.˛ C 1/ > �1 define the function

R˛;� .t/ WD e�1=t C max
0���t

eR˛;� .�/ ; R˛;� .0/ WD 0 ;

with the domain D.R˛;� / D .0;1/ , where

eR˛;� .t/ WD .1 � e�t/��1e�t
Z t

0

e2b.e�b � e�t/1�� .1 � e�b/.��1/.˛C1/ db

C .1 � e�t/��1
Z t

0

e3b.e�b � e�t/3�� .1 � e�b/.��1/.˛C1/ db :

We do not know whether the functioneR˛;� .t/ is increasing, but computer simulations
suggest that there is t0 > 0 such that the function eR˛;� .t/ is monotonically
increasing function on Œt0;1/. We denote by R�1

˛;� the inverse of R˛;� .t/ function.
The following theorem provides an estimate for the lifespan of the solution of
problem (2).

Theorem 1.1 Assume that the condition .L/ is fulfilled, 1 � ˛ < 4 and � D
3˛=.˛ C 2/. Then the lifespan Tls of the solution  .t/ 2 Lq.R3/ of the Cauchy
problem (2), with  0; 1 2 C1

0 .R
3/ can be estimated as follows

Tls � R�1
˛;�



C .k 0kH1;p C k 1kL p/�˛

�
;

where C is a positive constant.

Now we turn to the semilinear wave equation in the de Sitter spacetime with
hyperbolic spatial part. Let � 2 .0; 1/ ; s D 2� ; q D 2

1�� ; p D 2
1C� . To formulate

the next result we define the function !�.t/ as in [4]:

!�.t/ D
(
jtj� C jtj3=2 ; 1

2
� � < 1 ;

jtj� C jtj3� ; 0 � � � 1
2
:

(3)
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Consider now the Cauchy problem (1) with the nonlinear term F. / satisfying the
condition .L/. Define the function

R˛;�;hyp.t/ WD e�1=t C max
0���t

eR˛;�;hyp.�/ ; R˛;�;hyp.0/ WD 0 ;

where

eR˛;�;hyp.t/ WD e�1=tC!�.1 � e�t/e�t
Z t

0

!�1
� .e�b � e�t/!�1�˛

� .1 � e�b/e2bdb

C!�.1 � e�t/

Z t

0

e3b!�1�˛
� .1 � e�b/ db

Z e�b�e�t

0

!�1
� .r/r dr:

Denote by t D R�1
˛;�;hyp."/ its inverse function. The following theorem provides an

estimate for the lifespan of the solution of (1).

Theorem 1.2 Assume that the condition .L/ is fulfilled, �.1C˛/ < 1 and q D ˛C
2. Then the lifespan Tls of the solution  .t/ 2 Lq.H3/ of the Cauchy problem (1),
with  0; 1 2 C1

0 .H
3/ can be estimated as follows

Tls � R�1
˛;�;hyp



C .k 0kH1;p C k 1kL p/

�˛�
;

where C is a positive constant.

The condition �.1 C ˛/ < 1 on the order of nonlinearity in the last theorem
implies ˛ <

p
2, which is the condition due to John. It would be interesting to

expand Theorems 1.1 and 1.2 to the higher dimensional case and state an analogue
of Strauss’s conjecture for the semilinear covariant wave equation in the de Sitter
spacetime.

2 Proof of Theorem 1.1

We use Yagdjian’s integral transform of [9] to prove Theorems 1.1 and 1.2. That
integral transform creates a bridge between solutions of wave equation in the de
Sitter spacetime and the wave equation in Minkowski spacetime. Through this
transform we derive, in particular, the estimates for the solutions.

Let� be a domain in R
n,� � R

n, while A.x; @x/ is a partial differential operator
A.x; @x/ D P

j˛j�m a˛.x/D˛x with smooth coefficients. For g 2 C1.� � I/, I D
Œ0;T�, 0 < T � 1, and '0; '1 2 C1

0 .�/, let the function vg.x; tI b/ be a solution
to the problem

(
vtt � A.x; @x/v D 0 ; x 2 � ; t 2 Œ0; 1 � e�T � ;

v.x; 0I b/ D g.x; b/ ; vt.x; 0I b/ D 0 ; b 2 I; x 2 � ;
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and let the function v' D v'.x; t/ be a solution of the problem

(
vtt � A.x; @x/v D 0; x 2 � ; t 2 Œ0; 1 � e�T � ;

v.x; 0/ D '.x/; vt.x; 0/ D 0 ; x 2 � :
Then the function u D u.x; t/ defined by

u.x; t/ D 2
Z t

0

db
Z �.t/��.b/

0

vg.x; rI b/1
4
e
3
2 .bCt/



.e�2b C e�2t/ � r2

�
dr

Ce t
2 v'0.x; �.t//C 2

Z �.t/

0

v'0.x; s/
1

8
e� t

2




3s2 C 1� e2t � 3� ds

C 2
Z �.t/

0

v'1.x; s/
1

4
e� t

2


1 � e2t



s2 � 1�� ds; x 2 �; t 2 I ;

where �.t/ WD 1 � e�t, according to Theorem 2.1 [9] solves the problem

(
utt � e�2tA.x; @x/u � 9

4
u D g; x 2 � ; t 2 I;

u.x; 0/ D '0.x/ ; ut.x; 0/ D '1.x/; x 2 � :

Consequently, the function  .x; t/ D e� 3
2 tu.x; t/ solves the problem for the

covariant wave equation:

(
 tt � e�2tA.x; @x/ C 3 t D f ; x 2 � ; t 2 I;

 .x; 0/ D  0.x/ ;  t.x; 0/ D  1.x/; x 2 � ;

where g D e
3
2 tf ; '0 D  0; '1 D 3

2
 0 C  1 . Then,

 .x; t/ D 1

2

Z t

0

db
Z �.t/��.b/

0

vf .x; rI b/e3b


e�2b C e�2t � r2

�
dr

C e�tv 0.x; �.t//C
Z �.t/

0

v 0.x; s/ds

C 1
2

Z �.t/

0

v 1 .x; s/


1C e�2t � s2

�
ds; x 2 �; t 2 I ;

where �.t/ WD 1 � e�t (see [8, 9]). In order to reduce the integration in the above
formula, we can appeal to the solutions Vg D Vg.x; tI b/ and V' D V'.x; t/ of the
problems

(
Vtt � A.x; @x/V D 0 ; x 2 � ; t 2 Œ0; 1 � e�T � ;

V.x; 0I b/ D 0 ; Vt.x; 0I b/ D g.x; b/ ; b 2 I; x 2 � ;
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and

(
Vtt � A.x; @x/V D 0; x 2 � ; t 2 Œ0; 1 � e�T � ;

V.x; 0/ D 0; Vt.x; 0/ D '.x/ ; x 2 � ;

respectively. Then vg.x; tI b/ D @tVg.x; tI b/; v'.x; t/ D @tV'.x; t/ and

 .x; t/ D e�t
Z t

0

Vf .x; e
�b � e�tI b/e2b db

C
Z t

0

db e3b
Z e�b�e�t

0

Vf .x; rI b/r dr

C e�tv 0.x; 1 � e�t/C V 0.x; 1 � e�t/

C e�tV 1.x; 1 � e�t/C
Z 1�e�t

0

V 1.x; s/s ds : (4)

The local existence of the solution of strictly hyperbolic semilinear equation is
known (see, e.g., [5, 6]). Using estimates (5) one can easily prove that the solution
to (2) can be extended as long as it remains bounded in Lq. For the convergence
of the integrals in the definition of the functioneR˛;� .t/ we have assumed 1 � � >
�1 ; .� � 1/.˛ C 1/ > �1 that is 0 < ˛ < 4 : From the representation formula (4)
we have

k .x; t/kLq � e�t
Z t

0

kVf .x; e
�b � e�tI b/kLqe2b db (5)

C
Z t

0

db e3b
Z e�b�e�t

0

kVf .x; rI b/kLq r dr

C e�tkv 0.x; 1 � e�t/kLq C kV 0.x; 1 � e�t/kLq

Ce�tkV 1.x; 1�e�t/kLqC
Z 1�e�t

0

kV 1.x; s/kLq sds :

Using Lp � Lq decay estimates for the solutions of the wave equation in the

Minkowski spacetime (see, e.g., [1]) with q D ˛ C 2; p D ˛C2
˛C1 ; 3

�
1
p � 1

q

�
D

3˛
˛C2 D � ; we obtain

k .x; t/kLq � e�t
Z t

0

.e�b � e�t/
1�3

�
1
p � 1

q

�

kF. ..x; b//kLpe2b db

C
Z t

0

db e3b
Z e�b�e�t

0

r1�3
�
1
p � 1

q

�

kF. ..x; b//kLp r dr
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C 2.1� e�t/
1�3

�
1
p � 1

q

�

k 0kH1C2s;p

C e�t.1 � e�t/
1�3

�
1
p � 1

p

�

k 1kLpC
Z 1�e�t

0

r1�3
�
1
p � 1

q

�

k 1kLp rdr:

Since 1 � 3
�
1
p � 1

q

�
> �1 then

k .x; t/kLq � e�t
Z t

0

.e�b � e�t/
1�3

�
1
p � 1

q

�

k .b/k1C˛Lq e2b db

C
Z t

0

e3bk .b/k1C˛Lq .e�b � e�t/
3�3

�
1
p � 1

q

�

db

C c0.1 � e�t/
1�3

�
1
p � 1

q

�

.k 0kH1C2s;p C k 1kLp/ :

It follows

.1 � e�t/��1k .x; t/kLq � .1 � e�t/��1e�t

�
Z t

0

.e�b � e�t/1�� .1 � e�b/.��1/.˛C1/ �.1 � e�b/��1k .b/kLq
�1C˛

e2bdb

C .1 � e�t/��1

�
Z t

0

e3b.1 � e�b/.��1/.˛C1/ �.1 � e�b/��1k .b/kLq
�1C˛

.e�b � e�t/3��db

C c0 Œk 0kH1C2s;p C k 1kLp � :

For � � 1 we define Eq.t/ WD sup�2Œ0;t�.1 � e�� /��1k .x; �/kLq ; then

Eq.t/ � Eq.t/
1C˛R˛;� .t/C c0 .k 0kH1C2s;p C k 1kLp/ :

We set

T" WD infft W Eq.t/ � 2"g ; " WD c0 .k 0kH1C2s;p C k 1kLp/ :

Then for every " > 0 we have

2" � "C 21C˛"1C˛R˛;� .T"/

and T" � R�1
˛;� ."

�˛2�˛�1/ : Theorem is proved. �
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3 Proof of Theorem 1.2

Consider the Cauchy problem for the linear wave equation

.@2t ��H/u D g ; u.0; x/ D u0 ; ut.0; x/ D u1 ;

on RC �H3, where H3 is 3D hyperbolic space with constant sectional curvature�1,
and�H represents its Laplace–Beltrami operator. Metcalfe and Taylor in [4] proved
the following dispersive estimates:





sin.t
p��H/p��H

u0




H1�s;q

� C

!�.t/
ku0kL p ; (6)



cos.t

p
��H/u1




H�s;q
� C

!�.t/
ku1kL p ; (7)

where � 2 .0; 1/ ; s D 2� ; q D 2
1�� ; p D 2

1C� ; and !�.t/ is given by (3) .
From the representation (4) and the estimates (6), (7) for s � 1 we have

k .x; t/kH1�s;q � e�t
Z t

0

!�1
� .e�b � e�t/k f .b/kL pe2b db

C
Z t

0

db e3b
Z e�b�e�t

0

!�1
� .r/k f .b/kL pr dr

C e�t!�1
� .1 � e�t/k 0kH2s;p C !�1

� .1 � e�t/k 0kL p

C e�t!�1
� .1 � e�t/k 1kL p C

Z 1�e�t

0

!�1
� .s/k 1kL p s ds :

Hence

k .x; t/kLq � k .x; t/kH1�s;q � e�t
Z t

0

!�1
� .e�b � e�t/k f .b/kL pe2b db

C
Z t

0

db e3bk f .b/kL p

Z e�b�e�t

0

!�1
� .r/r dr

C e�t!�1
� .1 � e�t/k 0kH2s;p C !�1

� .1 � e�t/k 0kL p

C e�t!�1
� .1 � e�t/k 1kL p C k 1kL p

Z 1�e�t

0

!�1
� .s/ s ds :

Denote " WD c0k 0kH2s;p C k 1kL p ; and

Es;p.t/ WD max
�2Œ0;t�

!� .1 � e�� /k .x; �/kHs;p :
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Then

E0;q.t/ � !�.1 � e�t/e�t
Z t

0

!�1
� .e�b � e�t/!�1�˛

� .1 � e�b/E1C˛0;q .b/e
2b db

C!�.1 � e�t/

Z t

0

db e3b!�1�˛
� .1 � e�b/E1C˛0;q .b/

�
Z e�b�e�t

0

!�1
� .r/r drC " � "C E1C˛0;q .t/R˛;� .t/ :

Now we examine the function R˛;�;hyp.t/. Since the arguments of the function !� in
those integrals are bounded we can set !�.t/ D t� and consequently

eR˛;�;hyp.t/ ' .1 � e�t/�e�t
Z t

0

.e�b � e�t/�� .1� e�b/.�1�˛/�e2b db

C 1

2 � � .1 � e�t/�
Z t

0

.e�b � e�t/2�� .1 � e�b/.�1�˛/�e3bdb:

Here � D ˛=.˛ C 2/. The condition �.1C ˛/ < 1 of the convergence of the last
integral implies ˛ <

p
2. Set

T" WD infft W E0;q.t/ � 2"g :

Then for " > 0 we have

2" � "C 21C˛"1C˛R˛;�;hyp.T"/ :

The desired estimate for the lifespan follows from the last inequality. Indeed,
there is a C > 0 such that the inequality C"�˛ � R˛;�;hyp.T"/ implies
T" � R�1

˛;�;hyp.C"
�˛/ . Theorem is proved. �
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Note on Backward Uniqueness for a Class
of Parabolic Equations

Christian P. Jäh

Abstract In this note, we review some recent results on the backward uniqueness
for solutions of parabolic equations of second and higher order. The main focus
is the connection of the backward uniqueness property with the regularity of the
principal part coefficients measured by moduli of continuity. We announce a new
backward uniqueness result for higher order equations.

Keywords Backward uniqueness • Bony’s paraproduct • Carleman estimates •
Higher order equations • Parabolic equations • Rough coefficients

Mathematics Subject Classification (2010) Primary 35Bxx, 35Kxx; Secondary
35K25, 35K30

1 Introduction

We consider parabolic equations of the type

Pu D @tuC
X

0�j˛j;jˇj�m

.�1/j˛j@˛x


a˛ˇ.t; x/@

ˇ
x u
� D 0 (1)

on the strip Œ0;T� � R
n
x with m 2 N. The ˛ and ˇ are n-multiindices. We assume

a˛ˇ.t; x/ D aˇ˛.t; x/ for all 0 � j˛j, jˇj � m and the aˇ˛ are supposed to be real
for j˛j D jˇj D m on Œ0;T� � R

n
x . We assume that there exists a � 2 .0; 1� such thatP

j˛jDjˇjDm a˛ˇ.t; x/�˛�ˇ � �j�j2m for all .t; x; �/ 2 Œ0;T� � R
n
x � R

n
� .

By saying that P has the backward uniqueness property, we mean the following:
Given u 2 H, Pu D 0 on Œ0;T� � R

n
x with u.T; x/ D 0 on R

n
x , then it follows that

u D 0 on Œ0;T� � R
n
x . The space H is an appropriate function space for the problem

C.P. Jäh (�)
Department of Mathematical Sciences, Loughborough University, Loughborough,
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e-mail: c.jaeh@lboro.ac.uk

© Springer International Publishing AG 2017
P. Dang et al. (eds.), New Trends in Analysis and Interdisciplinary Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-48812-7_63

499

mailto:c.jaeh@lboro.ac.uk


500 C.P. Jäh

at hand. Here, we shall prove the backward uniqueness properties with respect to
the space

Hm WD H1.Œ0;T�;L2.Rn
x//\ L2.Œ0;T�;H2m.Rn

x//:

In [10], Lions and Malgrange proved backward uniqueness for P in Hm under
the condition that the a˛ˇ are Lipschitz continuous with respect to t and sufficiently
smooth with respect to x. The latter requirement is to make the operator fall into the
abstract framework in which the authors were working. In that paper, the authors
also raised the question whether or not the Lipschitz regularity with respect to t
is really necessary or could be replaced by simple continuity. In [1], Bardos and
Tatar proved essentially the same result as Lions and Malgrange replacing Lipschitz
continuity with absolute continuity. In [12], Miller showed that a certain amount
of regularity with respect to t is necessary for the backward uniqueness property to
hold in the case m D 1. He constructed a counterexample with 1

6
-Hölder continuous

principal part coefficients.
For m D 1, Del Santo and Prizzi proved in [3] the backward uniqueness property

for P assuming the so-called Osgood condition for the modulus of continuity with
respect to t. More precisely, let � W Œ0; 1� ! Œ0; 1� be a modulus of continuity,
i.e. a continuous, concave, and increasing function with �.0/ D 0. If the principal
part coefficients belong toC�.Œ0;T�;L1.Rn

x//\L1.Œ0;T�;B2.Rn
x//, then uniqueness

holds in H2 if � satisfies the Osgood condition

Z 1

0

ds

�.s/
D C1: (2)

The high regularity with respect to x was due to a difficult commutator estimate
arising from the use of the Littlewood–Paley decomposition in the proof of a
Carleman estimate needed for the uniqueness proof. This was overcome in [5],
where the authors assumed that the principal part coefficients belong to the space
C�.Œ0;T�;L1.Rn

x// \ L1.Œ0;T�;Lip.Rn
x//. The Carleman estimate proved in [5] is

on the level of H�s, s 2 .0; 1/ instead of the usual L2. The precise statement is

Proposition 1.1 (Proposition 3.1 [5]) Let s 2 .0; 1/ and � be a modulus of
continuity satisfying (2). Assume further that, for all j; k D 1; : : : ; n,

ajk 2 C�.Œ0;T�;L1.Rn
x//\ L1.Œ0;T�;Lip.Rn

x//:

Then there exists a strictly increasing C2-function ˆ W Œ0;C1/ ! Œ0;C1/ such
that there exists a �0 � 1 such that

Z T=2

0

e
2
� ˆ.�.T�t//k@tuC

nX

j;kD1
@xj.ajk.t; 	/@xk u/k2H�sdt

& �
1
2

Z T=2

0

e
2
� ˆ.�.T�t//

.krxuk2H�s C � 1
2 kuk2H�s/dt

for all u 2 C1
0 .Rt � R

n
x/ with supp.u/ � Œ0;T=2� � R

n
x and all � � �0.
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Remark 1.2 The weight function ˆ is coupled to the modulus of continuity as
follows. Let � be the Osgood modulus of continuity. Then set

.t/ WD
Z 1

1
t

1

�.s/
ds; t � 1

ˆ.�/ WD
Z �

0

�1.t/dt; � � 0:

The function ˆ is differentiable and, thanks to the Osgood condition, defined
on Œ0;C1/. It also satisfies the nonlinear ordinary differential equation ˆ00 D
�.1=ˆ0/.ˆ0/2. This connection was first described in [14] for a Carleman estimate
for a uniqueness result for the solutions of the Cauchy problem for second order
elliptic equations with non-Lipschitz coefficients.

Remark 1.3 Replacing Proposition 3.5 in [5] by Theorem 2.5.8 in [11], one can
recover the L2 estimates, i.e. Proposition 1.1 holds true for s D 0. In this case, the
second order equations with all lower order terms with coefficients can be treated
merely in L1.Œ0;T� � R

n
x/. Compared to that in [5], it is not only the terms of zero

order.

Finally, in [6], the authors proved a uniqueness result assuming that the principal
part coefficients belong to C�.Œ0;T�;L1.Rn

x//\L1.Œ0;T�;C!.Rn
x//, where� and !

are moduli of continuity, � satisfies (2), and ! is given by !.s/ D p
�.s2/. Unless

in the case !.s/ D s, the Carleman estimate will be at the level of a Sobolev space
of negative order.

Proposition 1.4 (Proposition 7 in [6]) Let � and ! be two moduli of continuity
such that !.s/ D p

�.s2/. Suppose that � satisfies the Osgood condition (2).
Suppose moreover that there exists a positive constant C such that

R h
0
!.t/
t dt �

C!.h/, !.2�q/

!.2�p/
� C!.2p�q/ for 1 � p � q � 1, and, for all s 2 .0; 1/,

PC1
kD0 2.1�s/k!.2�k/ < C1. Assume further that, for all j; k D 1; : : : ; n,

ajk 2 C�.Œ0;T�;L1.Rn
x//\ L1.Œ0;T�;C!.Rn

x//:

Let s 2 .0; 1/. Then there exists a strictly increasing C2-function ˆ W Œ0;C1/ !
Œ0;C1/ such that there exists a �0 � 1 such that

Z T=2

0

e
2
� ˆ.�.T�t//@tuC

nX

j;kD1
@xj.ajk.t; 	/@xk u/


2
H�sdt

& �1=4
Z T=2

0

e
2
� ˆ.�.T�t//
krxuk2H�s

!
C �3=4kuk2L2

�
dt:

for all u 2 C1
0 .Rt � R

n
x/ with supp.u/ � Œ0;T=2� � R

n
x and all � � �0.
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The weight function in this Carleman estimate is the same as described in
Remark 1.2 and the space H�s

! .R
n
x/ is defined by the Littlewood–Paley decompo-

sition (see, e.g., [11]):

kuk2H�s
!
WD
X

��0
22.1�s/�!2.2��/k��uk2L2 < C1:

In this paper, we announce a generalization of the above-mentioned results in
[5, 6] to operators of type (1) with m � 2. The full proof, along with related results,
will be published elsewhere [7]. The only existing result of this type, that the author
is aware of, is [4], where the operator

P D @t C
X

0�j˛j�2m
ij˛j@˛x (3)

is considered. The precise statement there is

Proposition 1.5 (Proposition 2.1 in [4]) Let � be a modulus of continuity
satisfying (2) and a˛ 2 C�Œ0;T�. Then there exists a strictly increasing C2-function
ˆ W Œ0;C1/! Œ0;C1/ such that there exists a �0 � 1 such that

Z T=2

0

e
2
� ˆ.�.T�t//@tu �

X

0�j˛j�2m
ij˛ja˛.t/@˛x u


2
L2dt

& �
1
2

Z T=2

0

e
2
� ˆ.�.T�t//kuk2Hmdt

for all u 2 C1
0 .Rt � R

n
x/ with supp.u/ � Œ0;T=2� � R

n
x and all � � �0.

From the Carleman estimate follows that P in (3) has the backward uniqueness
property. The weight function is again the same as in Remark 1.2.

Our description of the history of the problem that we sketched here is by no
means exhaustive. To get a better overview over the literature, the reader may
consult the works referenced in the above cited works as well as in [8, 9]. In
[15], Tarama proved a similar result to the one in [5] but replacing the regularity
measurement of the principal coefficients with respect to t by a modulus of
continuity by bounded variation. It would be interesting to see whether this result
holds also for higher order operators.

Modifying a well-known counterexample of Pliś [13], Del Santo and Prizzi
proved in [3, 4] that the regularity assumptions with respect to t in the above
backward uniqueness results are essentially sharp. See Theorem 1.2 and Remark 1.2
in [4]. Up to now there are no counterexamples in the literature that involve x in the
principal part to show the sharpness of the assumptions with respect to x.

Notation By B2.Rn
x/, we denote the twice differentiable functions on R

n
x which are

bounded with all derivatives of order� 2. Given a modulus of continuity�, C�Œ0;T�
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denotes the space of continuous functions f that satisfy j f .s/� f .t/j � C�.jt � sj/.
The space Wk;1.Rn

x/ denotes the space of all functions f 2 L1.Rn
x/ such that all

distributional derivatives @�x u 2 L1.Rn
x/ for j� j � k.

2 The Main Result

The main result of this paper is

Theorem 2.1 (Uniqueness) Consider the operator P, defined by the equation

Pu D @tuC
X

j˛j;jˇjDm

.�1/j˛j@˛x


a˛ˇ.t; x/@

ˇ
x u
�C

X

j� j�m

b� .t; x/@
�
x D 0 (4)

with real a˛ˇ and possibly complex b� . We assume that

• a˛ˇ 2 C�.Œ0;T�;L1.Rn
x// \ L1.Œ0;T�;Wm;1.Rn

x//,
• b� 2 L1.Œ0;T� � R

n
x/,

• there exists a � 2 .0; 1� such that
P

j˛jDjˇjDm a˛ˇ.t; x/�˛�ˇ � �j�j2m for all
.t; x; �/ 2 Œ0;T� � R

n
x � R

n
� .

Then P has the backward uniqueness property in Hm, i.e. for u 2 Hm, Pu D 0 on
Œ0;T� � R

n
x and u.T; x/ D 0 on Rn

x it follows u D 0 on Œ0;T� � R
n
x.

This result is an extension of [4] generalizing [5] to higher order operators. As in
the other cases it follows in a standard way from an appropriate Carleman estimate.

Proposition 2.2 (Carleman Estimate) Let � be a modulus of continuity satisfy-
ing (2). There exists a strictly increasing C2-functionˆ W Œ0;C1/! Œ0;C1/ and
a �0 � 1 such that

T=2Z

0

e
2
� ˆ.�.T�t//



@tu �

X

j˛j;jˇjDm

.�1/m@˛x


a˛ˇ.t; 	/@ˇx u

� 

2

L2
dt

& �
1
2

T=2Z

0

e
2
� ˆ.�.T�t//kuk2Hmdt

(5)

for all u 2 C1
0 .Rt � R

n
x/ with supp.u/ � Œ0;T=2� � R

n
x and all � � �0.

Remark 2.3 The proof of this result is an extension of the proofs in [5, 6] with
weight function ˆ from Remark 1.2. To treat different lower order terms in (4),
especially terms of the form

P
j� jD2m�1 b� .t; x/@

�
x u, new ideas are required. This

problem will be discussed in a forthcoming paper [7]. Contrary to Proposition 1.5,
it is reasonable to expect that the regularity assumption with respect to t can be
lowered for the terms of order � 2m � 1.
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To prove this Carleman estimate, one follows the strategy of [4–6]. The full proof
as well as an extension in the spirit of [6] will appear in a forthcoming paper [7].
Here we line out the main steps of the proof of (5):

1. We replace v.t; x/ D e
1
� ˆ.�.T�t//u.t; x/ and rewrite (4) in terms of v:

Z T=2

0



@tv �

X

j˛j;jˇjDm

.�1/m@˛x


a˛ˇ.t; 	/@ˇx v

�Cˆ0.�.T � t//v



2

L2
dt

& �
1
2

Z T=2

0

kvk2Hmdt:

2. In this step we use Bony’s paraproduct as introduced in [2]. The operator is
defined as Tau D P

��N S��Na��u, where S� is an operator localizing to
fj�j � 2�C1g in the phase space and �� is localizing to f2��1 � j�j � 2�C1g
in the phase space. For more information and the properties of Ta, we refer to
Bony’s paper [2] and [5, 6, 9]. We replace a˛ˇ by Ta˛ˇ and use the fact that
a˛ˇ � Ta˛ˇ is m-regularizing for a˛ˇ 2 Wm;1. Thus, the analysis can be reduced
to proving

Z T=2

0



@tv �

X

j˛j;jˇjDm

.�1/m@˛x


Ta˛ˇ @

ˇ
x v
�Cˆ0.�.T � t//v




2

L2
dt

& �
1
2

Z T=2

0

kvk2Hmdt:

(6)

3. We microlocalize (6) by writing the norms in terms of Littlewood–Paley
decompositions. Using appropriate estimates (similar to the estimates in [5, 6])
for

X

j˛j;jˇjDm

.�1/m@˛x Œ��;Ta˛ˇ �@
ˇ
x u;

the analysis is reduced to a term by term analysis of

Z T=2

0


@tv� �

X

j˛j;jˇjDm

.�1/m@˛x


Ta˛ˇ @

ˇ
x v�

�Cˆ0.�.T � t//v�


2

L2
dt:

4. The proof proceeds in performing integration by parts with respect to t on the
term

2Re
Z T=2

0

D
@tv�

ˇ
ˇ�

X

j˛j;jˇjDm

.�1/m@˛x


Ta˛ˇ@

ˇ
x v�

� E
dt
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Due to the low-regularity of a˛ˇ with respect to t, we have to regularize the
coefficients. We use a standard mollifying technique and use estimates for T@ta�˛ˇ
and Ta˛ˇ�a�˛ˇ

. These are the same as in [3, 5, 6].
5. We will estimate the microlocalized pieces term by term and handle low and high

frequencies separately to obtain (6) by summing up all pieces.
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Multiplier Method in the Strong Unique
Continuation for Electromagnetic Schrödinger
Operator

Xiaojun Lu and Xiaofen Lv

Abstract This paper mainly addresses the strong unique continuation property for
electromagnetic Schrödinger operator with complex-valued coefficients. Appropri-
ate multipliers with physical backgrounds have been introduced to prove a priori
estimates. Moreover, its application in an exact controllability problem has been
shown, in which case, the boundary value determines the interior value completely.

Keywords Electromagnetic Schrödinger operator • Multiplier method • Strong
unique continuation

Mathematics Subject Classification (2010) Primary 35J10; Secondary 35J25

1 Introduction

Nowadays, quantum studies, especially multiphoton entanglement and interferom-
etry, are attracting many scientists’ attention, either theoretically or practically [16].
A few world-famous high-tech companies, such as Apple, Microsoft, are developing
new generation of high-performance computers based on the quantum mechanical
phenomena.

In our paper, we discuss an important complex-valued operator in this research
field. Let A.x/ be the vector potential of the magnetic field B, that is, B D r � A.
Clearly, r 	 B D div rotA D 0: From one of Maxwell’s equations (� is magnetic
permeability) r � E D ��@B=@t D 0; we deduce that E D �r�; where the scalar
� represents the electric potential. We choose an appropriate Lagrangian for the
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non-relativistic charged particle in the electromagnetic field (q is the electric charge
of the particle, and v is its velocity,m is mass),L D mv2=2�q�Cqv	A:Particularly,
the canonical momentum is specified by the vector p D rvL D mv C qA: Next
we define the classical Hamiltonian by Legendre transform, H , p 	 v � L D
.p� qA/2=.2m/ C q�: In quantum mechanics, when p is replaced by �i„r,(„ is
the Planck constant), we have the following operator

P , .i„r C qA/2=.2m/C q� W H! H�; (1)

where H and H� are corresponding function spaces [1]. Lots of literature discussed
this kind of operator [5, 9, 11, 18].

Let � � R
N be an open, connected, and bounded domain. From the structure of

operator P, we define two corresponding simplified operators

HA , ir C A.x/ W L2.�/! .L2.�//N ; (2)

H 2
A , .ir C A.x//2 W L2.�/! L2.�/; (3)

where A 2 C1.�/ is a real-valued potential vector. Interested readers can refer to
[6, 15] for more details concerned with the vector operator HA and self-adjoint
operator H 2

A . In such a manner, (1) is simplified as

H 2
A � �.x/ W L2.�/! L2.�/; (4)

where the non-positive real-valued function � 2 L1.�/. In this paper, we focus on
the strong unique continuation property(SUCP) for the electromagnetic Schrödinger
operator (4). First, we introduce the following definitions:

Definition 1.1 A function u 2 L2loc.�/ is said to vanish of infinite order at x0 2 �
if for any sufficiently small R > 0, one has

Z

jx�x0j<R
juj2dx D O.RM/; for every M 2 N

C: (5)

Definition 1.2 We say that the operator (4) has SUCP if every solution ! of the
equation

H 2
A! D �!;

which vanishes of infinite order at x0 is identically zero in a neighborhood of x0.

So far, the strong unique continuation problem for second order elliptic operators is
well understood. In the case of � D R

2, Carleman proved the SUCP of the elliptic
equation with bounded coefficients and V 2 L1

loc.R
2/

��u D W 	 ruC Vu (6)
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by introducing a weighted L2-estimate, or the Carleman estimate [4]. For the space
dimension N � 3 with bounded coefficients, Aronszajn [2], and Aronszajn et al.
[3] proved the SUCP by means of Carleman type inequalities, namely, observability
inequalities. Afterwards, D. Jerison, C.E. Kenig, C.D. Sogge treated Eq. (6) with
singular potentials V 2 LN=2loc .R

N/ and W 2 L1.RN/, N � 3, by the approach of
Lp�Lq Carleman estimate involving sharp exponents [10, 11, 17]. And N. Garofalo
and F.H. Lin gave a new proof for the SUCP of the elliptic operator��u D Vu with
bounded potential by applying a variational method in [7, 8].

There is a large body of work on SUCP for (6) with real-valued coefficients. In
this paper, we investigate the complex-valued case. As a matter of fact, the operator
H 2

A can be decomposed into

H 2
A! D ��! C iA 	 r! C ir 	 .A!/CAAT!: (7)

In [12, 13], K. Kurata proved the SUCP for (4) with AAT 2 K loc
N .�/, where

K loc
N .�/ denotes the Kato class. When the potential A 2 .L1.�//N , in effect, it

does not belong to the Kato class. As a result, we cannot deduce corresponding
results directly from K. Kurata’s work. In this manuscript, we intend to provide
a much simpler proof of SUCP for (4) with complex-valued coefficients by
developing new multipliers. At the moment one is ready to state the main results.

Theorem 1.3 For N � 2, let complex-valued ! 2 H2.B1/ be a solution of the
problem

��! C iA 	 r! C ir 	 .A!/C AAT! D �.x/! in B1; (8)

where B1 is a unit ball and the non-positive real-valued function � 2 L1.RN/. If !
vanishes of infinite order at x0 2 B1, then ! 
 0 in B1.
By virtue of Theorem 1.3, one is able to prove the following statement for a mixed
boundary value problem which is of great importance in the discussion of exact
controllability through boundary control [14, 15].

Corollary 1.4 Let � be a bounded, open, and connected domain in R
N with the

boundary � 2 C2. Let ! 2 H2.�/ be the solution of the mixed boundary problem

��! C iA 	 r! C ir 	 .A!/C AAT! D �.x/! in �;

! D @!=@� D 0 on �:

Then ! is identically 0 in �.

Remark 1.5 Let B be an arbitrarily small open ball such that � \ B ¤ ¿: Set

�1 , � [ B; and define !1 ,
�
! in �I
0 in Bn�: Indeed, to prove Corollary 1.4, it is

sufficient to verify that!1 2 H2. Thus, the result is concluded due to the connectness
of �.
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Remark 1.6 Theorem 1.3 demonstrates that the asymptotic behavior of the solution
! at an interior point x0 determines the interior value of ! in B1. In contrast with
Theorem 1.3, Corollary 1.4 indicates that the behavior of the solution ! on the
boundary determines the interior value of ! in �.

2 Sketch of Proof of Theorem 1.3: Multiplier Method

First, we introduce several quantities which will serve as useful tools for our
purposes. For every r 2 .0; 1/, we define the following two quantities

ˆ.r/ ,
Z

@Br

j!j2dSx; (9)

where dSx denotes (N � 1)-dimensional Hausdorff measure on @Br.

‰.r/ ,
Z

Br

.jHA!j2 � �j!j2/dVx: (10)

Actually, we have

Lemma 2.1 By virtue of divergence theorem, the following identity holds,

� Re
Z

@Br

�
rj!j2 � iAj!j2

�
	 x=rdSx D

Z

Br

�
� 2jHA!j2 C 2�j!j2

�
dVx: (11)

Next we calculate the derivatives of ˆ.r/ and ‰.r/ with respect to r.

Lemma 2.2 The derivatives of ˆ.r/ and ‰.r/ with respect to r are presented as
follows

ˆ0.r/ D .N � 1/ˆ.r/=rC 2‰.r/: (12)

‰0.r/ D .N � 2/‰.r/=rC .N � 2/=r R
Br
�j!j2dVx C 2=r Re

R
Br

A! 	HA!dVx

C2=r Re
R
Br
.x 	 r!/ 	 �!dVx C 2=r Re

R
Br
!x‚AHA!

T
dVx

C2 R
@Br
j� 	 .ir! C A!/j2dSx � 2 Re

R
@Br
.A! 	 �/.HA! 	 �/dSx

� R
@Br
�j!j2dSx;

(13)
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where

riaj , @aj=@xi; i; j D 1; 2; 3; : : : ;N;

and the Jacobi matrix

‚A ,

0

B
B
B
@

r1a1 r1a2; 	 	 	 r1aN
r2a1 r2a2 	 	 	 r2aN
:::

::: 	 	 	 :::

rNa1 rNa2 	 	 	 rNaN

1

C
C
C
A
:

Next we show an important comparison lemma.

Lemma 2.3 There exists an r0 2 .0; 1/ such that for every r 2 .0; r0/, we have
Z

Br

j!j2dVx � r
Z

@Br

j!j2dSx: (14)

Assume that there exists a small r1 2 .0; 1/ such that

ˆ.r/ ¤ 0 for 8 r 2 .0; r1/: (15)

Define the frequency function

±.r/ , r‰.r/=ˆ.r/; r 2 .0; r1/: (16)

Let r� , minfr0; r1g, and we set

Ær� ,
n
r 2 .0; r�/ W ±.r/ > 1

o
: (17)

With the above definitions, we have the following inequality for the frequency
function.

Lemma 2.4 Under the assumptions (15)–(17), there exists a positive constant � D
�.N; �/ which is independent of r such that ± 0.r/ is estimated in a uniform fashion,

± 0.r/ � �±.r/�:

It follows that exp.�r/±.r/ is monotonously increasing on .0; r�/, that is to say,

exp.�r/±.r/ � exp.�r�/±.r�/:

Keeping in mind the case ± � 1, we know that, ±.r/ is bounded on .0; r�/. Since

ˆ0.r/ D .N � 1/=rˆ.r/C 2‰.r/;
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then

�
log.ˆ.r/=rN�1/

�0 D 2‰.r/=ˆ.r/ D 2±.r/=r � C.�/=r:

We integrate from � to 2� , then

log.21�Nˆ.2�/=ˆ.�// � C.�/ log 2:

It follows that

ˆ.2�/ � 2C.�/CN�1ˆ.�/:

Finally, integrating with respect to � gives

Z

B2�

j!j2dVx � 2C.�/CN
Z

B�

j!j2dVx:

Since B1 is connected, then our theorem follows immediately.
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The Cauchy Problem for Nonlinear Complex
Ginzburg–Landau Type Equations

Makoto Nakamura

Abstract The Cauchy problem of nonlinear complex Ginzburg–Landau type equa-
tions is considered in Sobolev spaces under the variance of the space. Some
properties of the spatial variance on the problem are remarked.

Keywords Cauchy problem • Nonrelativistic limit

Mathematics Subject Classification (2010) Primary 35Q55; Secondary 35L71,
35Q75

When we consider a line element which has complex coefficients in a uniform
and isotropic space, and we use the Einstein equation to set its scale-function
which describes the spatial variance, we are able to consider nonlinear scalar-
field equations. Taking their nonrelativistic limits, we obtain nonlinear complex
Ginzburg–Landau type equations. In this paper, we consider the Cauchy problem
of them, and we show global and blow-up solutions in Sobolev spaces.

Let us start from the introduction of the nonlinear complex Ginzburg–Landau
type equations in this paper. We denote the spatial dimension by n � 1, the Planck
constant by „ WD h=2	 , the mass by m > 0. Let � 2 R, a0 > 0, a1 2 R. We put
T0 WD 1 when .1C �/a1 � 0, T0 WD �2a0=n.1C �/a1.> 0/ when .1C �/a1 < 0.
We define a scale-function a.t/ for t 2 Œ0;T0/ by

a.t/ WD
8
<

:
a0
�
1C n.1C�/a1t

2a0

�2=n.1C�/
if � ¤ �1;

a0 exp
�
a1t
a0

�
if � D �1;

(1)

where we note that a0 D a.0/ and a1 D @ta.0/. We define a weight function w.t/ WD
.a0=a.t//n=2, and a change of variable s D s.t/ WD R t

0
a.�/�2d� . We put S0 WD s.T0/.

We use conventions a.s/ WD a.t.s// and w.s/ WD w.t.s// for s 2 Œ0; S0/ as far as

M. Nakamura (�)
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there is no fear of confusion. A direct computation shows

S0 D
(

2
a0a1.4�n.1C�// if a1 .4 � n.1C �// > 0
1 if a1 .4 � n.1C �// � 0:

For � 2 C, 1 � p < 1, �	=2 < ! � 	=2, 0 � �0 < n=2 and 0 < S � S0, we
consider the Cauchy problem given by
8
<

:
˙i2m„ @su.s; x/C e�2i! �u.s; x/ � �e�2i!a.s/2


juwjp�1u
�
.s; x/ D 0;

u.0; 	/ D u0.	/ 2 H�0.Rn/
(2)

for .s; x/ 2 Œ0; S/�Rn, where i WD p�1, � WDPn
jD1 @2=@x2j , and H�0.Rn/ denotes

the Sobolev space of order �0 � 0. The double sign ˙ is in same order throughout
the paper. We say that u is a global solution of (2) if it exists on Œ0; S0/.

It is well known that the Schrödinger equation

i2m@tu=„C�u � �jujp�1u D 0
is derived from the Klein–Gordon equation

@2t � � c2�� C .mc2=„/2� C c2�j�jp�1� D 0
by a transform from � to u and the nonrelativistic limit. We consider the spatial
variance described by the scale-function a.	/, which satisf the Einstein equation
with the cosmological constant in a uniform and isotropic space. The study of roles
of the cosmological constant and the spatial variance is important to describe the
history of the universe, especially, the inflation and the accelerating expansion of the
universe. The scale-function (1) follows from the equation of state when we regard
the cosmological constant as the dark energy. We study the cosmological constant
from the point of view of partial differential equations. We consider the Cauchy
problem (2), and we show the well-posedness of the problem, global solutions and
blow-up solutions. Especially, we remark that some dissipative properties appear by
the spatial variance.

Let us consider the well-posedness of (2). For any real numbers 2 � q � 1 and
2 � r <1, we say that the pair .q; r/ is admissible if it satisfies 1=rC2=nq D 1=2.
For �0 � 0 and two admissible pairs f.qj; rj/gjD1;2, we define a function space

X�0.Œ0; S// WD fu 2 C.Œ0; S/;H�0.Rn//I max
�D0;�0

kukX�.Œ0;S// <1g;

where

kukX�.Œ0;S// WD
8
<

:

kukL1..0;S/;L2.Rn//\TjD1;2 L
qj ..0;S/;Lrj .Rn// if � D 0;

kukL1..0;S/; PH�.Rn//\TjD1;2 L
qj ..0;S/; PB�rj2.Rn// if � > 0:
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Here, PH�.Rn/ and PB�rj2.Rn/ denote the homogeneous Sobolev and Besov spaces,
respectively. Since the propagator of the linear part of the first equation in (2) is
written as exp.˙i„ exp.�2i!/s�=2m/, we assume 0 � ˙! � 	=2 to define it as a
pseudo-differential operator. We note that the scaling critical number of p for (2) is
p.�0/ WD 1C 4=.n� 2�0/ when a.	/ D 1. We put

p1.�0/ WD 1C 4

n � 2�0 	
�
1C 4

n � 2�0 	
2�0

n.1C �/
��1

for � ¤ �1.

Theorem 1 Let n � 1, � 2 C, 0 � �0 < n=2, and 1 � p � p.�0/. Let ! satisfies
0 � ˙! � 	=2 and ! ¤ �	=2. Assume �0 < p if p is not an odd number. There
exist two admissible pairs f.qj; rj/gjD1;2 with the following properties.

(1) (Local solutions.) For any u0 2 H�0.Rn/, there exist S > 0 with S � S0 and a
unique local solution u of (2) in X�0.Œ0; S//.

(2) (Small global solutions.) Assume that one of the following conditions from (i)
to (vi) holds: (i) �0 D 0, p D p.0/, (ii) �0 > 0, p D p.�0/, a1 � 0, (iii)
1 < p < p.�0/, a1 > 0, � < �1, (iv) 1 < p < p1.�0/, a1 < 0, � > �1, (v)
p1.�0/ < p < p.�0/, a1 > 0, � > �1, (vi) �0 > 0, 1 < p < p.�0/, a1 > 0,
� D �1. If ku0k PH�0 .Rn/ is sufficiently small, then the solution u obtained in (1)
is a global solution.

The results in Theorem 1 are also valid for the gauge variant equation

˙ i
2m

„ @su.s; x/C e�2i! �u.s; x/� �e�2i! a.s/2

w.s/
juwjp.s; x/ D 0; (3)

provided �0 < p when p is not an even number. The result (2) in Theorem 1
especially shows that we always have small global solutions for 1 < p < 1C 4=n
when a.	/ is not a constant in the conditions (iii) and (vi). This result is much
different from the case a.	/ D 1 in the following sense. In the case a.	/ D 1 and
! D 0, some weighted spaces, for example, .1C jxj/�1L2.Rn/, have been needed
for global solutions for 1C2=n < p < 1C4=n (see [3, 9, 10]). There exist blow-up
solutions for small initial data for 1 < p � 1C2=n (see [5]). In the case a.	/ D 1 and
! D ˙	=4, there exist blow-up solutions for small initial data for 1 < p � 1C 2=n
(see [2, 4, 7, 11]).

We have the following results for global and blow-up solutions for (2).

Corollary 2 Let �0 D 0 or �0 D 1. Let � > 0. Let 1 � p < 1C4=n when �0 D 0.
Let 1 � p < 1 C 4=.n � 2/ and a1. p � 1 � 4=n/ � 0 when �0 D 1. For any
u0 2 H�0.Rn/, the local solution u given by (1) in Theorem 1 is a global solution.

Corollary 3 Let �0 D 1, � < 0, a1 � 0 and 1 � p < 1 C 4=n. Let ! D 0 or
! D 	=2. For any u0 2 H1.Rn/, the local solution u given by (1) in Theorem 1 is a
global solution.
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Corollary 4 Let �0 D 1 and � < 0. Let ! ¤ 0; 	=2. Put p0 WD 2=.sin 2!/2 � 1.
Let p0 < p � 1 C 4=.n � 2/. Let a1. p � 1 � 4=n/ � 0 and S0 D 1. For any
u0 2 H1.Rn/ with negative energy

Z

Rn

1

2
jru0.x/j2 C �a20ju0.x/jpC1

pC 1 dx < 0; (4)

the solution u given by (1) in Theorem 1 blows up in finite time.

Corollary 5 Let �0 D 1 and � < 0. Let ! D 0 or ! D 	=2. Let 1 C 4=n �
p � 1C 4=.n � 2/. Let a1 � 0 and S0 D 1. For any u0 2 H1.Rn/ which satisfies
kjxju0.x/kL2x .Rn/ <1 and (4), the solution u given by (1) in Theorem 1 blows up in
finite time.

To prove the above corollaries, we use two dissipative properties. One is from
the parabolic structure of the first equation in (2) when 0 < ˙! < 	=2. The other
is from the scale function a.	/ when @ta.0/ D a1 ¤ 0. Even if the equation does
not have the parabolic structure when ! D 0; 	=2, the latter is very effective to
obtain the global solutions. The energy estimate shows the dissipative property of
the equation when �a1. p� 1� 4=n/ > 0. The properties of semilinear Schrödinger
equations of the form .i@t C�g/u D jujp�1u have been studied on certain compact
or noncompact Riemannian manifold .M; g/, where �g is the Laplace–Beltrami
operator on .M; g/. In the hyperbolic space Hn, the dispersive effect on Schrödinger
equations was considered in [1], and the global existence of solutions with finite
energy has been shown in [6]. In the de Sitter spacetime, a dissipative effect on
Schrödinger equations was shown in [8]. The proofs of the above theorem and
corollaries will appear somewhere.
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Uniform Resolvent Estimates for Stationary
Dissipative Wave Equations in an Exterior
Domain and Their Application to the Principle
of Limiting Amplitude

Kiyoshi Mochizuki and Hideo Nakazawa

Abstract The first aim of this work is to prove a uniform resolvent estimate for
stationary dissipative wave equations. The second aim is to improve the principle
of limiting amplitude for dissipative wave equations proved by S. Mizohata and K.
Mochizuki in 1966.

Keywords Dissipative wave equations • The principle of limiting amplitude •
Uniform resolvent estimates
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1 Introduction and Results

Let� be an exterior domain in R
N (N = 2) with smooth boundary @�. We consider

in � stationary dissipative wave equations of the form


�� � i�b.x/� �2� u.x/ D f .x/; x 2 � (1)

with Dirichlet boundary condition

u.x/ D 0; x 2 @�: (2)
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Here, � DPN
jD1 @2=@x2j , � 2 C, b.x/ is a real-valued bounded continuous function

of x 2 � [ @� and f .x/ 2 L2.�/.
We denote r D jxj, and define the operator D˙ and Dṙ by

D˙u D ru � N � 1
2r

u
x

r
� i�u

x

r
.˙=� = 0/;

Dṙ u D D˙u 	 x
r
D ur � N � 1

2r
u� i�u .˙=� = 0/:

These two operators are introduced in Morawetz and Ludwig [14] and are used in
Ikebe and Saito [2], Mochizuki [8–10], Saito [19, 20], Mochizuki and Nakazawa
[11, 12], Nakazawa [15–17]. The weighted L2-space is defined by

L2w D ff I jj f jjw <1g ; jj f jj2w D
Z

�

jwf j2dx

for a non-negative functionw. In the following, we assume that RNn� is star-shaped
with respect to the origin, i.e., it holds that .x=r; n/ 5 0 for the unit outer normal n of
@�. Moreover, we exclude the case of the whole space, that is, � ¤ R

N . Therefore,
we assume that there exists r0 > 0 such that

min fr D jxjI x 2 @�g > r0:

We also introduce the following conditions .B/ for the function b.x/:

.B/ jb.x/j 5
8
<

:
b0r�2

�
1C log

r

r0

��2
.N D 2/;

b0r�2�ı .N = 3/;
(3)

for some ı > 0 and for some sufficiently small constant b0 2 .0; 1/. Now we shall
state the main result.

Theorem 1.1 Assume .B/. Then for a solution u of (1)–(2), the following uniform
resolvent estimates hold for˙=� = 0:

(1) If N D 2, then

j�j2jjujj2 1

r.1Clog r
r0 /
C jjujj2p

.˙=�/rC1

r.1Clog r
r0 /

C
Z

@�

f�.n; x/g junj2dS

5 Cjj f jj2
r


1Clog r

r0

�: (4)
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(2) If N = 3, then

j�j2jjujj2
r�.1Cı/=2 C jjujj2p.˙=�/rC1

r

C
Z

@�

f�.n; x/g junj2dS

5 Cjj f jj2
r.1Cı/=2 : (5)

As a corollary of Theorem 1.1, we are able to improve a result obtained by
Mizohata and Mochizuki [7]. This result is devoted to the asymptotical behavior
of solutions to the following mixed problem for dissipative wave equations with
time periodic external forcing term:

wtt ��wC b.x/wt D e�i!tf .x/; .x; t/ 2 � � .0;1/; (6)

w.x; 0/ D wt.x; 0/ D 0; x 2 �; (7)

w.x; t/ D 0; .x; t/ 2 @� � .0;1/; (8)

where ! 2 R.

Theorem 1.2 Assume .B/. Let u be a solution of (1)–(2) and let w be a solution
of (6)–(8).

(1) If N D 2, then

lim
t!C1 jjw � ue�i!tjj

r�3=2



log r
r0

�
�1 D 0:

(2) If N = 3, then

lim
t!C1 jjw� ue�i!tjjr�3=2 D 0:

A uniform resolvent estimate was firstly proved by Kato and Yajima [4] (see also
Kuroda [5], Watanabe [22]) for Helmholtz equations in R

N with N = 3. Mochizuki
[10] extended this to magnetic Schrödinger equations in � � R

N with N = 3.
Refining an inequality presented there, Nakazawa [17] obtained partial results for
the exterior problem in R

2. (It is in general known that the uniform resolvent
estimate does not hold in R

2. See Yafaev [23].) But the duality relation was violated.
This is improved by us in [11] for magnetic Schrödinger equations (its essence is
stated in [12]). Applying the methods developed in [15–17] and [11], we obtain
Theorem 1.1.

The principle of limiting amplitude states that every solution of the time-
dependent problem tends to the steady states e�i!tu.x/ as t goes to infinity, where
u.x/ satisfies the corresponding stationary problem with the radiation condition.
Many results are known so far, e.g., [1, 3, 6, 7, 13, 18, 21]. For dissipative wave
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equations in R
3, there are no results other than Mizohata and Mochizuki [7] (and

Iwasaki [3]). In [7], this principle was proved under the following assumptions:
The function b.x/ is Hölder continuous on R

3 and satisfies 0 5 b.x/ 5 b1r�3�ı1 for
sufficiently large r and for some b1, ı1 > 0. The function f .x/ 2 C2.R3/ satisfies
j f .x/j 5 Cr�3�ı2 and jrf .x/j C j�f .x/j 5 Cr�2�ı3 for sufficiently large r, and for
some C, ı2 and ı3 > 0. Then for any bounded set X � R

3, it holds that

lim
t!C1 max

x2X je
i!tw.x; t/ � u.x/j D 0:

In their result, there are no assumptions on the smallness of b.x/. However, we need
the smallness to establish Theorems 1.1 and 1.2. To remove the smallness is one of
our future problems.

2 Outline of Proofs

[Outline of the Proof of Theorem 1.1] In (1), put

v D e�u; g D e�f ;

where the function �.r/ is defined by

�.r/ D �i�rC N � 1
2

log r; .˙=� = 0/:

Then v solves the equation

��v C 2�rvr C Qbv D g; (9)

where

Qb.x/ D �i�b.x/C .N � 1/.N � 3/
4r2

:

Then, multiply by rvr both sides of (9). After using integration by parts, noting (2)
and the assumption that the boundary @� is star-shaped, we derive some suitable

inequality. Making use of it and one more inequality derived from<
n
(1) � '.r/i�u

o

for 0 5 ' 2 L1..r0;1// satisfying 'r 5 0, we arrive at the following result.
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Proposition 2.1 Assume .B/ and ' satisfies the 0 5 ' 2 L1..r0;1// and 'r 5 0.
Then for a solution u of (1),

j�j2
Z

�

�
' � jbjg� jbjr

2

�
juj2dxC

Z

�

�
' � jbjr

2

�ˇ̌
ˇur C N � 1

2r
u
ˇ̌
ˇ
2

dx

C
Z

�

n
.˙=�/rC 1

2
�
�
' C jbjr

2

�o
jD˙uj2dx (10)

C
Z

�

n
.˙=�/rC 1

2

o .N � 1/.N � 3/
4r2

juj2dxC 1

2

Z

@�

f�.n; x/g junj2dS

C1
2

Z

@�

f�.n; x/g junj2dS 5
Z

�

ˇ̌
fgi�u

ˇ̌
dxC

Z

�

r
ˇ̌
ˇ fDṙ u

ˇ̌
ˇ dx .˙=� = 0/:

If N = 3, it does not cause any problems. On the other hand, if N D 2, the fourth
term of left-hand side of (10) is not non-negative. To compensate this, we need
the following inequality which is in some sense of Hardy-type related to radiation
conditions. Note that this inequality is independent of the dimension N.= 1/.

Proposition 2.2 Suppose that � and  to be both smooth function of r satisfying
� = 0. Then for any function � 2 C1

0 .�/,

Z

�

W�;j�j2dx 5 jjDṙ �jj2p�
.˙=� = 0/;

where

W�; D .˙=�/W1 CW2 CW3 C �

4r2

with

W1 D 2�
� 1
2r
C 

�
; W2 D ��r

� 1
2r
C 

�
; W3 D ��

�
r C 

r
C 2

�
:

Making use of Propositions 2.1 and 2.2 by choosing ', � and  appropriately, we
get Theorem 1.1. ut

[Outline of the Proof of Theorem 1.2] To prove Theorem 1.2, we follow the
arguments as in Roach and Zhang [18]. Then we obtain the next result.

Proposition 2.3 Assume � D �C i� , where 0 < �1 5 � 5 �2 <1 and 0 < � 5 1

with some �1, �2 > 0. If u is a solution of (1)–(2), then the inequality

j�j
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
du

d�

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
.
p
r /�1

5 Cjj f jjpr 
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holds for some C > 0, where

 .r/ D
(
r
�
1C log r

r0

�
; .N D 2/;

r; .N = 3/:

By Proposition 2.3 and the principle of limiting absorption for the operator
�� � i�b.x/� �2��1 which is followed from Theorem 1.1 (cf., [15, 16]), we find
that for any 0 < �1 5 �; � 0 5 �2 <1 satisfying j� � � 0j 5 1,

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
R.� C i0/f � R.� 0 C i0/f

� � � 0

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
.
p
r /�1

5 Cjj f jjpr :

Moreover, it holds that

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
R.� C i0/f

� � !
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
.
p
r /�1

5
Cjj f jjpr 

j� � !jj� j :

Then we can follow the same argument as in Mizohata and Mochizuki [7], §4 to
conclude Theorem 1.2. ut

Acknowledgements The first author was partially supported by Grant-in-Aid for Scientific
Research (C) (No.25400179), Japan Society for the Promotion of Science.

References

1. D.M. Èı̆dus, The principle of limit amplitude. Uspekhi Math. Nauk. 24, 91–156 (1969); Russ.
Math. Surv. 24, 97–167 (1969)

2. T. Ikebe, Y. Saito, Limiting absorption method and absolute continuity for the Schrödinger
operators. J. Math. Kyoto Univ. 12, 513–542 (1972)

3. N. Iwasaki, On the principle of limiting amplitude. Publ. RIMS Kyoto Univ. 3, 373–392 (1968)
4. T. Kato, K. Yajima, Some examples of smooth operators and the associated smoothing effect.

Rev. Math. Phys. 1, 481–496 (1989)
5. S.T. Kuroda, An Introduction to Scattering Theory. Lecture Notes Series, vol. 51 (Aarhus

University, Aarhus, 1978)
6. O.A. Ladyženskaya, On the principle of limiting amplitude. Uspekhi Math. Nauk 12, 161–164

(1957)
7. S. Mizohata, K. Mochizuki, On the principle of limiting amplitude for dissipative wave

equations. J. Math. Kyoto Univ. 6, 109–127 (1966)
8. K. Mochizuki, Spectral and Scattering Theory for Second Order Elliptic Differential Operators

in an Exterior Domain. Lecture Notes Univ. Utah, Winter and Spring (1972)
9. K. Mochizuki, Scattering theory for wave equations with dissipative terms. Publ. RIMS Kyoto

Univ. 12, 383–390 (1976)
10. K. Mochizuki, Uniform resolvent estimates for magnetic Schrödinger operators and smoothing

effects for related evolution equations. Publ. RIMS Kyoto Univ. 46, 741–754 (2010)



Dissipative Wave Equations 527

11. K. Mochizuki, H. Nakazawa, Uniform resolvent estimates for magnetic Schrödinger operators
in 2D exterior domain and their applications to related evolution equations. Publ. RIMS Kyoto
Univ. 51(2), 319–336 (2015)

12. K. Mochizuki, H. Nakazawa, Uniform resolvent estimates for Helmholtz equations in 2D
exterior domain and their applications. Publ. RIMS Kôkyûroku 1962, 68–76 (2015)

13. C.S. Morawetz, The limiting amplitude principle. Commun. Pure Appl. Math. 15, 349–361
(1962)

14. C.S. Morawetz, D. Ludwig, An inequality for the reduced wave operator and the justification
of geometrical optics. Commun. Pure Appl. Math. 21, 187–203 (1968)

15. H. Nakazawa, The principle of limiting absorption for the non-selfadjoint Schrödinger operator
with energy dependent potential. Tokyo. J. Math. 23(2), 519–536 (2000)

16. H. Nakazawa, On wave equations with dissipation II. Rend. Istit. Mat. Univ. Trieste 42, 165–
184 (2010)

17. H. Nakazawa, Uniform resolvent estimates for Schrödinger equations in an exterior domain in
R
2 and their applications to scattering problems. Bull. Liberal Arts Sci. Nippon Med. Sch. 42,

1–12 (2013)
18. G.F. Roach, B. Zhang, The limiting-amplitude principle for the wave propagation problem with

two unbounded media. Math. Proc. Camb. Phil. Soc. 112, 207–223 (1992)
19. Y. Saito, The principle of limiting absorption for the non-selfadjoint Schrödinger operator in

R
N.N ¤ 2/. Publ. RIMS Kyoto Univ. 9, 397–428 (1974)

20. Y. Saito, The principle of limiting absorption for the non-selfadjoint Schrödinger operator in
R
2. Osaka J. Math. 11, 295–306 (1974)

21. A.N. Tikhonov, A.A. Samarskiı̆, The radiation principle. Žh. Èksper. Teoret. Fiz. 18, 243–248
(1948)

22. K. Watanabe, Smooth perturbations of the selfadjoint operator j�j˛=2. Tokyo J. Math. 14, 239–
250 (1991)

23. D.R. Yafaev, Mathematical Scattering Theory, Analytic Theory. Mathematical Surveys and
Monographs, vol. 158 (AMS, Providence, RI, 2009)



Stabilization of the Fourth Order Schrödinger
Equation

Belkacem Aksas and Salah-Eddine Rebiai

Abstract We study both boundary and internal stabilization problems for the fourth
order Schrödinger equation in a smooth bounded domain� of Rn:We first consider
the boundary stabilization problem. By introducing suitable dissipative boundary
conditions, we prove that the solution decays exponentially in an appropriate energy
space. In the internal stabilization problem, by assuming that the damping term is
effective on the neighborhood of the boundary, we prove the exponential decay of
the L2.�/-energy of the solution. Both results are established by using multipliers
technique and compactness/uniqueness arguments.

Keywords Boundary stabilization • Exponential stability • Fourth order
Schrödinger equation • Internal stabilization

Mathematics Subject Classification (2010) Primary 93D15; Secondary 35Q40

1 Introduction

Let � be an open bounded domain of Rnwith sufficiently smooth boundary � . Let
f�0; �1g be a partition of � defined by

�0 D fx 2 �;m.x/ 	 �.x/ > 0g (1)

�1 D fx 2 �;m.x/ 	 �.x/ � 0g (2)

where �.	/ is the unit normal vector to � pointing towards the exterior of�;m.x/ D
x � x0; x0 is a fixed point in the exterior of � such that

�0 \ �1 D ; (3)
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In �; we consider the fourth order Schrödinger equation with boundary damping
term supported on �0

@y.x; t/

@t
D i�2y.x; t/ in � � .0;C1/; (4)

y.x; 0/ D y0.x/ in �; (5)

y.x; t/ D @y.x; t/

@�
D 0 on �1 � .0;C1/; (6)

�y.x; t/ D 0 on �0 � .0;C1/; (7)

@�y.x; t/

@�
D m.x/ 	 �.x/@y.x; t/

@t
on �0 � .0;C1/; (8)

The natural energy space for system (4)–(8) is the space

V D
�
f 2 H2.�/I f D @f

@�
D 0 on �1

�

endowed with the norm induced by the inner product

h f ; gi D
Z

�

�f .x/�g.x/dx

which in V is equivalent to the H2-norm. Thus the energy function of a solution of
system (4)–(8) is

E.t/ D 1

2
ky.t/k2V

D 1

2

Z

�

j�y.x; t/j2 dx

Semigroups theory may be applied to establish the wellposedness of system (4)–(8).

Theorem 1.1 For any initial datum y0 2 V; system (4)–(8) has a unique solution

y 2 C.Œ0;C1/IV/ \ C1.Œ0;C1/;V 0/

Here V 0 is the dual of V. Moreover if y0 2 H6.�/\ V, and

�y0.x/ D 0 on �0;

@�y0.x/

@�
D im.x/ 	 �.x/�2y0.x/ on �0
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then y 2 C1.Œ0;C1/IV/ \ C.Œ0;C1/IH6.�/\ V/ and satisfies

�y.x; t/ D 0 on �0 � .0;C1/
@�y.x; t/

@�
D im.x/ 	 �.x/�2y.x; t/ on �0 � .0;C1/

In the following theorem we state an exponential stability result for system
(4)–(8).

Theorem 1.2 There exist positive constants M and ı such that for any initial datum
y0 2 V; the energy E.	/ of the solution of the system (4)–(8) where �0 and �1 are
given by (1) and (2) satisfies the inequality

E.t/ � Me�ıtE.0/ (9)

for all t � 0:
In this paper, we also study the stability problem for the fourth order Schrödinger

equation with an internal damping term. To this aim, let ! � � be a neighborhood
of �0 and let a.	/ be an L1.�/-function such that

�
a.x/ � 0 a.e. in �;
9a0 > 0 W a.x/ � a0 a.e. in !:

(10)

Consider the following internally damped fourth order Schrödinger equation

@y.x; t/

@t
D i�2y.x; t/ � a.x/y.x; t/ in � � .0;C1/; (11)

y.x; 0/ D y0.x/ in �; (12)

y.x; t/ D @y.x; t/

@�
D 0 on � � .0;C1/; (13)

It is easy to see that system (11)–(13) has a unique solution in the class

y 2 C.Œ0;C1/IL2.�// \ C1.Œ0;C1/I .H4.�/\H2
0.�//

0/

if y0 2 L2.�/; and in the class

y 2 C.Œ0;C1/IH4.�/\ H2
0.�// \ C1.Œ0;C1/IL2.�//

if y0 2 H4.�/\H2
0.�/:
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Let us define the energy of a solution of system (11)–(13) as

F.t/ D 1

2
ky.t/k2L2.�/

D 1

2

Z

�

jy.x; t/j2 dx

We have the following exponential decay result for system (11)–(13).

Theorem 1.3 Let ! � � be a neighborhood of �0: Assume that the L1.�/-
function a.:/ satisfies (10). Then, there exist positive constants M and ı > 0 such
that

F.t/ � Me�ıtF.0/; 8t > 0

for every solution of (11)–(12) with initial datum y0 2 L2.�/.

Control problems for the fourth order Schrödinger equation have been recently
considered [1, 2]. In [2], it was shown that (4) with L2-Neumann boundary control
is exactly controllable in an arbitrarily short time T > 0 in H�2.�/: In [1], the
authors showed that (4) with either Dirichlet or Neumann boundary control and
associated colocated observation is well-posed in the sense of Salamon and regular
in the sense of Weiss (see the references of [1]). They also established an exact
controllability result for (4) with L2-Dirichlet control. These results together with
the one of [2] enabled them to deduce exponential stability of (4) with a dissipative
feedback acting either in the Dirichlet or in the Neumann boundary conditions.

The rest of the paper is organized as follows. In Sect. 2, we sketch the general
lines of the proof of Theorem 1.2, and in Sect. 3 we outline the proof of Theorem 1.3.

2 Sketch of the Proof of Theorem 1.2

We prove the theorem for regular solutions. The general case follows by a density
argument. We proceed in several steps.

Step 1. We differentiate the energy function E.	/ and apply Green’s Theorem. We
obtain

E.T/� E.0/ D �
Z T

0

Z

�0

m.x/ 	 �.x/
ˇ
ˇ
ˇ
ˇ
@y.x; t/

@t

ˇ
ˇ
ˇ
ˇ

2

d�dt

for all T > 0:
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Step 2. We multiply both sides of (4) by m.x/ 	 ry.x; t/ and integrate by parts
over� � .0;T/: We obtain

4

Z T

0

Z

�

j�y.x; t/j2 dxdt

D Im
Z

�

y.x; t/m.x/ 	 ry.x; t/
ˇ
ˇ̌T

0
dx � 2Re

Z T

0

Z

�0

@�y.x; t/

@�
m.x/

	ry.x; t/d�dt � nRe
Z T

0

Z

�0

y.x; t/
@�y.x; t/

@�
d�dt

�Im
Z T

0

Z

�0

y.x; t/
@y.x; t/

@t
m.x/ 	 �.x/d�dt

C
Z T

0

Z

�1

j�y.x; t/j2m.x/ 	 �.x/d�dt

Since m.x/ 	 �.x/ � 0 on �1; then we have

4

Z T

0

Z

�

j�y.x; t/j2 dxdt

� Im
Z

�

y.x; t/m.x/ 	 ry.x; t/
ˇ
ˇ
ˇ
T

0
dx � 2Re

Z T

0

Z

�0

@�y.x; t/

@�
m.x/

	ry.x; t/d�dt � nRe
Z T

0

Z

�0

y.x; t/
@�y.x; t/

@�
d�dt

�Im
Z T

0

Z

�0

y.x; t/
@y.x; t/

@t
m.x/ 	 �.x/d�dt

Step 4. Using the Cauchy inequality, the Poincaré’s inequality, and the trace
theorem, we get (here and throughout the rest of the paper C is some positive
constant different at different occurences)

4

Z T

0

Z

�

j�y.x; t/j2 dxdt � C
Z

�

.jry.x; 0/j2 C jry.x;T/j2 dx

CC
Z T

0

Z

�0

m.x/ 	 �.x/
ˇ
ˇ
ˇ
ˇ
@y.x; t/

@t

ˇ
ˇ
ˇ
ˇ

2

d�dt

C�.�1 C �2/
Z T

0

Z T

0

Z

�

j�y.x; t/j2 dxdt
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where � is a positive constant to be fixed later, �1 and �2 are such that
Z

�0

jr .x/j2 d� � �1
Z

�

j� .x/j2 dx
Z

�0

j .x/j2 dx � �2
Z

�

j� .x/j2 dxdt

for all  2 V:
Choosing � sufficiently small so that 4 � �.�1 C �2/ > 0, we arrive at

E.T/ � C
Z T

0

Z

�0

m.x/ 	 �.x/
ˇ̌
ˇ
ˇ
@y.x; t/

@t

ˇ̌
ˇ
ˇ

2

d�dtC C kyk2C.0;TIH1�1 .�//
(14)

where

H1
�1
.�/ D ff 2 H1.�/I f D 0 on �1g

Step 5. We drop the lower order term on the right-hand side of (14) by
compactness-uniqueness arguments to obtain

E.T/ � C
Z T

0

Z

�0

m.x/ 	 �.x/
ˇ
ˇ̌
ˇ
@y.x; t/

@t

ˇ
ˇ̌
ˇ

2

d�dt

from which follows the desired stability estimate.

3 Sketch of the Proof of Theorem 1.3

We prove the theorem for smooth initial data. The general case follows by a density
argument.

Step 1. Differentiating the energy function F.	/ and applying Green’s Theorem,
we obtain

F.T/ � F.0/ D �
Z T

0

Z

�

a.x/ jy.x; t/j2 dx

Step 2. We rewrite the solution y of (11)–(13) as y D ' C  where ' D '.x; t/
solves

@'.x; t/

@t
D i�2'.x; t/ in � � .0;C1/

'.x; 0/ D y0.x/ in �

'.x; t/ D @'.x; t/

@�
D 0 on � � .0;C1/



Stabilization of the Fourth Order Schrödinger Equation 535

and  D  .x; t/ satisfies

@ .x; t/

@t
D i�2 .x; t/ � a.x/y.x; t/ in � � .0;C1/

 .x; 0/ D 0 in �

 .x; t/ D @ .x; t/

@�
D 0 on � � .0;C1/

Using multipliers techniques and compactness-arguments, we establish the
following observability estimate for the '-problem

ky0k2L2.�/ � C
Z T

0

Z

!

j'.x; t/j2 dxdt

Combining this inequality with the decomposition of y and the assumptions made
on a.	/, we get

F.T/ � C

2a0

Z T

0

Z

�

a.x/ jy.x; t/j2 dxdtC C kakL1.�/

2a0

Z T

0

Z

�

j .x; t/j2 dxdt

Step 3. From standard energy estimates on the fourth order Schrödinger equation
we have

k k2L1.0;TIL2.�// � C kakL1.�/

Z T

0

Z

�

a.x/ jy.x; t/j2 dxdt

Inserting this estimate into the previous one, we obtain the sought-after stability
result.
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1 The Notions and Results for the Structural Damping
Models

Our proposed problem is one special case of more general semi-linear structurally
damping models

utt C .��/�uC .��/ıut D F.u; ut; jDj˛u/;
u.0; x/ D u0.x/; ut.0; x/ D u1.x/: (1)

The parameter ı 2 Œ0; �� generates a family of structurally damped models
interpolating between exterior damping ı D 0 and visco-elastic type damping
ı D � . The range of ˛ is the interval .0; �/. We will draw some main comparisons
between the posed models. We recall here for the reference our previous results with
the general power exponents �; ı.

Proposition 1.1 Let us consider the Cauchy problem

vtt C .��/�v C .��/ıvt D 0; v.0; x/ D v0.x/; vt.0; x/ D v1.x/; (2)

for ı 2 
0; �
2

�
and data .v0; v1/ 2 .L1 \H� /� .L1 \ L2/. Then the solution and its

energy satisfy in arbitrary dimensions n the following .L1 \ L2/ � L2 estimatesW

kv.t; 	/kL2 . .1C t/
� n
4.��ı/ kv0kL1\L2 C .1C t/

1� n
4.��ı/ kv1kL1\L2 ; (3)

kvt.t; 	/kL2 . .1C t/
� nC4ı
4.��ı/ kv0kL1\H� C .1C t/

1� nC4ı
4.��ı/ kv1kL1\L2 ; (4)

kjDj�v.t; 	/kL2 . .1C t/
� nC2�
4.��ı/ kv0kL1\H� C .1C t/

1� nC2�
4.��ı/ kv1kL1\L2 ; (5)

and the following L2 � L2 estimatesW

kv.t; 	/kL2 . kv0kL2 C .1C t/kv1kL2 ; (6)

kvt.t; 	/kL2 . .1C t/�1kv0kH� C kv1kL2 ; (7)

kjDj�v.t; 	/kL2 . .1C t/
� �
2.��ı/ kv0kH� C .1C t/

� ��2ı
2.��ı/ kv1kL2 : (8)

The analogous results with the other range ı 2 
�
2
; �
�

were also obtained in

[4]. We also note that the above estimates were obtained by using quite rough
inequalities with the oscillating integrals in order to avoid extra condition on the
dimension n. For optimal results, the authors would refer the reader to the papers
[2, 3] and [1] where the more refined estimates were obtained successfully.



The External Damping Cauchy Problems 539

2 The External Damping Equations

Let us shift now our focus to one special case ı D 0, that is the problem (equation
in the abstract). We notice some minor difficulties that appear now. This can be
seen from the characteristic equation �2 C j�j2ı� C j�j2� D 0 which has the roots

�1;2.�/ D 1
2

�
� j�j2ı ˙ pj�j4ı � 4j�j2�

�
; that become �1;2.�/ D 1

2

�
� 1 ˙

p
1 � 4j�j2�

�
:

The absence of possible positive power of j�j before and inside the square root
sign for the trivial ı D 0 seems to be difficult to apply the change of variables to
estimate the Fourier integrals. The decaying rates such as .1C t/�� with a suitable
� > 0 are not too obvious. In order to deal at this point, the abstract settings for the
diffusion problem introduced by Radu et al. [6] are helpful in order to obtain the
desired estimates. We recall that for the problem

utt C BuC ut D 0;
u.0; 	/ D u0; (9)

ut.0; 	/ D u1;

some conditions can be applied on the operatorB as such the Markovian or the ultra-
contracting (see [6]) properties to study the diffusion phenomenon. By exploiting
the refined Bessel functions techniques we can avoid the stochastic settings required
on B and we can also see further that even in the case s > 1 some diffusion properties
still hold for the .��/s. This confirms the statement that diffusion phenomenon is
closely related to the spectral asymptotic near 0 (the small frequencies j�j) for the
operator B. Our results in this direction are the following.

Proposition 2.1 The solution v.t; x/ of the linear Cauchy problem for external
damping model

vtt C .��/�v C vt D 0;
v.0; x/ D v0.x/; (10)

vt.0; x/ D v1.x/;
and its derivatives satisfy the following .L1 \ L2/ � L2 estimates

kv.t; 	/kL2 . .1C t/�
n
4� kv0kL1\L2 C .1C t/�

n
4� kv1kL1\H�� ; (11)

kv.t; 	/k PH� . .1C t/�
n
4�

� 1
2 kv0kL1\ PH� C .1C t/�

n
4�

� 1
2 kv1kL1\L2 ; (12)

kvt.t; 	/kL2 . .1C t/�
n
4�

�1kv0kL1\ PH� C .1C t/�
n
4�

�1kv1kL1\L2 ; (13)

kv.t; 	/k PHk . .1C t/�
n
4�

� k
2� kv0kL1\ PHk C .1C t/�

n
4�

� k
2� kv1k

L1\ PHk� 1
2

(14)
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for all k � 0, and the L2 � L2 estimates

kv.t; :/kL2 . kv0kL2 C .1C t/kv1kL2 ; (15)

kvt.t; :/kL2 . .1C t/�1kv0kH� C kv1kL2 ; (16)

kjDj�v.t; :/kL2 . .1C t/�
1
2 kv0kH� C .1C t/�

1
2 kv1kL2 : (17)

As it was done with the classical damping model, we can also compare the large
time behaviors of solutions v.t; x/ for the problem (10) and w.t; x/ for the problem

wt C .��/�w D 0; (18)

w.x; 0/ D v0 C v1: (19)

Proposition 2.2 (The Asymptotic Profile of Solution) The difference v � w of
solutions of these two problems with the initial data from the space .L1 \ H� / �
.L1 \ L2/ satisfies the following decay rates

kv � wk2 . .tC 1/�1� n
4�

kv0kL1\L2 C kv1kL1\H��

�
;

kv � wk PHk . .tC 1/�1� n
4�

�k
kv0kL1\ PHk C kv1kL1 C kjjDj2k�v1kH��

�
:

These linear estimates allow us to obtain elementary results on the possible range
of the admissible exponents p in some nonlinear problems.

Theorem 2.3 (Main Theorem) Let us consider the following Cauchy problem

utt C .��/�uC ut D jjDjaujp; u.0; x/ D u0.x/; ut.0; x/ D u1.x/; (20)

with � > 0, a 2 Œ0; �/, where the data are chosen from the space A WD .L1 \H�/�
.L1 \ L2/. Assume that

nC 2�
nC a

< p <
n

nC 2.a� �/ and p � 2. Then there exists
the (global) solution u.t; x/ 2 C.Œ0;1/;H�/ \ C1.Œ0;1/;L2/ for any small data
.u0; u1/. Moreover, the estimates (11)–(13) are satified also for the solution u.x; t/,
where the Cauchy data .v0; v1/ of the linear problem in the right-hand sides are
replaced by .u0; u1/ in the non-linear case, respectively.

Remark 2.4 The interval


nC2�
nCa ;

n
nC2.a��/

�
can be empty in several cases. For

instance, taking the limit a ! �� one can see that the expression n
nC2.a��/ has

the values closer to 1C, which is contrary to the condition p � 2. In order to get
a non-void interval for p, we may apply the conditions for a; � more strictly as
follows: a < 4�2

nC4� and � > nC4a
4

.
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Proof We introduce for all t > 0 the function spaces X.t/ WD C


Œ0; t�;H�

� \
C1


Œ0; t�;L2

�
with the norm

ku.�; 	/kX.t/ D sup
0���t



f0.�/

�1ku.�; 	/kL2Cf� .�/�1kjDj�u.�; 	/kL2Cg.�/�1kut.�; 	/kL2
�
;

and the space X0.t/ WD C


Œ0; t�;H�

�
with the norm

kw.�; 	/kX0.t/ WD sup
0���t

�
f0.�/

�1kw.�; 	/kL2 C f� .�/
�1kjDj�w.�; 	/kL2

�
;

where from the estimates of Proposition 2.1 we choose f0.�/ WD .1 C
�/� n

4� ; f� .�/ WD .1C �/� n
4� �1=2; g.�/ WD .1C �/� n

4� �1:
We define the operator N W u 2 X.t/! Nu 2 X.t/ by:

Nu.t; x/ D G0.t; x/�x u0.x/CG1.t; x/�x u1.x/C
Z t

0

G1.t� �; x/�x
ˇ
ˇjDjau.�; x/ˇˇpd�:

In order to prove the Theorem we will show that for the exponent p satisfying the
given conditions the estimate

kNu.t; 	/kX.t/ . k.u0; u1/kA C ku.t; 	/kpX0.t/: (21)

and the Lipschitz property

kNu.t; 	/ � Nv.t; 	/kX.t/ .

u.t; 	/� v.t; 	/

X0.t/

�
u.t; 	/p�1

X0.t/
C v.t; 	/p�1

X0.t/

�

(22)

must hold. We use the L1\L2�L2 estimates if � 2 Œ0; t=2� and the L2�L2 estimates
if � 2 Œt=2; t�. Then

k@jtjDjk�Nu.t; 	/kL2 . .1C t/�
n
4�

�.k=2Cj/k.u0; u1/k.L1\H�.kCj//�.L1\H�.kCj�1//

C
Z t=2

0

.1C t � �/� n
4�

�.k=2Cj/


ˇ
ˇjDjau.�; 	/ˇˇp

L1\L2
d�

C
Z t

t=2
.1C t � �/1�.3k=2Cj/



ˇ
ˇjDjau.�; 	/ˇˇp

L2
d�;

where j; k D 0; 1 and . j; k/ ¤ .1; 1/. We will estimate
ˇ̌jDjau.�; 	/ˇ̌p in L1 \ L2

and in L2. Obviously


ˇ
ˇjDjau.�; 	/ˇˇp

L1\L2
.

jDjau.�; 	/p

Lp
C 
u.�; 	/p

L2p
; and


ˇ
ˇjDjau.�; 	/ˇˇp

L2
D jDjau.�; 	/p

L2p
:
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We apply the fractional Gagliardo–Nirenberg inequality (see [3, 5] and [4] for the
formulation, proof, and notations) with the interpolation exponents 
a;� . p; 2/ and


a;� .2p; 2/ from the interval Œ
a

�
; 1/. This gives the condition 2 � p <

n

nC 2.a� �/ .

Accordingly:



ˇ
ˇjDjau.�; 	/ˇˇp

L1\L2
. .1C �/

�p.nCa/Cn
2� ku.�; 	/kpX0.�/;

because of 
a;� .p; 2/ < 
a;� .2p; 2/, meanwhile



ˇ
ˇjDjau.�; 	/ˇˇp

L2
. .1C �/p



� n
4�

� 
a;� .2p;2/
2

�
ku.�; 	/kpX0.�/

D .1C �/�
p.nCa/�n=2

2� ku.�; 	/kpX0.�/:

Combining the last estimates we conclude

k@ j
t jDjk�Nu.t; 	/kL2 . .1C t/�

n
4�

�.k=2Cj/k.u0; u1/k.L1\H�.kCj//�.L1\H�.kCj�1//

C .1C t/�
n
4�

�.k=2Cj/kukpX0.t/
Z t=2

0

.1C �/
�p.nCa/Cn

2� d�

C .1C t/�
p.nCa/�n=2

2� kukpX0.t/
Z t

t=2
.1C t � �/1�.3k=2Cj/d�:

If p >
nC 2�
nC a

, then the term .1C �/
�p.nCa/Cn

2� is integrable. Moreover, we have

.1C t/�
p.nCa/�n=2

2� kukpX0.t/
Z t

t=2
.1C t � �/1�.3k=2Cj/d�

D .1C t/�
p.nCa/�n=2

2� kukpX0.t/
Z t=2

0

.1C �/1�.3k=2Cj/d�

. .1C t/� n
4� �.k=2Cj/kukpX0.t/:

We can follow the same approach to prove other inequalities in (21)–(22). This
completes the proof. ut
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A Note on the Blow-Up of Solutions to Nakao’s
Problem

Yuta Wakasugi

Abstract We consider the critical exponent problem for the Cauchy problem
of the system of semilinear damped wave and wave equations. This problem is
proposed by Professor Mitsuhiro Nakao. In this note, we prove some blow-up
results, which give the answer to the one-dimensional case and a partial answer
to higher dimensional cases.

Keywords Blow-up of solutions • Nakao’s problem
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1 Introduction

In this note, we consider the system of semilinear damped wave and wave equations

�
utt ��uC ut D jvjp;
vtt ��v D jujq; t > 0; x 2 R

N (1)

with initial data

.u; ut; v; vt/.0; x/ D .u0; u1; v0; v1/.x/: (2)

Professor Mitsuhiro Nakao, Emeritus of Kyushu University, proposed the critical
exponent problem to (1)–(2) (see Sect. 4 of Nishihara and Wakasugi [4]). Here
the word critical exponent means the threshold condition of the exponents p; q
for global existence and blow-up of solutions with small initial data. In this note,
we give the answer to the one-dimensional case and a partial answer to higher
dimensional cases.
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We assume that the exponents p; q satisfy 1 < p; q < 1 when N D 1; 2,
and 1 < p; q � N=.N � 2/ when N � 3, and the initial data .u0; u1/; .v0; v1/
belong to H1.RN/ � L2.RN/ with compact support. Then, the local existence of
weak solutions is proved in a standard way (see, for example, [5]). Moreover, there
exists a maximal existence time T� 2 .0;1� such that the local weak solution .u; v/
belong to ŒC.Œ0;T�/IH1.RN// \ C1.Œ0;T�/IL2.RN//�2 and if T� < C1, then the
H1 � L2-norm of the solution blows up at the time T�.

For the system of semilinear wave equation

�
utt ��u D jvjp;
vtt ��v D jujq; (3)

it is known that if the number

max

�
qC 2C p�1

pq� 1 ;
pC 2C q�1

pq � 1
�
� N � 1

2
(4)

is negative, then the global solution uniquely exists for small initial data, and if the
number (4) is nonnegative and the initial data satisfies some positivity condition,
then the solution must blow up in finite time (see Del Santo et al. [1] and Kurokawa
et al. [2] and the references therein).

On the other hand, for the system of semilinear damped wave equation

�
utt ��uC ut D jvjp;
vtt ��v C vt D jujq; (5)

the critical exponent is given by

max

�
qC 1
pq� 1;

pC 1
pq � 1

�
� N

2
; (6)

that is, if the number (6) is negative, then there exists a unique global solution
for small initial data, while the local solution with some positive data blows up
in finite time if the number (6) is nonnegative (see Sun and Wang [6] and [3] and
the references therein). We note that the number (6) is less than the number (4).

In view of the above results, we expect that the system (1) has another critical
exponent, which will be between the numbers (6) and (4). However, there are no
results about both global existence and blow-up of solutions as far as the author
knows. In this note, we give a sufficient condition for the blow-up of solutions to (1).
To state our results, we give the definition of weak solutions to (1):

Definition 1.1 Let T 2 .0;1� and let .u0; u1; v0; v1/ 2 ŒL1loc.RN/�4. We say that a
pair of function .u; v/ 2 ŒL1loc.Œ0;T/ � R

N/�2 is a weak solution to (1) on the time
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interval Œ0;T/ if the identities

Z

Œ0;T/�RN
u . tt �� �  t/ dxdt D

Z

RN
Œ.u0 C u1/ .0; x/ � u0 t.0; x/� dx

C
Z

Œ0;T/�RN
jvjp dxdt;

Z

Œ0;T/�RN
v . tt �� / dxdt D

Z

RN
Œv1 .0; x/ � v0 t.0; x/� dx

C
Z

Œ0;T/�RN
jujq dxdt

hold for any  2 C1
0 .Œ0;T/ � R

N/. If we can take T arbitrarily large, we call .u; v/
a global-in-time weak solution.

Our main result is the following:

Theorem 1.2 Let N � 1 and let 1 < p; q <1 satisfy

max

�
qC 2
pq � 1 C 1;

2.qC 1/
pq� 1 ;

2. pC 1/
pq � 1

�
� N � 0: (7)

Moreover, we assume that the initial data .u0; u1; v0; v1/ 2 ŒL1loc.RN/�4 satisfy

lim inf
R!1

Z

jxj<R
.u0 C u1/.x/dx > 0; lim inf

R!1

Z

jxj<R
v1.x/dx > 0: (8)

Then, there is no global weak solution to (1)–(2).

Corollary 1.3 Let 1 < p; q < 1 .N D 1; 2/, 1 < p; q � N=.N � 2/ .N � 3/

satisfy (7) and assume that .u0; u1/; .v0; v1/ 2 H1.RN/ � L2.RN/ have compact
support and satisfy (8). Then the maximal existence time T� of the local weak
solution .u; v/ 2 ŒC.Œ0;T�/IH1.RN// \ C1.Œ0;T�/IL2.RN//�2 is finite and we have

lim
t!T�� .k.u; ut/.t/kH1�L2 C k.v; vt/.t/kH1�L2 / D C1:

Remark 1.4 When N D 1, the condition (7) is always valid and there is no
restriction on the exponents p; q. When N � 2, the number in the left-hand side
of (7) is between (6) and (4). However, the number in (7) seems not to be optimal.

Remark 1.5 Corollary 1.3 follows from Theorem 1.2 and a contradiction argument.
In fact, first, the local existence result (see, for example, [5]) shows that if the initial
data belong to H1 � L2 and have compact support, then there exists a time T > 0,
which depends only on the H1 � L2 norm of the data, such that the weak solution
.u; v/ 2 ŒC.Œ0;T/IH1.RN// \ C1.Œ0;T/IL2.RN//�2 uniquely exists on the interval
Œ0;T�. Furthermore, for each t 2 Œ0;T/, the solution .u.t/; v.t// have compact
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support. Let T� be the maximal existence time of such a weak solution. Then,
Theorem 1.2 implies that T� must be finite. Let us suppose that the local solution
satisfies

lim inf
t!T�� .k.u; ut/.t/kH1�L2 C k.v; vt/.t/kH1�L2 / � M

with some M � 0. Then, there exists a sequence of time ftjg1jD1 � Œ0;T�/ such that
ftjg tends to T� and


k.u; ut/.tj/kH1�L2 C k.v; vt/.tj/kH1�L2
� � M C 1

for any j � 1. Moreover, by the local existence result, there exists a time T, which
depends only on M, such that the solution .u; v/.tj/ can be uniquely extended to the
time interval Œtj; tjC T�. However, for sufficiently large j, tjC T > T� holds and this
contradicts the maximality of T�.

2 Proof of the Blow-Up by a Test Function Method

In this section, we give a proof of Theorem 1.2. The proof is based on a test function
method developed by Q.S. Zhang [7]. We suppose that there exists a global-in-time
weak solution .u; v/. Let � 2 Œ�0;1/ be a parameter, where �0 � 1 is determined
later. We define a test function  �.t; x/ by  �.t; x/ D � .t/�� .x/ D .t=�/�.x=�˛/,
where ˛ 2 Œ1=2; 1�, �.x/ D .jxj/ and  2 C1

0 .Œ0;1//, 0 �  � 1, .t/ D 1 .0 �
t � 1=2/; .t/ D 0 .t � 1/. It is easy to see that

j0.t/j � C.t/1=r; j00.t/j � C.t/1=r; j��.x/j � C�.x/1=r

for any r > 1, hereafter C denotes generic constants which may change from line to
line. We define

V� D
Z 1

0

Z

RN
jvjp �dxdt; U� D

Z 1

0

Z

RN
jujq �dxdt

and

S� D
Z

RN
v1��dx; T� D

Z

RN
.u0 C u1/��dx:

By the assumption (8), there is some �0 � 1 such that for any � � �0 we have
S� ;T� � 0. By noting this and @t �.0; x/ D 0 we deduce from Definition 1.1 that

V� �
Z 1

0

Z

RN
juj ˇˇ.@2t �� � @t/ �

ˇ
ˇ dxdt DW K1 C K2 C K3:



Blow-Up for Nakao’s Problem 549

The Hölder inequality yields

K1 � C��2
Z 1

0

Z

RN
jujj00.t=�/j��.x/dxdt

� C��2C.1C˛N/=q0 QU1=q
� ;

where q0 stands for the conjugate of q and

QU� D
Z �

�=2

Z

RN
jujq �dxdt:

Similarly, we see that

K2 � C��2˛C.1C˛N/=q0 OU1=q
� ; K3 � C��1C.1C˛N/=q0 QU1=q

� ;

where

OU� D
Z �

0

Z

�˛=2�jxj��˛
jujq �dxdt:

Therefore, we obtain

V� � C��1C.1C˛N/=q0

� QU1=q
� C OU1=q

�

�
: (9)

Here we used that �2C .1C ˛N/=q0 � �1C .1C ˛N/=q0 and ˛ 2 Œ1=2; 1�.
By the same argument and noting that there is no damping term in the equation

of v, we also have

U� � C��2˛C.1C˛N/=p0

� QV1=p� C OV1=p�

�
; (10)

where QV� ; OV� are defined by the same way as QU� ; OU� . From the inequalities QU� ; OU� �
U� and QV� ; OV� � V� , we also obtain the following two estimates:

U� � C�a.˛/
� QU� C OU�

�1=. pq/
; V� � C�b.˛/

� QV� C OV�
�1=. pq/

; (11)

where

a.˛/ D .1C ˛N/
�
1 � 1

pq

�
� 2˛ � 1

p
;

b.˛/ D .1C ˛N/
�
1 � 1

pq

�
� 1 � 2˛

q
:
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Now, once we assume that a.˛/ � 0 or b.˛/ � 0 holds for some ˛ 2 Œ1=2; 1�,
then, it follows from (11) that either U� or V� , let us say U� , is bounded uniformly
in � � �0. By the definition of U� , letting � ! 1 leads to u 2 Lq.Œ0;1/ � R

N/.
However, this implies QU� ; OU� ! 0 as � !1 and we obtain from (11) that U� ! 0,
which means u is identically zero. This and the definition of the weak solution imply
that u0 C u1 is also identically zero, which contradicts the assumption (8).

Therefore, it suffices to find the condition that for fixed p; q, there exists ˛ 2
Œ1=2; 1� such that a.˛/ � 0 or b.˛/ � 0 holds. To do this, for fixed p; q, we consider
the minimum of the functions a.˛/ and b.˛/ under ˛ 2 Œ1=2; 1�. By noting that the
functions a.˛/ and b.˛/ are linear with respect to ˛, the minimums must be attained
at the endpoints ˛ D 1=2 or ˛ D 1. Hence, the condition we need is

min fa.1=2/; a.1/; b.1=2/; b.1/g � 0:

For example, a.1/ is computed as

a.1/ D .1C N/

�
1 � 1

pq

�
� 2 � 1

p

D 1

pq
Œ.1C N/. pq � 1/� 2pq� q�

D 1

pq
Œ.N � 1/. pq� 1/� .qC 2/�

D pq � 1
pq

�
N � 1 � qC 2

pq� 1
�
;

and hence, the condition a.1/ � 0 is written as

qC 2
pq� 1 C 1 � N � 0:

In the same way, we see that the conditions a.1=2/ � 0; b.1=2/ � 0; b.1/ � 0 are
equivalent to

2.qC 1/
pq � 1 � N � 0; 2. pC 1/

pq � 1 � N � 0; 2pC 1
pq� 1 � N � 0;

respectively. Finally, noting that the third condition in the above is stronger than the
second one, we omit the third one and reach the condition (7).
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Regular Singular Problems for Hyperbolic
Systems and Their Asymptotic Integration

Jens Wirth

Abstract In this short note we discuss Cauchy problems for t-dependent hyperbolic
systems with lower order terms becoming singular at the final time, but in such a
way that a controlled loss of Sobolev regularity appears. Our aim is to describe this
loss in terms of the full symbol of the operator.

Keywords Asymptotic integration • Hyperbolic systems • Singular problem

1 Introduction

We consider Cauchy problems for hyperbolic equations on a finite time-strip Œ0;T/,
where coefficients are allowed to become singular at the final time t D T. Typical
examples include the wave equation with mass and dissipation

utt ��uC b.t/ut Cm.t/u D 0; u.0; 	/ D u0; ut.0; 	/ D u1; (1)

where b.t/ � b0.T�t/�1 and m.t/ � m0.T�t/�2, both as t! T, or d�d hyperbolic
systems

DtU D
nX

jD1
Aj.t/DxjU C B.t/U; U.0; 	/ D U0 (2)

with bounded coefficients Aj and where B.t/ � B0.T � t/�1 as t ! T. In both
cases the problems are Hs-well-posed locally in Œ0;T/ and it is interesting to ask for
the behaviour of Hs-norms as t approaches T. The asymptotic bounds on the lower
order terms imply a controlled loss (or gain) of a finite amount of Sobolev regularity
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and they are related to so-called Levi conditions for weakly hyperbolic equations.
Results of this paper generalize some results of Del Santo, Kinoshita, and Reissig
[1] obtained for (1) with b.t/ D 0 and scaling-critical m.t/.

This situation is dual to the one considered by the author and Nunes in [2] or
by the author in [6], where lower order terms decay exactly at the scaling powers
in order to influence the large-time asymptotics significantly (without changing the
overall asymptotic type of the equation).

The basic strategy of our approach is to apply a partial Fourier transform with
respect to the spatial variables, which leads to a �-dependent family of ordinary
differential equations and it remains to solve these equations and to give sharp
asymptotic bounds on its fundamental solution. Away from the singularity this will
be done by standard hyperbolic theory using a factorization/diagonalization of the
full symbol, while close to the singularity we will use the Fuchs type nature of the
problem and apply asymptotic integration arguments. The approach follows [4–6]
and is inspired by [3].

2 Results

2.1 Notation, Model Problem, and Main Assumptions

In order to formulate precise assumptions for the aforementioned examples we
introduce the spaces

T fmg D f f 2 C1.Œ0;T// W jDk
t f .t/j � Ck.T � t/�m�kg (3)

of admissible coefficient functions. The parameter m describes an order and is
related to the place of the coefficient in our problem. In the model (1) we require
that b 2 T f1g and m 2 T f2g, where in (2) the precise requirement will be that
A 2 T f0g ˝ C

d�d and B 2 T f1g ˝C
d�d. The second model has to be accompanied

by an assumption of uniform strict hyperbolicity.
In order to separate the influence of the regular and the singular part of the

problem we introduce the zones

Zsing.N/ D f.t; �/ W j�j.T � t/ � Ng � Œ0;T/ � R
n;

Zreg.N/ D f.t; �/ W j�j.T � t/ � Ng � Œ0;T/ � R
n;

(4)

in the extended phase space and solve problems locally in them. For this we will
make use of the following symbol classes Sfm1;m2g defined as

[

N

n
a 2 C1.Zreg.N// W jDk

t D
˛
� a.t; �/j � Ck;˛j�jm1�j˛j.T � t/�m2�k

o
; (5)
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already employed in earlier works, see, e.g., [5]. We further denote by a.t;D/ the
Fourier multiplier associated with a symbol a.t; �/ (of sufficient regularity) and
consider in the following the model problem

DtU D A.t;D/U; U.0; 	/ D U0; (6)

for a matrix-valued symbol A.t; �/ satisfying the main assumptions:

(A1). We assume A 2 Sf1; 0g ˝ C
d�d. We assume further that there exists a

homogeneous symbol A1.t; �/ satisfying A1.t; ��/ D �A1.t; �/ for all � > 1 such
that A � A1 2 Sf0; 1g ˝ C

d�d.
(A2). The eigenvalues of A1.t; �/ are real and distinct. We denote them by
�1.t; �/ < �2.t; �/ < 	 	 	 < �d.t; �/ and assume further that they are uniformly
distinct in the sense that

inf
t2Œ0;T/ inf

�¤0
j�j�1j�i.t; �/ � �j.t; �/j � c0 > 0: (7)

(A3). There exists a matrix A? 2 C
d�d, such that

Z T

t�

k.T � t/A.t; �/ � A?k� dt

T � t
<1 (8)

with some constant � � 1. Here and later on t� denotes the implicit function
defined by .T � t� /j�j D N. We further assume that the eigenvalue of A? with
lowest imaginary part is simple.

We will comment on each of the assumptions and its implications in due course.
The first two describe the regular nature within Zreg.N/ with A1.t; �/ the hyperbolic
principal part of the problem, while the last assumptions concern the singular part of
the problem with A? playing the role of a second principal symbol at the singularity.
A spatial Fourier transform rewrites (6) as

DtbU.t; �/ D A.t; �/bU.t; �/; bU.0; 	/ D bU0; (9)

and our aim is to derive asymptotically sharp results on the corresponding funda-
mental solution E.t; 0; �/, i.e., the matrix-valued solution to

DtE.t; s; �/ D A.t; �/E.t; s; �/; E.s; s; �/ D I 2 C
d�d: (10)

2.2 Treatment in the Regular Zone

The consideration in the regular zone is rather standard and will be discussed only
briefly. By the uniform strict hyperbolicity due to (A2) we infer that there exists a
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diagonalizer M 2 Sf0; 0g of A1 such that M�1 2 Sf0; 0g and

M�1.t; �/A1.t; �/M.t; �/ D D.t; �/ D diag


�1.t; �/; : : : ; �d.t; �/

�
(11)

holds true for all � ¤ 0. Therefore, U.0/.t; �/ D M�1.t; �/bU.t; �/ solves

DtU
.0/.t; �/ D 
D.t; �/C R0.t; �/

�
U.0/.t; �/; (12)

where the remainder term R0 is given by

R0 D M�1.A � A1/M C


DtM

�1�M 2 Sf0; 1g: (13)

The strategy within the regular zone lies in improvements of remainders by
successive diagonalization steps. We only recall the result, the proofs are analogous
to the ones given in [4, 5] for the large-time situation.

Proposition 2.1 Assume (A1) and (A2). Then for each number k there exists a zone-
constant N and matrix-valued symbols Nk 2 Sf0; 0g, invertible within Zreg.N/ and
with N�1

k 2 Sf0; 0g, such that the operator identity


Dt �D � R0

�
Nk D Nk



Dt �D � Fk�1 � Rk

�
(14)

holds true with symbols Rk 2 Sf�k; k C 1g, diagonal symbols Fk�1 2 Sf0; 1g and
in such a way that Nk � Nk�1 2 Sf�k; kg and Fk�1 � Fk�2 2 Sf1 � k; kg.

We comment on one particular term which is needed later on. The hyperbolic
sub-principal part F0 is given by

F0 D diagR0 D diag


M�1.A � A1/M C



DtM

�1�M
�

(15)

modulo Sf�1; 2g. Furthermore, as F0 2 Sf0; 1g, we find constants �˙ 2 R such
that

C�
�
T � t

T � s

���

�



exp

�
i
Z t

s
F0.�; �/ d�

�

 � CC

�
T � t

T � s

��C

(16)

holds true. We denote by Ek.t; s; �/ the fundamental solution of the transformed
system within the regular zone. Choosing k > �C � �� allows for good estimates
for this fundamental solution.

Lemma 2.2 Let (A1) and (A2) be satisfied and assume k � �C � �� C 1. Then the
fundamental solution Ek.t; 0; �/ can be represented as

Ek.t; 0; �/ D exp

�
i
Z t

0



D.�; �/C Fk�1.�; �/

�
d�

�
Qk.t; 0; �/; (17)
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where Qk.t; 0; �/ is uniformly bounded in t a symbol of order 0 with respect to �,
i.e.,

kD˛
�Qk.t; 0; �/k � C˛j�j�j˛j; .t; �/ 2 Zreg.N/; (18)

for j˛j < k � .�C � ��/. In particular the estimate

kE.t; 0; �/k � CkEk.t; 0; �/k � C.T � t/�C (19)

holds true.

Proof The fundamental solution of the diagonal part Dt � D.t; �/ � Fk�1.t; �/ is
given by the exponential term in (17). As the entries of D.t; �/ are real and entries
of Fk�1 � F0 2 Sf�1; 2g are uniformly integrable over Zreg.N/, the behaviour of
its norm depends only on the entries of F0.t; �/ and hence on the constants �˙
from (16). Using (17) as ansatz for the unknown matrix Qk, we obtain a system

DtQk.t; 0; �/ D Rk.t; 0; �/Qk.t; 0; �/; Qk.0; 0; �/ D I; (20)

where Rk.t; 0; �/ is obtained from Rk.t; �/ by conjugation with the fundamental
solution of the diagonal part. This yields

kRk.t; 0; �/k � C.T � t/�C���kRk.t; �/k � Cj�j�k.T � t/�C����k�1 (21)

together with

kD˛
� Rk.t; 0; �/k � C.T � t/�C����k�1
j�j�k�j˛j C .T � t/j˛jj�j�k

�

� C�.T � t/�"�1j�j�"�j˛j (22)

for j˛j < k � .�C � ��/ and with sufficiently small " > 0. The last estimate makes
use of the definition of the regular zone. Finally, representing Qk.t; 0; �/ as Peano–
Baker series

Qk.t; 0; �/ D IC
1X

kD1
ik
Z t

0

Rk.t1; 0; �/ 	 	 	
Z tk�1

0

Rk.tk; 0; �/ dtk 	 	 	 dt1 (23)

and estimating it term by term yields

kQk.t; 0; �/k � exp

�
Cj�j�k

Z t

0

d�

.T � �/1��CC��Ck

�

� C exp


Cj�j�k.T � t/�C����k

� � C (24)
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and similarly for derivatives

kD˛
�Qk.t; 0; �/k � j�j�j˛j exp

�
C"j�j�"

Z t

0

d�

.T � �/1C"
�
� Cj�j�j˛j: (25)

As the diagonalizers M.t; �/ and Nk.t; �/ are uniformly bounded and invertible over
Zreg.N/ the estimate (19) follows. ut

One particular case of the last estimate will be needed later on. It follows that

kE.t� ; 0; �/k � C.T � t� /
�C � Cj�j��C (26)

and the regular zone will in general contribute some loss of regularity in the end.
Note that this is due to the presence of the lower order terms and already known
for the case of wave equations with dissipation. For Klein–Gordon equations with a
singular mass as treated in [1] one obtains �C D �� D 0 and the mass term is not
felt in the regular zone.

2.3 Treatment in the Singular Zone

In this part of the extended phase space we rewrite the system for bU.t; �/ as system
of Fuchs type

.T � t/DtbU D .T � t/A.t; �/bU (27)

and make use of assumption (A3) in combination with the Levinson theorem
[2, Theorem A.1] and Hartmann–Wintner theorem [2, Theorem A.2] for Fuchs type
equations. This allows to reduce the above equation to the explicitly solvable model
equation .T � t/DtbV D A?bV and yields for the original fundamental solution the
following estimate. For details on the proof, see [2] and [6].

Lemma 2.3 Assume (A3) and let � D inf Im specA?. Then the fundamental
solution E to (9) satisfies

kE.t; t� ; �/k �
8
<

:

C
�

T�t
T�t�

���
; � D 1;

C�
�

T�t
T�t�

�����
; � > 1 for � > 0 arbitrary:

(28)
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2.4 Combination of Estimates and Main Result

We consider estimates in the Hs-Sobolev scale. For such estimates only uniform
bounds of the fundamental solution E.t; 0; �/ are needed and they are encoded in
the numbers �˙ arising from the main lower order part F0 in the regular zone and
� D inf Im specA? in the singular zone. We distinguish two cases and assume first
that �C �C � 0. Then Lemmata 2.2 and 2.3 (for simplicity with � D 1) yield

kE.t; 0; �/k � C.T � t/��

8
ˆ̂
<

ˆ̂
:

1 j�j � N;

.T � t�/�C�C ; j�j � N; t � t� ;

.T � t/�C�C ; j�j � N; t � t� ;

� C.T � t/��h�i����C

(29)

based on the definition of the regular zone. On the other hand, if �C �C > 0

kE.t; 0; �/k � C

8
ˆ̂<

ˆ̂
:

.T � t/�� j�j � N;

.T � t/��.T � t�/�C�C ; j�j � N; t � t� ;

.T � t/�C ; j�j � N; t � t� ;

� C.T � t/��

(30)

uniform with respect to � 2 R
n. In the first case we observe a loss of Sobolev

regularity, while in the second case only the norm has a non-trivial behaviour.

Theorem 2.4 Assume (A1)–(A3) with � D 1 and that the initial data satisfy U0 2
Hs.RnICd/. Then there exists a unique solution U 2 C.Œ0;T/IHs.RnICd// such that

.T � t/�kU.t; 	/kHs � C

(
kU0kHs ; �C �C � 0;
kU0kHs����

C ; �C �C < 0
(31)

holds true uniformly in t.

If � > 1, a further � (or better logarithmic) loss appears. We omit the details.

3 Particular Cases of Interest

Finally we want to come back to our initial example. We consider a wave equation
with singular mass and dissipation (1) with b 2 T f1g and m 2 T f2g. In order
to transform it into a first order system we use a symbol h 2 Sf1; 0g satisfying
h.t; �/ D j�j for .T � t/j�j > 2 and h.t; �/ D .T � t/�1 for .T � t/j�j < 1 and
consider the new unknown U D 


h.t;D/u;Dtu/>. The corresponding system of
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first order satisfies (A1) and (A2). The main terms are given by

D.t; �/ D
�j�j
�j�j

�
; F0.t; �/ D ib.t/

2

�
1

1

�
(32)

in the regular part and

A? D
�

ib0 m0
1 i

�
(33)

near the singularity, if we require (A3) in the form of

Z T

0

j.T � t/b.t/ � b0j� dt

T � t
C
Z T

0

j.T � t/2m.t/ �m0j� dt

T � t
<1: (34)

For simplicity we restrict our consideration to � D 1. Then �C D �� D �b0 ˙ 0
and specA? D fi.b0 C 1/=2˙

p
m0 � .b0 � 1/2=4g our main result reads for this

particular model case read as in the following table:

Case Behaviour of Hs norm Required HsCı-bound on data

4m0 > .b0 � 1/2 .T � t/�
b0C1

2 ı D 0

b0.b0 � 2/ � 4m0 < .b0 � 1/2 .T � t/�
b0C1�..b0�1/2�4m0/

1=2

2 ı D 0

4m0 < b0.b0 � 2/ .T � t/�
b0C1�..b0�1/2�4m0/

1=2

2 ı D ..b0�1/2�4m0/1=2�1

2

They generalize [1]. If b.t/ D 0 we obtain �˙ D 0 and � D 1=2 for m0 > 1=4 and
� D 1=2� p1=4�m0 if m0 < 1=4.

Acknowledgements Jens Wirth thanks the German Academic Exchange Service (DAAD) for
travel support to attend the 10th ISAAC congress at the University of Macao.
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A Generalization of Average Interpolating
Wavelets

Kensuke Fujinoki

Abstract We consider two-dimensional average interpolating wavelets, which are
generated from the average interpolating lifting scheme on a two-dimensional
triangular lattice. The resulting set of biorthogonal functions is the generalization
of the one-dimensional Cohen–Daubechies–Feauveau .1;N/ biorthogonal wavelet
whose scaling function is an average interpolating function of the order N. Some
properties of the biorthogonal bases and associated filters, such as the order of zeros,
regularity, and decay will be described.

Keywords Average interpolation • Lifting • Triangular lattice • Wavelet

Mathematics Subject Classification (2010) Primary 65T60; Secondary 41A05

1 Introduction

An interpolating scaling function � 2 L2.R/ described in [1] is an interpolation
function in the sense that

�.k/ D
(
0 k 2 Z and k ¤ 0
1 k D 0: (1)

Let V0 be a space generated by the linear combination of f�.t � k/gk2Z. This
interpolating scaling function � recovers any function f 2 V0 by interpolating
its discrete samples: f .t/ D P

k2Z f .k/�.t � k/: We denote the Fourier transform
of f .t/ by bf .!/ D R

R
f .t/ e�i!tdt; ! 2 R, and a discrete sequence f f Œk�gk2Z by

Of .!/ D P
k2Z f Œk�e�i!k . If b� is defined by an infinite product of the Fourier
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transform of a discrete low-pass (LP) filter fhŒk�gk2Z

b�.!/ D
1Y

jD1

1p
2
Oh
�!
2j

�
;

the interpolating property is also expressed as

Oh.!/C Oh.! C 	/ D p2: (2)

Examples of such an interpolating function are spline functions and Deslauriers–
Dubuc functions.

In this paper, we consider the average interpolating scaling function introduced
in [2], which is defined by the dilation equation

�.t/ D
NX

kD�NC1
hŒk��.2t � k/;

where supp� D Œ�NC1;N�. Since � is an average interpolating function, it satisfies

Z kC1

k
�.t/ dt D

(
0 k ¤ 0
1 k D 0:

As for the ordinary interpolating scaling function, the average interpolating function
reproduces polynomials up to degree N � 1. The corresponding wavelet is defined
by  .t/ D �.2t/� �.2t � 1/; which satisfies b .0/ D R

R
 .t/dt D 0.

Such functions comprise the family of the Cohen–Daubechies–Feauveau (CDF)
.1;N/ biorthogonal wavelet (see [3]). We denote by N the order of the interpolation.
When N D 1, it is identical to the Haar wavelet. A dual scaling function e� of the
CDF.1;N/ wavelet is always the Haar scaling function.

2 Lifting on Lattice

To generalize the average interpolating scaling function � as well as CDF .1;N/
wavelet to a two-dimensional lattice, we first define two vectors t1; t2 2 R

2 that
generate a lattice

ƒ D ft D n1t1 C n2t2j .n1; n2/ 2 Z
2g:
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Wavelet functions and filters are defined on the latticeƒ. The Fourier domain of the
lattice is the reciprocal lattice

bƒ D f2	.� D m1�1 C m2�2/j .m1;m2/ 2 Z
2g;

which is given by the vectors �1;�2 2 R
2 that satisfy �k 	 tk D 0 for k D 1; 2:

For the triangular lattice, we define the vectors t1 D 

1 0

�T
; t2 D


�1=2 p3=2�T and �1 D


0 2=

p
3
�T
; �2 D



1 1=
p
3
�T
: Additionally, �3 D

�1 � �2 and t3 D �t1 � t2 are also defined.
A two-dimensional LP filter fhŒt�gt2ƒ is assumed to be given on the lattice and

its Fourier transform is defined by

Oh.!/ D
X

t2ƒ
hŒt�e�i!�t; ! 2 R

2:

Here, Oh.!/ is a periodic function that has double periodicity Oh.!/ D Oh.! C
2	�/; � 2 eƒ, which implies that we have two alias points ! D 	�1 and ! D 	�2.
The simplest set of biorthogonal filters fhŒt�; gkŒt�; QhŒt�; QgkŒt�gt2ƒ;kD1;2;3 defined on the
triangular lattice ƒ is the biorthogonal Haar filters generalized to two-dimension
which is introduced in [4].

The lifting scheme proposed by Sweldens [5] corresponds to modify biorthogo-
nal filters without losing the biorthogonality. With the lifting on the Fourier domain,

a biorthogonal set of filters fOh; Ogk; OQh; OQgkg is modified by the predictors bPk and the

updaters bU k as fOhU ; OgPk ; OQhP ; OQgU
k g, which may be written as

OhU .!/ D Oh.!/C
3X

kD1
Ogk.!/bU k.2!/; OgPk .!/ D Ogk.!/� Oh.!/bPk.2!/;

OQhP.!/ D OQh.!/C
3X

kD1
OQgk.!/bPk.2!/; OQgUk .!/ D OQgk.!/ � OQh.!/bU k.2!/:

An arbitrary filter set is found from applying the lifting to the lazy wavelet filters.

The lazy wavelet filters are given by Oh.!/ D OQh.!/ D 1 and Ogk.!/ D OQgk.!/ D
e�i!�tk ; k D 1; 2; 3: Here, letting bPk.!/ D 1; bU k.!/ D 1=4; for k D 1; 2; 3; gives
the order N D 1 case, which is the biorthogonal Haar wavelet filters onƒ described
above. In this choice, the predictors need to be applied first to modify Ogk, and then
OhU is calculated.
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3 Generalization of Average Interpolating Filters

Here we generalize the CDF .1;N/ filter to the lattice ƒ. If we set

bU k.!/ D 1

32


�e�i!�tk C 8C ei!�tk� ; (3)

holding bPk.!/ D 1, we obtain the system of the generalized CDF .1;N/ wavelet of
order N D 3. In this case, � is an average interpolating scaling function of N D 3.

The associated LP filters satisfy OQh.!�k/ Oh.!�k/ / .! � 	/3; k D 1; 2; 3: If we
change the updaters as

bU k.!/ D 1

512



3e�4i!�tk � 22e�2i!�tk C 128C 22e2i!�tk � 3e4i!�tk� ; (4)

then we obtain the N D 5 case.
As we have only changed Uk, the resulting primal HP filters gkŒt� are still the

same of those of the Haar filters. More precisely, in this choice, gkŒt� and QhŒt� do
not depend on the order N. However, QgkŒt� and hŒt� are significantly changed when
the order of the interpolation N is increased. Thus, the generalized .1;N/ family
obtained by the lifting always has the same filters gkŒt� and QhŒt�, but the other filters
QgkŒt� and hŒt� depend on the order N. In general, the frequency responses of a filter

is improved when we increase the interpolation order N. The filters fOh; Ogk; OQh; OQgkg
satisfy Oh.0/ D Ogk.	�k/ D 2; Oh.	�k/ D Ogk.0/ D 0; and similarly for the dual

filters. The dual LP filter OQh.!/ is always the Haar filter and thus an interpolating in
the sense that

OQh.!/C
3X

kD1
OQh.!C 	�k/ D 2;

which corresponds to (2).

4 Scaling Function and Wavelets

Once the filters are found, the two-dimensional scaling function and wavelets are
given by

b�.!/ D
1Y

jD1

1

2
Oh
�!

2j

�
; b k.!/ D 1

2
Ogk
�!

2

� 1Y

jD2

1

2
Oh
�!

2j

�
; (5)
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which satisfy

b�.!/ D 1

2
Oh
�!

2

�
b�
�!

2

�
; b k.!/ D 1

2
Ogk
�!

2

�
b�
�!

2

�
;

where

b�.!/ D
Z

R2

�.r/ e�i!�rdr; r 2 R
2:

Dual functions be� and be k are defined in a similar way with Qh and Qgk. They are

normalized asb�.0/ D be�.0/ D 1 and b k.0/ D be k.0/ D 0:
On the Bravais lattice ƒ, the two-dimensional scaling function and wavelets

f�.r/;  k.r/;e�.r/;e k.r/gr2R2 are defined by

�.r/ D
X

t2ƒ
2 hŒt��.2r � t/;  k.r/ D

X

t2ƒ
2 gkŒt��.2r� t/;

e�.r/ D
X

t2ƒ
2 QhŒt�e�.2r� t/; e k.r/ D

X

t2ƒ
2 QgkŒt�e�.2r� t/:

By the lifting, the prediction of fh; gk; Qh; Qgkg affects fQh; gkg. This modifies the new
biorthogonal system f�; k;e�;e kg to f�; P

k ;
e�P ;e P

k g as

 P
k .r/ D  k.r/�

X

t2ƒ
PkŒ�t� �.r� t/;

e�P.r/ D 2
X

t2ƒ
QhŒt�e�P.2r � t/C

3X

kD1

X

t2ƒ
PkŒt�e P

k .r � t/;

e P
k .r/ D 2

X

t2ƒ
QgkŒt�e�P.2r� t/;

and similarly the update of f�; k;e�;e kg would result in f�U ;  U
k ;
e�;e U

k g as

�U .r/ D 2
X

t2ƒ
hŒt� �U .2r� t/C

3X

kD1

X

t2ƒ
UkŒt�  U

k .r� t/;

 U
k .r/ D 2

X

t2ƒ
gkŒt� �U .2r� t/;

e U
k .r/ D e k.r/�

X

t2ƒ
UkŒ�t�e�.r � t/:
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Fig. 1 Scaling functions f�;e�g and wavelets f 2;e 2g of N D 3

If fh; gk; Qh; Qgkg and fPk; Ukg are finite sequences, the resulting system of functions
has a compact support on the lattice ƒ.

Some of the scaling functions and the wavelets with their dual functions are
shown in Fig. 1. Note that only the k D 2 case for f k;e kg is shown because
the other wavelets of k D 1; 3 are defined by rotating them by ˙2	=3 on the
lattice. The primal HP filters gkŒt� have not changed by setting the updater defined
by (3) because these operations would affect the dual HP filters QgkŒt�. However, the
associate primal wavelets  k.r/ are changing because hŒt� and �.r/ have already
changed. Onlye�.r/ is the same as that of the Haar whereas �.r/ with the order N is
an average interpolating scaling function.



A Generalization of Average Interpolating Wavelets 571

Fig. 2 jb�.!�k/j for
k D 1; 2; 3 of the order N

Whilee� turns out to be the Haar wavelet, a jaggy function that has fractal shape,
e k is similar to e� because e k is based on a linear combination of shifted �. This
is true for � and  k, but they have a much larger support on ƒ, and the regularity
seems to be slightly improved. The lifting (3) and (4) do not only improve e k, they
improve � and  k. Figure 2 illustrates the frequency decay of the scaling function
b� for N D 1; 3; 5. To see a more clear structure of the decay, we only show the
one-dimensional response jb�.!�k/j; k D 1; 2; 3 after iterating (5) until j D 5. We
observe that it provides a fast decay in ! space as the order N increases.
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26730099.
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Gabor Transformation on the Sphere
and Its Inverse Transformation

Keiko Fujita

Abstract We will consider the Gabor transformation for the square integrable
function on the two-dimensional sphere and its inverse transformation. By using
an integral over R3 we will give the inverse Gabor transformation concretely.

Keywords Expansion formula • Gabor transformation • Sphere

Mathematics Subject Classification (2010) Primary 42C40; Secondary 33C50

1 Introduction

We have studied the windowed Fourier transform, whose windows function is the
Gaussian function, of an analytic functional on the n-dimensional sphere and the
Gabor transform of the square integrable function on the n-dimensional sphere in
[3]. We expressed their transforms in a series expansion by means of the Bessel
function. Then in case of the circle, we expressed the results more explicitly and
considered their inverse transformations in [2].

In this paper, we will consider the Gabor transformation for the square integrable
function on the two-dimensional sphere and will give the inverse transformation
concretely by using an integral transformation.
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2 Gabor Transformation on the Sphere

2.1 Fourier Transformation and Windowed Fourier
Transformation

Let S2r be the sphere with radius r > 0 in R3; that is,

S2r D f.x1; x2; x3/ 2 R3I x21 C x22 C x23 D r2g:

For z D .z1; z2; z3/ and w D .w1;w2;w3/ 2 C3, we set

z 	 w D z1w1 C z2w2 C z3w3; z2 D z 	 z:

For an integrable function f on S2r , define the Fourier transform of f by

F f .!/ D
Z

S2r

e�ix�! f .x/d�r.x/; (1)

where d�r is the normalized invariant measure on S2r . We call the mapping f 7! F f
the Fourier transformation. Note that the volume of S2r is vol.S2r / D 4	r2. Let L2.S2r /
be the space of square integrable functions on S2r . For f ; g 2 L2.S2r /, we define a
sesquilinear form . f ; g/S2r by

. f ; g/S2r 

Z

S2r

f .!/g.!/d�r.!/:

Then . f ; g/S2r gives an inner product on L2.S2r / and kfkS2r D
q
. f ; f /S2r gives a norm

on L2.S2r /. From now on we consider L2.S2r / the space of square integrable functions
on S2r with the inner product . ; /S2r .

For f 2 L2.S2r / and !; � 2 C3, we define the windowed Fourier transformation
WF with the window function w.x/ D exp.�x2=2/ by

WF W f 7!WF f .�; !/ D
Z

S2r

e�ix�!e� .x��/2

2 f .x/d�r.x/ (2)

D e
�r2��2

2

Z

S2r

e�ix�.!Ci�/f .x/d�r.x/

D e
�r2��2

2 F f .! C i�/: (3)
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2.2 Gabor Transformation on the Sphere

Let !0 2 R3 be fixed. Put G!0.x/ D e�x2=2e�ix�!0 . For f 2 L2.S2r / and a 2 RC D
fx W x > 0g, we define the Gabor transformation G!0 by

G!0 W f 7! G!0 f .�; a/ D a� 3
2

Z

S2r

G!0

�
x � �
a

�
f .x/d�r.x/ (4)

D a� 3
2

Z

S2r

e� 1
2 .

x��
a /2e�i x��a �!0 f .x/d�r.x/

D a� 3
2 ei

��!0
a e� r2C�2

2a2

Z

S2r

e�i xa �.!0Ci �a /f .x/d�r.x/

D a� 3
2 ei

��!0
a e� r2C�2

2a2 F f

�
a!0 C i�

a2

�
: (5)

3 Expansion Formula

Let Pk;2.t/ be the Legendre polynomial of degree k:

Pk;2.t/ D
Œk=2�X

lD0
.�1/l�.k � lC 1=2/

lŠ.k � 2l/Šp	 .2t/
k�2l;

where�. 	 / is the Gamma function. We define the extended Legendre polynomial by

Pk;2.z;w/ D .
p
z2/k.
p
w2/kPk;n

�
zp
z2
	 wp

w2

�
; z;w 2 C3:

Then Pk;2.z;w/ is a homogeneous harmonic polynomial of degree k in z and in w;

that is, Pk;2.z;w/ D Pk;2.w; z/ and
�
@2

@z21
C @2

@z22
C @2

@z23

�
Pk;2.z;w/ D 0. Pk;2.z; 	 / is the

orthogonal polynomial with respect to the measure d�r;

N.k; 2/

r2k

Z

S2r

Pk;2.z; !/Pj;2.!;w/d�r.!/ D ıkjPk;2.z;w/: (6)

The dimension N.k; 2/ of the space of homogeneous harmonic polynomials of
degree k is given by

N.k; 2/ D 2kC 1:
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For f 2 L2.S2r /, define

fk.x/ D N.k; 2/

r2k

Z

S2r

f .!/Pk;2.x; !/d�r.!/: (7)

Then we have

f .x/ D
1X

kD0
fk.x/ (8)

in the sense of L2.S2r / and we have the following Poisson integral formula:

f .x/ D lim
t"1

Z

S2r

f .y/
1X

kD0

N.k; 2/

r2k
Pk;2.tx; y/d�r.y/; x 2 S2r ;

D lim
t"1

Z

S2r

f .y/
r4 � t2x2y2

.r4 � 2r2tx 	 yC t2x2y2/3=2
d�r.y/; x 2 S2r :

3.1 Expansion Formula of the Exponential Function

For � ¤ �1;�2; : : :, we define the Bessel function of order � by

J�.t/ D
� t
2

�� 1X

lD0

1

lŠ�.� C lC 1/
�
it

2

�2l
:

We put

Qjk.t/ D �.kC 3=2/
�
2

t

�kC1=2
JkC1=2.t/ D

1X

lD0

�.kC 3=2/
lŠ�.kC lC 3=2/

�
it

2

�2l
: (9)

Note that Qjk.�t/ D Qjk.t/ and Qjk.0/ D 1. By using this notation we have

ez�w D
1X

kD0

p
	N.k; 2/

2kC1�.kC 3
2
/
Qjk.i

p
z2
p
w2/Pk;2.z;w/: (10)

See [4] for example.
By (1), (6), (7), (8) and (10), for f 2 L2.S2r /, the Fourier transform F f .w/ is

given by

F f .w/ D
1X

kD0

p
	.�i/kr2k

2kC1�.kC 3
2
/
Qjk.r
p
w2/fk.w/:
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When f .x/ D G!0.x/ D e�x2=2e�ix�!0 , by (7) and (10)

fk.!/ D e�r2=2

p
	N.k; 2/.�i/k

2kC1�.kC 3=2/
Qjk.r

q
!20/Pk;2.!; !0/

and for ! 2 R3, we have

FG!0.!/ D e�r2=2
1X

kD0

N.k; 2/	r2k

.2kC1�.kC 3
2
//2
Qjk.r
p
!2/Qjk.r

q
!20/Pk;2.!; !0/: (11)

On the other hand, by (6), (9) and (10),

FG!0.!/ D
Z

S2r

e�ix�!e� x2
2 e�ix�!0d�r.x/ D e� r2

2

Z

S2r

e�ix�.!�!0/d�r.x/

D e�r2=2Qj0
�
r
p
.! � !0/2

�
: (12)

Therefore by (9), (11) and (12), we have the following Proposition:

Proposition 3.1 We have the following formula:

1X

kD0

p
	.�1/kr2k

22kC1kŠ�.kC 3=2/.! � !0/
2k

D Qj0
�
r
p
.! � !0/2

�
D

1X

kD0

N.k; 2/	r2k

.2kC1�.kC 3
2
//2
Qjk.r
p
!2/Qjk.r

q
!20/Pk;2.!; !0/:

3.2 Expansion Formula of Windowed Fourier Transform

By (10), we have

Z

S2r

exp .�ix 	 .! C i�// f .x/d�r.x/

D
Z

S2r

1X

kD0

p
	N.k; 2/.�i/k
2kC1�.kC 3

2
/
Qjk
�
r
p
.! C i�/2

�
Pk;2.x; ! C i�/f .x/d�r.x/

D
1X

kD0

p
	.�i/kr2k

2kC1�.kC 3
2
/
Qjk.r

p
.! C i�/2/

N.k; 2/

r2k

Z

S2r

Pk;2.x; ! C i�/f .x/d�r.x/

D
1X

kD0

p
	.�i/kr2k

2kC1�.kC 3
2
/
Qjk
�
r
p
.! C i�/2

�
fk.! C i�/:
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Thus by (3), for f 2 L2.S2r / we have

WF f .�; !/ D e.�r2��2/=2
1X

kD0

p
	.�i/kr2k

2kC1�.kC 3
2
/
Qjk
�
r
p
.! C i�/2

�
fk.! C i�/:

3.3 Expansion Formula of Gabor Transform

By (6), (7) and (10), we have

Z

S2r

e�i xa �. a!0Ci�
a /f .x/d�r.x/ D

1X

kD0

p
	r2k.�i/kQjk

�
r
p
.a!0Ci�/2

a2

�

2.2a2/k�.kC 3
2
/

fk.a!0 C i�/:

Therefore by (5) we have

G!0 f .�; a/

D a� 3
2 ei

��!0
a e� r2C�2

2a2

1X

kD0
r2k

p
	.�i/k

2.2a2/k�.kC 3
2 /
Qjk
�
r
p
.a!0Ci�/2

a2

�
fk.a!0 C i�/:

4 Inverse Transformation

Put

E.z;w/ D
1X

kD0

.�i/k
r2k2kkŠQjk.

p
z2
p
w2/

Pk;2.z;w/: (13)

Let

K�.s/ D K��.s/ D
Z 1

0

exp.�s cosh t/ cosh �tdt; 0 < s <1

be the modified Bessel function. Put

�.s/ D a0s
1=2K�1=2.s/C a1s

3=2K1=2.s/ D .a0 C a1s/s
1=2K1=2.s/;

where the constants a0; a1 are defined by

Z 1

0

s2kC1�.s/ds D N.k; 2/kŠ�.kC 3=2/22kC1p
	

:



Gabor Transformation on the Sphere and Its Inverse Transformation 579

Define a measure d� on R3 by

Z

R3
f .x/d�.x/ D

Z 1

0

Z

S21

f .s!/d�1.!/s�.s/ds:

For the measure d� see [1] for example. Put

F.w/ D
1X

kD0

p
	.�i/kr2k

2kC1�.kC 3
2
/
Qjk.r
p
w2/fk.w/: (14)

For z 2 S2r , by (13) and (14), we have

Z

R3
F.w/E.z;w/d�.w/ D

Z 1

0

Z

S21

F.r!/E.z; s!/d�1.!/s�.s/ds

D
Z 1

0

1X

kD0

�.3=2/s2k

kŠ�.kC 3=2/22k fk.z/s�.s/ds

D
1X

kD0
fk.z/:

Therefore the mapping

f 7!
Z

R3
f .x/E.z; x/d�.x/

gives the inverse mapping of the Fourier transformation. For WF f .�; !/, by (3), we
have e.r

2C�2/=2WF f .�; !/ D F f .!C i�/. Since !; � 2 C3, y1 D !C i� 2 C3. Thus
we have

Z

R3
F f .y1/E.z; y1/d�.y1/ D f .z/; z 2 S2r :

Similarly for G!0 f .�; a/, by (5), we have

a3=2e�i��!0=ae.r2C�2/=.2a2/G!0 f .�; a/ D F f


.a!0 C i�/=a2

�
:

Since y2 D .a!0 C i�/=a2 2 C3, we can integrate F f .y2/ over R3 and we have

Z

R3
F f .y2/E.z; y2/d�.y2/ D f .z/; z 2 S2r :



580 K. Fujita

Thus we have the following theorem:

Theorem 4.1 Let !0 2 R3 is fixed. For !; � 2 C3 and a 2 RC, put y1 D ! C i�
and y2 D .a!0 C i�/=a2. Then the mapping

F.�; !/ 7!
Z

R3
e.r2C�2/=2F.�; !/E.z; y1/d�.y1/; z 2 S2r ;

gives an inverse mapping ofWF defined by (2) and the mapping

G.�; a/ 7!
Z

R3
a3=2e�i��!0=ae.r2C�2/=.2a2/G.�; a/E.z; y2/d�.y2/; z 2 S2r ;

gives an inverse mapping of the Gabor transformation defined by (4).
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A Model of Relationship Between
Waveform-Averaging and Slow Auditory
Brainstem Response by Using Discrete
Stationary Wavelet Analysis

Nobuko Ikawa, Akira Morimoto, and Ryuichi Ashino

Abstract The relationship between the slow component of auditory brainstem
response (ABR) and the number of averaging is investigated using the discrete
stationary wavelet analysis (SWT). A new model to analyze the phase shifts of the
spontaneous electroencephalogram (EEG) is presented.

Keywords Auditory brainstem response (ABR) • Discrete stationary wavelet
transform (SWT) • Electroencephalogram (EEG)

Mathematics Subject Classification (2010) Primary 42C40; Secondary 42C99

1 Introduction

According to an increase of the aging people, the prevention and the treatment of
dementia are required. The particularly hearing ability measurement is necessary
for the maintenance of the normal brain function. For anti-aging, our ultimate aim
is the development of the portable objective audiometry device.
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In this paper we propose a model of auditory brainstem response (ABR) using
a discrete stationary wavelet analysis (SWT). The ABR is the representation of
electrical activity generated by the eighth cranial nerve and brainstem in response to
auditory stimulation. In physiology and anatomy, it is well known that the ABR
waveform has seven peaks (see [1]) and that the time (latency) and amplitude
analyses of these peaks supply the response according to peripheral hearing status
and each location of the human brainstem pathway. Therefore it is also well known
that the ABR is useful to the objective hearing test assistant. Electrodes are placed
on the scalp and coupled via leads to an amplifier and a signal averager. Spontaneous
electroencephalogram (EEG) including the auditory evoked potentials (AEP) from
the scalp is recorded while the ears are stimulated via earphones by brief clicks or
tones. A series of waveforms unique to the auditory neural structures is viewed after
time-locking the EEG recording to each auditory stimulus and averaging several
thousand recordings.

2 Conventional Waveform-Averaging Method

The ABR used in this paper was recorded in an acoustically quiet room with subjects
either reclined in a comfortable chair or lying on a bed with electrodes placed on the
scalp. The electrodes were placed high on each subject’s vertex, on the earlobes of
both ears, and on the forehead(ground). The subjects are healthy 20-year-old male
adults.

Making Epochs

1. As input stimuli, we made several Dirac combs (impulse trains), more precisely,
series of periodic acoustic stimuli composed of clicks with intensities of 30, 40,
50, 60, 70, 80 dB nHL, a duration of 0:1ms, and a frequency of 20Hz.

2. We presented the input stimuli to both ears using a sensory stimulator.
3. We recorded the electric potentials.
4. We converted the recorded electric potentials to digital data with a sampling

frequency 50;000Hz.
5. We applied a 100–1500 Hz band-pass filter to digital data.
6. We cut the digital data into 512-points data, which are called epochs. The

duration of epoch is 10:24ms.

Averaging Epochs Denote by Epochk, the k-th epoch. Define

ABRN D 1

N

NX

kD1
Epochk:
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We call ABRN by N-average ABR. Usually, 2000-average ABR is simply called
ABR. We study the dependency of ABRN with respect to N for N D 10, 20, 30, 40,
100, 200, 300, 1000, 1500, and 2000.

3 Wavelet Analysis of ABR

To represent ABR waveform components, we not only analyze the frequency
characteristics of ABR, but also represent both the time (latency) and frequency
characteristics of each component of ABR. Using the SWT in this latency-frequency
analysis, we describe an estimation method of reproducing ABR signals from the
observed values obtained with a number of averaging procedures, as following
algorithm:

Wavelet Analysis

1. We used MATLAB2015b and the wavelet toolbox.
2. We set the decomposition level to 8.
3. We used the bi-orthogonal 5.5 wavelet functions for the SWT.
4. Relationship between details and approximation and frequency ranges used in

our analysis is given in Table 1.
5. We presented results of reconstructed waveforms of SWT in the case of 70 dB

nHL (shown in Fig. 1).
6. We could estimate the peak latencies by the details D5N to D8N and A8N in each

case of averaging.

Table 1 Relationship
between details and
approximation and frequency
ranges

Details and approximation Frequency band (Hz)

D1 12,500–25,000

D2 6250–12,500

D3 3125–6250

D4 1562–3125

D5 781–1562

D6 390–781

D7 195–390

D8 97–195

A8 0–97
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Fig. 1 An example of graphs. The averaging waveforms (S) and their reconstructed waveforms of
details D1N to D8N and approximations A8N for N D 10, 20, 30, 40, 100, 200, 300, 1000, 1500,
and 2000

4 Proposed Model

In [2] we reported that we applied the polynomial fittings to A8N . In this paper we
also apply the polynomial fittings to D8N .

4.1 Dependency of the A8N and D8N with Respect to N

Denote by A8N and D8N , the approximation A8 and the detail D8 of ABRN ,
respectively. Denote by tN , the time coordinate of the local maximum of A8N and
D8N . We have the following Observations 4.1 and 4.2.

Observation 4.1 The local maximums of A8N and D8N are decreasing as N
increases.
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Fig. 2 Coefficients of polynomial fittings of A8 (left side) and D8 (right side)

Observation 4.2 For N D 200, 300, 1000, 1500, 2000, each of D8N has only one
local maximum in Œ1; 6�, the coordinate of which is denoted by tD8;N. Then, we have

1 � tD8;200 � tD8;300 � tD8;1000 � tD8;1500 � tD8;2000 � 6:
We have the similar result for A8N.

For each N D 10, 20, : : :, 2000, to estimate local maximums of A8N and D8N
and their coordinates tA8;N and tD8;N , we use the K-th degree polynomial fitting:

y D
KX

kD0
ak.N/ t

k; .K D 4 when A8N ; K D 6 when D8N/: (1)

For a data f fng, we denote by polyfit.f fng/, the polynomial of degree 4 or 6 fitted
to f fng. Here, the coefficients fak.N/gND10;20;:::;2000 are the best coefficients of the
polynomial fittings model derived from the experiment data using the least squares
method. We apply the polynomial fitting to A8N and D8N .

Results

1. For the coefficients fak.N/gND10;20;:::;2000 we can see the remarkable dependency
of a0.N/ on N and the dependencies of the other coefficients are smaller than
a0.N/. See Fig. 2.

2. The polynomial fittings are very accurate because the least squares errors are less
than 0.0011.

3. We can estimate the coordinates tA8;N and tD8;N of the local maximums.

4.2 A New Slow ABR Model

It is important to analyze the dependency of slow components of ABRN on N.
In particular, the time latency around 5ms is the most important for the auditory
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brainstem response. To analyze the time latency, we will search the local maximum,
denoted by ı.N/, closest to the time latency. At the same time we independently
express a0.N/ because when t D 0 is ı.N/ D 0. Let us propose a new slow ABR
model, which is an improved version of (1), as follows.

y D a0.N/C
KX

kD1
ak.N/ .t � ı.N//k: (2)

5 Conclusions

The ABR, usually defined by the average of 2000 epochs, is widely used as an index
to assist hearing and brain function diagnoses. We are interested in the dependency
of the ABRN on the number N of averaging. It is believed that the spontaneous
EEG should synchronize with the Dirac combs. To show this synchronization, we
have studied the slow component of ABRN using A8N (see [2]) and D8N because the
spontaneous EEG and A8N share the same frequency band. Especially the frequency
band of D8N is contained in the frequency band of the slow component of ABRN .
Therefore we propose the new model (2) in this paper. Our main results are the
followings.

1. The ABR peak latencies observed in the D5N , D6N , and D7N synchronize each
other. (Shown in the center graphs of Fig. 1.) In the ten graphs of D5N , which are
the main components of fast ABRN , we observed the peak latencies of the D5N
are constants. Hence the peak latencies are independent of N.

2. The local maximums of A8N and D8N are decreasing as N increases.
3. For N D 200, 300, 1000, 1500, 2000, the coordinates tA8;N and tD8;N , which

correspond to the time coordinate of the local maximum of A8N and D8N ,
increase monotonically with

1 � tA8;N � 6; 1 � tD8;N � 6:

Future Study In this paper, we have used the polynomial fitting. Using the
polynomial fitting in the form (2), we may have some information on the time-
phase shifts. Furthermore, we will investigate dependencies of details D8N and
approximations A8N on N because details D8N are also included in the slow
components of ABRN .
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University. This work was partially supported by JSPS.KAKENHI (C)26400199, (C)25400202 of
Japan.
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The Analysis of Big Data by Wavelets

Kiyoshi Mizohata

Abstract The amount of social media data is now growing exponentially. Such
data is now called Big Data. In this paper, we shall show several interesting results
obtained by the wavelet analysis of Nico Nico Douga (famous social media in Japan)
which is a typical example of Big Data, using Hadoop distributed file system.

Keywords Big Data • Wavelets

1 Introduction

We live in the world where the amount of the data set is increasing exponentially.
Such big data set is now called Big Data. In this paper we first show how to deal
with Big Data written in Japanese. In general, in order to deal with Big Data, we
must use Hadoop system. But in this case, to deal with data written in Japanese, we
must be careful. Next, we shall explain several interesting results obtained by the
wavelet analysis.

2 Pre-processing of Japanese Big Data

In this investigation, we analyze comments of Nico Nico Douga (famous social
media in Japan). Nico Nico Douga is famous video sharing website in Japan
managed by Dwango. Users can upload video clips. Many comments can be overlaid
directly onto the video by many viewers. So comments of video clips are one of the
most famous Big Data in Japan.
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To investigate this Big Data (300 GB) by Hadoop system, pre-processing of
Japanese data is required since Hadoop system cannot analyze Japanese words.
Japanese words must be reformed by Mecab, a famous open source morphological
analyzer for Japanese nouns, verbs, and adjectives. By using Mecab, we can do
pre-processing of Japanese data by Hadoop system.

3 Wavelet Analysis of Comments

Investigations of the number of comments of this Big Data lead us to very interesting
results. In this paper we show one typical example, concerning to the musician A.
A is now one of the most famous musicians in Japan. (A is, of course, pseudonym)
We want to know a turning point of A’s life by the comments of Nico Nico Douga.

Let us find the number of comments related to the musician A. By counting
comments with Hadoop system [1] after pre-processing, we obtain the following
comment data. See Fig. 1.

We decompose this data using D2 wavelets [2]. Denote by H1 the high frequency
part of the data and by L1 the low frequency part of the data.

The lowest value of H1 data corresponds to a turning point. See a small circle in
Fig. 2. In Fig. 3, we also put a circle to a turning point. More interesting results can
be found by decomposing L1 to H2 and L2 (Fig. 4).
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Fig. 1 The number of comments by week
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Fig. 3 Turning point of data by H1

It is obvious that a turning point of data by H2 data (circle in Fig. 5) is important.
This is a turning point of A’s life. By analyzing A’s turning point more precisely,
and also other famous people’s data, we can find more interesting results.
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Fig. 5 Turning point of data by H2

4 Conclusions

These results show that wavelets are strong tools to analyze Big Data. Using
wavelets, we can detect important edges of data, and also turning points of a person’s
life. But, on the other hand, there is a difficult problem. It spends a lot of time to
analyze Big Data by Hadoop system. More efficient algorithm must be found for
dealing with Big Data.
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Image Source Separation Based on N-tree
Discrete Wavelet Transforms

Ryuichi Ashino, Takeshi Mandai, and Akira Morimoto

Abstract An image source separation method using N-tree discrete wavelet trans-
forms is proposed. Key ideas of solving an image separation problem are sketched.
The results of numerical experiments show the validity of the proposed method.

Keywords Image source separation • N-tree discrete wavelet transform • Shift
parameter
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1 Introduction

We have studied blind source separation problems in [1], based on wavelet analysis
in [2]. We consider an image separation problem whose mixing model superposes
shifted source images as shown in Fig. 1. In [3], we treated this problem using
continuous multiwavelet transforms proposed in [4]. In this paper, we sketch the
key ideas of solving the problem using N-tree discrete wavelet transforms.
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x1 x2

x3 x4

s1
~ s2

~

s3
~ s4

~

Fig. 1 Example of image separation. Left: observed images. Right: separated source images

2 Image Separation Problem

We consider an image as a periodic extension of a real matrix s 2 R
P�Q, where P,

Q 2 N. Let sm 2 R
P�Q, m D 1, : : :, M, be source images. Assume that we get

observed images xj, j D 1, : : :, J, by the following mixing model

xj. p; q/ D
MX

mD1
aj;m sm. p � c1j;m; q � c2j;m/; (1)

where aj;m 2 R are mixing coefficients and cj;m D .c1j;m; c
2
j;m/ 2 Z

2 are shift
parameters. As in Fig. 1, for given observed images, our purposes are to estimate
model parameters M, aj;m, cj;m and to separate source images. This problem is called
an image separation. We assume the number of observed images J is larger than or
equal to the number of source images M. Under this assumption, if we estimate all
parameters, then we can separate source images using the Fourier transform of the
mixing model.

3 Key Ideas

Let us sketch the key ideas of solving our image separation problem. The first idea
is how to estimate the number M of source images and shift parameters cj;m. The
second idea is how to estimate mixing coefficients aj;m. For these purposes, we need
a linear shift-invariant edge extraction method. For details, see [3, Algorithm 3.1]
and [5, Algorithm 3].
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3.1 Estimation of Shift Parameters

We apply a shift-invariant edge extraction algorithm to two observed images x1
and x2, and make edge images e1 and e2. See Fig. 2. Let us consider a variant of
correlation R1;2 between e1 and e2:

R1;2.c
1; c2/ D

X

p;q

e1. p; q/ e2. pC c1; qC c2/:

Here we avoid the normalization because we sum up these variants of correlations
for several types of edge images. If the part of the first edge image corresponding to
the source image sm and the same part of the shifted second edge image overlap as
in Fig. 2 bottom right, then the absolute value of the inner product is large.

Figure 3 shows an example of the correlation R1;2 between the observed images
x1 and x2 illustrated in Fig. 1. We estimate the number M of source images by the
number of peaks of the correlation R1;2. Since Fig. 3 has four peaks, the number of
source images in Fig. 1 is four. The coordinates .c1; c2/, which attain the peaks of
R1;2.c1; c2/, correspond to relative shift parameters c2;m� c1;m D .c12;m� c11;m; c22;m�
c21;m/.

3.2 Estimation of Mixing Coefficients

If we use a linear shift-invariant edge extraction method, then edge images follow
the mixing model (1). We choose a relative shift parameter by the above-mentioned
method. The edge image e1 and the shifted edge image e2, which is shifted by the
relative shift parameter, overlap at the source image sm as in Fig. 4 left. We consider
ratios of the shifted e2 to e1. At the coordinates where e1 and the shifted e2 overlap,
ratios take the same value a2;m=a1;m. See Fig. 4 right. We draw a histogram of ratios
and select a coordinate which attains the largest peak. This coordinate corresponds
to the ratio of mixing coefficients a2;m to a1;m.

4 N-tree Discrete Wavelet Transform

We propose to use details of N-tree discrete wavelet transform (N-tree DWT)
as a linear shift-invariant edge extraction method. Selesnick and others proposed
the dual-tree complex wavelet transform in [6]. We extended it to N-tree version
in [7–9]. We applied it to watermarking in [10, 11] and blind source separation
problems in [5].

The merits of N-tree DWT are that the calculation speed is faster than a
continuous wavelet transform and that approximations and details are almost shift-
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x1 x2

c1

c2

e1 e2

Fig. 2 Upper: observed images. Middle: edge images. Bottom left: fix the first edge image e1 and
move the second edge image e2. Bottom right: search shift parameters where edge images overlap
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Fig. 3 Correlation R1;2.c1; c2/ between x1 and x2 illustrated in Fig. 1
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Fig. 4 Left: e1 and the shifted e2 overlap at the source image. Right: the intensity map of ratios of
the shifted e2 to e1, where the color bar represents the intensity

invariant if we use good wavelet functions explained in [12]. Figure 5 shows details
with level three of five shifted impulses. We use Cohen-Daubechies-Feauveau’s
biorthogonal wavelets (CDF) in [13]. Details using CDF with 7/9 taps are not
shift-invariant as in Fig. 5 left, but details using CDF with 39/41 taps are almost
shift-invariant as in Fig. 5 right.
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Fig. 5 Details with level three of five shifted impulses. Left: CDF 7/9 taps. Right: CDF 39/41 taps

5 Numerical Results

We prepared 40 patterns of observed images under the following conditions. We use
J D M D 4, 512�512 four standard images, uniformly random mixing coefficients
on Œ0:2; 0:8� and uniformly random shift parameters on Œ�200; 200�. All the cases
can be separated by our proposed method using N-tree DWT, where N D 2.
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Touch-Less Personal Verification Using Palm
and Fingers Movements Tracking

Marcin Piekarczyk and Marek R. Ogiela

Abstract In this paper the approach to personal authentication based on analysis of
biomechanical characteristics related to palm movements is considered. The basic
concept discussed in this research assumes that the hand motion dynamics, treated
as a biometrics, can be a sufficient base for efficient user identification. As an input
pattern for recognition system the natural finger-based gestures are investigated.
The appropriate data is gathered from touch-less sensor device in the form of time-
ordered data series related to spatial coordinates of fingertips positions and its
velocities. The proposed matching scheme exploits data series analysis in joint with
feature-based classification. The research is also focused on the analysis of such
type of natural gestures which can be performed with as little awareness as possible.
The possibility of using gestures performed in a high degree automatically and non-
consciously can be considered as significant advantage in practical applications.

Keywords Behavioral biometrics • Biometrics • Finger tracking • Gesture-
based identification • Natural gestures • Palm movements
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1 Introduction

Nowadays, the utilization of the gestures for control, guidance, or authentication
purposes is widely considered. Gesture-oriented interfaces are implemented in
various computer-based systems to support remote control (medical visualization

M. Piekarczyk (�)
Institute of Computer Science, Pedagogical University of Cracow,
2 Podchorazych Ave., 30-084 Krakow, Poland
e-mail: marp@up.krakow.pl

M.R. Ogiela
Cryptography and Cognitive Informatics Research Group, AGH University of Science
and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
e-mail: mogiela@agh.edu.pl

© Springer International Publishing AG 2017
P. Dang et al. (eds.), New Trends in Analysis and Interdisciplinary Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-48812-7_76

603

mailto:marp@up.krakow.pl
mailto:mogiela@agh.edu.pl


604 M. Piekarczyk and M.R. Ogiela

Fig. 1 Examples of natural gestures

systems, virtual reality navigation, computer games) or direct control (touch-screens
in standalone and mobile devices). The recognition systems are able to gather
information about user’s performed gestures from different sources like vision [1],
touch-sensitive surfaces [9], accelerometers [10], gyroscopes, or even magnetic
field sensors. The last three elements are often integrated as MEMS inside mobile
devices. Also, in the field of security, the gestures are perceived as useful data source
for authentication purposes. Following the main idea of using gestures instead of
standard text password different research and implementations have been developed
involving accelerometer-based recognition [10], touch-based drawing gestures [9],
or remote palm-based gestures [6, 7].

In this paper we discuss the authentication system where multi-fingers gestures
are considered. It extends the previously proposed algorithms [6, 7] where only
single finger or writing device is observed and analyzed. Especially, we focus on
the so-called natural type of gestures due to their usability in practical applications.
Even though it may be classified as behavioral biometrics like handwritten signa-
tures [4, 5] this type of gestures inherits also some advantages over physiological
biometrics.

In the context of this paper, we refer the term natural gestures to such type
of the gestures which can be performed with as little awareness as possible like
instinctive (habit-based) activity i.e without much thinking, almost automatically
and where motion pattern exploits natural limitations of musculoskeletal system
of the hand to define the range of movement in a easy and deterministic way.
Examples of such type of gestures are presented in Fig. 1. The possibility of using
gestures performed in a high degree automatically and non-consciously can be
considered as significant advantage in practical implementations where exactness
of the movement and repeatability is crucial.

2 Recognition and Verification Scheme

2.1 Data Acquisition

We assume the working environment is organized in similar way to systems
proposed in [6, 7], where the motion detector is placed vertically and is able to trace
palm and fingers shifted above its active surface. We assume that all five fingers are
traced and information about the fingertips movements is described as time series in
the form of pfinger.t/; v finger.t/ where finger 2 Œthumb; index;middle; ring; pinky�.
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The series p.t/ means position coordinates data and v.t/ means velocity data.
Both data series are expressed in 3D Cartesian coordinate system where reference
frame is associated with sensor device. In the proposed approach we didn’t take
into consideration the information about velocity because we want to obtain the
authentication scheme independent of the gesture execution speed. Finally, we
transform data into one dimensional space using standard Euclidean norm and
calculating the magnitude for each component of the signal [Eq. (1)].
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2.2 Preprocessing

During the preprocessing phase the following main operations are executed in
sequence to obtain the usable signal range:

• dropping off insignificant parts of the signal from the beginning and the end,
• narrowing the signal data to closest left/right minima.

The first step is simply calculated based on lack of the activity. The preprocessing
steps are primarily performed for index fingertip signal which is treated as main
reference data in this context. Subsequently, the information about usable signal
range is applied to the other fingertip signals. Finally, the normalization to the value
range [0,1] is calculated (Fig. 2).

2.3 Hand Geometry

Apart from information about finger movements we also try to estimate some
coefficients related to individual hand geometry. It is biometric-related information
unique for different persons. We calculate and store these coefficients in the form of
reference weights r D Œr1; r2; r3; r4; r5� as it is illustrated in Fig. 3.

2.4 Feature-Based Classification

To make a classification process we assume that all data series are transformed using
Discrete Cosine Transform (DCT) [2] in accordance with DCT-II variant defined in
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Fig. 2 Preprocessing steps: input raw data (1), cutting the insignificant sections (2), narrowing
down to closest minima (3), normalization (4)
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Fig. 3 Structure of the reference weights calculated as distances between fingertips
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Eqs. (2) and (3).

yŒk� D 2f
N�1X

nD0
xŒn� cos
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2nC 1
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k where k D 0; : : : ;N � 1 (2)

f D 1p
4N

if k D 0 or f D 1p
2N

if k 2 Œ1;N � 1� (3)

In result we obtain new data series composed of DCT factors [Eq. (4)]. DCT
transformation has a interesting property that the most energy (highest values) and
the most information about original signal is accumulated in finite number of its first
coefficients. Due to this (in practice) very often the limited subset of the first DCT
factors is applied instead of the full representation. In this paper the limited subset of
DCT coefficients is denoted as DCT-m where m parameter indicates the number of
DCT coefficients taken into calculations, i.e. DCT-50 means that the first 50 factors
from original DCT chain is taken into consideration. Such full or limited collection
(subset) of DCT factors is treated as global features describing the examined signal.
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Subsequently, it is calculated the DTW-based distance between examined signal
(CS) and all patterns stored in memory (Sj) according to Eq. (5). In these calculations
standard DTW algorithm [3] with the Manhattan distance as a local cost measure
has been used.
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Final classification is made by using k-NN classifier based on weighted
Euclidian-like distance [Eq. (6)] where�r D jrCS�rSj j and vectorw D Œ1; 5; 5; 1; 5�
is responsible for reducing the impact of thumb-related distances.

d D
sX

i

wi 	 .�ri 	 dtwi/2 (6)

The brief scheme of the proposed recognition system operating in two phases
indicated as offline (collecting patterns for learning set) and online (real-time
classification) is presented in Fig. 4.
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Fig. 4 The main components of the verification scheme

Table 1 The results of 3-NN
classification for different
number of DCT factors

Errors DCT-5 DCT-10 DCT-15 DCT-20

FRR 12:5 8:3 12:5 16:7

FAR 4:2 2:8 4:2 5:6

3 Experimental Results

The initial accuracy of the authentication scheme proposed in the paper has been
verified using limited set of the examined gestures (4 persons, 10 gestures each).
Three randomly chosen realizations have been selected as representative templates
and the remaining ones as learning set. The 3-NN classifier was considered. The
preliminary results received during the tests are presented in Table 1.

4 Conclusions

In this paper the idea of utilization of hand-based motion characteristics for the
verification purposes has been discussed. We have proposed the automatic recog-
nition scheme based on natural gestures where multi-fingers dynamics is observed.
Preliminary tests provide promising results. In future research it is necessary to
focus on ramarkably improving the effectiveness and investigate the applicability of
the model in the field of cryptography (i.e., gesture-based fuzzy vault scheme [8]).
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