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Abstract 

Grain boundaries, triple junctions, and quadruple points are the geometrical elements in 3-D 
polycrystalline networks, where these elements have co-dimensions 1, 2, and 3, respectively. 
Grain boundary mobility usually controls network kinetics in materials with "large" grain 
sizes. Nonetheless, there are studies concerning the effects of these network elements on the 
self-similar distributions of scaled grain size and number of faces per grain. This study 
applies a polyhedral representation of grains that the authors developed previously to obtain 
LSW-like (self-similar) behavior for distributions with three rate-limiting situations, viz., 
where the kinetics of network evolution is controlled by boundary, triple junction, or 
quadruple point mobility. The self-similar network states so obtained yield important 
implications concerning details of polycrystalline evolution, such as grain growth 
“trajectories”, grain lifetimes, and their volume-time behavior.  

Introduction 

Polycrystalline grain growth, which is topological similar to soap bubble coarsening, was 
believed for a long time to be controlled solely by grain boundary (GB) mobility and 
curvature. Later, the importance of triple junctions (TJ) and quadruple points (QP) was 
recognized [1]. TJs and QPs become especially important as the grain size decreases to the 
nanoscale. Figure 1 illustrates how, at large (conventional) length scales, the density of GBs 
dominates grain networks. This situation changes as the network length scale decreases and a 
certain threshold TJ density is reached. At extremely small length scales, the density of QPs 
would eventually dominate.  
Figure 1, however, depicts a static picture of the situation. When one takes into account grain 
growth dynamics, then the mobilities of GBs (mGB), of TJs (mTJ), and of QPs (mQP), must be 
taken into account. Gottstein and Shvindlerman reconciled these additional kinetic factors 
and proposed a kinetic relationship between the grain boundary velocity, G, and its driving 
force, P, weighted by the scaled mobilities o all the network elements, 

PmmmG QPTJGB
12 )]/(1)/(1/1[ ������ (1) 

Equation (1) shows that both mobility and length scale, �, play a role in determining the 
boundary speed. For example, if the three network mobilities are equal then the length scale 
would provide the controlling kinetic factor, as shown in figure 1. By contrast, if one of the 
scaled mobilities, say �mGB, is much smaller than the other two, as occurs in conventional 
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grain growth, then that slow step controls the network kinetics, and equation (1) reduces to 
G=�mGBP.  
Rios and Glicksman [2] showed in a recent paper that long-term self-similar distributions of 
grain size and number of faces develop that correspond to situations controlled by one of the 
scaled mobilities, mGB, �mTJ, or �2mQP that became the controlling kinetic factor. In what 
follows these three kinetically limiting cases will be referenced as GB-, TJ- or QP-controlled 
grain growth.  
In this paper we first revisit the main results from Rios and Glicksman, and then extend their 
discussion drawing wider interpretations of their results. 
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QP

TJ

 
Figure 1: GB, TJ, or QP density as functions of the network length scale, chosen as the 

vertex-to-vertex distance, �. 
 

 
Self-similar distributions 

 
 

Figure 2: left, number of faces distributions (NFDs), and right, grain size distributions (GSDs) for 
the three network kinetic limits controlling polycrystalline grain growth: GB, TP, QP. Curves are the 
continuous self-similar distribution functions, where symbols designate the discrete probability 
densities for integer face classes. 
 
Figure 2 shows the self-similar distribution of number of faces (left), and the distribution of 
grain sizes (right) obtained earlier by Rios and Glicksman using regularized polyhedral 
grains. Hillert’s distribution for spherical grains is included for comparison in Fig. 2  (right), 
and nearly coincides with the polyhedral solution for GB-mediated kinetic control, as is 
expected from previous work [3]. Hillert’s distribution does not normally show agreement 
with computer simulations [4]. Similarly, the number of faces distribution derived by 
employing Hillert’s assumption of a constant vertex-to-vertex distance does not provide 
agreement with computer simulations either [3]. Consequently, close agreement between TJ- 
and QP-distributions derived here from computer simulations is also not expected. This was 
confirmed when the results shown above are compared with recent Monte Carlo simulations 
conducted by Zöllner [5]. 
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There is, however, an important aspect for which the present analytical solutions agree well 
with computer simulations. This concerns the fact that GB-, TJ-, and QP-limited network 
kinetics do possess long-term, analytical, self-similar solutions independent of the 
controlling kinetic mechanism. We note that each controlling mechanism produces its own 
kinetic growth law and each is distinct from the others. Nonetheless, all three kinetic cases 
exhibit analytical self-similarity and this affine behavior is also found in computer 
simulations. From these results one may draw a tentative conclusion: self-similarity (the 
affine state) is an intrinsic property of evolving polycrystalline networks. Moreover, self-
similarity can be attained independent of the controlling kinetic mechanism. Of course, the 
form of each affine distribution is determined by the corresponding controlling kinetic 
mechanism and each will be unique.  

 
Grain trajectories 

 

 
Figure 3: (left) mean faces loss trajectories as a function of time; (right) volume trajectories 
(log-scale) through face-number N-space, for average network grains initially having 25 
faces, and evolving under each case of  kinetic network control.  
 
Figure 3 presents the expected grain faces loss trajectories, that is, how topological (number 
of faces) and how metrical (mean grain volumes, V) evolve. Figure 3 (left) shows how the 
number of faces of the grains evolve as they are lost by topological reactions. In all cases the 
number of faces per grain always decreases with time. Actually, it is possible to show that 
the number of edges per grain and number of vertices per grain also decrease, following, as 
they must, the decrease in number of faces per grain. Figure 3 (right) shows the expected 
volume evolution versus the number of faces. The volume for each face class always 
increases for grains with number of faces N≥14 but decreases for number of faces N≤13. All 
three volume curves pass through a broad maximum at the same critical N-value, Nc ~13.4. 
The reason for this is that between N=14 and N=13 the grain faces reverse the sign of their 
curvature. For N≥14 their faces are concave, and the grains increase their volume. In 
contrast, for N≤13 grain faces are convex, and, therefore, grains lose volume. Glicksman and 
Rios [6] demonstrated that a regularized polyhedral grain with N=13.397… faces has flat 
faces, and is the 3-D homolog of a six-sided grain in 2-D that neither increases or decreases 
its area. A 3-D grain with N=13.397… faces lacks any driving force either for growth or 
shrinkage. Moreover, this kinetic feature of the polyhedral face number does not depend on 
whether the rate controlling kinetic feature is the GB, TJ, or the QP mobility. Any evolving 
polycrystalline network must always comply with this general topological result: change of 
sign of the driving force for grain growth/shrink at Nc~13.397… faces. The main result 
brought out in Figure 3 (right) is that when the self-similar state is finally achieved, grains, 
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on average, lose faces––even as they grow. This apparent paradox is resolved provided one 
considers the possibility of two independent processes resulting in grain volume increases or 
decreases, namely, 1) metrical and 2) topological changes.  
 
This idea is best understood by writing the total differential of a grain’s volume change, dV, 
as 
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The first term in equation (2) represents the differential volume change when a grain loses or 
gains faces. The volume decreases when a grain loses a face during self-similar evolution. 
Therefore, the first (topological) term in equation (2) remains negative as face losses occur. 
Conversely, the mean vertex-to-vertex distance tends to increase over time, so that the 
second (metrical) term in equation (2) remains positive. Whether a particular polyhedral 
grain’s volume increases or decreases volume with time depends on the interplay of the two 
independent terms in equation (2). This tendency will be discussed in the next section. 
 
A related question that arises is precisely how self-similarity is maintained if grains are on 
average losing faces. The answer lies in the fact that self-similar distributions deal 
statistically with grain classes not with individual grains. Consider the class of grains with N 
faces and volume V(N, �). When a grain from the class with N+1 faces loses a face it joins 
the lower face class of grains with N faces. Since this transition is also accompanied by an 
increase in the vertex-to-vertex distance over time the volume of this “new”, or added, grain 
with N faces will on average develop a larger volume, V(N, �+��). In this manner the 
volumes of grains in all face classes increase, and eventually self-similar evolution results. 
Obviously, if the volume of each class increases over time, some grains must disappear, as 
the total network volume must be conserved. We discuss this important constraint in the next 
section. 
 
It is also worth mentioning that a recent study on the transient states developed between an 
initial distribution of Voronoi polyhedra and the final self-similar distribution shows that if 
one is not yet in the self-similar state, then it is possible for a grain to gain faces [7]. Again 
we stress that the behavior of grains during self-similar growth is identical and independent 
of the controlling kinetic mechanism. Again, one may draw the conclusion that this 
consistent network behavior is a characteristic resulting from the long-term evolution of 
polycrystalline networks and does not depend on the network element controlling growth.  

 
Metric and topological contributions 

 
Figure 4 captures the detailed behaviors of grain volume rate of change with number of faces 
for the three different kinetic limits discussed herein. The total rate of volume change is 
decomposed into their topological and metric contributions as indicated in equation (2). As 
expected, the rate of change in the three limiting network kinetic cases considered is always 
equal to zero for Nc=13.397…  Nonetheless, even grains with a number of faces very close 
to N=13.397…, N=13 or N=14, may suffer considerable topological and metric changes of 
opposite signs. These countervailing changes combine to produce small rates of change of 
the total volume. 
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Conclusions 
 

The evolution of a polycrystalline network, conceptualized as a collection of space filling 
trivalent polyhedra was studied by analytical methods for three different kinetic controlling 
mechanisms corresponding to the scaled mobilities of the geometric elements of the 
network: grain boundaries, triple junctions and quadruple points. That analysis outlined 
above permits one to draw the following conclusions: 

� The self-similar state is an intrinsic property of evolving quadravalent polycrystalline 
networks.  

� The polycrystalline network reached a self-similar state independently of the 
controlling kinetic mechanism, namely, the GB-, TJ- or QP-mobilities.  

� Nonetheless, the self-similar distributions of sizes or face numbers depend on the rate 
controlling kinetic mechanism. 

�  The grain trajectories were also similar for the three controlling mechanisms, but, of 
course, the numerical values depend on the controlling mechanism. 

� All three curves of grain volume against number of faces, figure 3 (right), pass 
through a maximum at the critical face number value Nc=13.397…, where the driving 
force for grain growth reverses its sign. This finding is also a purely topological 
characteristic of the polycrystalline network, one which does not depend on the 
kinetic rate-controlling mechanism. 

� The independent partition of the total volume rate of change into its topological and 
metric components showed in all three cases a similar behavior. The metric 
component remains positive whereas the topological component remains negative, 
independent of the rate-controlling mechanism. 

� Therefore, in spite of detailed quantitative differences, the overall behavior of 3-D 
network grains during self-similar growth remained unchanged for different kinetic 
controlling mechanism, namely, GB-, TJ-, or QP-mobility.   
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