STUDY ON ELECTRICAL CONDUCTIVITY OF CaO-SiO₂-Al₂O₃-FeO_x SLAGS

Guo-Hua ZHANG^{*}, Jun-Hao LIU and Kuo-Chih CHOU

State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, China

Keywords: Ionic conductivity, Electronic conductivity, Arrhenius law, Charge compensation

Abstract

As a fundamental study on properties of the Fe_xO-bearing slags, the total electrical conductivity and electronic/ionic properties of Fe_xO-SiO₂-CaO-Al₂O₃ slags were measured at different oxygen potentials (controlled by CO-CO₂ mixture gas) and temperatures by using four-electrode method. From experiments results, it can be seen that the total conductivity changes little as increasing the ratio of CO to CO₂ (decreasing the oxygen potential), while the electronic and ionic conductivities of all slags decreases and increases monotonously, respectively. The temperature dependences of the total electrical conductivity, electronic, and ionic conductivities follow the Arrhenius law. It was also found that with increasing CaO/Al₂O₃ ratio, the total electrical conductivity and ionic conductivity firstly decrease and then increase, while electronic conductivity firstly almost keeps constant but then increases from CaO/Al₂O₃=1. The minimum values of the total electrical conductivity and ionic conductivity occurs near the ratio of CaO/Al₂O₃ = 1, which is mainly resulted from the charge compensation effect of Al³⁺ ions.

Introduction

The electrical conductivity of molten slag is not only an important physical property that plays a prominent role in modeling and operating the electric smelting furnace and optimizing the metallurgical process, but also important for understanding the structure of molten slags¹⁴. Indeed, many studies have been conducted on investigating the electrical conductivity of molten slags. For instance, the electrical conductivities of Fe_xO -CaO-SiO₂⁵⁻⁷, Fe_xO -CaO-MgO-SiO₂⁸, Fe_xO -CaO-SiO₂-Al₂O₃⁹, Ni_xO-CaO-SiO₂¹⁰, and Ni_xO-CaO-MgO-SiO₂¹⁰ slags had been measured and reported in published literatures. Because for slag systems containing the transition metal oxides, the electrical conductivity includes two parts, ionic conductance and electronic conductance, both of which are very complicated functions of temperature and composition. Consequently, the estimations for both of them will be difficult. The FeO_x containing slags are widely used and play significant roles in many pyrometallurgical processes, so more experimental studies should be done about them. The objective of this work was to study the electrical and electronic conductivity of Fe_xO-CaO-SiO₂-Al₂O₃ slags at various temperature and oxygen potentials which controlled by the ratio of CO₂/CO, which will be beneficial for modeling and operating the electric smelting furnace.

Experimental Procedure

Table 1 shows the chemical composition for each sample. Three different categories of samples were prepared. In group A, contents of FeO and SiO_2 were kept constant, while CaO

^{*}Corresponding author. Email: ghzhang_ustb@163.com

was gradually increased. It should be pointed out that C/A is defined as the mole fraction ratio of CaO to that of Al_2O_3 . For groups B and C, SiO₂ content was kept constant, while CaO content was gradually increased. Slag samples were prepared using reagent grade SiO₂, Al_2O_3 , CaCO₃ and Fe₂O₃ powder (all reagent are analytically pure, Sinopharm Chemical Reagent Co., Ltd, China), all of which were calcined at 1273 K for 10 h in a muffle furnace to decompose any carbonate and hydroxide before use. Pure FeO was obtained by calcining Fe and Fe₂O₃ powder in CO/CO₂ atmosphere at 1373 K for 24 hours. Then about 12 g mixtures were precisely weighted according to the compositions shown in Table 1, and mixed in an agate mortar thoroughly.

	FeO	SiO ₂	CaO	Al ₂ O ₃	C/A
			24	12	2
Group A	20	44	20	16	1.25
			16	20	0.8
			12	40	0.5
			40	5	8
			35	10	3.5
Group B		55	30	15	2
			25	20	1.25
			20	25	0.8
			30	5	6
Group C		65	25	10	2.5
			20	15	4/3
			15	20	0.75

Table 1. Composition of slag sample (mole percent).

A four terminal method, which had already successfully used to measure the electrical conductivity of molten slags, was employed to accomplish the electrical conductivity measurements in this study. The descriptions of experimental principle and device have already been mentioned in our previous study¹¹. During the whole heating process and the first two hours holding at the target temperature (1823K), the slag was exposed to CO_2 , and the flow rate of gas was controlled by a mass flowmeter. The input gas was varied from pure CO_2 to CO_2 -CO mixed gas to control the oxygen partial pressure. For group A, the experimental measurements were carried out at every 50 K interval on cooling from 1823 K, and for group B and C, the resistance measurement was carried out at every 25 K interval on cooling from 1873 K. At each temperature, the slag was kept for 2 hours before measurement for the purpose of equilibrium and uniformity of slag.

All the measurements were recorded using a CHI 660a electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd.). The resistance was found to be independent of the frequency, over the range 0.5 kHz to 100 kHz. All of the measurements were carried out at 20 kHz.

Results and Discussion

1. Influence of temperature on electrical conductivity

It is widely accepted that the temperature dependence of electrical conductivity can be expressed by the Arrhenius law as:

$$\sigma = A \exp(-E/RT) \tag{1}$$

where σ is electrical conductivity, Ω^{-1} cm⁻¹; *A* is pre-exponent factor; *E* is activation energy, J/(mol•K); R is the gas constant, 8.314 J/(mol•K); *T* is the absolute temperature, K. Figures 1 to 3 show the change of electrical conductivity as a function of temperature for group A slags, at CO/CO₂ = 0.2. It can be seen from these figures, that the electrical conductivity increases by increasing the temperature, furthermore, the temperature dependence of electrical conductivity obeyed the Arrhenius law very well.

Figure 1. Arrhenius plot of total electrical conductivity for group A slags when $CO/CO_2 = 0.2$.

Figure 2. Arrhenius plot of the ionic conductivity for group A slags when $CO/CO_2 = 0.2$.

Figure 3. Arrhenius plot of the electronic conductivity for group A slags when $CO/CO_2 = 0.2$.

2. Influence of equilibrium oxygen potential on electrical conductivity

The total electrical conductivity for group A slags at 1823 K as a function of CO/CO_2 ratio is shown in Figure 4. As can be noted, the total conductivity changes little in the oxygen potential range of the present study.

Figure 4. The total electrical conductivity of group A slags for different CO/CO₂ ratio at 1823 K.

The ionic conductivity for group A slags at 1823 K as a function of equilibrium CO/CO₂ is shown in Figure 5. It is evident from figure 5 that the ionic conductivity of all group A slags increases with increasing the ratio of CO/CO₂. From Eq. (2), it can be known that more and more ferric ion will replace ferrous ion with decreasing the CO/CO₂ ratio (or increasing the oxygen potential). According to conclusions of Fontana et al.¹², ferrous ion is the only iron ion that significantly contributes to the ionic conduction in iron-oxide-containing melts. The tendency of the ferric ion toward covalent binding with oxygen is strong enough to stimulate the formation of highly covalent anions (FeO₄⁵⁻ or Fe₂O₅⁴⁻) instead of an isolated Fe³⁺ cation, which will lead to greatly reduced mobility compared with ferrous ion. Therefore, the ionic conductivity of all slags increases with increasing the ratio of CO/CO₂.

0.

Figure 5. The ionic conductivity of group A slags for different CO/CO₂ ratio at 1823 K.

The effect of the CO/CO_2 ratio on electronic conductivity for group A slags at 1823 K is shown in Figure 6. As can be noted, the electronic conductivity decreases with increasing the ratio of CO to CO₂. According to the above results, it can be known that the ionic conductivity of all slags increases with increasing the ratio of CO to CO₂, which leads to the little change of total conductivity as shown in Figure 7

Figure 6. The electronic conductivity of group A slags for different CO/CO₂ ratio at 1823 K.

3. Influence of the ratio of CaO/Al₂O₃ on electrical conductivity

The total electrical conductivity and electronic/ionic conductivity for group A slags with different ratios of CaO/Al₂O₃ at fixed FeO and SiO₂ contents under the atmosphere of CO/CO₂=0.2 at 1823 K are shown in Figure 7. As can be noted, by increasing CaO/Al₂O₃ ratio, the total electrical conductivity and ionic conductivity firstly decrease and then increase, while electronic conductivity firstly almost keeps constant but then increases from CaO/Al₂O₃=1. The minimum values of the total electrical conductivity for group B and C slags with different ratios of CaO/Al₂O₃ at fixed SiO₂ content at 1873 K are shown in Figure 8 and Figure 9, respectively. As the CaO/Al₂O₃ ratio increases, the electrical conductivity will decrease firstly and then increase. In other words, the electrical conductivity exhibits a minimum value with the change of CaO/Al₂O₃ ratio, which occurs near the ratio of CaO/Al₂O₃ equal to 1.

Figure 7. The total electrical, electronic and ionic conductivities of group A slags for different CaO/Al₂O₃ ratio at 1823 K when $CO/CO_2 = 0.2$.

Figure 8. The electrical conductivity of group B slags for the different CaO/Al₂O₃ ratio at 1873 K.

Figure 9. The electrical conductivity of group C slags for the different CaO/Al₂O₃ ratio at 1873 K.

For the Al₂O₃ bearing molten slag, when there are several basic oxides, there is a strict order for cations when charge compensating the Al³⁺ ions. In the present system, there are two basic oxides. The priority order for charge-compensation of Al³⁺ ions fulfills Ca²⁺ >Fe^{2+.13} In other words, when there is enough Ca²⁺, Fe²⁺ with a lower priority will not be used to charge compensate the Al³⁺ ion. Intuitively, Ca²⁺ mainly contributes ionic conductivity, while Fe²⁺/Fe³⁺ influence both electronic and ionic conductivities. In FeO-CaO-Al₂O₃-SiO₂ system, there are two types of Ca²⁺ cations: One compensates Al³⁺ ion and the other forms nonbridging oxygen. Figure 10 shows the schematic diagrams. The transport ability of the former type of cation is much weaker than that of the latter type of cation. In the case of x(CaO) < x(Al₂O₃), as increasing CaO content the degree of polymerization is enhanced which decreases ionic conductivity. Whereas, the increase of concentration of metal cations will have little influence on ionic/electrical conductivity because in this case most of the new added Ca²⁺ ion are used for charge compensators of Al³⁺ and have little mobile ability. In the case of x(CaO) > x(Al₂O₃), with the addition of CaO content, the degree of polymerization decreases and the concentration of metal cations increases, both of which will enhance the ionic conductivity.^{14,15} Therefore, there should be a minimum value for ionic conductivity near the ratio of CaO/Al₂O₃ = 1.

Figure 10. The schematic diagrams of tow type of Ca^{2+} ions.

However, it has been pointed out that the electronic conductivity is determined by the concentration product of Fe²⁺ and Fe³⁺ ions.⁷ Therefore, the electronic conductivity will increase when the concentration of Fe³⁺ ion increases. It is known to us that the ratio of Fe³⁺ ion to total Fe ion is affected by temperature, oxygen potential and the basicity of the slag. When temperature and oxygen potential are kept constant, the proportion of Fe³⁺ ion increases as increasing the basicity, which can be seen easily from Eq. (3). In Eq. (3), O²⁻ expresses the free oxygen ion. In the case of $x(CaO) < x(Al_2O_3)$, almost all the CaO all used for charge compensation, the concentration of free oxygen ion O²⁻ doesn't have an equivalent increase as increasing CaO/Al₂O₃ ratio. Consequently, there is little change of Fe³⁺ ion concentration, so the electronic conductivity almost keeps constant. However, when $x(CaO) > x(Al_2O_3)$, all the Al³⁺ ions are get compensation, so there will be an large increase of free oxygen ion as increasing CaO/Al₂O₃ ratio. Based on Eq. (3), the concentration of Fe³⁺ ion (highly covalent anion such as FeO₄⁵⁻ is always formed instead of an isolated Fe³⁺ cation) will also increase which enhances the electronic conductivity.

According to the above analyses, as increasing CaO/Al₂O₃ ratio, the ionic conductivity first decreases and then increases, while the electronic conductivity firstly almost keeps constant and then increases from CaO/Al₂O₃ = 1. Therefore, the total electrical conductivity also firstly decreases and then increases with the change of CaO/Al₂O₃ ratio, with the minimum value occurring near CaO/Al₂O₃ = 1. For CaO-SiO₂-Al₂O₃ slags, the minimum value of electrical conductivity near CaO/Al₂O₃ = 1 is also resulted from the charge compensation effect of Al³⁺ ions.

Conclusions

The electrical conductivity of $Fe_xO-SiO_2-CaO-Al_2O_3$ slags was measured by a four-terminal technique. The results show that the temperature dependences of ionic, electronic and total conductivity for different compositions obey the Arrhenius law. The experimental results show that the total conductivity changes little as increasing the ratio of CO to CO_2 , while the electronic and ionic conductivities of all slags decreases and increases monotonously, respectively. With increasing CaO/Al₂O₃ ratio, the total electrical conductivity firstly almost keeps constant but then increases from CaO/Al₂O₃=1. The minimum values of the total electrical conductivity and ionic conductivity and ionic conductivity firstly increases from CaO/Al₂O₃=1. The minimum values of the total electrical conductivity and ionic conductivity and ionic conductivity increase from the ratio of CaO/Al₂O₃ = 1, which is resulted from the charge compensation effect of Al^{3+} ion.

Acknowledgements

Thanks are given to the financial supports from the National Natural Science Foundation of China (51304018).

References

- 1. S.C. Britten, U.B. Pal: "Solid-state amperometric sensor for the*In-situ* monitoring of slag composition and transport properties", *Metallurgical and Materials Transactions B*, 31 (2000), 733-752.
- C.Y. Sun and X.M. Guo: "Electrical conductivity of MO(MO=FeO, NiO)-containing CaO-MgO-SiO₂-Al₂O₃ slag with low basicity", *Transactions of Nonferrous Metals Society of China*, 21 (2011), 1648-1654.
- 3. S. Jahanshahi, S. Sun and L. Zhang: "Recent Developments in Physicochemical Characterization and Modelling of Ferroalloy Slag Systems", *Journal of the Southern African Institute of Mining and Metallurgy*, 2004, 316-332.
- 4. Y. Li and I.P. Ratchev: "Rate of interfacial reaction between molten CaO-SiO₂-Al₂O₃-Fe_xO and CO-CO₂"*Metallurgical and Materials Transactions B*, 33B (2002), 651-660.
- K. Narita, T. Onoye, T. Ishll and K. Uemura: "Electric conductivity of CaO-SiO₂-Fe_tO slag", *ISIJ International*, 61 (1975), 2943.
- 6. T. Hoster and J.P. Essen: "The electric conductivity of FeO-containing CaO-Al₂O₃-SiO₂ slags with basicities ≤1.5 at 1450 to 1650°C" *Archiv Eisenhuttenwes*, 54 (1983), 389-394.
- M. Barati and K.S. Coley: "Electrical and electronic conductivity of CaO-SiO₂-FeO_x slags at various oxygen potentials: Part I. Experimental results" *Metallurgical and Materials Transactions B*, 37 (2006), 41-49.
- L. Bobok, L. Bodnar and J. Schmiedl: "Specific electric conductivity of FeO-SiO₂-X slag systems", *Hutnicke Listy*, 37 (1982), 419-425.
- S.N. Shin, S.A. Lyamkin, R.I. Gulyaeva and V.M. Chumarev: "Electrical conductivity of melts FeO_x-Al₂O₃-CaO-SiO₂ system", *Rasplavy*, 5 (1998), 20-24.
- 10. M. Kawahara, K.J. Morinaga and T. Yanagase: "Behavior of MgO and NiO in Molten Slags", *Canadian Metallurgical Quarterly*, 22 (1983), 143-147.
- J.H. Liu, G.H. Zhang, and K.C. Chou: "Study on Electrical Conductivity of CaO-SiO₂-Al₂O₃ slags", *Canadian Metallurgical Quarterly*, 54 (2015), 170-176.
- 12. A. Fontana, K. Segers, K. Twite and R. Winand: "Electrical conductivity of ferrous silicate melts from slag cleaning operations", *The Metallurgical Society/AIME*, 1984, 84-93.
- G.H. Zhang, K.C. Chou and K. Mills: "A Structurally Based Viscosity Model for Oxide Melts", *Metallurgical and Materials Transactions B*, 45B (2014), 698-706.
- 14. G.H. Zhang and K.C. Chou: "Measuring and Modeling Viscosity of CaO-Al₂O₃-SiO₂(-K₂O) Melt", *Metallurgical and Materials Transactions B*, 43 (2012), 841-848.
- 15.G.H. Zhang, B.J. Yan, K.C. Chou and F.S. Li: "Relation Between Viscosity and Electrical Conductivity of Silicate Melts", *Metallurgical and Materials Transactions B*, 42 (2011), 261-264.