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Abstract 

The choice of spatial resolution for experimentally-collected 3D microstructural 
data is often governed by general rules of thumb.  For example, serial section experiments 
often strive to collect at least ten sections through the average feature-of-interest. 
However, the desire to collect high resolution data in 3D is greatly tempered by the 
exponential growth in collection times and data storage requirements.  This paper 
explores the use of systematic down-sampling of synthetically-generated grain 
microstructures to examine the effect of resolution on the calculated distributions of 
microstructural descriptors such as grain size, number of nearest neighbors, aspect ratio, 
and 3. 
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Introduction 

Three dimensional (3D) microstructure characterization techniques are required to 
measure many important microstructural characteristics including true size and shape, the 
number of features per volume, and feature connectivity [1]. Although the need for 3D 
characterization for ‘complete’ microstructural analysis is well known, it is only within the past 
decade that desktop computing resources—such as processor speed, memory, graphics cards, 
and 64-bit operating systems—have advanced to the point where materials scientists and 
engineers are able to readily work with the enormous data sets born of 3D characterization 
experiments.  These aforementioned advancements in computing technology have also helped 
galvanize activity in the materials community to promote and adopt Integrated Computational 
Materials Engineering (ICME) initiatives [2-4].   

A foundational experimental technology for ICME-related research is the ability to 
quantify the internal material state at any point during the manufacturing or utilization of 
engineering materials, in order to verify and validate the output of modeling and simulation 
tools that examine such processes.  This analysis ideally includes statistically-significant data 
on key microstructural features such as grains, precipitates, second phases, voids, and defects.  
Known capability gaps for this technology area include two topics related to 3D microstructure 
characterization; machines to rapidly collect 3D data across the range of lengths scales that are 
known to affect material properties [5], and computational methods to streamline the process of 
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data reduction, analysis, and further re-use of data by other modeling and simulation tools.  
With the advent of new state-of-the-art 3D characterization systems that are addressing the 
need for rapid data collection, it is important to examine and investigate the sources of error 
associated with these characterization processes, in order to bound the uncertainty in 
quantitative measurements derived from such experiments. 

In particular, there is little information in the materials characterization literature to 
guide the selection of sampling resolution for data collection in 3D.  Prior guidance is 
particularly important for destructive experiments such as serial sectioning, where the sample 
volume is incrementally and irreversibly consumed during the experiment.  In the serial 
sectioning literature, it is generally espoused that one would like a minimum of ten sections 
through a microstructural feature to accurately describe its size and shape, but this guidance is 
simply a rule-of-thumb and is wholly insufficient for quantitative microstructural analysis.  
Experimentalists can always strive to refine the spatial frequency of data collection, but this 
becomes problematic for 3D data when the collection times and storage requirements grow 
exponentially, often leading to considerable inefficiencies due to conservative oversampling. 

This paper examines one aspect of modeling uncertainty with regards to 3D data 
collection, which is the effect that isotropic decrements in spatial resolution have on the 
accuracy of microstructural distributions that are derived from a reference data volume.  
Specifically, this work reports the quantitative change in the Hellinger Distance of the full 
distribution for the following morphological microstructure parameters: grain size in equivalent 
sphere diameter (ESD), grain shape as described by the two ellipsoid ratios b/a and c/a, the 
third moment invariant Ω3 [6], and the number of contiguous neighbors.  This analysis is 
performed for two near log-normal grain size distributions that have been synthetically-
generated and virtually down-sampled, as described in the following section. 

Methodology 

The synthetic structure generation and subsequent data analysis for this study were 
performed using a state-of-the-art 3D materials analysis software DREAM.3D, or Digital 
Representation Environment for Analyzing Microstructure in 3D (dream3d.bluequartz.net).  
The 3D synthetic reference volumes were created using processes that are briefly described 
here; detailed reviews on synthetic microstructural generation methods have been reported 
previously [7].   

The first step in the synthetic microstructure generation process is to define statistics 
that describe the grain size, grain shape, number of nearest neighbors, spatial orientation, 
crystallographic orientation and boundary character distributions for the desired volume.  In 
this study, however, only morphological parameters are of interest and thus, the 
crystallographic orientation and boundary character distributions were omitted.  Additionally, 
the number of nearest neighbors was not prescribed and was allowed to fluctuate as needed 
while placing the grains.  Finally, the spatial orientation of the grains was assigned as random 
since the down-sampling was performed isotropically and not expected to be directionally 
sensitive.  Two log-normal distributions were created for the reference grain size distributions 
and each volume was assigned a shape distribution that corresponded to roughly equiaxed 
grains.  One of the grain size distributions was nearly uniform, which is termed ‘slightly log-
normal’ (μ = 1.06, σ = 0.28) while the other size distribution had a much heavier tail (μ = 0.95,
σ = 0.55), in order to examine the effect that the grain size distribution has on these uncertainty 
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measurements of sampling frequency.  After defining reference statistical distributions, grains 
are generated to fill the reference volume via random sampling of these distributions.  The 
grains are then inserted into, removed from, or moved within the volume while optimizing a 
number of governing criteria (e.g., space filling, grain overlap, grain size and shape, and 
number of neighbors).  After an optimal packing is obtained, a simulated coarsening process is 
used to eliminate unassigned voxels that remain from the inability to densely pack the reference 
volume with ellipsoids.  The two synthetic reference volumes are shown in Figure 1A and 1B.  
Note that the reference volumes contain over 4000 grains (~2000 unbiased and used for 
analysis), and the spatial resolution for each volume is approximately 30 voxels through the 
diameter of a grain of mean size.  Figure 1C shows the resultant grain size distributions of the 
two structures.  Note that the reference distributions used to determine the effect of down-
sampling are the distributions shown in Figure 1C, not the input distributions used to create the 
volumes. 

To quantify the effect of data resolution, the two reference volumes were down-sampled 
using the following procedure.  A new voxel volume was created using MATLAB at the
desired down-sampling resolution.  Voxels in the new volume were assigned a grain 
identification value that corresponded to the voxel in the reference volume in which their
centroid fell.  Successively coarser re-samplings of the reference synthetic microstructure 
volume were produced in this manner (i.e., the same reference volume was always used to 
assign the voxel grain identification of the down-sampled volumes), and the result of the down-
sampling process is shown in Fig. 2.   

The morphological parameter distributions examined in this study include grain size 
(ESD), grain shape (b/a, c/a, Ω3), and number of neighbors.  The ESD is computed using the 
following relation, where Nv is the number of voxels that comprise the grain, V is the voxel 
volume: 

(1) 

In this study, feature shape is described using aspect ratios of a best-fit ellipsoid and a 
second-order moment invariant (with respect to affine and/or similarity transformations) [6].  
The moment invariant, denoted by Ω3, is used to further describe grain shape and is calculated 
using the following equation [6]: 
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where pqr represents the second order moments in Eq. 3 (moment order is equal to the sum of
p, q and r). Ω3 can be used to differentiate shapes with the same aspect ratio, and shapes 
become qualitatively ‘less complex’ and more ellipsoidal-like with increasing values of Ω3, up 
to the limiting case of Ω3 = 2193.245 that corresponds to spheres and ellipsoids [6].  In this 
study, all Ω3 values have been normalized by that of a sphere to resultant in values bounded 
between 0 and 1. 
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The nearest neighbor distribution describes the number of grains that share at least one 
voxel face with a reference grain. Note that voxels which only share a common edge or corner 
are not considered as neighbor grains in this analysis. 

Results and Discussion 

The full distribution of grain size and Ω3 for the ‘heavy-tailed’ structure at each down-
sampling resolution is shown in Figs. 3 and 4, respectively.  One can observe that the grain size 
distribution does not change markedly with down-sampling until there is nominally 1 voxel 
spanning the mean grain diameter.  By comparison, the Ω3 distribution is clearly affected by 
down-sampling even when there are as many as 20 voxels spanning the mean grain diameter.  
While this type of visual inspection can be informative, it is also useful to have metrics to 
characterize how the feature distributions are changing with down-sampling resolution.  This 
study has used the Hellinger Distance (HD) to quantify the difference between two 
distributions, which is defined for discrete distributions as the following: 

 HD =
n

i
ii SR

1
1 (4) 

where Ri and Si correspond to the data percentage in bin i for the discrete distributions R and S.
The HD is used to measure the geometric similarity between two distinct statistical 
distributions (models), and is bounded between 0 and 1, where a value of 0 implies that two 
models are identically distributed.  For this work, microstructure parameter data was binned 
into histograms after being computed from down-sampled and reference volumes. Therefore, 
the HD was computed discretely using a direct comparison of histograms over the entire 
domain of possible parameter values [8].

A plot of the statistical analysis of the down-sampled volumes from the slightly log-
normal grain size distribution is shown in Fig. 5.  At 20 voxels spanning the mean grain size, 
the HD for most of the feature distributions are nearly equal to 0, which indicates that there is 
very little difference in the measured distributions.  However, the shape parameter Ω3 is the 
most sensitive to resolution changes and requires significantly more sections through each 
feature to retain a low HD.  This sensitivity is highlighted by the increase in the Ω3 HD from 
0.11 at 20 voxels spanning the mean grain size to 0.34 at 10 voxels and 0.75 at 5 voxels.  
Importantly, the grain size, ellipsoid ratios b/a and c/a, and nearest neighbor distributions 
continue to match the reference volume distributions (HD < 0.1) with progressively-coarser 
down-sampling to as low as 5 voxels spanning the mean grain size.  This resolution is 
considerably less than the traditional rule-of-thumb of 10 sections through the average feature.  
However, for sampling resolutions below 5, all of the feature distributions begin to deviate 
rapidly from the reference distribution, as the shape & volume for the smallest grains in the 
distribution are becoming strongly altered by the relative coarseness of the voxel array. 

A plot of the statistical analysis of the down-sampled volumes from the heavy-tailed 
grain size distribution is shown in Fig. 6.  The global trends in the data are similar to the 
slightly log-normal distribution: Ω3 is the most sensitive to changes in sampling resolution, and 
save for this parameter, all other distributions had HD values lower than 0.17 at 5 voxels 
spanning the mean grain size.  Note that the heavy-tailed volume contains comparatively more 
small grains relative to the slightly log-normal volume.  As a result, the microstructural 
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distributions calculated from the heavy-tailed volume are affected first by changes in 
resolution, given that the smallest grains will be most altered by sampling resolution changes.   

This study highlights the intrinsic effect of sampling resolution on the accuracy of 
microstructural distributions derived from 3D data.  The virtual down-sampling experiments 
show that the probability distributions for grain size, number of neighbors, and ellipsoid ratio 
can be collected at relatively coarse resolutions with little alteration.  Conversely, selected 
shape descriptors such as Ω3 require high spatial resolution data.  Although the methodology 
outlined herein has only been used to quantify one source of uncertainty, this method can be 
extended to examine many other sources data uncertainty, and will likely be especially 
effective with regards to improved analysis of destructive experimental methods like serial 
sectioning.  For example, this approach could be used to optimize the selection of anisotropic 
sampling resolution (e.g., higher in-plane resolution relative to the sectioning depth), or 
examine the impact of variability within the serial sectioning process (planarity, parallelism, 
uniformity).  While these concepts are not explored here and are left to future work, these types 
of studies should improve both data quality and experimental efficiencies. 
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Figure 1: 3D renderings of the two synthetically-generated reference volumes.  Panel A shows 
the slightly log-normal grain size distribution, while Panel B shows the heavy-tail grain size 
distribution.  Grain coloring corresponds to unique grain IDs.  Panel C plots the grain size 
distribution for the two volumes, and clearly shows that the heavy-tail volume has a greater 
number of both larger and smaller grains compared to the slightly log-normal volume. 
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Figure 2: Images of successively down-sampled volumes for the heavy-tailed distribution.  
Spatial resolution is listed at the upper-left corner of each sub-image, which is defined as 
number of voxels that span the mean ESD. 
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Figure 3: The effect of down-sampling from the reference volume on the ESD distribution is 
shown here for the heavy-tailed volume. Only minimal changes to the distribution are visible 
from down-sampling, until a down-sampling of 3 voxels along the mean ESD.  
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Figure 4: The effect of down-sampling from the reference volume on the Ω3 distribution is 
shown here for the heavy-tailed volume. Changes in the distribution can be seen even at a 
down-sampling from 30 to 20 voxels along the mean ESD.  
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Figure 5:.The effect of down-sampling on the Hellinger Distance for slightly log-normal grain 
size distributions are illustrated here for ESD, NN, Ω3, c/a and b/a distributions. The reference 
volume had 30 voxels along the mean ESD, and was down-sampled all the way to 1 voxel 
along the mean ESD.  
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Figure 6: Plot of the Hellinger Distance relative to the number of voxels that span the mean 
ESD for the heavy-tailed log-normal grain size distribution. The effect of down-sampling on 
the Hellinger Distance for heavy-tailed log-normal grain size distributions are illustrated here 
for ESD, NN, Ω3, c/a and b/a distributions. The reference volume had 30 voxels along the mean 
ESD, and was down-sampled all the way to 1 voxel along the mean ESD. 
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