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Abstract. Generalising the state of the art, an inconsistency-tolerant
semantics can be seen as a couple composed of a modifier operator and an
inference strategy. In this paper we deepen the analysis of such general
setting and focus on two aspects. First, we investigate the rationality
properties of such semantics for existential rule knowledge bases. Second,
we unfold the broad landscape of complexity results of inconsistency-
tolerant semantics under a specific (yet expressive) subclass of existential
rules.

1 Introduction

Within the Ontology-Based Data Access [17,18] setting, this paper addresses
the problem of query answering when the assertional base (which stores data)
is inconsistent with the ontology (which represents generic knowledge about
a domain). Recently, a general framework for inconsistency-tolerant semantics
was proposed in [2]. This framework considers two key notions: modifiers and
inference strategies. Inconsistency-tolerant query answering is seen as made out
of a modifier, which transforms the original ABox into a so-called MBox, which
is a set of consistent ABoxes (w.r.t. the TBox), and an inference strategy, which
evaluates queries against this MBox knowledge base. Interestingly enough, such
setting unifies main existing work and captures various semantics in the literature
(see e.g., [1,6,16]). The obtained semantics were compared with respect to the
productivity of their inference.
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This paper goes one step further in the characterization of these
inconsistency-tolerant semantics by carrying out an analysis in terms of ratio-
nality properties and data complexity. The rationality properties are considered
for existential rule knowledge bases [3,9] (a prominent ontology language that
generalizes lightweight description logics). On the one hand we study basic prop-
erties of semantics such as their behaviour with respect to the conjunction and
consistency of inferred conclusions. On the other hand, starting from the obvious
observation that inconsistency-tolerant semantics are inherently nonmonotonic,
we investigate their behaviour with respect to properties introduced for non-
monotonic inference [14] that we rephrase in our framework. Entailment with
general existential rules being undecidable, complexity is studied for a specific
(yet expressive) subclass of existential rules known as Finite Unification Sets
(FUS) [3], which in particular generalizes the description logic DL-LiteR dedi-
cated to query answering [10] (see also the OWL2-QL profile).

Before presenting our contributions, we provide some preliminaries on the
logical setting and briefly recall the unified framework for inconsistency-tolerant
semantics.

2 Preliminaries

We consider first-order logical languages without function symbols, hence a term
is a variable or a constant. An atom is of the form p(t1, . . . , tk) where p is a
predicate name of arity k, and the ti are terms. A (factual) assertion is an atom
without variables (also named a ground atom). A Boolean conjunctive query1

(and simply query in the following) is an existentially closed conjunction of
atoms, that we will consider as a set of atoms, leaving quantifiers implicit. Given
a set of assertions A and a query q, the answer to q over A is yes iff A |= q,
where |= denotes the standard logical consequence. Given two sets of atoms S1

and S2 (with disjoint sets of variables), a homomorphism h from S1 to S2 is
a substitution of the variables in S1 by the terms in S2 such that h(S1) ⊆ S2

(where h(S1) is obtained from S1 by substituting each variable according to h).
It is well-known that, given two existentially closed conjunctions of atoms f1
and f2 (for instance queries and conjunctions of factual assertions), f1 |= f2 iff
there is a homomorphism from the set of atoms in f2 to the set of atoms in f1.

A knowledge base can be seen as a database enhanced with an ontological
component. Since inconsistency-tolerant query answering has been mostly stud-
ied in the context of description logics (DLs), and especially DL-Lite, we will
use some DL vocabulary, like ABox for the data and TBox for the ontology.
However, our framework is not restricted to DLs, hence we define TBoxes and
ABoxes in terms of first-order logic (and more precisely in the existential rule
framework). We assume the reader familiar with the basics of DLs and their
logical translation.
1 For readability, we restrict our focus to Boolean conjunctive queries, however the

framework and the obtained results can be directly extended to general conjunctive
queries.
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An ABox is a set of factual assertions. As a special case we have DL asser-
tions restricted to unary and binary predicates. A positive axiom is of the form
∀x∀y(B[x,y] → ∃z H[y, z]) where B and H are conjunctions of atoms; in other
words, it is a positive existential rule. As a special case, we have for instance con-
cept and role inclusions in DL-LiteR, which are respectively of the form B1 � B2

and S1 � S2, where Bi := A | ∃S and Si := P | P− (with A an atomic concept,
P an atomic role and P− the inverse of an atomic role). A negative axiom is
of the form ∀x(B[x] → ⊥) where B is a conjunction of atoms; in other words,
it is a negative constraint. As a special case, we have for instance disjointness
axioms in DL-LiteR, which are inclusions of the form B1 � ¬B2 and S1 � ¬S2,
or equivalently B1 � B2 � ⊥ and S1 � S2 � ⊥.

A TBox T = Tp ∪Tn is partitioned into a set Tp of positive axioms and a set
Tn of negative axioms. Finally, a knowledge base (KB) is of the form K=〈T ,A〉
where A is an ABox and T is a TBox. Such a KB is logically interpreted as
the conjunction of its elements. K is said to be consistent if T ∪ A is satisfiable,
otherwise it is said to be inconsistent. We also say that A is consistent (or
inconsistent) with T , which reflects the assumption that the TBox is reliable
while the ABox may not. The answer to a query q over a consistent KB K is yes
iff 〈T ,A〉 |= q. When K is inconsistent, standard consequence is not appropriate
since all queries would be positively answered.

The notion of a (virtual) repair is a key notion in inconsistency-tolerant
query answering. A repair is a subset of the ABox consistent with the TBox
and inclusion-maximal for this property: R ⊆ A is a repair of A w.r.t. T if (i)
〈T ,R〉 is consistent, and (ii) ∀R′ ⊆ A, if R � R′ (R is strictly included in R′)
then 〈T ,R′〉 is inconsistent. We denote by R(A) the set of A’s repairs (for easier
reading, we often leave T implicit in our notations). Note that R(A)={A} iff A is
consistent. The most commonly considered semantics for inconsistency-tolerant
query answering, inspired from previous works in databases, is the following:
q is said to be a consistent consequence of K if it is a standard consequence
of each repair of A [1]. Several variants of this semantics have been proposed,
which differ in their behaviour (cautiousness w.r.t. inconsistencies) and their
computational complexity, see in particular [1,6,16].

3 A Unified Framework for Inconsistency-Tolerant Query
Answering

In this section we recall the framework introduced in [2] for the study of
inconsistency-tolerant query answering semantics. In this framework, semantics
are defined by two components: a modifier and an inference strategy, applied on
MBox knowledge bases. An MBox KB is simply a KB with multiple ABoxes of
the form KM=〈T ,M〉 where T =Tp ∪ Tn is a TBox and M={A1, . . . ,Am} is a
set of ABoxes, called an MBox. A standard KB will be seen as an MBox with
m = 1. An MBox KB KM is said to be consistent, or M is said to be consis-
tent (with T ), if each Ai in M is consistent (with T ). A modifier transforms a
possibly inconsistent MBox KB into an MBox KB such that, when the latter is
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consistent, it can be provided as input to the inference strategy that determines
if the query is entailed.

A (composite) modifier is a finite combination of elementary modifiers. In [2]
the three following kinds of elementary modifiers are introduced:

– Expansion modifiers, which expand an MBox by explicitly adding some
inferred assertions to its ABoxes. A natural expansion modifier is the ground
positive closure of an MBox, which computes the closure of each ABox with
respect to the positive axioms of the TBox, keeping only ground atoms:

◦cl(M) = {Cl(Ai)|Ai ∈ M}, where Cl(Ai) = {ground atom a |〈Tp,Ai〉 |= a}.

– Splitting modifiers, which replace each Ai of an MBox by one or several of its
maximally consistent subsets (hence, they always produce consistent MBoxes).
A natural splitting modifier splits each ABox into the set of its repairs:

◦rep(M) =
⋃

Ai∈M{R(Ai)}.

– Selection modifiers, which select some elements of an MBox. A natural selec-
tion modifier is the cardinality-based selection modifier, which selects the
largest ABoxes of an MBox:

◦card(M) = {Ai ∈ M|∀Aj ∈ M, |Aj | ≤ |Ai|}.

Note that the cardinality-based selection function fully makes sense when
inconsistency is due to the presence of multiple sources. Other selection func-
tions, such as the ones based on rational closure or System Z [11] may be used,
especially when inconsistency reflects the presence of exceptions in axioms of the
TBox.

Many composite modifiers can be potentially defined using the three above
“natural” modifiers, however this number is considerably reduced if we focus on
non-equivalent modifiers: indeed, any composite modifier that produces a con-
sistent MBox from a standard ABox, and obtained by combining the elementary
modifiers ◦rep, ◦card and ◦cl, is equivalent to one of the eight modifiers listed
in Table 1. To ease reading, these modifiers are also denoted by abbreviations
reflecting the order in which the elementary modifiers are applied, and using the
following letters: R for ◦rep, C for ◦cl and M for ◦card. Different kinds of inclusion
relations hold between modifiers (see [2] for details).

Example 1. Let KM = 〈T ,M〉 be an MBox KB where T ={A(x)∧B(x)→ ⊥,
A(x) ∧ C(x)→ ⊥, B(x)∧C(x)→ ⊥, A(x)→D(x), B(x)→D(x), C(x)→D(x),
B(x)→E(x), C(x)→E(x)} and M={{A(a), B(a), C(a), A(b)}}. With R, we get
◦1(M)={{A(a), A(b)},{B(a), A(b)},{C(a), A(b)}}. With CR: ◦5(M)={{A(a),
D(a), A(b),D(b)}, {B(a),D(a), E(a), A(b),D(b)}, {C(a),D(a), E(a), A(b),
D(b)}}. With MCR: ◦6(M) = {{B(a),D(a), E(a), A(b),D(b)}, {C(a),D(a),
E(a), A(b), D(b)}}.

An inference strategy takes as input a consistent MBox KB KM=〈T ,M〉 and
a query q and determines if q is entailed from KM. Four main inference strategies
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Table 1. The eight composite modifiers for an MBox KM=〈T , M = {A}〉

Modifier Combination MBox

R ◦1 = ◦rep(.) M1 = ◦1(M)

MR ◦2 = ◦card(◦rep(.)) M2 = ◦2(M)

CMR ◦3 = ◦cl(◦card(◦rep(.))) M3 = ◦3(M)

MCMR ◦4 = ◦card(◦cl(◦card(◦rep(.)))) M4 = ◦4(M)

CR ◦5 = ◦cl(◦rep(.)) M5 = ◦5(M)

MCR ◦6 = ◦card(◦cl(◦rep(.))) M6 = ◦6(M)

RC ◦7 = ◦rep(◦cl(.)) M7 = ◦7(M)

MRC ◦8 = ◦card(◦rep(◦cl(.))) M8 = ◦8(M)

are considered, namely universal (also known as skeptical), safe, majority-based
and existential (also called brave). They are formally defined as follows:

– universal consequence: KM |=∀ q if ∀Ai ∈ M,〈T ,Ai〉 |= q.
– safe consequence: KM |=∩ q if 〈T ,

⋂
Ai∈M Ai〉 |= q.

– majority-based consequence: KM |=maj q if |Ai:Ai∈M,〈T ,Ai〉|=q|
|M| > 1/2.

– existential consequence: KM |=∃ q if ∃Ai ∈ M, 〈T ,Ai〉 |= q.

Given two inference strategies si and sj , si is said to be more cautious than sj ,
denoted si ≤ sj , if for any consistent MBox KM and any query q, if KM |=si

q
then KM |=sj

q. The considered inference strategies are totally ordered by ≤ as
follows: ∩ ≤ ∀ ≤ maj ≤ ∃.

〈R,∩〉

〈MR,∩〉 〈CR,∩〉

〈CMR,∩〉

〈MCMR,∩〉

〈MCR,∩〉 〈RC,∩〉

〈MRC,∩〉

(a) Relationships between ∩-based semantics

〈R, ∀〉 ≡ 〈CR, ∀〉

〈MCR, ∀〉〈MR, ∀〉≡〈CMR, ∀〉

〈MCMR, ∀〉

〈RC, ∀〉

〈MRC, ∀〉

(b) Relationships between ∀-based semantics

〈R,maj〉 ≡ 〈CR,maj〉

〈MR,maj〉 ≡ 〈CMR,maj〉

〈MCMR,maj〉 〈MCR,maj〉 〈MRC,maj〉 〈RC,maj〉

(c) Relationships betweenmaj-based semantics

〈MCMR, ∃〉

〈MR, ∃〉 ≡ 〈CMR, ∃〉

〈R, ∃〉 ≡ 〈CR, ∃〉

〈MCR, ∃〉

〈RC, ∃〉

〈MRC, ∃〉

(d) Relationships between ∃-based semantics

Fig. 1. Productivity of inconsistency-tolerant semantics where X−→Y means that Y
is strictly more productive than X.
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An inconsistency-tolerant query answering semantics is then defined by a
composite modifier and an inference strategy.

Definition 1. Let K=〈T ,A〉 be a standard KB, ◦i be a composite modifier and
sj be an inference strategy. A query q is said to be an 〈◦i, sj〉-consequence of K,
denoted by K |=〈◦i,sj〉 q, if it is entailed from the MBox KB 〈T , ◦i({A})〉 by the
strategy sj.

Note that the main semantics from the literature [1,6,16] are covered by this
definition: AR, IAR and ICR semantics respectively correspond to 〈R,∀〉, 〈R,∩〉,
and 〈CR,∩〉.2

Example 2. Consider the input KB KM=〈T ,M〉 from Example 1. ◦1(M) =
M1 = {{A(a), A(b)}, {B(a), A(b)},{C(a), A(b)}}. Since A(b) ∈

⋂
Ai∈M1

and
A(x)→D(x), K |=〈◦1,∩〉 D(b) holds. Hence, we also have K |=〈◦1,∀〉 D(b). Fur-
thermore K |=〈◦1,∀〉 D(a). By 〈◦1,maj〉, E(a) is furthermore entailed. Indeed,
〈T , {B(a), A(b)}〉 |= E(a) and 〈T , {C(a), A(b)}〉 |= E(a) and |M1|=3. By 〈◦1,∃〉,
A(a) is also entailed. Let q = ∃xD(x)∧E(x). Then q is a consequence of 〈◦1,maj〉
and 〈◦1,∃〉.

The obtained semantics have been compared from a productivity point of view.
Formally, a semantics 〈◦i, sk〉 is less productive than a semantics 〈◦j , sl〉 if, for
any KB K=〈T ,A〉 and any query q, if K |=〈◦i,sk〉 q then K |=〈◦j ,sl〉 q. This
productivity relation is a preorder, which can be established by considering on
the one hand the inclusion relations between composite modifiers and on the
other hand the cautiousness total order on inference, as detailed below. Figure 1
depicts the results about semantics defined with the same inference strategy
(note that transitivity edges are not drawn and no other edges hold). Then
Theorem 1 extends these results to semantics possibly based on different infer-
ence strategies. In particular, if sk < sl then, for all modifiers ◦i and ◦j , 〈◦i, sk〉
is strictly less productive than 〈◦i, sl〉, and 〈◦j , sl〉 is at least as productive as
〈◦i, sk〉.

Theorem 1 (Productivity of semantics [2]). The inclusion relation � is
the smallest relation that contains the inclusions 〈◦i, sk〉 � 〈◦j , sk〉 defined by
the inclusions in Fig. 1a to d and satisfying the two following conditions: (1) for
all sj, sp and oi, if sj ≤ sp then 〈◦i, sj〉 � 〈◦i, sp〉; (2) it is transitive.

It follows from Theorem 1 that 26 different semantics are obtained (out of the
possible 32 inference relations used in Fig. 1). We point out that this result holds
even when KBs are restricted to DL-LiteR TBoxes. Finally, note that when the
initial KB is consistent, all semantics correspond to standard entailment, i.e.,
given a consistent standard KB K and a query q, K |=〈◦i,s〉 q iff K |= q, for all
1 ≤ i ≤ 8 and s ∈ {∩,∀,∃,maj}.

2 Note however that CAR and ICAR [16] are close to 〈RC, ∀〉 and 〈RC, ∩〉 resp., but
not equivalent. They could be covered by considering other elementary modifiers.
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4 Rationality Properties of Inconsistency-Tolerant
Semantics

This section is dedicated to the logical properties of inconsistency-tolerant
semantics. We first analyze the behaviour of these semantics w.r.t the conjunc-
tion (or set union) and the consistency of inferred conclusions for a fixed KB.
We then turn our attention to the fact that these semantics are inherently non-
monotonic. Indeed, if some query q is entailed from a KB using a semantics
〈◦i, sj〉, then q may be questionable in the light of new factual assertions. We
will assume that these new factual assertions are sure (and will speak of con-
ditional inference, opposed to unconditional inference when the KB is fixed).
Hence, we also analyze inconsistency-tolerant semantics w.r.t rationality prop-
erties introduced for nonmonotonic inference that we recast in our framework.

4.1 Properties of Unconditional Inference

Let KM=〈T , {A}〉 be a possibly inconsistent KB and 〈oi, s〉 denote any semantics
with ◦i ∈ {R, MR, CMR, MCMR, CR,MCR, RC, MRC} and s ∈ {∀,∩,∃,maj}.
We define the following desirable properties:

QCE (Query Conjunction Elimination) For any KB KM and any queries q1
and q2, if KM |=〈◦i,s〉 q1 ∧ q2 then KM |=〈◦i,s〉 q1 and KM |=〈◦i,s〉 q2.

QCI (Query Conjunction Introduction) For any KB KM and any queries q1
and q2, if KM |=〈◦i,s〉 q1 and KM |=〈◦i,s〉 q2 then KM |=〈◦i,s〉 q1 ∧ q2.

Cons (Consistency) For any set of assertions A′, if KM |=〈◦i,s〉 A′ then 〈T ,A′〉
is consistent.

ConsC (Consistency of Conjunction) For any set of assertions A, if for all f ∈
A, KM |=〈◦i,s〉 f then 〈T ,A〉 is consistent.

ConsS (Consistency of Support) For any set of assertions A′, if KM |=〈◦i,s〉 A′

then there is R ∈ R(A), such that 〈T , R〉 |= A′.

Note that in the three last properties, the sets of assertions could be extended to
queries with a more complex formulation. We first remind that, when KM is con-
sistent, all semantics correspond to standard entailment, hence KM |=〈◦i,s〉 q1∧q2
iff KM |=〈◦i,s〉 q1 and KM |=〈◦i,s〉 q2. When KM is inconsistent, one direction
is still true for all semantics, namely Property QCE, which relies on the con-
sistency of a repair. The converse direction, namely Property QCI, is obviously
satisfied by universal and safe semantics but not by brave and majority-based
semantics, even when q1 and q2 are ground atoms and the TBox contains only
disjointness inclusions as shown by the next examples.

Example 3 (Majority-based semantics does not satisfy QCI).3 Let T ={B�C �
⊥, A � D � ⊥, C � D � ⊥} and A={A(a), B(a), C(a),D(a)}. The repairs are
{A(a),B(a)}, {A(a), C(a)} and {B(a),D(a)}. All modifiers give the same MBox
since Tp=∅ and the repairs have the same size. A(a) and B(a) are each entailed
by a majority of repairs but their conjunction is not.
3 Most examples in this section are provided in DL-LiteR in order to show that some

rationality properties do not hold even in this simple fragment of existential rules.
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Example 4 (Brave semantics does not satisfy properties QCI and ConsC). Let
T ={A� B � ⊥} and A={A(a),B(a)}. The repairs are {A(a)} and {B(a)}. All
modifiers lead to the same MBox since Tp=∅ and the repairs have the same size.
A(a) and B(a) are both brave consequences but their conjunction is not. Besides
ConsC is not satisfied since 〈T , {A(a), B(a)}〉 is inconsistent.

Property Cons is true for any semantics (again by the consistency of a repair).
Property ConsC holds for universal and safe semantics, and is false for any brave
semantics, even for |Aj |=|Ak|=1 and DL-Lite TBoxes restricted to disjointness
inclusions (see Example 3). Majority-based semantics are an interesting case,
since the expressivity of the ontological language plays a role: Property ConsC
is satisfied by all majority-based semantics when the language is restricted to
DL-LiteR and not satisfied as soon as we allow concept inclusions of the form
A � B � C or ternary disjointness axioms of the form A � B � C � ⊥, even
with ground queries (see Example 6). The fundamental reason why majority-
based semantics satisfy Property ConsC over DL-LiteR KBs is that, in these
KBs, conflicts (i.e., minimal inconsistent subsets of the ABox) are necessarily of
size two. When two ground atoms a1 and a2 are inferred with a majority-based
strategy, at least one of element of the considered (consistent) MBox classically
entails both a1 and a2, hence a1 ∧ a2 is consistent; when conflicts are of size
two, pairwise consistency entails global consistency. Note that this property still
holds if we extend DL-LiteR to n-ary predicates.

Example 5 (Majority-based semantics does not satisfy PropertyConsC for slight
generalizations of DL-LiteR). Let T ={A � B � C � ⊥} and A={A(a), B(a),
C(a)}. The repairs are {A(a), B(a)}, {A(a), C(a)} and {B(a), C(a)}. All modi-
fiers give the same MBox since Tp=∅ and all the repairs have the same size. Each
atom from A is entailed (by 2/3 repairs), however A itself is not.

Finally, Property ConsS, which expresses that every conclusion has a con-
sistent support in the ABox, is satisfied by all semantics except those involving
modifiers RC and MRC (as illustrated by the next example).

Example 6 ((M)RC-based semantics do not satisfy Property ConsS).4 Let
T ={A � B � ⊥, A � C1, B � C2} and A={A(a), B(a)}. The (maximal) repairs
of the ABox’ closure are {A(a), C1(a), C2(a)} and {B(a), C1(a), C2(a)}. The set
of atoms Aj = {C1(a), C2(a)} is entailed by all semantics based on RC and
MRC, however no consistent subset of A allows to entail Aj using T .

Proposition 1 (Properties of unconditional inference). The behaviour
of semantics 〈◦i, s〉, with ◦i ∈ {R, MR,CMR,MCMR, CR, MCR, RC, MRC} and
s ∈ {∩,∀,maj,∃}, with respect to Properties QCE, QCI, Cons, ConsC and
ConsS, is stated in Table 2.

4 This example also shows that CAR and ICAR [16] do not satisfy ConsS (although
they do when the conclusion is a single atom).
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Table 2. Properties of unconditional inferences.

Properties 〈◦i, ∩〉 〈◦i, ∀〉 〈◦i, Maj〉 〈◦i, ∃〉
QCE

√ √ √ √

QCI
√ √ × ×

Cons
√ √ √ √

ConsC
√ √ × [*] ×

ConsS ◦i ∈ {RC,MRC} × × × ×
otherwise

√ √ √ √

*: Except for languages where conflict sets involve at most two
elements, like DL-LiteR

4.2 Properties of Conditional Inferences

We now analyze more finely the inconsistency-tolerant semantics by considering
their properties in terms of nonmonotonic inference. Within propositional logic
setting, several approaches have been proposed for nonmonotonic inference (e.g.
[5,12,14]). In such approaches nonmonotonicity is essentially caused by the fact
that initial knowledge used for inference process is incomplete, and thus, later
information may come to enrich them, which generally leads to revise some of
the a priori considered hypotheses.

Let KM=〈T , {A}〉 be a possibly inconsistent KB and Aα, Aβ be two sets
of assertions such that 〈T ,Aα〉 and 〈T ,Aβ〉 are consistent. Assume that Aα

is the newly added knowledge. Since Aα is considered as more reliable than
the assertions in the KB, we have to keep Aα in every selected repair of the
KB. For the sake of simplicity, we define the notion of the set of repairs of
KM in presence of a new consistent set of assertions Aα with respect to a
modifier ◦i: Mα

i ={R:R ∈ ◦i({A ∪ Aα}) andAα ⊆ R}. Now, we say that Aβ

is a nonmonotonic consequence of Aα w.r.t. KM, denoted by Aα|∼◦i,s Aβ , if
〈T ,Mα

i 〉 |=s Aβ .
In this study, we focus on the situation where the considered conclusions are

sets of assertions, which can also be seen as conjunctions of ground queries. We
first rephrase within our framework some KLM rationality properties [14]. Let
Aα, Aβ and Aγ be consistent sets of assertions w.r.t T and |∼ be an inference
relation, the KLM logical properties that we consider are the following5.

R (Reflexivity) Aα|∼Aα.
LLE (Left Logical Equivalence) If 〈T ,Aα〉 ≡ 〈T ,Aβ〉 and Aα|∼Aγ then

Aβ |∼Aγ .
RW (Right Weakening) If 〈T ,Aα〉 |= 〈T ,Aβ〉 and Aγ |∼Aα then Aγ |∼Aβ .
Cut If Aα|∼Aβ and Aα ∪ Aβ |∼Aγ then Aα|∼Aγ .

5 We have adopted here a formulation close to the one of KLM logical properties, even
at the cost of simplicity. For instance 〈T , Aα〉 |= 〈T , Aβ〉 could have been simplified
in 〈T , Aα〉 |= Aβ . We remind that |= and ≡ denote standard logical entailment and
equivalence.
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CM (Cautious Monotony) If Aα|∼Aβ and Aα|∼Aγ then Aα ∪ Aβ |∼Aγ .
And If Aα|∼Aβ and Aα|∼Aγ then Aα|∼Aβ ∪ Aγ .

R means that the additional assertions have to be a consequence of the infer-
ence relation. LLE expresses the fact that two equivalent sets of assertions have
the same consequences. RW says that consequences of the plausible assertions
are plausible assertions too. Cut expresses the fact that if a plausible conse-
quence is as secure as the assumptions it is based on, then it may be added
into the assumptions. CM expresses that learning new assertions that could be
plausibly inferred should not invalidate previous consequences. And expresses
that the conjunction of two plausible consequences is a plausible consequence.
The first five properties correspond to the system C [14] while the And property
is derived from the previous ones. Clearly the And property is closely related
to the QCI property given in Sect. 4.2. Indeed when Aα=∅ (empty set, no addi-
tional information) and if q1 and q2 used in CQI are sets of assertions then And
is equivalent to CQI. We now give the properties of the inference relations.

Proposition 2 (Properties of conditional inference). The behaviour of
inference relations |∼◦i,s, with ◦i ∈ {R, MR,CMR,MCMR, CR, MCR, RC, MRC}
and s ∈ {∩,∀, maj, ∃}, with respect to Properties R, LLE, RW, Cut, CM,
And, is given in Table 3.

Proof: [Sketch of proof]. Properties R, LLE and RW follow from the definition
of Mα

i . For s ∈ {∀,∩,∃} and for ◦i ∈ {R,MR} the satisfaction of Properties
Cut and CM stems from the fact that ∀R′ ∈ Mα∪β

i we have R′=R ∪ Aβ with
R ∈ Mα

i . Moreover, for ◦i ∈ {CMR,CR,RC,MRC} the satisfaction of Properties
Cut and CM holds due the fact that ∀R′ ∈ Mα∪β

i we have R′=R∪Cl(Aβ) with
R ∈ Mα

i . The following counter-examples show the non-satisfaction cases. ��

Example 7 (| ∼◦i,s with ◦i ∈ {MCMR,MCR} and s ∈ {∀,∃,∩} does not
satisfy Cut). For MCMR: Let T ={A � ¬B, A � ¬G, F � ¬B,
B � C, C � D, A � E}, and A={A(a),B(a), F (a), G(a)}, Aα=∅,

Table 3. Properties of conditional inferences.

Properties |∼◦i,∀ |∼◦i,∩ |∼◦i,∃ |∼◦i,maj

R
√ √ √ √

LLE
√ √ √ √

RW
√ √ √ √

Cut ◦i ∈ {MCMR,MCR} × × × ×
otherwise

√ √ √ ×
CM ◦i ∈ {MCMR,MCR} × × × ×
otherwise

√ √ × ×
And

√ √ × ×
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Aβ={C(a),D(a)}, Aγ={A(a)}. We have Mα
4 ={{B(a),G(a), C(a),D(a)}}

and Mα∪β
4 ={{A(a), F (a), C(a),D(a), E(a)}}. Thus 〈T ,Mα

4 〉 |=∀ Aβ and
〈T ,Mα∪β

4 〉 |=∀ Aγ but 〈T ,Mα
4 〉 �|=∀ Aγ . Cut is not satisfied even for s ∈ {∃,∩}.

MCR: Let T ={A � ¬B, F � ¬B, B � C, C � D}, A = {A(a), B(a), F (a)},
Aα=∅, Aβ={C(a),D(a)}, Aγ = {A(a)}. We have Mα

6 ={{B(a), C(a),D(a)}},
Mα∪β

6 ={{ A(a), F (a), C(a),D(a)}}. Thus 〈T ,Mα
6 〉 |=∀ Aβ and 〈T ,Mα∪β

6 〉 |=∀
Aγ but 〈T ,Mα

6 〉 �|=∀ Aγ . Cut is not satisfied either for s ∈ {∃,∩}.

Example 8 (| ∼◦i,s with ◦i ∈ {MCMR,MCR} and s ∈ {∀,∩} does not
satisfy CM). Let T ={A � ¬B, B � C}, and A={A(a), B(a)},
Aα=∅, Aβ={C(a)}, Aγ={B(a)}. We have Mα

4 =Mα
6 ={{B(a), C(a)}}, Mα∪β

4 =
Mα∪β

6 ={{A(a), C(a)},{B(a),C(a)}}. Thus 〈T ,Mα
4 〉 |=∀ Aβ and 〈T ,Mα

4 〉 |=∀
Aγ but 〈T ,Mα∪β

4 〉 �|=∀ Aγ . Moreover, 〈T ,Mα
6 〉 |=∀ Aβ and 〈T ,Mα

6 〉 |=∀ Aγ but
〈T ,Mα∪β

6 〉 �|=∀ Aγ . CM is not satisfied even for s=∩.

Example 9 (| ∼◦i,maj with any ◦i does not satisfy Cut). For i = 1
(R), let T ={A � ¬B, A � ¬C, A � ¬D, B � ¬D, C �
¬D, A � E, B � E, C � E, D � ¬E, A � G, B �
G}, and A={A(a),B(a),C(a),D(a)}, Aα={F (a)}, Aβ={E(a)}, Aγ= {G(a)}.
We have Mα

1 = {{A(a),F (a)},{B(a),F (a)},{C(a),F (a)},{D(a),F (a)}}, thus
〈T ,Mα

1 〉 |=maj Aβ . Moreover, Mα∪β
1 ={{A(a),F (a),E(a)},{B(a), F (a), E(a)},

{C(a), F (a), E(a)}} and 〈T ,Mα∪β
1 〉 |=maj Aγ , however 〈T ,Mα

1 〉 �|=maj Aγ . Cut
is not satisfied for any other ◦i.

Example 10 (| ∼◦i,∃ with any ◦i does not satisfy CM). For i=1 (R): Let
T = {A � ¬C,A � B,C � B,A � D,C � E,D � ¬C,E � ¬A}, and
A = {A(a), C(a)}, Aα = {B(a)}, Aβ = {D(a)}, Aγ = {E(a)}. We have Mα

1 =
{{A(a), B(a)}, {C(a), B(a)}}, thus 〈T ,Mα

1 〉 |=∃ Aβ and 〈T ,Mα
1 〉 |=∃ Aγ . More-

over Mα∪β
i ={{A(a), B(a), D(a)}} and 〈T ,Mα∪β

1 〉 �|=∃ Aγ . CM is not satisfied
for any other ◦i.

Example 11 (|∼◦i,maj with any ◦i does not satisfy CM). For i=1 (R): Let
T ={A � ¬B, A � ¬C, B � ¬C, A � D, B � D,C � D,A � E,B �
E,C � F,B � F,A � ¬F}, and A = {A(a), B(a), C(a)}, Aα = {D(a)},
Aβ = {E(a)}, Aγ = {F (a)}. We have Mα

1 = {{A(a),D(a)}, {B(a),D(a)}, R3 =
{C(a),D(a)}}, thus 〈T ,Mα

1 〉 |=maj Aβ . Moreover 〈T ,Mα
1 〉 |=maj Aγ . We have

Mα∪β
1 ={{A(a),D(a), E(a)}, {B(a),D(a), E(a)}}, thus 〈T ,Mα∪β

1 〉 �|=maj Aγ .
CM is not satisfied for any other ◦i.

Example 12 (|∼◦i,s with any ◦i and s ∈ {∃,maj} does not satisfy And). For
i = 1 and s = ∃ (R): Let T and A from Example 10. 〈T ,Mα

1 〉 |=∃ Aβ and
〈T ,Mα

1 〉 |=∃ Aγ but 〈T ,Mα
1 〉 �|=∃ Aβ ∪ Aγ . And is not satisfied for any other

◦i. For i = 1 and s = maj (R): Let T and A from Example 11. 〈T ,Mα
i 〉 |=maj Aβ

and 〈T ,Mα
i 〉 |=maj Aγ . but 〈T ,Mα

i 〉 �|=maj Aβ ∪ Aγ . And is not satisfied for
any other ◦i.
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From Table 3, one can see that, for the composite modifiers ◦i ∈
{R,MR,CMR,CR,RC, MRC}, the semantics based on universal and safe conse-
quence satisfy all the properties of the system C. In LLE Aγ can be replaced by
a Conjunctive Query (CQ), in RW Aα (resp. Aβ) can be replaced by CQ and
And Aγ (resp. Aβ) can be replaced by a CQ.

5 Complexity of Inconsistency-Tolerant Query Answering

In this section we study the data complexity6 of CQ entailment under the various
semantics for classes of TBoxes T =Tp ∪Tn that fulfill the following property: Tp

is a Finite Unification Set (FUS) of existential rules [3], while Tn remains any
set of negative constraints. A set of rules Tp fulfills the FUS property when, for
any CQ q, there exists a finite set of CQs Q (called the set of rewritings of q)
such that for any ABox A, 〈Tp,A〉 |= q iff ∃qi ∈ Q such that A |= qi; in other
words, q can be rewritten into a union of CQs Q, which allows to forget the
rules. Since query rewriting does not depend on any ABox, CQ entailment has
the same data complexity as the classical database problem, which is in the low
complexity class AC0. Note also that when Tp satisfies the FUS property, the
consistency of a standard KB can be checked by rewriting the query ⊥ with T (or
equivalently, rewriting each body of a negative constraint with Tp) and checking
if one of the obtained rewritings is entailed by A. Such TBoxes encompass DL-
LiteR TBoxes as well as more expressive classes of existential rules, e.g., linear
and sticky [8,9]. All the following membership results apply to FUS rules, while
all hardness results hold as soon as DL-LiteR TBoxes are considered.

We first briefly recall the definition of the complexity classes that we use.
The class ΔP

2 = PNP refers to problems solvable in polynomial time by a
deterministic Turing Machine provided with an NP oracle, and its subclass
ΘP

2 =ΔP
2 [O(log n)] is allowed to make only logarithmically many calls to an NP

oracle. A Probabilistic Turing Machine (PTM) is a non-deterministic TM allowed
to “toss coins” to make decisions: we will use the Probabilistic Polynomial-time
(PP ) class that contains the problems solvable in polynomial time with proba-
bility strictly greater than 1

2 by a PTM [13].7 We also recall that ΔP
2 , ΘP

2 and
PP are all closed under complement. CQ entailment with DL-LiteR TBoxes is
coNP -complete under 〈R,∀〉 and 〈RC,∀〉 semantics, and in AC0 under 〈R,∩〉
and 〈RC,∩〉 semantics (semantics respectively known as AR, CAR, IAR and
ICAR [16]). It is coNP -complete under 〈CR,∩〉 semantics (known as ICR [6]),
and ΘP

2 -complete under 〈MR,∀〉 and 〈MR,∩〉 semantics [7]. We first show that
these complexity results also hold for FUS existential rules.

Proposition 3. If CQ-entailment under 〈R/RC/MR,∀〉 and 〈R/RC/CR,∩〉
belongs to some complexity class C for DL-LiteR TBoxes, then CQ-entailment
remains in the same complexity class C for the more general FUS existential
rules.
6 This complexity measure is usually considered for query answering problems. Only

the data (here the ABox) are considered in the problem input.
7 PP includes NP, co-NP and ΘP

2 .
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Table 4. Complexity: tight complexity results are in black font (completely new results
marked by a star, the other being generalizations of known results to FUS). Member-
ship results are in gray font.

Modifier ∩ ∀ Maj ∃
R AC0 coNP -c PP -c � AC0

�

MR ΘP
2 -c ΘP

2 -c PP NP [O(log n)] ΘP
2

CMR ΘP
2 ΘP

2 -c � PP NP [O(log n)] ΘP
2

MCMR ΘP
2 ΘP

2 -c � PP NP [O(log n)] ΘP
2

CR coNP -c coNP -c PP -c � AC0
�

MCR ΘP
2 ΘP

2 -c � PP NP [O(log n)] ΘP
2

RC AC0 coNP -c PP P

MRC ΘP
2 ΘP

2 -c � PP NP [O(log n)] ΘP
2

Proof: [Sketch] Let us first consider 〈R/RC,∀〉. One can obviously guess a repair
R and check in polynomial time (actually in AC0) if 〈T ,R〉 |= ⊥ (by rewrit-
ing all negative constraints and looking for a homomorphism from one of those
rewritings into R), and if 〈T ,R〉 �|= q via rewriting methods as well. Concerning
〈MR,∀〉, the membership holds for any FUS rules for similar reasons, and by
observing that one can compute the maximum size of a repair through logarith-
mically many calls to an NP oracle. For 〈R/MRC,∩〉 the technique from [16]
still holds; whereas for 〈CR,∩〉, we guess a set of repairs R={R1, ...,Rk}, with
k polynomially bounded by the number of homomorphisms from rewritings of
the query q to Cl(A), such that: for any homomorphism h from a rewriting q′

of q to Cl(A) there is Ri ∈ R with h(q′) �⊆ Ri. There is a polynomial number of
rewritings (for data complexity), hence a polynomial number of homomorphisms
from these rewritings to the Cl(A). ��

The previous observations explain the complexity results written in black
font without star in Table 4. We now provide some new complexity results for
other universal-based and existential-based semantics.

Proposition 4. CQ entailment under 〈R,∃〉 (hence 〈CR,∃〉) is in AC0.

Proof: [Sketch] We first compute a set Q that contains all the rewritings of q with
the rules from Tp, as well as all their specialisations according to all possible parti-
tions on terms. We also rewrite ⊥ (i.e., all negative constraints) into the set N . We
remove from Q all rewritings q′ such that an element of N maps to q′ by homomor-
phism. Finally, we add to each remaining rewriting q′′ ∈ Q all inequalities between
its terms, which yields Q′. Q′ can be seen as a union of CQs with inequality pred-
icates, hence a first-order query. We have that K |=〈R,∃〉 q iff A |= Q′. Therefore q
is first-order rewritable w.r.t. T , under 〈R,∃〉 semantics. ��

Proposition 5. For ◦i ∈ {CMR, MCMR, MCR, MRC}, CQ entailment under
〈◦i,∀〉 and 〈◦i,∃〉 semantics is in ΘP

2 .
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Proof: [Sketch] Notice that we can compute the maximum size of a repair and the
maximum size of the ground positive closure of a maximum-sized repair through
logarithmically many calls to an NP oracle. Then with one more call to this
oracle, we can check whether there is a repair R that satisfies the cardinality
constraints and such that 〈T ,R〉 �|= q (resp. 〈T ,R〉 |= q). Therefore, 〈◦i,∀〉
(resp. 〈◦i,∃〉) is in ΘP

2 . ��

Proposition 6. For ◦i ∈ {CMR, MCMR, MCR, MRC}, CQ entailment under
〈◦i,∀〉 semantics is ΘP

2 -hard.

Proof: We adapt the reduction from the problem ParitySAT built in [7] (which
is a reduction to 〈MR,∀〉 with an instance query). We “tweak” the query and
the TBox so that the positive part of the TBox is empty; this ensures that
(◦i,∀) = (◦j ,∀) for any ◦i, ◦j ∈ {MR, CMR, MCMR, MCR, MRC}. ��

For majority-based semantics, we rely on probabilistic algorithms and provide
two completeness results, as stated by the next proposition.

Proposition 7. Conjunctive Query entailment under 〈R,Maj〉 and 〈CR,Maj〉
semantics is PP -complete.

Proof: [Sketch] Membership: We use the following algorithm: first choose a sub-
set S of atoms from A randomly, then if S is not a repair of K, output no with
probability 1

2 . Otherwise (S is a repair), if (T , S) |= q, output no with prob-
ability 1

2n+1 ; else ((T , S) �|= q), output no with probability 1. This procedure
obviously runs in polynomial time and the idea is that each repair has the same
probability of being selected in the first step ( 1

2n ), and by answering no a few
times when (T , S) |= q we ensure that the algorithm will give the right answer
with probability strictly greater than 1

2 .

Hardness: We consider the following problem coMajSAT: given a Boolean SAT
formula, is the number of unsatisfying affectations strictly greater than half of
all possible affectations? We recall that PP is closed under complement. We
notice that the reduction from SAT to 〈S,∀〉 built in [15], ensures that each
repair corresponds exactly to an affectation of the SAT formula, and the obtained
query q is evaluated to true iff there is at least one invalid affectation. Hence, the
majority of affectations are invalid iff q is entailed by the majority of the repairs.
Hence, this transformation yields a reduction from coMajSAT to 〈R,Maj〉. Since
〈R,Maj〉=〈CR,Maj〉, the result also holds for 〈CR,Maj〉. ��

To further clarify the complexity picture, we give some complexity class mem-
bership results for the remaining semantics (Table 4, in gray font). CQ entail-
ment under 〈RC,∃〉 semantics is clearly in P since we can first compute the
ground positive closure of the ABox in polynomial time and 〈R,∃〉 is in AC0.
For 〈MRC,Maj〉 semantics, the membership proof from Proposition 7 holds as
soon as we have observed that we could first compute the ground positive closure
of the ABox. For the remaining majority-based semantics, we use an argument
similar to the one in Proposition 5 to show membership to PPNP [O(log n)]: we
only need logarithmically many calls to an NP oracle to get the maximum cardi-
nality of a repair. Concerning the remaining intersection-based semantics 〈◦i,∩〉,
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we observe that by calling independently the corresponding universal problem
(◦i,∀) on each atom from the ABox, we can build the intersection of all repairs,
hence the ΘP

2 membership. Finally, an interesting question is to what extent pre-
processing the data, independently from any query, can reduce the complexity
of query entailment. It seems reasonable to require that the result of this pre-
processing step takes space at most linear in the size of the data. For instance,
let us consider 〈MR,∀〉: if we precompute the maximum cardinality of a repair
(stored in log2(|A|) space), the complexity of CQ entailment drops from ΘP

2 -c
to coNP -c, i.e., the complexity of 〈R,∀〉.

6 Concluding Remarks

The framework for inconsistency-tolerant query answering recently proposed in
[2] covers some well-known semantics and introduces new ones. These seman-
tics were compared with respect to productivity. We broaden the analysis by
considering two other points of view. First, we initiate a study of rationality
properties of inconsistency-tolerant semantics. Second, we complement known
complexity results, on the one hand by extending them to the more general case
of FUS existential rules, and on the other hand by providing tight complexity
results on some newly considered semantics (computation of repairs or closed
repairs with majority-based or brave inference, as well several cardinality-based
modifiers with universal inference).

The most efficiently computable semantics are 〈R,∩〉 and 〈R,∃〉 (equal to
〈CR,∃〉). The 〈R,∩〉 semantics is the least productive semantics in the frame-
work. However, if one considers the closure of the repairs to increase the produc-
tivity of 〈R,∩〉, i.e., 〈CR,∩〉, one obtains a semantics that computationally costs
as the “natural” semantics 〈R,∀〉. At the opposite, 〈R,∃〉 may be considered as
too adventurous and does not behave well from a rationality point of view since
it produces conclusions that may be inconsistent with the ontology. More gen-
erally, universal and safe semantics satisfy the rationality properties for most
modifiers, which is not the case of majority-based and existential semantics. In
addition, for all semantics, RC and MRC, which compute the closure of an incon-
sistent ABox, may lead to consider as plausible a conclusion with a contestable
support, and since they do not seem to bring any advantage compared to other
semantics, they should be discarded. Despite majority-based semantics do not
fulfil some desirable logical properties, they remain interesting for several rea-
sons: they are only slightly more complex to compute than universal semantics
(w.r.t. the same modifier) while being more productive, without being as adven-
turous as existential semantics. Hence, they may be considered as a good tradeoff
between both semantics when the universal semantics appear to be insufficiently
productive. We also recall that majority-based semantics behave better from
a logical viewpoint when they are restricted to DL-LiteR (and more generally,
when the ontological language ensures that the size of the conflicts is at most
two). Regarding the use of cardinality, cardinality-based modifiers can be used
to counteract troublesome assertions that conflict with many others, however
they behave strangely when the cardinality criterion is applied to closed repairs.
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In summary, no semantics appears to outperform all the others in all of
the considered criteria. Selecting a semantics means selecting a suitable trade-
off between productivity (or, inversely, cautiousness), satisfaction of rationality
properties and computational complexity. We believe that this choice depends
on the applicative context.

In a future work, new semantics could be considered within the unified frame-
work, like no-objection semantics [4]. Besides, the study of rationality proper-
ties could be extended to other properties, and the exact complexity of several
semantics remains an open issue.
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