
Measuring Inconsistency in Answer
Set Programs

Markus Ulbricht1(B), Matthias Thimm1,2, and Gerhard Brewka1

1 Department of Computer Science, Leipzig University, Leipzig, Germany
mulbricht@informatik.uni-leipzig.de

2 Institute for Web Science and Technologies (WeST),

University of Koblenz-Landau, Koblenz, Germany

Abstract. We address the issue of quantitatively assessing the sever-
ity of inconsistencies in logic programs under the answer set semantics.
While measuring inconsistency in classical logics has been investigated
for some time now, taking the non-monotonicity of answer set semantics
into account brings new challenges that have to be addressed by reason-
able accounts of inconsistency measures. We investigate the behavior of
inconsistency in logic programs by revisiting existing rationality postu-
lates for inconsistency measurement and developing novel ones taking
non-monotonicity into account. Further, we develop new measures for
this setting and investigate their properties.

1 Introduction

Answer set programming (ASP, see [2] for an overview) is a popular non-mono-
tonic formalism for knowledge representation and reasoning. We consider a finite
set L of literals. An extended logic program P (over L) is a set of rules of the
form

r : l0 ← l1, . . . , lk,not lk+1, . . . ,not lm. (1)

with l0, . . . , lm ∈ L, 0 ≤ k ≤ m. Let P be the set of all extended logic programs.
We abbreviate head(r) = l0, pos(r) = {l1, . . . , lk} and neg(r) = {lk+1, . . . , lm}.
For two sets M and L of literals, we say M satisfies L (M � L) iff l ∈ M for
each l ∈ L . Now let P be a classical program (without default negation not).
For a rule r ∈ P , M � r iff M � {head(r)} whenever M � pos(r) and M � P iff
M � r for each rule r ∈ P . We let Cl(P) be the unique M ⊆ L with M � P and
M ′

� P for each set M ′
� M .

Definition 1. A set M of literals is called an answer set of a classical program
P if M = Cl(P). M is an answer set of an extended logic program P if M is the
answer set of PM , where PM = {head(r) ← pos(r) | r ∈ P, neg(r) ∩ M = ∅} is
the reduct of P with respect to M .

A set M of literals is called consistent if it does not contain both a and ¬a for
an atom a. A program P is called consistent if it has at least one consistent
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 577–583, 2016.
DOI: 10.1007/978-3-319-48758-8 42

578 M. Ulbricht et al.

answer set, otherwise it is called inconsistent. Let Ans(P) denote the set of all
answer sets of P and AnsInc(P) and AnsCon(P) the inconsistent and consistent
ones, respectively. Note that, motivated by the goals of this paper, our defini-
tion slightly differs from the original definition in [3] which allows for a single
inconsistent answer set only, namely L.

In the classical literature on inconsistency measurement—see e. g. [4,5,10]—
inconsistency measures are functions that aim at assessing the severity of the
inconsistency in knowledge bases formalized in propositional logic. Here, we are
interested in measuring inconsistency for (extended) logic programs and only
consider measures defined on those. Let R

∞
≥0 be the set of non-negative real

values including ∞.

Definition 2. An inconsistency measure I is a function I : P → R
∞
≥0.

The basic intuition behind an inconsistency measure I is that the larger the
inconsistency in P the larger the value I(P). However, even in the setting of
propositional logic, inconsistency is a concept that is not easily quantified and
there have been a couple of proposals for inconsistency measures in this setting,
see [10] for a recent survey.

The issue of measuring inconsistency in logic programs is more challenging
compared to the classical setting due to the non-monotonicity of answer set
semantics. This becomes apparent when considering the monotonicity postu-
late which is usually satisfied by classical inconsistency measures and demands
I(P ′) ≥ I(P) whenever P ⊆ P ′, i. e., the severity of inconsistency cannot be
decreased by adding new information. Consider now the two logic programs P1

and P2 given as follows:

P1 : b ← not a. P2 : b ← not a.
¬b ← not a. ¬b ← not a.

a.

We have P1 ⊆ P2 but P1 is inconsistent while P2 is not, so we would expect
I(P2) < I(P1) for any reasonable measure I. Therefore, simply taking classical
inconsistency measures and applying them to the setting of logic programs does
not yield the desired behavior.

Many rationality postulates such as monotonicity from above are already
disputed in the classical setting, cf. [1]. Taking non-monotonicity of the knowl-
edge representation formalism into account, a rational account of the severity
of inconsistency calls for a specific investigation, which we will undertake in
the remainder of this paper. In particular, we will discuss rationality postulates
for inconsistency measures in logic programs in Sect. 2 and propose some novel
measures in Sect. 3. An extended version of this paper can be found online1.

1 http://www.mthimm.de/misc/utb incasp.pdf.

http://www.mthimm.de/misc/utb_incasp.pdf

Measuring Inconsistency in Answer Set Programs 579

2 Rationality Postulates

Research in inconsistency measurement is driven by rationality postulates, i. e.,
desirable properties that should hold for concrete approaches. There is a growing
number of rationality postulates for inconsistency measurement but not every
postulate is generally accepted, see [1] for a recent discussion on this topic. In
the following, we revisit a selection of the most popular postulates—see e. g.
[6,9]—and phrase them within our context of logic programs. To do so, we need
some further notation.

Definition 3. The dependency graph DP of a program P is a labeled directed
graph having all literals of the program as vertices and there is an edge (li, lj , s)
iff P contains a rule r such that head(r) = lj and li ∈ pos(r)∪neg(r). The label
s ∈ {+,−} indicates whether li ∈ pos(r) or li ∈ neg(r). For any literal l, let
Path(P, l) be the set of all literals l′ (including l itself) such that there is a path
from l to l′ in DP .

Definition 4. A set U of literals is called a splitting set [7] for P , if head(r) ∈
U implies that all literals of atoms appearing in r are contained in U , for every
rule r ∈ P . For a splitting set U , let botU (P) be the set of all rules r ∈ P with
head(r) ∈ U . This set of rules is called the bottom part of P with respect to U .

Definition 5. A rule r∗ ∈ P is called safe with respect to P if the atom occurring
in the head of r∗ does not appear elsewhere in the program and pos(r∗) ∪ neg(r∗)
is a subset of the literals occurring in P \ {r∗}.
Now let I be an inconsistency measure. The postulate Consistency establishes
that 0 is the minimal inconsistency value and that it is reserved for consistent
programs.

Consistency. P is consistent iff I(P) = 0.

Satisfaction of Monotonicity. is generally not desirable for ASP. However, as we
still wish to require some form of monotonicity in special cases, we consider the
weaker postulate CLP-Monotonicity (CLP stands for “classical logic program”).
If a program does not contain any default negation and we only add new infor-
mation without default negation, we are in the classical setting and monotonicity
should hold. A stronger version of CLP-Monotonicity is I-Monotonicity which
is applicable when the head of a new rule is independent of the defaults in the
program. Similarly, Split-Monotonicity considers monotonicity with respect to
the bottom part of splitting sets.

Monotonicity. I(P) ≤ I(P ′) whenever P ⊆ P ′.
CLP-Monotonicity. If P is a classical logic program and r∗ a classical rule,

then I(P) ≤ I(P ∪ {r∗}).
I-Monotonicity. If r∗ is a rule with Path(P ∪ r∗, head(r∗)) ∩ neg(P ∪ r∗) = ∅,

then I(P) ≤ I(P ∪ {r∗}).
Split-Monotonicity. If U is a splitting set of P , then I(botU (P)) ≤ I(P).

580 M. Ulbricht et al.

Finally, Safe-rule independence demands that the addition of safe rules does not
change the inconsistency value.

Safe-rule independence. If P is a logic program and r∗ safe with respect to
P , then I(P) = I(P ∪ {r∗}).

3 Inconsistency Measures

We now propose concrete inconsistency measures for logic programs. Inconsis-
tency of programs can occur due to two different reasons, namely because the
program has no answer set at all or because all answer sets are inconsistent, cf.
[8]. Different measures should assess those reasons differently. Furthermore, to
measure inconsistency of a program, one could either take the program itself or
the answer sets into account. We will cover both approaches.

Our first measure I± aims at measuring the distance of the program to a con-
sistent one. More specifically, it quantifies the number of modifications in terms
of deleting and adding rules, necessary in order to restore consistency. Deleting
certain rules can surely be sufficient to prevent P from entailing contradictions,
but as already pointed out before, adding rules can also resolve inconsistency.

Definition 6. Define I± : P → R
∞
≥0 via

I±(P) = min{|A| + |D| | A,D ∈ P such that (P ∪ A) \ D is consistent}
for all P ∈ P.

Example 1. Consider the program P3 defined via

P3 : a1 ← not b. a1 ← not c. a1 ← not d.
¬a1 ← not b. ¬a1 ← not c. ¬a1 ← not d.

and P4 given as follows.

P4 : a1 ← not b. a2 ← not b. a3 ← not b.
¬a1 ← not b. ¬a2 ← not b. ¬a3 ← not b.

Note that P3 contains three contradicting pairs of rules. Since one can delete one
rule in each of them (or make the rule inapplicable by adding the corresponding
fact), I±(P3) = 3. Even though P4 is similar, I±(P4) = 1 since P4 ∪ {b.} is
consistent.

The measure I± performs a hypothetical modification of the original program P
itself to obtain consistency. Another approach is to relax the definition of answer
sets and consider modifications of the reduct PM instead.

Definition 7. A consistent set M of literals is called a k-l-model of a classical
logic program P if M is a model of (P ∪ A) \ D with A,D ∈ P and |A| ≤ k,
|D| ≤ l. M is called a k-l-answer set of an extended logic program P if M is a
k-l-model of PM .

Measuring Inconsistency in Answer Set Programs 581

Definition 8. Define I± : P → R
∞
≥0 via

I±(P) = min
M⊆L

{k + l | M is a k-l-answer set of P}

for all P ∈ P.

Interestingly, however, these two different points of view—considering the reduct
or the program itself—are equivalent.

Proposition 1. For any extended logic program P , I±(P) = I±(P).

While for any program P , one can find a set M of literals such that M is a
model of PM , one cannot always guarantee M being the minimal model of the
reduct. Our next measure minimizes the distance between M and Cl(PM). We
only consider the number of literals in the symmetric difference of two sets.
Investigating other distances is left for future work. Recall that the symmetric
difference dsd of two sets M and M ′ is defined via dsd(M,M ′) = |(M ∪ M ′) \
(M ∩ M ′)|.
Definition 9. Define Isd : P → R

∞
≥0 via

Isd(P) = min
M∈ConClP

dsd(M,Cl(PM))

with ConClP = {M ⊆ L | M,Cl(PM) is consistent} and min ∅ = ∞.

Example 2. If a program P contains two contradicting facts, Isd(P) = ∞ since
in this case, Cl(PM) is inconsistent for any set M of literals. For the programs
P3 and P4 from Example 1, we have Isd(P3) = 3 and Isd(P4) = 1.

Our last measure I# takes the answer sets of a program into account rather
than the rules. For this purpose, we need the following notion.

Definition 10. A set M of literals is called k-inconsistent, k ∈ N∪{0}, if there
are exactly k atoms a such that a ∈ M and ¬a ∈ M .

Furthermore, programs might have no answer set at all, which is a special case
for I#.

Definition 11. Define I# : P → R
∞
≥0 via

I#(P) = min
M∈Ans(P)

{k | M is k-inconsistent}

with min ∅ = ∞.

Example 3. For I#, we obtain I#(P3) = 1 and I#(P4) = 3.

Table 1 gives an overview on the compliance of our measures with respect to
the rationality postulates from Sect. 2. Note that, naturally, none of our measures
satisfies the classical monotonicity postulate which is also not desired for ASP.

582 M. Ulbricht et al.

Table 1. Compliance of inconsistency measures with respect to our rationality
postulates

I± = I± Isd I#

Consistency � � �
Monotonicity ✗ ✗ ✗

CLP-Monotonicity � � �
I-Monotonicity � � �
Split-Monotonicity � � �
Safe-rule independence � � �

4 Summary

In this paper, we addressed the challenge of measuring inconsistency in ASP by
critically reviewing the classical framework of inconsistency measurement and
taking non-monotonicity into account. We developed novel rationality postulates
and measures that are more apt for analyzing inconsistency in ASP than classical
approaches. Intuitively, some of our measures take the effort needed to restore
the consistency of programs into account (I±, I±), and our results show that
it does not matter whether this is done on the level of the original program
or on the level of the reduct. Others measure inconsistency in terms of the
quality of the produced output, e. g., I# which considers the minimal number
of inconsistencies in an answer set.

Acknowledgements. This work has been partially funded by the DFG Research
Training Group 1763.

References

1. Besnard, P.: Revisiting postulates for inconsistency measures. In: Fermé, E., Leite,
J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 383–396. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-11558-0 27

2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Com-
mun. ACM 54(12), 92–103 (2011). http://doi.acm.org/10.1145/2043174.2043195

3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991). http://dx.doi.org/10.
1007/BF03037169

4. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. J. Intell. Inf.
Syst. 27, 159–184 (2006)

5. Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In:
Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol.
3300, pp. 191–236. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30597-2 7

6. Hunter, A., Konieczny, S.: On the measure of conflicts: shapley inconsistency val-
ues. Artif. Intell. 174(14), 1007–1026 (2010)

http://dx.doi.org/10.1007/978-3-319-11558-0_27
http://doi.acm.org/10.1145/2043174.2043195
http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1007/978-3-540-30597-2_7

Measuring Inconsistency in Answer Set Programs 583

7. Lifschitz, V., Turner, H.: Splitting a logic program. In: Logic Programming, Pro-
ceedings of the Eleventh International Conference on Logic Programming, Santa
Marherita Ligure, Italy, 13–18 June 1994, pp. 23–37 (1994)

8. Schulz, C., Satoh, K., Toni, F.: Characterising and explaining inconsistency in
logic programs. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015.
LNCS, vol. 9345, pp. 467–479. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23264-5 39

9. Thimm, M.: Inconsistency measures for probabilistic logics. Artif. Intell. 197, 1–24
(2013)

10. Thimm, M.: On the expressivity of inconsistency measures. Artif. Intell. 234, 120–
151 (2016)

http://dx.doi.org/10.1007/978-3-319-23264-5_39
http://dx.doi.org/10.1007/978-3-319-23264-5_39

	Measuring Inconsistency in Answer Set Programs
	1 Introduction
	2 Rationality Postulates
	3 Inconsistency Measures
	4 Summary
	References

