
Iteratively-Supported Formulas and Strongly
Supported Models for Kleene

Answer Set Programs

(Extended Abstract)

Patrick Doherty1, Jonas Kvarnström1, and Andrzej Sza�las1,2(B)

1 Department of Computer and Information Science, Linköping University,
581 83 Linköping, Sweden

{patrick.doherty,jonas.kvarnstrom,andrzej.szalas}@liu.se
2 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

andrzej.szalas@mimuw.edu.pl

Abstract. In this extended abstract, we discuss the use of iteratively-
supported formulas (ISFs) as a basis for computing strongly-supported
models for Kleene Answer Set Programs (ASPK). ASPK programs have
a syntax identical to classical ASP programs. The semantics of ASPK

programs is based on the use of Kleene three-valued logic and strongly-
supported models. For normal ASPK programs, their strongly supported
models are identical to classical answer sets using stable model semantics.
For disjunctive ASPK programs, the semantics weakens the minimality
assumption resulting in a classical interpretation for disjunction. We use
ISFs to characterize strongly-supported models and show that they are
polynomially bounded.

1 Introduction

Classical answer set programming, ASP, has been intensively studied during
the past three decades [3,5,9]. In addition, a great deal of attention has been
devoted to ASP implementations [4,7,8,12,16]. One of the prominent techniques
proposed earlier for computing answer sets is based on translating ASP programs
into classical propositional formulas and then applying SAT solvers to generate
answer sets. In [6,12] it is shown that Clark’s completion together with loop
formulas characterize answer sets for ASP programs. One of the obstacles in
characterizing answer sets using propositional formulas is their ΣP

2 complexity.
Loop formulas contribute to this because one may require exponentially many of
them [10]. The current extended abstract provides an alternative to loop formu-
las, iteratively-supported formulas, that ameliorates this problem. Polynomial
translations of normal ASP programs have also been considered in [11,13,14].
However, our translation is extended to disjunctive programs in a natural way.

In [15] a possible model semantics for disjunctive programs is proposed. It is
formulated with the use of split programs and there can be exponentially many

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 536–542, 2016.
DOI: 10.1007/978-3-319-48758-8 36

Iteratively-Supported Formulas and Strongly Supported Models 537

of them comparing to the original program. Similar semantics was independently
proposed in [1] under the name of the possible world semantics. In [2] we have
analyzed minimality and supportedness in the context of ASPs and proposed
Kleene Answer Set Programs (ASPK) using the concept of strongly supported
models. The semantics used for Kleene Answer Set programs is based on Kleene
logic, K3, with an extra weak negation. In [2] it is shown that the problem of
showing whether an ASPK program has a strongly supported model is in NP
(i.e., in ΣP

1). This result applies to both normal and disjunctive ASPK programs.
For disjunctive ASPK programs, the minimality assumption is relaxed, resulting
in a classical interpretation of disjunction.1 The ability to fine-tune the separa-
tion of supportedness and minimality in the disjunctive case results in a lower
complexity for generating strongly supported models. In comparison to [15],
ASPK programs allow for strong negation and a three-valued model-theoretic
semantics is provided. The presence of both default and strong negation in ASPK

provides a tool to close the world locally in a contextual manner, more flexible
than possible model negation proposed in [15]. Though defined independently
and using different foundations, both semantics appear compatible on positive
programs, so the results of the current paper apply to possible model semantics
of [15], too.

The main contribution of the current paper is the definition and use of ISFs to
characterize strongly supported models for both normal and disjunctive ASPK

programs. Such formulas are shown to be polynomially bounded in both cases.
As a derivative result, in the case of normal ASP programs and due to a corre-
spondence between answer sets and strongly supported models, ISFs provide a
more efficient alternative to loop formulas when using SAT solvers. For disjunc-
tive ASPK programs, the use of supported models and ISFs provide an efficient
means for using SAT solvers, but with an alternative semantics that interprets
disjunction classically due to a relaxation of minimality assumptions.

The paper is structured as follows. In Sect. 2 we introduce basic definitions
related to both classical ASP programs and ASPK programs in addition to
strong supportedness. Section 3 introduces ISFs used to characterize normal and
disjunctive ASPK programs. Section 4 concludes the paper.

2 Kleene Answer Set Programs

In this paper, the syntax for Kleene ASPK programs is identical for that of
classical ASP programs. The semantics for Kleene ASPK programs is based
on the use of a three-valued Kleene logic K3 and strongly-supported models
presented in [2]. The semantics for classical ASP programs is based on stable
model semantics [9]. For the sake of clarity we consider propositional programs
only. Truth values are denoted by T (true), F (false) and U (unknown). The
empty conjunction is T and the empty disjunction is F.

1 Note that minimality is sometimes not required or may even be undesirable [2,3,15,
17], e.g., in the context of programs that use disjunctive rules.

538 P. Doherty et al.

Definition 1. By a positive literal (or an atom) we mean any propositional
variable of P. A negative literal is an expression of the form ¬r, where r ∈ P.
A classical literal is a positive or a negative literal. A set of literals is consistent
if it does not contain a literal � together with its negation ¬�.2 By an extended
literal we understand a classical literal or an expression of the form not �, where �

is a classical literal. If γ is an expression (formula, program, etc.) then Lit(γ)def=
{p,¬p | p∈P occurs in γ} and P(Π) def= P ∩ Lit(Π).

An interpretation is a finite consistent set of literals. Interpretation I satisfies
a classical literal � iff � ∈ I and I satisfies an extended literal not � iff � �∈ I. The
satisfiability relation is denoted by I |= �. �

Definition 2. By an ASPK rule we understand an expression � of the form:

�1 ∨ . . . ∨ �k ← �k+1, . . . , �m,not �m+1, . . . ,not �n, (1)

where n ≥ m ≥ k ≥ 0, �1, . . . , �k, �k+1, . . . , �m, �m+1, . . . �n are (positive or nega-
tive) literals. The expression at the lefthand side of ‘←’ in (1), denoted by h(�),
is called the head and the righthand side of ‘←’, denoted by B(�), is called the
body of the rule. The rule is called disjunctive if k > 1.

An ASPK program Π is a finite set of rules. A program is normal if each of
its rules has at most one literal in its head. If a program contains a disjunctive
rule, we call it disjunctive. By Disj (Π) we denote the set of disjunctive rules
appearing in Π.

The set of rules with the empty body is denoted by Fct(Π) and the set
of rules with the empty head is denoted by Ctr(Π). Members of Fct(Π) and
Ctr(Π) are called facts and constraints, respectively. The set of rules whose
bodies and heads are nonempty is denoted by Rul(Π).

An interpretation I satisfies a rule � of the form (1), denoted by I |= �,
if whenever �k+1, . . . , �m ∈ I and �m+1, . . . , �n �∈ I, we have �i ∈ I for some
1 ≤ i ≤ k. An interpretation I satisfies an ASPK program Π, denoted by
I |= Π, if for all rules � ∈ Π, I |= �. �

The following definition is needed to define strong supportedness (a construc-
tion similar in spirit is considered in [18]).

Definition 3. Given interpretations I and J , the value of a formula A w.r.t.
(I, J), denoted by (I, J)(A), is defined as follows:

(I, J)(A) def=

⎧
⎨

⎩

T when I |= reductJ (A);
F when I |= reductJ (¬A);
U otherwise.

(2)

where reductJ (A) (respectively, reductJ(¬A)) is a formula obtained from A (¬A)
by substituting subformulas of the form not � by their truth values evaluated
in J . �

2 We always remove double strong negations using ¬(¬�)
def
= �.

Iteratively-Supported Formulas and Strongly Supported Models 539

Definition 4. An interpretation N is a strongly supported model of an ASPK

program Π provided that N satisfies Π and there exists a sequence of inter-
pretations I0 ⊆ I1 ⊆ . . . ⊆ In where n ≥ 0 such that I0 = Fct(Π), N = In,
and:

1. for every 1 ≤ i ≤ n and every rule �1 ∨ . . . ∨ �k ← B of Π,
if

(
Ii−1, N

)
(B) = T then a nonempty subset of {�1, . . . , �k}

is included in Ii;
2. for i = 1, . . . , n, Ii can only contain literals obtained by applying point 1. �

3 Iteratively-Supported Formulas

Let p be a propositional variable. Then pi (respectively p̄i) denotes the fact that
in the i-th iteration, p (respectively, ¬p) is in the computed candidate for a
strongly supported model. Thus, ¬pi (respectively ¬p̄i) denotes the fact that in
the i-th iteration pi (respectively, ¬pi) is not in the computed candidate for a
strongly supported model.

The number of different literals in heads of Rul(Π) is denoted by #Π. Since
support can only be generated for up to #Π distinct literals, #Π iterations will
be sufficient to provide support for all literals in any strongly supported model.

Definition 5. The translation function is defined as follows, where 1 ≤ i ≤ #Π
and � is an extended literal:

TrΠ(i, �) def=

⎧
⎪⎪⎨

⎪⎪⎩

pi when � = p;
p̄i when � = ¬p;
¬p#Π when � = not p;
¬p̄#Π when � = not ¬p.

(3)

We extend the translation for bodies and heads of rules by setting:
TrΠ(i, B) def=

∧
�∈B TrΠ(i, �) and TrΠ(i,H) def=

∨

�∈H

TrΠ(i, �).

Definition 6. By a support of a classical literal � in a normal ASPK program
Π at i (i > 0) we understand the formula:

Suppi
Π(�) def=

[
TrΠ(i, �) ≡ (

TrΠ(i − 1, �) ∨
∨

�∈Π:�=h(�)

TrΠ(i − 1, B(�))
)]

. (4)

Definition 7. By the iteratively-supported formula for a normal ASPK program
Π we understand the following formula of classical propositional calculus:

ISF (Π) def=
∧

0≤i≤#Π

∧

p∈P(Π)

¬(
pi ∧ p̄i

) ∧ (5)

540 P. Doherty et al.

∧

F∈Fct(Π)

TrΠ(0, h(F)) ∧
∧

�∈Lit(Π)−{h(F)|F∈Fct(Π)}
¬TrΠ(0, �) ∧ (6)

∧

1≤i≤#Π

∧

�∈Lit(Π)

Suppi
Π(�) ∧ (7)

∧

�∈Π

(
TrΠ(#Π,B(�)) → TrΠ(#Π,h(�))

)
. (8)

We have the following theorem for normal ASPK programs.

Theorem 1. For any normal ASPK program Π, I is a strongly supported model
of Π iff there is a valuation v satisfying ISF (Π) such that:

I = {p | v(p#Π) = T} ∪ {¬p | v(p̄#Π) = T}. �

Since for normal ASPK programs strongly supported models are also classical
answer sets, Theorem 1 applies to classical ASP, too.

Given a disjunctive ASPK program Π, the support of literals appearing only
in non-disjunctive heads remains unchanged. For literals appearing in disjunctive
heads we have the following definition.

Definition 8. By a support of a classical literal � occurring in a disjunctive head
in an ASPK program Π at i (i > 0) we understand the formula:

Suppi
Π(�) def=

[
TrΠ(i, �) → (

TrΠ(i − 1, �) ∨
∨

�∈Π:�∈h(�)

TrΠ(i − 1, B(�))
)] ∧

[
TrΠ(i − 1, �) → TrΠ(i, �)

]
.

(9)

For other literals, the support of � is still specified by formula (4) in
Definition 6. �

Definition 9. By an iteratively-supported formula for a disjunctive ASPK

program Π we understand the formula (7) with Suppi
Π() understood as in

Definition 8. �

We now have the following generalization of Theorem 1.

Theorem 2. For any (normal or disjunctive) ASPK program Π, I is a strongly
supported model of Π iff there is a valuation v satisfying ISF (Π) such that:

I = {p | v(p#Π) = T} ∪ {¬p | v(p̄#Π) = T}. �

Note that for any ASPK program Π, the number of different literals in heads
of Rul(Π) (i.e., #Π) is linear in the size of Π. Therefore we have the following
lemma.

Lemma 1. For any (normal or disjunctive) ASPK program Π, the size of
ISF (Π) is polynomial in the size of Π. �

Iteratively-Supported Formulas and Strongly Supported Models 541

4 Conclusions

In this extended abstract, we have defined iteratively-supported formulas
expressed in classical propositional logic and used them to characterize strongly
supported models for ASPK programs. For normal ASPK programs, I is a classi-
cal answer set of the program iff I is a strongly supported model of the program.
Since iteratively-supported formulas provide polynomially bounded character-
izations of supported models for normal ASPK programs, they also provide
polynomially bounded characterizations of classical answer sets for normal ASP
programs. In contrast, use of loop formulas could result in formulas of exponen-
tial size for normal ASP programs.

ISFs also characterize strongly supported models for disjunctive ASPK pro-
grams and guarantee that all conclusions are grounded in facts or default reason-
ing based on extended literals (using default negation not). Additionally, due
to a weakened minimization assumption, disjunction is interpreted classically
which results in a semantics enjoying among other properties, a ΣP

1 complex-
ity for computing strongly-supported models. This, together with a polynomial
bound on ISFs, is a striking theoretical improvement compared to the ΣP

2 com-
plexity of computing classical answer sets for ASP programs.

Acknowledgments. This work is partially supported by the Swedish Research Coun-
cil (VR) Linnaeus Center CADICS, the ELLIIT network organization for Informa-
tion and Communication Technology, the Swedish Foundation for Strategic Research
(CUAS Project, SymbiKCloud Project), the EU FP7 project SHERPA (grant agree-
ment 600958), and Vinnova NFFP6 Project 2013-01206.

References

1. Chan, P.: A possible world semantics for disjunctive databases. IEEE Trans. Knowl.
Data Eng. 5(2), 282–292 (1993)

2. Doherty, P., Sza�las, A.: Stability, supportedness, minimality and kleene answer set
programs. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances
in Knowledge Representation. LNCS, vol. 9060, pp. 125–140. Springer, Heidelberg
(2015)

3. Ferraris, P., Lifschitz, V.: On the minimality of stable models. In: Balduccini,
M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Non-
monotonic Reasoning. LNCS, vol. 6565, pp. 64–73. Springer, Heidelberg (2011)

4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

5. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents -The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

6. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi,
C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)

7. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

542 P. Doherty et al.

8. Lierler, Y.: cmodels – SAT-based disjunctive answer set solver. In: Baral, C.,
Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662,
pp. 447–451. Springer, Heidelberg (2005)

9. Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N.,
Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503.
Springer, Heidelberg (2010)

10. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Trans.
Comput. Log. 7(2), 261–268 (2006)

11. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal
logic programs to propositional logic. In: Gottlob, G., Walsh, T. (eds.) Proceedings
of the IJCAI-03, pp. 853–858. Morgan Kaufmann (2003)

12. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Artif. Intell. 157(1–2), 115–137 (2004)

13. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer
programming. In: Brewka, G., T., E., McIlraith, S. (eds.) Proceedings of the KR
2012. AAAI Press (2012)

14. Pelov, N., Ternovska, E.: Reducing inductive definitions to propositional satisfiabil-
ity. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 221–234.
Springer, Heidelberg (2005)

15. Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic
programs and deductive databases. J. Autom. Reasoning 13(1), 145–172 (1994)

16. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1–2), 181–234 (2002)

17. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications
in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp.
305–319. Springer, Heidelberg (1999)

18. Son, T., Pontelli, E.: A constructive semantic characterization of aggregates in
answer set programming. TPLP 7(3), 355–375 (2007)

	Iteratively-Supported Formulas and Strongly Supported Models for Kleene Answer Set Programs
	1 Introduction
	2 Kleene Answer Set Programs
	3 Iteratively-Supported Formulas
	4 Conclusions
	References

