
Formalizing Goal Serializability for Evaluation
of Planning Features

Reza Basseda(B) and Michael Kifer

Stony Brook University, Stony Brook, NY 11794, USA
{rbasseda,kifer}@cs.stonybrook.edu

Abstract. Evaluation of the properties of various planning techniques
such as completeness and termination plays an important role in choosing
an appropriate planning technique for a particular planning problem. In
this paper, we use the already existing formal specification of two well-
known and classic state space planning techniques, forward state space
planning and goal stack state space planning techniques, in Transaction
Logic(T R) to study their completeness. Our study shows that using T R,
we can formally specify the serializability of planning problems and prove
the completeness of STRIPS planning problems for planning problems
with serializable goals.

Keywords: Deductive planning · STRIPS planning · Transaction Logic

1 Introduction

Evaluation of different properties of planning techniques such as termination
and completeness becomes more essential when, in many cases, different search
strategies of a planning technique may affect the performance of planning process
while different properties such as completeness and termination is required. For
example, forward state space planning and goal stack space planning techniques
may have different execution time when they are used by a robot in the famous
block world example while Sussman Anomaly [1] shows that goal stack space
planning is not guaranteed to succeed. Such considerations need appropriate
formal frameworks to represent the planning techniques properly.

Using logical deduction to solve a planning problem has been a popular app-
roach for more than three decades [2–6]. However, none of the existing logical
frameworks of deductive planners are used to study the different properties of
planning techniques because these planners are just relying on their correspond-
ing inference systems to search for a plan and they are not expressive enough
to formally represent more complicated planning techniques such as goal state
space planning. Therefore, the requirement of a formal, neat, and expressive
logical framework for such studies seems to be inevitable.

This work was supported, in part, by the NSF grant 0964196.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 515–521, 2016.
DOI: 10.1007/978-3-319-48758-8 33

516 R. Basseda and M. Kifer

In this paper, we are using the encoding of forward state space planning
and goal stack state space planning techniques in Transaction Logic(T R) for
the evaluation of their completeness. Our paper shows that T R is an appro-
priate logical framework for such evaluation. Unlike above mentioned logical
frameworks, the well-defined model theory of T R together with its sound and
complete proof theory let us easily prove different properties of planning tech-
niques such as completeness. It also lets us formally redefine the concept of goal
serializablity in planning that is used to examine the completeness of goal stack
state space planning technique for planning problems. Our simple and straight-
forward proofs for two classic planning techniques, forward state space planning
(called näıve1) and goal stack state space (called STRIPS2) are evidences for
this claim.

The next section briefly characterizes a planning problem. The third section
explains how we formally encode planning techniques in T R and the last section
concludes our paper.

2 Characterization of a Planning Problem

In a STRIPS planning problem, actions update the state of a system. We assume
denumerable sets of variables X , constants C, and disjoint sets of predicate sym-
bols, extensional (Pext) and intensional (Pint) ones. A term is a variable or con-
stant. Extensional (resp. intensional) Atoms have the form p(t1, ..., tn), where ti
is a term and p ∈ Pext (resp. p ∈ Pint). A ground atom is a variable free atom.
A literal is either an atom or a negated extensional atom, ¬p(t1, ..., tn). Note
that negative intensional atoms cannot form literals. A substitution θ is a set of
expressions of the form X ←− c, where X ∈ X and c ∈ C. Given a substitution
θ, an atom aθ is obtained from atom a by replacing its variables with constants
according to θ.

Intensional predicate symbols are defined by rules. A rule r, shown as
head(r) ← b1 ∧ · · · ∧ bn, consists of an intensional atom head(r) in the head
and a conditional body, a (possibly empty) conjunction of literals b1, . . . , bn,
where bi ∈ body(r). A ground instance of a rule, rθ, is any rule obtained from
r by a substitution of head(r) and body(r) with ground atoms head(r)θ and
body(r)θ respectively. Given a set of literals S and a ground rule rθ, the rule
is true in S if either head(r)θ ∈ S or body(r)θ �⊆ S. A (possibly non-ground)
rule is true in S if all of its ground instances are true in S. A set S of literals is
consistent if there is no atom, a, such that {a,¬a} ⊆ S.

Definition 1 (State). Given a set of rules R, a consistent set S of literals is
called a state if and only if

1. For each ground extensional atom a, either, a ∈ S, or ¬a ∈ S.
2. Every rule of R is true in S.

1 Due to its simple nature.
2 As it was originally proposed by [7] in STRIPS.

Formalizing Goal Serializability for Evaluation of Planning Features 517

Definition 2 (STRIPS action). A STRIPS action α = 〈pα(X1, ...,Xn),
P re(α), E(α)〉 consists of an intensional atom pα(X1, ...,Xn) in which pα ∈ Pint

is a predicate that is reserved to represent the action α and can be used for no
other purpose, a set of literals Pre(α), called the precondition of α, and a con-
sistent set of extensional literals E(α), called the effect of α. The variables in
Pre(α) and E(α) must occur in {X1, ...,Xn}.

Note that the literals in Pre(α) can be both extensional and intensional, while
the literals in E(α) can be extensional only.

Definition 3 (Execution of a STRIPS action). A STRIPS action α is exe-
cutable in a state S if there is a substitution θ such that θ(Pre(α)) ⊆ S.
A result of the execution (with respect to θ) is the state S′ such that
S′ = (S \ ¬θ(E(α))) ∪ θ(E(α)), where ¬E = {¬�|� ∈ E}.

Note that S is well-defined since E(α) is consistent. Observe also that, if α has
variables, the result of an execution, S, may depend on the chosen substitution θ.

Definition 4 (Planning problem). Given a set of rules R, a set of STRIPS
actions A, a set of literals G, called the goal, and an initial state S, a planning
solution (or simply a plan) for the planning Π = 〈R,A, G,S〉 is a sequence of
ground actions σ = α1, . . . , αn such that for each 1 ≤ i ≤ n;

– there is a substitution θi and a STRIPS action α′
i ∈ A such that α′

iθ = αi;
and

– there is a sequence of states S0,S1, . . . ,Sn such that
• S = S0 and G ⊆ Sn (i.e., G is satisfied in the final state);
• αi is executable in state Si−1 and the result of that execution is the state Si.

The following definition of goal serializable planning problems constitutes
a measure that recognizing planning problems, for which the STRIPS planning
technique is proven to be complete.

Definition 5 (Goal serializable planning problem). Given a planning
problem Π = 〈R,A,S, G〉, let σ be the shortest solution plan for Π and G′ ⊂ G
be any arbitrary set of literals such that G �= G′. We call Π a goal serializable
planning problem if and only if, for every σ′, that is a planning solution for
Π ′ = 〈R,A, G′,S〉 and the result of its execution is S′ where |σ′| ≤ |σ|, there is
a planning solution σ′′ for Π ′′ = 〈R,A, G,S′〉 such that |σ′′| < |σ|.

A brief introduction to the subset of T R [8–11] has been appeared in [12–14].
Although such introduction is required to make our paper self-contained, we omit
that introduction to save space and refer the reader to [14].

3 The T R Planners

The informal idea of using T R as a planning formalism and an encoding of
STRIPS and naive planning as a set of T R rules first appeared in an unpublished

518 R. Basseda and M. Kifer

report [8]. We extend and slightly modify the original methods to prove different
properties of each planning technique.

Given a set of extensional literals G, we define Enf(G) to be the set of elemen-
tary updates that makes G true. Next we introduce a natural correspondence
between STRIPS actions and T R rules.

Definition 6 (Actions as T R rules). Let α = 〈pα(X), P re(α), E(α)〉 be a
STRIPS action. We define its corresponding TR rule, tr(α), to be a rule of
the form

pα(X) ← (∧�∈Pre(α)�) ⊗ (⊗u∈Enf(E(α))u). (1)

Note that in (1) the actual order of action execution in the last component,
⊗u∈Enf(E(α))u, is immaterial, since all such executions happen to lead to the
same state.

We now define a set of T R clauses that simulate naive and STRIPS [7]
planning techniques. Moreover, for convenience, we use a ̂⊗ b as a shorthand for
a ⊗ b ∨ b ⊗ a. This connective is called the shuffle operator in [8]. We define it
to be commutative and associative and thus extend it to arbitrary number of
operands.

Definition 7 (Näıve planning rules). Given a STRIPS planning problem
Π = 〈R,A, G,S〉 (see Definition 4), we define a set of T R rules, P(Π), which
simulate naive planning technique to provide a planning solution to the planning
problem. P(Π) has two parts, Pgeneral, PA, described below.

– The Pgeneral part: contains a couple of rules as follows;

plan ← .
plan ← execute action ⊗ plan.

(2)

These rules construct a sequence of actions and bind them to the plan.
– The Pactions part: for each α ∈ A, Pactions has a couple of rules as follows;

pα(X) ← (∧�∈Pre(α)�) ⊗ (⊗u∈Enf(E(α))u).
execute action ← pα(X).

(3)

This is the T R rule that corresponds to the action α, introduced in Definition 6
and generally links an action to a plan.

Definition 8 (STRIPS planning rules). Let Π = 〈R,A, G,S〉 be a STRIPS
planning problem (see Definition 4). We define a set of T R rules, P(Π), which
simulate STRIPS planning technique to provide a planning solution to the plan-
ning problem. P(Π) has three disjoint parts, PR, PA, and PG, described below.

– The PR part: for each rule p(X) ← p1(X1) ∧ · · · ∧ pk(Xn) in R, PR has a rule
of the form

achieve p(X) ← ̂⊗n
i=1achieve pi(Xi). (4)

Rule (4) is an extension to the classical STRIPS planning algorithm. It cap-
tures intentional predicates and ramification of actions, and it is the only
major aspect of our T R-based rendering of STRIPS that was not present in
the original in one way or another.

Formalizing Goal Serializability for Evaluation of Planning Features 519

– The part PA = Pactions ∪ Patoms ∪ Pachieves is constructed out of the actions
in A as follows:
• Pactions: similar to Definition 7.
• Patoms = Pachieved ∪ Penforced has two disjoint parts as follows:

– Pachieved: for each extensional predicate p ∈ Pext, Pachieved has the rules

achieve p(X) ← p(X).
achieve not p(X) ← ¬p(X).

(5)

These rules say that if an extensional literal is true in a state then that
literal has already been achieved as a goal.

– Penforced: for each action α = 〈pα(X), P re(α), E(α)〉 in A and each
e(Y) ∈ E(α), Penforced has the following rule:

achieve e(Y) ← ¬e(Y) ⊗ execute pα(X). (6)

This rule says that one way to achieve a goal that occurs in the effects
of an action is to execute that action.

• Pachieves: for each action α = 〈pα(X), P re(α), E(α)〉 in A, Pachieves has
the following rule:

execute pα(X) ← (̂⊗�∈Pre(α)achieve �) ⊗ pα(X). (7)

This means that to execute an action, one must first achieve the precon-
dition of the action and then perform the state changes prescribed by the
action.

– PG: Let G = {g1, ..., gk}. Then PG has a rule of the form:

achieveG ← (̂⊗k

gi=1achieve gi) ⊗ (∧k
i=1gi). (8)

Given a STRIPS planning problem Π = 〈R,A, G,S〉, each of Defini-
tions 7 and 8 gives a set of T R rules that specifies the corresponding planning
strategy for that problem. To find a solution for that planning problem, one
simply needs to place the request (9) (resp. (10)) in the initial state and use the
set of rules from Definition 7 (resp. Definition 8) and the T R’s inference system
to find a proof.

? − plan ⊗ (∧gi∈Ggi). (9)

? − achieveG . (10)

Completeness of a planning strategy means that, for any STRIPS planning
problem, if there is a solution, the planner will find at least one plan.

Theorem 1 (Completeness of naive planning). If there is a plan that
achieves the goal G from the initial state D0 then the T R-based naive planner
will find a plan.

520 R. Basseda and M. Kifer

Proof (Sketch). The proof is a direct consequence of T R inference system com-
pleteness.

Theorem 2 (Completeness of STRIPS planning). Given a goal serializ-
able planning problem Π = 〈R,A, G,D0〉, if there is a plan that achieves the goal
G from the initial state D0 then the T R-based STRIPS planner will find a plan.

Proof (Sketch). By induction on the length of the plan. The full proof can be
found in the full report.3

4 Conclusion

This paper has demonstrated that the use of Transaction Logic opens up new
possibilities for generalizations and considerations of the properties of existing
planning techniques. For instance, we have shown that once the STRIPS algo-
rithm is cast as a set of rules in T R, the different properties of the framework can
be studied, almost for free, to recognize and define such advanced concepts as
goal serializability of planning. The concept of serializability, not only classifies
planning problem regarding to the completeness of STRIPS planning technique,
but also establishes further explorations in different areas such as algorithms
and graph theory.

References

1. Sacerdoti, E.D.: The nonlinear nature of plans. In: Proceedings of the 4th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 1975, vol. 1, pp. 206–214.
Morgan Kaufmann Publishers Inc., San Francisco (1975)

2. Bibel, W.: A deductive solution for plan generation. In: Schmidt, J.W., Thanos,
C. (eds.) Foundations of Knowledge Base Management. Topics in Information Sys-
tems, pp. 453–473. Springer, Heidelberg (1989)

3. Kahramanoğulları, O.: On linear logic planning and concurrency. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 250–262. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88282-4 24

4. Cresswell, S., Smaill, A., Richardson, J.: Deductive synthesis of recursive plans in
linear logic. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp.
252–264. Springer, Heidelberg (2000). doi:10.1007/10720246 20

5. Guglielmi, A.: Concurrency and plan generation in a logic programming language
with a sequential operator. In: Hentenryck, P.V. (ed.) ICLP, pp. 240–254. MIT
Press (1994)

6. Kahramanogullari, O.: Towards planning as concurrency. In: Hamza, M.H. (ed.)
Artificial Intelligence and Applications, pp. 387–393. IASTED/ACTA Press (2005)

7. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2, 189–208 (1971)

8. Bonner, A., Kifer, M.: Transaction logic programming (or a logic of declarative
and procedural knowledge). Technical report CSRI-323, University of Toronto,
November 1995. http://www.cs.toronto.edu/∼bonner/transaction-logic.html

3 http://ewl.cewit.stonybrook.edu/planning/Goal-Serializability.pdf.

http://dx.doi.org/10.1007/978-3-540-88282-4_24
http://dx.doi.org/10.1007/10720246_20
http://www.cs.toronto.edu/~bonner/transaction-logic.html
http://ewl.cewit.stonybrook.edu/planning/Goal-Serializability.pdf

Formalizing Goal Serializability for Evaluation of Planning Features 521

9. Bonner, A., Kifer, M.: A logic for programming database transactions. In:
Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, pp.
117–166. Kluwer Academic Publishers, March 1998

10. Bonner, A.J., Kifer, M.: An overview of transaction logic. Theoret. Comput. Sci.
133(32), 205–265 (1994)

11. Bonner, A., Kifer, M.: Transaction logic programming. In: International Conference
on Logic Programming, Budapest, Hungary, pp. 257–282. MIT Press, June 1993

12. Basseda, R., Kifer, M., Bonner, A.J.: Planning with transaction logic. In:
Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 29–44.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11113-1 3

13. Basseda, R., Kifer, M.: Planning with regression analysis in transaction logic.
In: Cate, B., Mileo, A. (eds.) RR 2015. LNCS, vol. 9209, pp. 45–60. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-22002-4 5

14. Basseda, R., Kifer, M.: State space planning using transaction logic. In: Pontelli,
E., Son, T.C. (eds.) PADL 2015. LNCS, vol. 9131, pp. 17–33. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-19686-2 2

http://dx.doi.org/10.1007/978-3-319-11113-1_3
http://dx.doi.org/10.1007/978-3-319-22002-4_5
http://dx.doi.org/10.1007/978-3-319-19686-2_2

	Formalizing Goal Serializability for Evaluation of Planning Features
	1 Introduction
	2 Characterization of a Planning Problem
	3 The TR Planners
	4 Conclusion
	References

