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Abstract. In this paper we describe Pakota, a system implementation that
allows for solving enforcement problems over argumentation frameworks. Via
harnessing Boolean satisfiability (SAT) and maximum satisfiability (MaxSAT)
solvers, Pakota implements algorithms for extension and status enforcement
under various central AF semantics, covering a range of NP-complete—via direct
MaxSAT encodings—and ΣP

2 -complete—via MaxSAT-based counterexample-
guided abstraction refinement—enforcement problems. We overview the algo-
rithmic approaches implemented in Pakota, and describe in detail the system
architecture, features, interfaces, and usage of the system. Furthermore, we
present an empirical evaluation on the impact of the choice of MaxSAT solvers
on the scalability of the system, and also provide benchmark generators for exten-
sion and status enforcement.

1 Introduction

Argumentation is a core area of modern artificial intelligence research, with strong con-
nections to knowledge representation and classical and non-monotonic logics. Argu-
mentation frameworks (AFs) [23], a central graph-based knowledge representation for-
malism, provide a formal basis for abstract argumentation.

Motivated also by practical applications, AFs under various semantics give rise to
important—and often computationally very hard—reasoning problems over AFs. This
includes what we refer to as static (or non-dynamic) AF reasoning tasks, such as the
much studied problems of skeptical and credulous acceptance of arguments. Static AF
reasoning tasks have been extensively studied, to the point that today several systems
implementing static AF reasoning [13,14,24,26,30,31,33] are available. Most often
these systems are based on declarative approaches, using propositional satisfiability
(SAT) solver technology or extensions thereof for solving the core reasoning task at
hand [13,14,24,26]. However, argumentation is intrinsically a dynamic process, and
hence understanding and reasoning about the dynamics of AFs is a central and recent
direction of research [8–10,12,18,19,21,22,29,34]. In contrast to static AF reasoning
problems, few system implementations are currently available for reasoning about dif-
ferent aspects of AF dynamics [17,29,34].
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In this paper, we describe in detail Pakota, a system for optimal extension enforce-
ment [8,12,17,34] and status enforcement [29], two recently proposed hard compu-
tational problems dealing with dynamics (in connection to belief change) in abstract
argumentation. In short, enforcement deals with the question of how a given AF should
be revised (changed) in order for it to support (in terms of, e.g., skeptical or credulous
acceptance) specific arguments.

Pakota implements algorithms for solving optimally—in terms of structural modi-
fications to a given AF—various variants of NP-complete and ΣP

2 -complete extension
and status enforcement problems under various AF semantics, being the first system
for optimal enforcement in its generality. Pakota is based on NP-encoding enforce-
ment problems using the Boolean optimization paradigm of maximum satisfiabil-
ity (MaxSAT), and further implements counterexample-guided abstraction refinement
(CEGAR) [15,16] algorithms based on SAT and MaxSAT solvers for ΣP

2 -complete
enforcement.

2 Enforcement in Abstract Argumentation

We start by reviewing argumentation frameworks and their semantics [7,23], and the
extension enforcement and status enforcement problems central to this work.

2.1 Argumentation Frameworks

Definition 1. An argumentation framework (AF) is a pair F = (A,R), where A is a
finite set of arguments and R ⊆ A×A is the attack relation. The pair (a, b) ∈ R means
that a attacks b. An argument a ∈ A is defended (in F ) by a set S ⊆ A if, for each
b ∈ A such that (b, a) ∈ R, there exists a c ∈ S such that (c, b) ∈ R.

Semantics for AFs are defined by functions σ which assign to each AF F = (A,R)
a set σ(F ) ⊆ 2A of extensions. We consider for σ the functions stb, adm , com and
prf , which stand for stable, admissible, complete and preferred, respectively.

Definition 2. Given an AF F = (A,R), the characteristic function FF : 2A → 2A of
F is FF (S) = {a ∈ A | a is defended by S}. Moreover, for a set S ⊆ A, the range of
S is S+

R = S ∪ {a ∈ A | (b, a) ∈ R, b ∈ S}.
Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are
no a, b ∈ S such that (a, b) ∈ R. We denote the collection of conflict-free sets of F by
cf (F ). For a conflict-free set S ∈ cf (F ), it holds that

– S ∈ stb(F ) iff S+
R = A;

– S ∈ adm(F ) iff S ⊆ FF (S);
– S ∈ com(F ) iff S = FF (S);
– S ∈ prf (F ) iff S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T ;

We use “σ-extension” to refer to an extension under a semantics σ ∈
{stb, adm, com, prf }.
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Fig. 1. An argumentation framework (a); enforcing {a, b} to be a stable extension (b); credulous
(c) and skeptical (d) status enforcement of P = {a, b}, N = ∅ under stable semantics

Example 1. As an example AF, consider F = (A,R) with three arguments, A =
{a, b, c}, and attacks R = {(a, b), (b, a), (b, c), (c, b), (c, a)}, with a graphical illus-
tration shown in Fig. 1(a). This AF has the following stable extensions which, in this
particular case, coincide with the preferred extensions: stb(F ) = {{b}, {c}}.

When comparing attack structures of two AFs F = (A,R) and F ′ = (A,R′) with
the same set of arguments, we make use of the cardinality of the symmetric difference
of the attack relations defined by |RΔR′| = |R \ R′| + |R′ \ R|.

2.2 Extension Enforcement

We continue by recalling the problem of extension enforcement [8,17,34], where we
are given an AF F = (A,R) and a subset T ⊆ A of its arguments, and the goal is to
modify the attack structure R such that T becomes (a subset of) an extension under the
semantics σ in the modified AF F ′ = (A,R′).

Strict enforcement requires that the given set T of arguments has to be exactly a σ-
extension. In non-strict enforcement, T is required to be a subset of some σ-extension.
We denote the set of attack structures that strictly enforce T under σ for F by

enf (s, F, T, σ) = {R′ | F ′ = (A,R′), T ∈ σ(F ′)},

and by enf (ns, F, T, σ) = {R′ | F ′ = (A,R′), ∃T ′ ∈ σ(F ′) : T ′ ⊇ T}
for non-strict enforcement. The number of changes of an enforcement is the size of
the symmetric difference of the attack structures R and R′. From the computational
perspective, we view extension enforcement as an optimization problem, seeking to
minimize the number of changes to the attack structure.

Extension enforcement (x ∈ {s, ns})
Input: AF F = (A,R), T ⊆ A, semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈enf (x,F,T,σ)

|RΔR′|.
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Table 1. Complexity of extension and status enforcement.

σ Extension enf. Status enf. (N = ∅) Status enf. (unrestr. case)

Strict Non-strict Credulous Skeptical Credulous Skeptical

Conflict-free in P in P in P trivial in P trivial

Admissible in P NP-c NP-c trivial ΣP
2 -c trivial

Stable in P NP-c NP-c ΣP
2 -c ΣP

2 -c ΣP
2 -c

Complete NP-c NP-c NP-c NP-c ΣP
2 -c NP-c

Preferred ΣP
2 -c NP-c NP-c in ΣP

3 ΣP
2 -c in ΣP

3

Example 2. Consider AF F from Example 1 (shown in Fig. 1(a)). For enforcing set
{a, b} to be a stable extension, an optimal solution AF is shown in Fig. 1(b) where the
mutual attacks between a and b are removed. In this modified AF both {a, b} and {c}
are stable extensions.

In the corresponding decision problem we are given in addition an integer k ≥ 0
and are asked whether it is possible to enforce T with |RΔR′| ≤ k. We recall the com-
putational complexity results from [34] for this decision problem in Table 1. Note that
non-strict extension enforcement under admissible, complete, and preferred semantics
coincide; thus it suffices to implement an algorithm for one of these problems to cover
all three.

2.3 Status Enforcement

In the status enforcement problem [29] we are given an AF F = (A,R) and two disjoint
subsets P,N ⊆ 2A, P ∩N = ∅. The goal is to enforce the arguments in P positively and
arguments in N negatively, i.e., to modify the attack structure R so that all arguments
in P are credulously or skeptically accepted and all arguments in N are not accepted in
the modified AF F ′ = (A,R′).

For credulous status enforcement, we denote the set of attack structures that enforce
(P,N) under σ for F by

cr(F, P,N, σ) = {R′ | F ′ = (A,R′), P ⊆
⋃

σ(F ′), N ∩
⋃

σ(F ′) = ∅},

and, for skeptical status enforcement,

sk(F, P,N, σ) = {R′ | F ′ = (A,R′), P ⊆
⋂

σ(F ′), N ∩
⋂

σ(F ′) = ∅}.

For σ = stb we additionally require for skeptical status enforcement that a solution
AF F ′ has at least one stable extension. Like extension enforcement, we view status
enforcement as an optimization problem, where the goal is to minimize the cardinality
of the symmetric difference of the original and the modified attack structures R and R′.
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Optimal Credulous Status Enforcement
Input: AF F = (A,R), P,N ⊆ A, semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈cr(F,P,N,σ)

|RΔR′|.

Optimal Skeptical Status Enforcement
Input: AF F = (A,R), P,N ⊆ A, semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈sk(F,P,N,σ)

|RΔR′|.

Example 3. For the AF from Example 1, we see in Fig. 1(c) credulous and (d) skeptical
status enforcement for P = {a, b}, N = ∅ under the stable semantics. In the modified
AF shown in Fig. 1(c) we have added an attack from a to c, which results in an AF
where {a}, {b}, and {c} are all stable extensions. In the AF shown in Fig. 1(d) we have
removed the mutual attacks between a and b, and removed the attack from c to b. This
results in {a, b} being the unique stable extension of this modified AF.

The decision problem corresponding to status enforcement is the following: given
an AF F = (A,R), positive and negative sets P,N ⊆ A of argument statuses, a
semantics σ, and an integer k ≥ 0, can the statuses in P and N be enforced under σ
with at most k modifications to the attack structure R. The computational complexity of
the decision problem was established in [29]; Table 1 provides an overview. Note that
credulous status enforcement under the admissible, complete, and preferred semantics
coincide [29].

3 Maximum Satisfiability

For solving variants of extension and status enforcement problems, Pakota employs
constraint optimization encodings using (partial) maximum satisfiability (MaxSAT for
short) as the underlying declarative language. In MaxSAT, for each variable x, we have
two literals, x and ¬x. A clause is a disjunction (∨) of literals. A truth assignment is
a function from variables to {0, 1}. A clause c is satisfied by a truth assignment τ ,
τ(c) = 1, if τ(x) = 1 for a literal x in c or τ(x) = 0 for a literal ¬x in c; otherwise
τ does not satisfy c, τ(c) = 0. An instance ϕ = (ϕh, ϕs) of the MaxSAT problem
consists of a set ϕh of hard clauses, and a set ϕs of soft clauses. Any truth assignment
τ which satisfies each hard clause is a solution to ϕ. The cost of a solution is defined
by COST(ϕ, τ) =

∑
c∈ϕs

(1 − τ(c)), which is the number of soft clauses not satisfied
by τ . A solution τ is optimal for ϕ if COST(ϕ, τ) ≤ COST(ϕ, τ ′) for all solutions τ ′

to ϕ. The output of a MaxSAT solver is an optimal solution to ϕ.
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4 Pakota

The Pakota system is implemented in the C++ programming language. The source code
is available at http://www.cs.helsinki.fi/group/coreo/pakota/ under the MIT license. In
what follows, we describe the main components and system architecture of the system
(Sect. 4.1) and main features of Pakota (Sect. 4.2), detail the implemented algorithms
(Sect. 4.3), input and output specifications (Sect. 4.4), and usage (Sect. 4.5).

4.1 System Architecture

The system architecture of Pakota is shown in Fig. 2. Pakota accepts input for the
extension enforcement problem and for the credulous and skeptical status enforcement
problem in the so-called APX format (see Sect. 4.4), which is parsed into an enforce-
ment instance. The algorithms implemented in Pakota that solve the given enforcement
instance form the main component of the system and are described in Sect. 4.3, employ-
ing a MaxSAT solver, or, for problem variants beyond NP, interacting MaxSAT and
SAT solvers. Pakota offers a generic MaxSAT interface for plugging in the MaxSAT
solver of choice and already includes MaxSAT solvers Open-WBO [27] (version 1.3.1)
and LMHS [32] (version 2015.11), and the SAT solvers MiniSAT [25] (version 2.2.0,
included with LMHS) and Glucose [4–6] (version 3.0, included with Open-WBO). We
detail usage of the MaxSAT interface in Sect. 4.2.

The implemented algorithms for the enforcement problems can be classified accord-
ing to whether they solve an NP problem or a second-level problem. For the former,
the enforcement instance is encoded in a MaxSAT instance and the solution given by

Fig. 2. System architecture of Pakota

http://www.cs.helsinki.fi/group/coreo/pakota/
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a MaxSAT solver is decoded to construct a solution AF to the enforcement problem,
again in the APX format. In the case that the given task is a second-level problem,
the algorithms implement a counterexample-guided abstraction refinement procedure,
thereby iteratively querying the MaxSAT solver to construct candidate solutions and
checking whether the candidate is indeed a solution to the enforcement problem via a
SAT solver. In case the candidate is a solution, the decoded AF is returned in the APX
format. Otherwise, i.e., in case the candidate is a non-solution, the current MaxSAT
encoding is iteratively refined until an actual optimal solution is found.

4.2 Features

Supported Semantics and Reasoning Modes. An overview of the semantics and rea-
soning modes currently supported by Pakota is given in Table 2. Implementation of
different parameter choices are discussed in more detail in Sect. 4.3.

MaxSAT and SAT Solver Interfaces. Essentially any MaxSAT solver whose source
code is available can be plugged into the system. This is enabled in Pakota by offering
two interfaces, MaxSATSolver.h and SATSolver.h. By creating new classes that
implement these interfaces and defining the pure virtual functions declared in them, one
can compile and link these to the Pakota system, which will then use the corresponding
MaxSAT and SAT solvers for solving the enforcement problems. As an implementation-
level detail, note that, if the MaxSAT solver uses a SAT solver internally, which is
usually the case, an easy solution to potential naming conflicts is to use the same SAT
solver as the SAT solver in CEGAR procedures within Pakota. The source code of
Pakota already includes implementations of these interfaces for two different MaxSAT
solvers, Open-WBO [27] and LMHS [32], allowing the use of these solvers simply by
editing the MAXSAT SOLVER parameter in the included Makefile before compiling.

MaxSAT and IP Encodings. In addition to directly solving extension and status
enforcement instances, Pakota can for the NP variants of the problems output the inter-
nal MaxSAT encodings both in the standard WCNF MaxSAT input format as well as
integer programs (IPs) in the standard LP format (applying the standard textbook encod-
ing of MaxSAT as IP [3]). The latter option allows for calling state-of-the-art IP solvers,
such as CPLEX or Gurobi, on the encodings.

4.3 Algorithms

Depending on the inherent complexity of the problems, Pakota solves the extension
or status enforcement problem at hand by either encoding the problem in MaxSAT
(NP-complete problems), or within a counterexample-guided abstraction refinement
(CEGAR) scheme utilizing a MaxSAT solver in an iterative or incremental fashion
(problems complete for the second level of polynomial hierarchy). Table 2 provides
details, depending on the chosen parameters and semantics, for each problem variant,
whether it is solved via direct encoding to MaxSAT (detailed in Fig. 3) or via a MaxSAT-
based CEGAR algorithm (detailed as Algorithms 1 and 2).
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Table 2. Extension and status enforcement problems currently supported by Pakota.

Problem Parameters Semantics Encoding/Algorithm

Extension enforcement ns adm , com , prf EXT(ns, F, T, adm)

Extension enforcement ns stb EXT(ns, F, T, stb)

Extension enforcement s adm EXT(s, F, T, adm)

Extension enforcement s com EXT(s, F, T, com)

Extension enforcement s stb EXT(s, F, T, stb)

Extension enforcement s prf Algorithm 1

Status enforcement cr , N = ∅ adm , com , prf STAT(cr , A, P, ∅, adm)

Status enforcement cr , N = ∅ stb STAT(cr , A, P, ∅, stb)

Status enforcement cr adm , com , prf Algorithm 2

Status enforcement cr stb Algorithm 2

Status enforcement sk adm Trivial

Status enforcement sk stb Algorithm 2

Encoding NP Enforcement inMaxSAT. Let F = (A,R) be an AF. We utilize Boolean
variables xa and xp

a for a, p ∈ A, and variables ra,b for a, b ∈ A. The intended meaning
of these variables is that if xa (xp

a) is assigned true in an assignment then a is con-
tained in a σ-extension in a specific AF. The AF we are referring to is either directly
encoded in the formula or encoded via a truth assignment on variables ra,b, i.e., if ra,b

is assigned true, then there is an attack from a to b. For all considered problems, soft
clauses are defined by ϕs(F ) =

∧
a,b∈A r′

a,b, where r′
a,b is ra,b if (a, b) ∈ R, and ¬ra,b

if (a, b) �∈ R. Violating a soft clause corresponds to an attack being removed or added,
and incurs an associated unit cost.

Hard clauses are problem dependent. The complete list of encodings used in Pakota
is provided in Fig. 3. In particular, EXT refers to encodings for extension enforcement
for strict (s) and non-strict (ns) modes. The other parameters are an AF F = (A,R),
a semantics σ ∈ {adm, com, stb, prf }, and T ⊆ A. For encoding the semantics, we
adapt Boolean formulas from [11], originally presented for static AF reasoning prob-
lems. We also note that [17] apply similar encodings to ours in an integer program-
ming based approach to the specific case of extension enforcement under admissible
semantics.

Figure 2 shows for each NP-complete extension enforcement problem the corre-
sponding MaxSAT encoding for which it holds that an optimal MaxSAT solution
directly corresponds to an optimal solution for the extension enforcement problem.
For instance, to optimally solve non-strict extension enforcement under the admissi-
ble semantics, we encode the input AF and set of arguments to be enforced via formula
EXT(ns, F, T, adm) and subsequently call MAXSAT(EXT(ns, F, T, adm), ϕs(F )) to
compute an optimal MaxSAT solution (c, τ), with cost c and assignment τ , from which
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we can infer an optimal solution to the corresponding problem by extracting a new AF
F ′ = (A,R′) with R′ = {(a, b) | τ(ra,b) = 1}.

For the NP-complete status enforcement problems of credulous status enforcement
under the admissible and stable semantics with empty negative set N = ∅, we imple-
mented an analogous procedure. For the input to this problem, i.e., AF F = (A,R) and
positive set P ⊆ A, we give the MaxSAT solver the encoding STAT(cr , A, P, ∅, σ), with
σ ∈ {adm, stb}. From an optimal MaxSAT solution we can infer an optimal solution
to the status enforcement problem similarly as for extension enforcement by generating
a new AF F ′ = (A,R′) with R′ = {(a, b) | τ(ra,b) = 1}.

The remaining encodings in Fig. 3 are used in our CEGAR algorithms for the
second-level complete problems.

Counterexample-guided Abstraction Refinement. Pakota implements the second-
level complete problems arising in status enforcement and extension enforcement by a
counterexample-guided abstraction refinement (CEGAR) approach. Concretely, we let
a MaxSAT solver compute a candidate solution from an NP abstraction of the second-
level complete problem, and subsequently check whether the candidate is a solution
with a SAT solver. In case a solution is found, i.e., the SAT solver reports unsatisfiabil-
ity, we extract from the MaxSAT solution an optimal solution to the enforcement prob-
lem. Otherwise, we call the MaxSAT solver again on a refined formula which includes
further hard clauses extracted from the counterexample delivered by the SAT solver.

The CEGAR algorithms implemented in Pakota are shown in Algorithm 1 for exten-
sion enforcement, and in Algorithm 2 for status enforcement. We describe the algorithm
for extension enforcement, as the CEGAR algorithm for status enforcement is similar
(the main difference lies in the used formulas).

For extension enforcement, we implemented the second-level complete problem of
strict extension enforcement under the preferred semantics as shown in Algorithm 1.
Given an AF F = (A,R), a set T ⊆ A to enforce, we define the initial hard clauses ϕh

to be the same as for the NP-complete strict extension enforcement problem under the
complete semantics. In the while-loop, we call the MaxSAT solver on this set of hard
clauses augmented with the same soft clauses, ϕs(F ), as for the NP-complete variants.
From an optimal solution τ delivered by the MaxSAT solver, we check whether this
candidate is a solution to strict extension enforcement under the preferred semantics
using the formula CHECK(τ) (see Fig. 3). If the SAT solver reports unsatisfiability of
this formula, we terminate and return the AF encoded in τ . Otherwise we refine, i.e.,
increment, the hard clauses by REFINE(τ) (see again Fig. 3 for details).

For status enforcement we implemented Algorithm 2. For a given input to the
second-level complete problems for status enforcement we consider here, i.e., credu-
lous status enforcement under the admissible and stable semantics, and skeptical status
enforcement under the stable semantics, this algorithm computes an optimal solution
AF. The input for this problem consists of an AF F = (A,R) and sets P,N ⊆ A.
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Fig. 3. Encoding extension and status enforcement

Algorithm 1. Extension enforcement
1: ϕh ← EXT(s, F, T, com)
2: while true do
3: (c, τ) ← MAXSAT(ϕh, ϕs(F ))
4: r ← SAT(CHECK(τ))
5: if r = unsat then return (c, τ)

6: else ϕh ← ϕh ∧ REFINE(τ)

Algorithm 2. Status enforcement
1: ϕh ← STAT(M, A, P, N, σ)

2: while true do
3: (c, τ) ← MAXSAT(ϕh, ϕs(F ))
4: r ←SAT(CHECK(M, A, τ, P, N, σ))
5: if r = unsat then return (c, τ)

6: else ϕh ← ϕh ∧ REFINE(τ)
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4.4 Input Format

For extension enforcement, the input AF and enforcement request are specified using
the following predicates, extending the APX format for specifying AFs.

arg(X): X is an argument
att(X,Y): there is an attack from X to Y
enf(X): enforce argument X

Example 4. The enforcement of argument a for the AF in Fig. 4(a) is specified in the
Pakota input format as shown in Fig. 4(b). On this input, Pakota may return the output
shown in Fig. 4(c), i.e., the AF in Fig. 4(d).

Fig. 4. Example of Pakota input and output formats

As in extension enforcement, for status enforcement the AF is represented using the
arg and att predicates. The arguments to be positively and negatively enforced are
represented via the pos and neg predicates, respectively. For example, pos(a). enforces
argument a positively. The reasoning mode between credulous and skeptical is chosen
from the command line.

4.5 Usage and Options

After compilation, the Pakota system is used from the command line with

./pakota <file> <mode> <sem> [options]

The command line arguments enabling the choice of AF semantics and reasoning mode
are the following.

<file> : Input filename for enforcement instance in apx format.
<mode> : Enforcement variant: mode={strict|non-strict|cred|skept}

strict : strict extension enforcement
non-strict : non-strict extension enforcement
cred : credulous status enforcement
skept : skeptical status enforcement

<sem> : Argumentation semantics. sem={adm|com|stb|prf}
adm : admissible
com : complete
stb : stable
prf : preferred
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Furthermore, command line options -h (for help message), -v (for version number),
-o (for specifying output to file) and -t (for outputting NP-encodings in WCNF and
LP formats) are available.

4.6 Benchmarks and Generators

The Pakota webpage also offers sets of benchmarks for both extension enforcement and
status enforcement in the Pakota input format. Furthermore, we provide via the web-
page our benchmark generator software, AfGen and EnfGen, which we used to generate
the benchmark sets. The AF generator AfGen forms argumentation frameworks in APX
format implementing the Erdős-Rényi random digraph model. The generator is called
as

./afgen <args> <prob>

where parameters <args> and <prob> specify the number of arguments and the
probability of an attack in the output AF. The generator forms an argumentation frame-
work with arguments 1, . . . ,<args>, including an attack between each pair of argu-
ments independently with probability <prob>.

The enforcement instance generator EnfGen takes as input an AF in APX format,
and produces an enforcement instance. It is called as

./enfgen <file> <mode> <enfs>

where <file> is the input AF and <mode> is either ext or status, corresponding
to extension and status enforcement, respectively. In case of extension enforcement,
<enfs> is an integer stating the number of arguments to be enforced, and for status
enforcement, <enfs> is a pair of integers, corresponding to the number of positively
and negatively enforced arguments. The generator reads the arguments from the AF and
samples the enforced arguments uniformly at random without replacement.

5 Performance Overview

We empirically evaluate the impact of the choice of the underlying MaxSAT solver
on the performance of Pakota on various NP-complete and ΣP

2 -complete variants
of extension and status enforcement. This complements the scalability experiments
using only a single solver presented in [29,34], as well as the comparison presented
in [34] with the IP-based approach to extension enforcement under admissible seman-
tics described in [17]. For the NP problems, we used five state-of-the-art MaxSAT
solvers: MaxHS [20], Maxino [1], MSCG [28], Open-WBO [27], and WPM [2], using
the newest MaxSAT Evaluation 2015 versions, as well as the commercial IBM CPLEX
integer programming solver (version 12.6). For CEGAR, we compare the performance
of Open-WBO and LMHS [32] as the underlying MaxSAT solvers, as supported by
Pakota. The experiments were run on 2.83-GHz Intel Xeon E5440 quad-core machines
with 32-GB RAM and Debian GNU/Linux 8 using a timeout of 900 seconds per
instance.
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Fig. 5. MaxSAT solver comparison on NP-complete extension enforcement. Left: non-strict
admissible; middle: non-strict stable; right: strict complete

We generated the benchmarks using our AfGen and EnfGen generators. For exten-
sion enforcement, for each number of arguments |A| ∈ {25, 50, . . . } and each edge
probability p ∈ {0.05, 0.1, 0.2, 0.3}, we generated five AFs. For each AF, we gen-
erated five enforcement instances with |T | enforced arguments, for each |T |/|A| ∈
{0.05, 0.1, 0.2, 0.3}. We thus obtained 400 instances for each |A|. For status enforce-
ment, for each |A| ∈ {20, 40, . . . , 200} and p ∈ {0.05, 0.1, . . . , 0.35}, we generated
10 AFs. For each AF, we generated an enforcement instance containing (|P |, |N |) ∈
{(1, 0), (2, 0) . . . , (5, 0), (5, 1), (2, 2), (1, 5)} positively and negatively enforced argu-
ments. This gave a total of 560 status enforcement instances for each |A|.

An overview of the results, comparing the different underlying MaxSAT solvers,
is provided in Fig. 5 (NP-complete extension enforcement), Fig. 6 (NP-complete sta-
tus enforcement), and Fig. 7 (CEGAR for extension and status enforcement). Fig. 5
left and middle show the number of instances solved (x-axis) by different MaxSAT
solvers under different per-instance timeouts (y-axis) for non-strict extension enforce-
ment under the admissible (left) and stable semantics (middle). Interestingly, in both
cases CPLEX performs well (although on admissible, on a majority of the instances is
solved faster by most of the other solvers).

Fig. 6. NP-complete credulous status
enforcement under admissible

On strict extension enforcement under the
complete semantics (Fig. 5 right), the median
runtimes for CPLEX scale noticeably worse than
for the rest of the solvers wrt the number of argu-
ments. However, here we note that only CPLEX
and Maxino were able to solve all instances; thus
Maxino turned out to be clearly the best solver on
strict complete. Fig. 6 provides an overview for
credulous status enforcement under the admis-
sible semantics. Here we observe that the so-
called core-guided MaxSAT solvers perform the
best, while the SAT-IP hybrid solver MaxHS—
typically competitive mainly on weighted MaxSAT instances—performs the worst. We
also observed similar performance under the stable semantics. Overall, for the NP-
complete enforcement problems, CPLEX and Maxino tend to provide the best choice of
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solvers, but the choice of the single best solver tends to depend on the problem variant
(strict/non-strict, semantics).

Turning to the ΣP
2 -complete enforcement problems Fig. 7 gives an overview of

the performance of Open-WBO and LMHS within our CEGAR procedures for strict
extension enforcement under the preferred semantics (left), and credulous (middle)
and skeptical (right) status enforcement under the stable semantics. Evidently, on these
instances generated with our EnfGen, out of the two solvers Open-WBO provides the
best MaxSAT solver for the CEGAR procedures.

Fig. 7. MaxSAT solver comparison within CEGAR. Left: strict extension enforcement under pre-
ferred; credulous (middle) and skeptical (right) status enforcement under stable

6 Conclusions

The Pakota system is a first system implementation in its generality for solving NP-
complete and ΣP

2 -complete problem instances of extension enforcement and status
enforcement—two related problems motivated by the study of dynamic aspects of
argumentation frameworks. We provided a detailed overview of the Pakota system—
available in open source—including the input-output format, system design, function-
ality, details on the underlying MaxSAT encodings and MaxSAT-based CEGAR algo-
rithms implemented in Pakota, and its API allowing for plugging in different SAT and
MaxSAT solvers used as core search engines. We also provided a detailed evaluation
of the impact of the choice of MaxSAT solvers (including the use of the state-of-the-art
integer programming system CPLEX) on the performance of Pakota on various variants
of extension and status enforcement problems. In addition to Pakota, we also provide
open-source benchmark generators for extension and status enforcement for the use of
the research community at large through the Pakota system webpage. Future work on
Pakota includes extensions to support further central AF semantics, including grounded,
semi-stable, and stage.
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