
Prompt Interval Temporal Logic

Dario Della Monica1(B), Angelo Montanari2, Aniello Murano1,
and Pietro Sala3
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Abstract. Interval temporal logics are expressive formalisms for tem-
poral representation and reasoning, which use time intervals as primitive
temporal entities. They have been extensively studied for the past two
decades and successfully applied in AI and computer science. Unfor-
tunately, they lack the ability of expressing promptness conditions, as
it happens with the commonly-used temporal logics, e.g., LTL: whenever
we deal with a liveness request, such as “something good eventually hap-
pens”, there is no way to impose a bound on the delay with which it is
fulfilled. In the last years, such an issue has been addressed in automata
theory, game theory, and temporal logic. In this paper, we approach it
in the interval temporal logic setting. First, we introduce PROMPT-PNL,
a prompt extension of the well-studied interval temporal logic PNL, and
we prove the undecidability of its satisfiability problem; then, we show
how to recover decidability (NEXPTIME-completeness) by imposing a
natural syntactic restriction on it.

1 Introduction

Interval temporal logics provide a powerful framework suitable for reasoning
about time. Unlike classic temporal logics, such as Linear Temporal Logic
(LTL) [21] and the like, they use time intervals, instead of time points, as prim-
itive temporal entities. Such a distinctive feature turns out to be very useful in
various Computer Science and AI application domains, ranging from hardware
and real-time system verification to natural language processing, from constraint
satisfaction to planning [1,2,10,20,22,23]. As concrete applications, we mention
TERENCE [14], an adaptive learning system for poor comprehenders and their
educators (based on Allen’s interval algebra IA [1]), and RISMA [17], an algo-
rithm to analyze behavior and performance of real-time data systems (based on
Halpern and Shoham’s modal logic of Allen’s relations HS [15]).

A fundamental class of properties that can be expressed in (both interval- and
point-based) temporal logics is that of liveness properties, which allow one to
state that something “good” will eventually happen. However, a limitation that
is common to most temporal logics is the lack of support for promptness: it is
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not possible to bound the delay with which a liveness request is fulfilled, despite
the fact that this is desirable for many practical applications (see [16] for a con-
vincing argument). To overcome such a shortcoming, a whole body of work has
been recently devoted to the study of promptness. In [4,16], the authors extend
LTL with the ability of bounding the delay with which a temporal request is sat-
isfied. In [3], the use of prompt accepting conditions in the context of ω-regular
automata is explored by introducing prompt-Büchi automata, whose accepting
condition imposes the existence of a bound on the number of non-accepting
states in between two consecutive occurrences of accepting ones. Prompt exten-
sions of LTL have also been investigated outside the realm of closed systems.
Two-player turn-based games with perfect information have been explored in
the prompt LTL setting in [24]. In [9], the authors lift the prompt semantics
to ω-regular games, under the parity winning condition, by introducing finitary
parity games. They make use of the concept of distance between positions in a
play that refers to the number of edges traversed in the game arena; the classical
parity winning condition is then reformulated to take into consideration only
those states occurring with a bounded distance. Such an idea has been gener-
alised to deal with more involved prompt parity conditions [13,19]. In the field of
formal languages, promptness comes into play in [6], where ωB-regular languages
and their automata counterpart, known as ωB-automata, are studied. Intuitively,
ωB-regular languages extend ω-regular ones with the ability of bounding the dis-
tance between occurrences of sub-expressions in consecutive ω-iterations, within
each word of the language. Finally, an extension of alternating-time epistemic
temporal logic with prompt-eventuality has been recently investigated in [5].

In this paper, we show that interval temporal logics can be successfully pro-
vided with a support for prompt-liveness specifications by lifting the work done
in [4,16] to the interval-based setting.

In [4], the language of LTL is enriched with parameterized versions of tempo-
ral modalities F (eventually) and U (until), as well as of the dual modalities G
(globally) and R (release). The resulting logic, called PLTL, features the follow-
ing parameterized modalities: F≤x, F>y, G≤y, G>x, U≤x, U>y, R≤y, and R>x,
where x ∈ X, y ∈ Y , and X and Y are two disjoint sets of bounding variables.
Intuitively, a formula F≤xφ is true if φ is satisfied within x time units, according
to the valuation of x (the other parameterized modalities have an analogous
interpretation). Thus, PLTL models are LTL models, i.e., words over the powerset
of the set of atomic propositions, enriched with a valuation for the bounding
variables in X ∪ Y . The satisfiability problem for PLTL is PSPACE-complete,
as for LTL. The assumption that X and Y are disjoint is crucial in retaining
decidability. In [16], the authors introduce the logic PROMPT-LTL, which restricts
PLTL in three ways: (i) a parameterized version is introduced for the modality
F only (parameterized versions of modalities G, U , and R are not included);
(ii) only upper bounds appear in parameterized modalities, i.e., no subscript
of the form >x occurs; (iii) there is only one bounding variable. The restriction
imposed by PROMPT-LTL is less strong than it looks like: as shown in [4], operator
F≤x, along with the classic LTL constructs, is enough to define operators G>x,



Prompt Interval Temporal Logic 209

U≤x, R>x (i.e., all the operators involving in their subscript variables in X).
As PROMPT-LTL enriches LTL with the ability of limiting the amount of time a
fulfillment of an existential request (corresponding to a liveness property) can
be delayed, it can be thought of as an extension of LTL with prompt liveness.
In [16], it is shown that reasoning about PROMPT-LTL is not harder than reason-
ing about LTL, with respect to a series of basic problems, including satisfiability
(PSPACE-complete).

In the present paper, we show how to extend the logic PNL of temporal
neighborhood (a well-known fragment of HS whose satisfiability problem is
NEXPTIME-complete [8]), with the ability of expressing prompt-liveness prop-
erties. Following the approach of [16], we introduce ‘prompt’ versions (i.e., upper
bounds only) of all modalities of PNL. The resulting modality templates are as
follows: the prompt-right-adjacency 〈Ax〉 and the prompt-left-adjacency 〈Ax〉,
capturing prompt-liveness in the future and in the past, respectively, as well as
the dual modalities [Ax] and [Ax]. Intuitively, a modality 〈Ax〉 (for some upper
bound x) forces the existence of an event starting exactly when the current one
terminates and ending within an amount of time bounded above by the value
of x. Similarly, 〈Ax〉 forces the existence of an event ending exactly when the
current one begins and starting at most x time units before the beginning of
the current one. Modalities [Ax] and [Ax] express dual properties in the stan-
dard way, namely, [Ax]ψ stands for ¬〈Ax〉¬ψ and [Ax]ψ stands for ¬〈Ax〉¬ψ.
We name the proposed logic PROMPT-PNL (Sect. 2).

We first prove that the future fragment of PROMPT-PNL (PROMPT-RPNL),
involving the future modalities 〈A〉, [A], 〈Ax〉, and [Ax] only, is expressive
enough to encode the finite colouring problem, known to be undecidable [18].
Undecidability of PROMPT-RPNL (and PROMPT-PNL) immediately follows (Sect. 3).
Notably, unlike LTL, PNL is strictly more expressive than its future fragment RPNL
(see [12]); such a separation result holds between PROMPT-PNL and PROMPT-RPNL
as well. Our undecidability result hinges on the unrestricted use of bounding
variables within prompt modalities, which allows one to somehow establish tight
bounds for the length of intervals. We show that decidability can be recovered
by using two disjoint sets of bounding variables, one for existential modalities
and the other for universal ones. Formulas of the resulting logic, which we name

PROMPT
d
-PNL, enjoy some useful monotonicity property, i.e., the truth of a formula

〈Ax〉ψ under a certain interpretation σ(x) of the bounding variable x implies its
truth under every interpretation σ′, with σ′(x) ≥ σ(x). This allows us to prove

a small (pseudo-)model property for PROMPT
d
-PNL, from which we conclude that

the satisfiability problem for PROMPT
d
-PNL is NEXPTIME-complete (Sect. 4). Due

to lack of space, most of the proofs are omitted (see [11] for full proofs).

2 The Logic PROMPT-PNL

Let us start with some basic notions of interval-based temporal logics. A linear
order D is a pair 〈D,<〉, where D is a set, called domain, whose elements are
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referred to as points, and < is a strict total order over D. A (strongly) dis-
crete linear order is a linear order such that there are only finitely many points
in between any two points. In the rest of the paper, we tacitly assume every
domain to be discrete. For the sake of simplicity, we identify the domain of a lin-
ear order with the linear order itself, e.g., we write “d ∈ D” instead of “d ∈ D”.
Let d ∈ D. The successors (resp., predecessors) of d in D are the points d′ ∈ D

such that d < d′ (resp., d′ < d); the immediate successor (resp., immediate pre-
decessor) of d in D, denoted by succD(d) (resp., pred

D
(d)), is (if any) the point

d′ ∈ D such that d′ is a successor (resp., predecessor) of d in D and no point
d′′ ∈ D exists with d < d′′ < d′ (resp., d′ < d′′ < d). Note that succD(d) (resp.,
pred

D
(d)) is defined unless d is the greatest (resp., least) element in D. Given

a linear order D and two points a, b ∈ D, with a < b, we denote by [a, b] an
interval (over D). The set of intervals over a linear order D is denoted by I(D).
An interval structure (over a countable set AP of atomic propositions) is a pair
〈D, V 〉, where D is a linear order and V : I(D) → 2AP is a valuation function,
which assigns to each interval over D the set of atomic proposition that are true
over it. Given a linear order D and a, b ∈ D, we denote by D

≥a (resp., D>a, D≤a,
D

<a, D[a,b], D]a,b[, D[a,b[, D]a,b]) the set of elements d ∈ D such that d ≥ a (resp.,
d > a, d ≤ a, d < a, a ≤ d ≤ b, a < d < b, a ≤ d < b, a < d ≤ b). For instance,
we denote by R

>0 the set of positive reals.

Syntax and Semantics. Let AP (atomic propositions) and X (bounding vari-
ables) be two countable sets. Formulas of PROMPT-PNL in negation normal form
are defined as follows:

ϕ :: = p | ϕ ∧ ϕ | 〈A〉ϕ | 〈A〉ϕ | 〈Ax〉ϕ | 〈Ax〉ϕ
| ¬p | ϕ ∨ ϕ | [A]ϕ | [A]ϕ | [Ax]ϕ | [Ax]ϕ

where p ∈ AP and x ∈ X. We also use other standard Boolean connectives,
e.g., →, and logical constants � and ⊥, which are defined in the usual way.
We denote by PROMPT-RPNL the PROMPT-PNL fragment obtained by excluding
past modalities 〈A〉, [A], 〈Ax〉, and [Ax], and we write PROMPT-(R)PNL when we
refer to both formalisms. In the following, we will take the liberty of writing
PROMPT-(R)PNL formulas not in negation normal form when useful.

PROMPT-(R)PNL models are interval structures enriched with a valuation func-
tion for bounding variables in X and a metric over the underlying domain. For-
mally, a model for PROMPT-(R)PNL (over AP and X) is a quadruple 〈D, V, σ, δ〉,
where 〈D, V 〉 is an interval structure (D is the domain of the model), σ : X →
R

>0 is a valuation function for bounding variables, and δ : D×D → R
>0 is a met-

ric over D (i.e., the pair (D, δ) is a metric space) satisfying the additional proper-
ties: for every d, d′, d′′ ∈ D (i) if d < d′ < d′′, then δ(d, d′′) = δ(d, d′) + δ(d′, d′′),
(ii) if d has infinitely many successors in D, then the set {δ(d, d̄) | d < d̄} is not
bounded above, and (iii) if d has infinitely many predecessors in D, then the
set {δ(d̄, d) | d̄ < d} is not bounded above. For a model M = 〈D, V, σ, δ〉, we let
DM = D, VM = V , σM = σ, and δM = δ, that is, DM , VM , σM , and δM denote
the four components of M . A PROMPT-(R)PNL model is finite (resp., infinite) if
so is its domain.
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The truth value of a PROMPT-PNL formula over a model and an interval in it
is inductively defined as follows:

– M, [a, b] |= p if and only if p ∈ VM ([a, b]), for every p ∈ AP;
– M, [a, b] |= ¬p if and only if p ∈ VM ([a, b]), for every p ∈ AP;
– M, [a, b] |= ϕ1 ∧ ϕ2 if and only if M, [a, b] |= ϕ1 and M, [a, b] |= ϕ2;
– M, [a, b] |= ϕ1 ∨ ϕ2 if and only if M, [a, b] |= ϕ1 or M, [a, b] |= ϕ2;
– M, [a, b] |= 〈A〉ϕ if and only if there is c ∈ D

>b
M such that M, [b, c] |= ϕ;

– M, [a, b] |= [A]ϕ if and only if for all c ∈ D
>b
M it holds M, [b, c] |= ϕ;

– M, [a, b] |= 〈A〉ϕ if and only if there is c ∈ D
<a
M such that M, [c, a] |= ϕ;

– M, [a, b] |= [A]ϕ if and only if for all c ∈ D
<a
M it holds M, [c, a] |= ϕ;

– M, [a, b] |= 〈Ax〉ϕ if and only if there is c ∈ D
>b
M , with δM (b, c) ≤ σM (x),

such that M, [b, c] |= ϕ, for every x ∈ X;
– M, [a, b] |= [Ax]ϕ if and only if for all c ∈ D

>b
M , with δM (b, c) ≤ σM (x),

it holds M, [b, c] |= ϕ, for every x ∈ X;
– M, [a, b] |= 〈Ax〉ϕ if and only if there is c ∈ D

<a
M , with δM (c, a) ≤ σM (x),

such that M, [c, a] |= ϕ, for every x ∈ X;
– M, [a, b] |= [Ax]ϕ if and only if for all c ∈ D

<a
M , with δM (c, a) ≤ σM (x),

it holds M, [c, a] |= ϕ, for every x ∈ X.

The truth value of a PROMPT-RPNL formula is obtained, as expected, by restricting
to the relevant clauses only.

In PNL, modalities 〈L〉 and 〈L〉, corresponding to Allen’s relations later and
before, are definable as: 〈L〉ϕ ≡ 〈A〉〈A〉ϕ and 〈L〉ϕ ≡ 〈A〉〈A〉ϕ. Additionally,
in PROMPT-PNL it is possible to define the ‘prompt’ counterparts of modalities
〈L〉 and 〈L〉 as: 〈Lx〉ϕ ≡ 〈Ax〉〈Ax〉ϕ and 〈Lx〉ϕ ≡ 〈Ax〉〈Ax〉ϕ. The resulting
semantic interpretation for 〈Lx〉 and 〈Lx〉 is as follows:

– M, [a, b] |= 〈Lx〉ϕ if and only if there is [c, d] ∈ I(DM ) such that b < c,
δM (b, c) ≤ σM (x), δM (c, d) ≤ σM (x), and M, [c, d] |= ϕ;

– M, [a, b] |= 〈Lx〉ϕ if and only if there is [c, d] ∈ I(DM ) such that d < a,
δM (d, a) ≤ σM (x), δM (c, d) ≤ σM (x), and M, [c, d] |= ϕ.

Intuitively, a modality 〈Lx〉, for some bounding variable x, requires the exis-
tence of an event starting and ending within a bounded amount of time after the
termination of the current one (modalities 〈Lx〉 impose an analogous constraint
in the past). Obviously, only 〈Lx〉 is definable in PROMPT-RPNL (〈Lx〉 is not).

The globally-in-the-future modality [G] is defined as [G]ψ ≡ ψ∧[A]ψ∧[A][A]ψ,
for every PROMPT-PNL formula ψ; analogously the prompt-globally-in-the-future
modality [Gx] is defined as [Gx]ψ ≡ ψ ∧ [Ax]ψ ∧ [A][Ax]ψ, for every PROMPT-PNL
formula ψ and x ∈ X. Given a PROMPT-(R)PNL model M , modalities [G] and [Gx]
induce the sets G[a,b]

M = {[a, b]} ∪ {[c, d] ∈ I(DM ) | b ≤ c} and G[a,b],x
M = {[a, b]} ∪

{[c, d] ∈ I(DM ) | b ≤ c and δM (c, d) ≤ σM (x)}. We omit the subscript M when it
is clear from the context. For every PROMPT-(R)PNL model M , [a, b] ∈ I(DM ), and
PROMPT-PNL formula ψ, it holds that M, [a, b] |= [G]ψ if and only if M, [c, d] |= ψ
for every [c, d] ∈ G[a,b] and M, [a, b] |= [Gx]ψ if and only if M, [c, d] |= ψ for every
[c, d] ∈ G[a,b],x. Finally, for a model M and [a, b] ∈ I(DM ), we define the length
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of [a, b] (in M) as the value δM (a, b) and, for every p ∈ AP, if M, [a, b] |= p, then
we say that [a, b] is a p-interval (in M).

The Satisfiability Problem. A PROMPT-(R)PNL formula ϕ is satisfiable if, and
only if, there exist a PROMPT-(R)PNL model M and an interval [x, y] in M such
that M, [x, y] |= ϕ. Moreover, a satisfiable formula is said to be finitely satisfiable
if there exists a finite model for it; otherwise it is non-finitely satisfiable. The
satisfiability (resp., finite satisfiability) problem for PROMPT-(R)PNL consists in
deciding whether a given PROMPT-(R)PNL formula is satisfiable (resp., finitely
satisfiable).

3 Undecidability of PROMPT-RPNL

We prove the undecidability of the satisfiability problem for the logic
PROMPT-RPNL (and thus for PROMPT-PNL as well), by a reduction from the
finite coloring problem (FCP) [18]. An instance of FCP (aka finite tiling prob-
lem) is a tuple Δ = 〈C,H, V, ci, cf 〉, where C is a finite, non-empty set of
colours, H,V ⊆ C × C are total binary relations over the set of colours C, and
ci, cf ∈ C are distinguished colours. A solution to Δ is a pair 〈C, (K,L)〉, where
K,L ∈ N and C : {0, . . . , K} × {0, . . . , L} → C is a colouring function such that
C(0, 0) = ci, C(K,L) = cf , and, in addition,

– (C(i, j), C(i + 1, j)) ∈ H, for each i < K and j ≤ L (horizontal constraint),
and

– (C(i, j), C(i, j + 1)) ∈ V , for each i ≤ K and j < L (vertical constraint).

FCP consists in establishing whether there are two natural numbers K and
L, and a colouring of the plane {0, . . . , K} × {0, . . . , L} such that horizontal
and vertical constraints are fulfilled, and bottom-left and top-right colours are
given. CFP is undecidable [18, Proposition 7.2]. We encode CFP by means of
a PROMPT-RPNL formula. The different aspects of the problem are encoded by
means of (blocks of) formulas and the correctness of such partial encodings is
testified by the corresponding lemmas below. Clearly, the conjunction of all these
formulas is satisfiable if and only if CFP admits a solution. In what follows, we
fix an interval model M = 〈D, V, σ, δ〉.

For every d ∈ D and x ∈ X, we define �σ�d(x) = max{δ(d, d′) ∈ R
>0 |

d′ ∈ D
>d and δ(d, d′) ≤ σ(x)}. It clearly holds that �σ�d(x) ≤ σ(x) and, for

every d′ ∈ D
≥d, we have that δ(d, d′) ≤ σ(x) implies δ(d, d′) ≤ �σ�d(x). For

every x ∈ X, there is exactly one point d′ ∈ D
≥d such that δ(d, d′) = �σ�d(x);

we call such a point the x-canonical successor of d. The length of an interval
[d, d′] ∈ I(D), where d′ is the x-canonical successor of d, is said to be x-canonical,
for every x ∈ X.

Let succ-upperbound be the formula [G](〈A〉� → 〈As〉�), where s ∈ X.

Lemma 1. If M, [a, b] |= succ-upperbound for some [a, b], then for every c ∈
D

≥b that is not the greatest element in D it holds δ(c, succD(c)) ≤ �σ�c(s).
Moreover, let c′ be the x-canonical successor of c. If c′ is not the greatest element
in D, then �σ�c(x) + σ(s) > σ(x), for every x ∈ X.
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Let less-than(x , y) be the formula [G](〈A〉� → 〈Ay〉auxx ,y)∧ [G][Ax]¬auxx ,y

(it is a parametric formula to be instantiated with some x, y ∈ X).

Lemma 2. If M, [a, b] |= less-than(x , y) for some [a, b], then σ(x) < �σ�c(y)
holds for every c ∈ D

≥b, unless c is the greatest element in D.

Let ∃-last be the conjunction of the following formulas:

¬last ∧ 〈A〉〈A〉last ∧ [G](〈A〉last →
∧

p∈AP [A](¬p ∧ [A]¬p)) (1)

[G](〈A〉last → [A]¬〈A〉last) (2)
[G]((last → 〈A〉unique) ∧ (〈A〉unique → [A]¬〈A〉unique)) (3)

Lemma 3. If M, [a, b] |= ∃-last for some [a, b], then there is exactly one last-
interval in G[a,b], say it [c, d]. Moreover, it holds c > b and there is no p-interval
starting in c or after it, for every p ∈ AP \ {last}.

Let a ∈ D and [c, d] ∈ I(D) be the unique last-interval (see Lemma 3). Given
p ∈ AP, a p -chain starting at a (or, simply, p -chain) is a finite sequence of
p-intervals [a0, b0], [a1, b1], . . . , [am, bm] such that a = a0, bm = c, and bi = ai+1

for every i ∈ {0, 1, . . . ,m − 1}. Let chain(p, x ) be the parametric formula, to be
instantiated with some p ∈ AP and x ∈ X, defined as the conjunction of the
following ones:

succ-upperbound ∧ ∃-last (4)
¬p ∧ 〈Ax〉p ∧ [G]((p ∧ ¬〈A〉last) → 〈Ax〉p) (5)
[G](p → p1 ∨ p2) (6)

[G](〈A〉pi → [Ax][A]p+i ) i ∈ {1, 2} (7)

[Gx](〈A〉p+i → p−
i ) i ∈ {1, 2} (8)

[G](pi → ¬〈A〉p−
i ) i ∈ {1, 2} (9)

[G](〈A〉p → [Ax](¬p → [A]¬p)) (10)

Lemma 4. If M, [a, b] |= chain(p, x ) for some [a, b], then there is a finite p-
chain starting at b whose intervals have x-canonical length. Moreover, no other
p-interval exists in G[a,b],x besides the ones in such a p-chain.

We now provide an encoding of a finite plane {0, . . . , K} × {0, . . . , L}, for
some K,L ∈ N. The idea is to use a u-chain whose intervals are either tile-
intervals, encoding some point of the finite plane, or ∗-intervals, which are used
as separators between rows of the plane. Let plane be the conjunction of the
following formulas:
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less-than(s, x ) ∧ less-than(x , y) ∧ chain(u, x ) ∧ chain(row, y) (11)
[G]((u ↔ ∗ ∨ tile) ∧ (∗ → ¬tile)) (12)
〈A〉∗ ∧ [G]((∗ → 〈A〉tile) ∧ (u ∧ 〈A〉last → tile)) (13)
[G](〈A〉row → 〈A〉∗) (14)
[G](〈A〉∗ → [Ay](〈A〉∗ → row)) (15)

Lemma 5. If M, [a, b] |= plane for some [a, b], then there is a finite sequence of
points b = p10 < p11 < . . . < p1n1

= p20 < p21 < . . . < p2n2
= p30 < . . . < pr−1

nr−1
=

pr
0 < . . . < pr

nr
, with r ≥ 1 and ni > 1 for every i ∈ {1, . . . , r} such that: (i)

[pi
0, p

i
1] is a ∗-interval and its length is x-canonical, for every i ∈ {1, . . . , r}; (ii)

[pi
j , p

i
j+1] is a tile-interval and its length is x-canonical, for every i ∈ {1, . . . , r}

and j ∈ {1, . . . , ni − 1}; (iii) [pi
0, p

i+1
0 ] is a row-interval and its length is y-

canonical, for every i ∈ {1, . . . , r−1}; (iv) M, [pr
nr

, p′] is the unique last-interval,
for some p′ > pr

nr
. Moreover, no other ∗-interval (resp., tile-interval) exists in

G[a,b],x.

The encoding of the finite plane {0, . . . , K}×{0, . . . , L} we have obtained so
far is incomplete, the problem being that rows (row-intervals) do not necessarily
contain the same number of tiles (tile-intervals). In order to overcome such a
problem, we introduce below corr-intervals, which are used to link the ith tile-
interval of a row to the ith tile-interval of the next row (if any) and to the ith
tile-interval of the previous row (if any). This will guarantee that each row of
our encoding features the same number of tiles.

Let w -def be the conjunction of the following formulas:

less-than(x ,w) ∧ less-than(w , y) (16)
[Ay]¬〈A〉∗-aux ∧ (〈Ay〉(row ∧ ¬〈Ax〉last) → 〈A〉〈A〉∗-aux) (17)
〈As〉〈Aw〉([A](¬last ∧ [A]¬last) ∨ 〈A〉∗-aux) (18)

Lemma 6. If M, [a, b] |= plane ∧ w-def for some [a, b], then σ(w) < �σ�c(y) ≤
σ(y) < σ(w) + σ(s) for every c ∈ D

≥b, unless c is the greatest element in D.

Let correspondence be the conjunction of the following formulas:

plane ∧ w -def ∧ less-than(s, z ) ∧ less-than(z , x ) (19)
[G](〈Ax〉u → [Az]〈Az〉(u-suffix ∧ (〈Ax〉u ∨ 〈A〉last))) (20)
[Gs]¬u-suffix (21)
[G]((row ∧ ¬〈A〉last) → corr) (22)
[G]((〈Ax〉tile ∧ 〈A〉〈Ax〉∗) → 〈Ay〉corr) (23)
[Gw]¬corr (24)
[G](corr → 〈A〉tile) (25)
[G](〈Ax〉(tile ∧ 〈Ax〉∗) → [Ay](corr → 〈Ax〉(tile ∧ 〈Ax〉∗))) (26)
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Lemma 7. If M, [a, b] |= correspondence for some [a, b], then [pi
j , p

i+1
j ] is a corr-

interval, with σ(w) < δ(pi
j , p

i+1
j ) ≤ σ(y), for every i ∈ {1, . . . , r − 1} and j ∈

{0, . . . , ni − 1}. Moreover, for every i ∈ {1, . . . , r − 1}, it holds that ni = ni+1.

Now, let Δ = 〈C,H, V, ci, cf 〉 be an instance of FCP and let ϕΔ be the
conjunction of the following formulas:

correspondence ∧ 〈Ax〉ci ∧ [Gx]((tile ∧ 〈A〉last) → cf) (27)

[Gx](tile ↔
∨

c∈C
c) ∧ [G](

∧
c,c′∈C,c �=c′ ¬(c ∧ c′)) (28)

[G](〈Ax〉(tile ∧ 〈Ax〉tile) →
∨

(c,c′)∈H
〈Ax〉(c ∧ 〈Ax〉c′)) (29)

[Gx]((〈Ax〉tile ∧ 〈Ay〉corr) →
∨

(c,c′)∈V
(〈Ax〉c ∧ [Ay](corr → 〈Ax〉c′))) (30)

Lemma 8. The formula ϕΔ is satisfiable iff the CFP instance Δ has a positive
answer.

Theorem 1. The satisfiability problem for PROMPT-RPNL, and thus the one for
PROMPT-PNL, is undecidable.

4 Decidability of PROMPT
d
-PNL

In this section, we show how to restrict the use of prompt modalities to get a
fragment of PROMPT-PNL with a decidable satisfiability problem.

We define PROMPT
d
-PNL as the fragment of PROMPT-PNL obtained by using dis-

joint sets of bounding variables for existential and universal prompt modalities.
Formally, let us partition the set X of bounding variables into sets X♦ and X�.

The syntax of PROMPT
d
-PNL is defined as:

ϕ :: = p | ϕ ∧ ϕ | 〈A〉ϕ | 〈A〉ϕ | 〈Ax〉ϕ | 〈Ax〉ϕ
| ¬p | ϕ ∨ ϕ | [A]ϕ | [A]ϕ | [Ay]ϕ | [Ay]ϕ

where p ∈ AP, x ∈ X♦, and y ∈ X�. Since PROMPT
d
-PNL is a syntactic restric-

tion of PROMPT-PNL, both formalisms share the same semantics. In particular,

a PROMPT-PNL model is a PROMPT
d
-PNL model as well. Analogously to the unre-

stricted case, we define PROMPT
d
-RPNL as PROMPT

d
-PNL devoid of past modalities

〈A〉, [A], 〈Ax〉, and [Ay].

PROMPT
d
-PNL is not closed under negation. For any given PROMPT

d
-PNL formula

ψ, we inductively define neg(ψ) as shown in Table 1 (neg(ψ) is not necessarily a

PROMPT
d
-PNL formula). If ψ is a (non-prompt) PNL formula, then neg(ψ) ≡ ¬ψ.

Moreover, we define neg(∼ψ) as ψ and thus we have that neg(neg(ψ)) ≡ ψ, for

every PROMPT
d
-PNL formula ψ.
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Table 1. Definition of neg(ψ), for a PROMPT
d
-PNL formula ψ

ψ negeg(ψ) ψ negeg(ψ)

p ¬p ¬p p

ψ1 ∧ ψ2 neg(ψ1) ∨ neg(ψ2) ψ1 ∨ ψ2 neg(ψ1) ∧ neg(ψ2)

〈A〉ψ1 [A]neg(ψ1) [A]ψ1 〈A〉neg(ψ1)

〈A〉ψ1 [A]neg(ψ1) [A]ψ1 〈A〉neg(ψ1)

ψ negeg(ψ)

〈Ax〉ψ1 or 〈Ax〉ψ1 or [Ay]ψ1 or [Ay]ψ1 ∼ψ

A close analysis of the proof of the undecidability of PROMPT-(R)PNL reveals
that the unrestricted use of bounding variables within prompt modalities allows
one to somehow establish tight bounds for the length of intervals, and this ability
is crucial to the encoding. We are going to show that decidability can be recov-
ered by not allowing both existential and universal prompt quantification on
the same bounding variable. Intuitively, decidability follows from the fact that,
when disjoint sets of bounding variables are used within existential and universal
prompt modalities, formulas enjoy a monotonicity property, which does not hold
for unrestricted PROMPT-(R)PNL formulas.

Let M = 〈D, V, σ, δ〉 be a PROMPT-PNL model, x ∈ X, and r ∈ R
>0. We denote

by M[x:=r] the model 〈D, V, σ′, δ〉, where σ′(x) = r and σ′(x′) = σ(x′) for every
x′ ∈ X with x′ = x.

Proposition 1 (monotonicity). Let ψ be a formula of PROMPT
d
-PNL, M be

a model of PROMPT
d
-PNL, and [a, b] be an interval in M . If M, [a, b] |= ψ, then

M[x:=r], [a, b] |= ψ for all x ∈ X♦ and r ∈ R
>0, with r ≥ σM (x). In a dual

fashion, if M, [a, b] |= ψ, then M[y:=r], [a, b] |= ψ for all y ∈ X� and r ∈ R
>0,

with r ≤ σM (y).

Checking that the above monotonicity property holds for PROMPT
d
-PNL is imme-

diate. To see that it does not hold for PROMPT-PNL, consider the formula
ψ = [Ay]¬p ∧ 〈Ax〉p ∧ [Ax]¬q ∧ 〈Az〉q. Clearly, ψ is satisfiable and all of its
models are such that the value of x is bounded below by the value of y and
above by the value of z.

By Proposition 1, when studying the (finite) satisfiability problem for

PROMPT
d
-PNL we can assume, w.l.o.g., that |X♦| = |X�| = 1, as every formula ψ,

featuring (possibly) more than one bounding variable in X♦ or X�, can be trans-
formed into an equisatisfiable one ψ′, obtained by replacing two distinguished
(chosen randomly) variables x̂ ∈ X♦ and ŷ ∈ X� for every x ∈ X♦ and y ∈ X�,
respectively. It is not difficult to check that, due to monotonicity, ψ is (finitely)
satisfiable if and only if so is ψ′. Therefore, for the remainder of the section, we
set X♦ = {x} and X� = {y}.
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Finite Satisfiability. The finite satisfiability problem for PROMPT
d
-PNL can be

reduced to the one for plain PNL, known to be NEXPTIME-complete [8]. Let ψ

be a formula of PROMPT
d
-PNL and let plain(ψ) be the PNL formula obtained from

ψ by:

(i) replacing existential prompt modalities by the corresponding non-prompt
versions (i.e., substituting 〈A〉 for 〈Ax〉 and 〈A〉 for 〈Ax〉), and

(ii) replacing all sub-formulas of the forms [Ay]ψ and [Ay]ψ by the constant �.

It is not difficult to show by induction on the structure of ψ that if ψ is finitely
satisfiable, so is plain(ψ). On the other hand, if plain(ψ) is finitely satisfiable,
then let Mplain(ψ) = 〈D, V 〉 be a PNL model such that Mplain(ψ), [a, b] |= plain(ψ)
for some [a, b] ∈ I(D). We define δ(d, d′) = |{d′′ ∈ D | d < d′′ ≤ d′}| for every
d, d′ ∈ D. Since D is finite, both maxδ = max {δ(d, d′) | d, d′ ∈ D and d = d′}
and minδ = min {δ(d, d′) | d, d′ ∈ D and d = d′} are well defined, thus we can
set σ(x) = maxδ, and σ(y) = minδ

2 . It is possible to show that M = 〈D, V, σ, δ〉
is such that M, [a, b] |= ψ. Therefore, ψ is finitely satisfiable, too.

Theorem 2. The finite satisfiability problem for PROMPT
d
-PNL is NEXPTIME-

complete.

In order to deal with formulas that are non-finitely satisfiable, in what follows
we show how the search for an infinite model can be reduced to the search for a
finite witness for it, within a finite search space. Decidability of the satisfiability

problem for PROMPT
d
-PNL immediately follows.

4.1 Prompt Labeled Interval Structures

In this subsection we define labeled interval structures for PROMPT
d
-PNL formulas,

which are, intuitively, extended models, where intervals are labeled with sets of
sub-formulas (instead of sets of atomic propositions) of the considered formula.

From now on, we let ϕ be a generic PROMPT
d
-PNL formula.

Let Sub(ϕ) be the set of all sub-formulas of ϕ and let Sub¬(ϕ) = {neg(ψ) |
ψ ∈ Sub(ϕ)}. The closure of ϕ, denoted by Cl(ϕ), is the set Sub(ϕ)∪Sub¬(ϕ)∪
{〈A〉ϕ, neg(〈A〉ϕ)}. Clearly, |Cl(ϕ)| ≤ 2 · |ϕ| + 2 holds.

A future temporal request of ϕ is a formula in Cl(ϕ) having one of the following
forms: 〈A〉ψ, neg(〈A〉ψ), 〈Ax〉ψ, neg(〈Ax〉ψ), [Ay]ψ, neg([Ay]ψ), for some ψ.
Analogously, a past temporal request of ϕ is a formula in Cl(ϕ) having one of
the following forms: 〈A〉ψ, neg(〈A〉ψ), 〈Ax〉ψ, neg(〈Ax〉ψ), [Ay]ψ, neg([Ay]ψ),
for some ψ. We denote by TRf (ϕ) (resp., TRp(ϕ)) the set of future (resp., past)
temporal requests of ϕ. In addition, the set of temporal requests of ϕ, denoted
by TR(ϕ), is defined as TRf (ϕ) ∪ TRp(ϕ).

A ϕ-atom is a subset A of Cl(ϕ) such that, for every ψ,ψ1, ψ2 ∈ Cl(ϕ), (i)
ψ ∈ A if and only if neg(ψ) /∈ A, and (ii) ψ1 ∨ ψ2 ∈ A if and only if ψ1 ∈ A
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or ψ2 ∈ A. Notice that conditions (i) and (ii) imply ψ1 ∧ ψ2 ∈ A if and only if
ψ1 ∈ A and ψ2 ∈ A. We denote the set of ϕ-atoms by Aϕ.

A prompt ϕ-labeled interval structure (pLISϕ) is a 5-tuple L = 〈D,L, δ,X ,Y〉,
where (D, δ) is a metric space, L : I(D) → Aϕ is a labeling function (or simply
labeling) such that ϕ ∈ L([a, b]) for some [a, b] ∈ I(D), and X ,Y ∈ N are the
existential and the universal bound, respectively. Sometimes, for the sake of
brevity, we omit the last three components of the 5-tuple and we denote a pLISϕ

as a 2-tuple 〈D,L〉 instead. Moreover, given a pLISϕ L = 〈D,L〉, we denote by
DL its underlying domain D and by LL the labeling function L. A pLISϕ L is
finite (resp., infinite) if so is DL.

Given a pLISϕ L and a point d ∈ DL we define the set of future requests of
d in L, denoted by f-REQL(d), as

⋃
d′∈D<d(LL(d′, d) ∩ TRf (ϕ)), the set of past

requests of d in L, denoted by p-REQL(d), as
⋃

d′∈D>d(LL(d, d′)∩TRp(ϕ)), and
the set of requests of d in L, denoted by REQL(d), as f-REQL(d) ∪ p-REQL(d).
We denote by REQϕ the class of all sets of requests, i.e., REQϕ = {R | R =
REQL(d) for some pLISϕ L and d ∈ DL}. We have that |REQϕ| ≤ 2|Cl(ϕ)| ≤
22·|ϕ|+2.

An existential request of ϕ is a temporal request of ϕ of one the following
forms: 〈A〉ψ, 〈A〉ψ, 〈Ax〉ψ, 〈Ax〉ψ, neg([Ay])ψ, and neg([Ay])ψ, for some ψ.
A universal request of ϕ is a temporal request of ϕ that is not an existential
one. Let L = 〈D,L, δ,X ,Y〉 be a pLISϕ and d ∈ D. We define ∃-REQL(d) =
{ψ ∈ REQL(d) | ψ is an existential request of ϕ} and ∀-REQL(d) = REQL(d) \
∃-REQL(d).

For ψ ∈ ∃-REQL(d), we say that ψ is fulfilled in (L, d) by d′ ∈ D if, and only
if, one of the following holds:

– ψ = 〈A〉ψ′ for some ψ′ and ψ′ ∈ L([d, d′]),
– ψ = 〈A〉ψ′ for some ψ′ and ψ′ ∈ L([d′, d]),
– ψ = 〈Ax〉ψ′ for some ψ′, ψ′ ∈ L([d, d′]), and δ(d, d′) ≤ X ,
– ψ = 〈Ax〉ψ′ for some ψ′, ψ′ ∈ L([d′, d]), and δ(d′, d) ≤ X ,
– ψ = neg([Ay]ψ′) for some ψ′, neg(ψ′) ∈ L([d, d′]), and δ(d, d′) ≤ Y ,
– ψ = neg([Ay]ψ′) for some ψ′, neg(ψ′) ∈ L([d′, d]), and δ(d′, d) ≤ Y .

ψ is fulfilled in (L, d) if and only if there is d′ such that ψ is fulfilled in (L, d)
by d′.

For ψ ∈ ∀-REQL(d), we say that ψ is fulfilled in (L, d) if, and only if, one of
the following holds:

– ψ = [A]ψ′ for some ψ′ and ψ′ ∈ L([d, d′]) for every d′ ∈ D
>d,

– ψ = [A]ψ′ for some ψ′ and ψ′ ∈ L([d′, d]) for every d′ ∈ D
<d,

– ψ = [Ay]ψ′ for some ψ′ and ψ′ ∈ L([d, d′]) for every d′ ∈ D
>d with δ(d, d′) ≤ Y ,

– ψ = [Ay]ψ′ for some ψ′ and ψ′ ∈ L([d′, d]) for every d′ ∈ D
<d with δ(d′, d) ≤ Y ,

– ψ = neg(〈Ax〉ψ′) for some ψ′ and neg(ψ′) ∈ L([d, d′]) for every d′ ∈ D
>d with

δ(d, d′) ≤ X ,
– ψ = neg(〈Ax〉ψ′) for some ψ′ and neg(ψ′) ∈ L([d′, d]) for every d′ ∈ D

>d with
δ(d′, d) ≤ X .
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d is ∃-fulfilled in L if, and only if, every ψ ∈ ∃-REQL(d) is fulfilled; d is ∀-fulfilled
in L if, and only if, every ψ ∈ ∀-REQL(d) is fulfilled; d is fulfilled in L if, and
only if, it is both ∃- and ∀-fulfilled in L.

An existentially fulfilling (resp., universally fulfilling, fulfilling) pLISϕ, aka
∃-pLISϕ (resp., ∀-pLISϕ, ∃∀-pLISϕ), is a pLISϕ L such that every d ∈ DL is
∃-fulfilled (resp., ∀-fulfilled, fulfilled) in it.

Proposition 2. ϕ is satisfiable if and only if there exists a ∃∀-pLISϕ, and it is
finitely satisfiable if and only if there exists a finite ∃∀-pLISϕ.

Before showing the decidability of PROMPT
d
-PNL, we prove a result that will

later come in handy. A set of requests REQL(d) (for a pLISϕ L and d ∈ DL) is
consistent if for each ψ ∈ REQL(d), we have that neg(ψ) /∈ REQL(d); otherwise,
it is inconsistent.

Proposition 3. Let L be a pLISϕ and d ∈ DL. The following properties hold,
unless REQL(d) is inconsistent:

– if D
<d = ∅, then f-REQL(d) = LL(d′, d) ∩ TRf (ϕ), for any given d′ ∈ D

<d,
unless f-REQL(d) is inconsistent;

– if D>d = ∅, then p-REQL(d) = LL(d, d′) ∩ TRp(ϕ), for any given d′ ∈ D
>d,

unless p-REQL(d) is inconsistent.

4.2 A Bounded Witness for Non-finitely Satisfiable Formulas

Let L be a pLISϕ and d ∈ DL. A set of essentials of d (in L) is any
minimal (with respect to set inclusion) set E ⊆ DL such that for every
ψ ∈ ∃-REQL(d) there is d′ ∈ E for which ψ is fulfilled in (L, d) by d′.
We denote by EL(d) the class containing all sets of essentials of d in L, i.e.,
EL(d) = {E ⊆ DL | E is a set of essentials of d in L}. Intuitively, a set of essen-
tials of d is a collection of points that jointly make d ∃-fulfilled in L. Clearly
EL(d) = ∅ if and only if d is ∃-fulfilled in L. We lift this concept to a higher
order: a set of essentials of essentials (or 2nd-order essentials) of d (in L) is
any minimal (with respect to set inclusion) set E2 ⊆ DL such that (i) E1 ⊆ E2

for some E1 ∈ EL(d) and (ii) for every d′ ∈ E1 there is Ed′ ∈ EL(d′) for which
Ed′ ⊆ E2. We denote by E2

L(d) the class containing all sets of 2nd-order essentials
of d in L, i.e., E2

L(d) = {E ⊆ DL | E is a set of 2nd-order essentials of d in L}.

Definition 1 (representative). Let L be a finite pLISϕ and d ∈ DL.
If d /∈ {minDL,maxDL}, then a representative of d in L is a point e ∈ DL

such that REQL(d) = REQL(e), e is fulfilled in L, and so are points in E2, for
some E2 ∈ E2

L(e) with E2 ∩ {minD,maxD} = ∅.
If d = minDL (resp., d = maxDL), then a representative of d in L is

a point e ∈ DL that is a representative of d′ in L for some d′ ∈ DL, with
p-REQL(d′) = p-REQL(d) (resp., f-REQL(d′) = f-REQL(d)).
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A convex subset of a domain D is a subset D
′ of D such that for every

d′, d′′ ∈ D
′ and d ∈ D, if d′ < d < d′′, then d ∈ D

′. A right-convex (resp., left-
convex ) subset of a domain D is a convex subset D

′ of D such that maxD ∈ D
′

(resp., minD ∈ D
′).

Given a pLISϕ L and D
′ ⊆ DL, we let request-setsL(D′) = {R | REQL(d) =

R for some d ∈ D
′}.

Definition 2 (left- and right-periodic pLISϕ). Let L be a finite pLISϕ. A
left-period for L is a left-convex subset E of DL such that, for every d ∈ E, if d
is not fulfilled in L or d = minE, then there is d′ ∈ E

>d for which the following
holds:

(a) d′ is a representative of d in L;
(b) request-setsL(E \ {minE}) is equal to request-setsL(E<d′ \ {minE}), which

is equal to request-setsL(E>d′
), and there are d′′ ∈ E

<d′ \ {minE} and d′′′ ∈
E

>d′
such that p-REQL(minE) = p-REQL(d′′) = p-REQL(d′′′);

(c) every 〈Ax〉ψ ∈ f-REQL(d′) is fulfilled in (L, d′) by a point belonging to E.

A right-period for L is defined symmetrically.
L is periodic if, and only if, there exist both a left- and a right-period for it.

Definition 3 (ϕ-witness). A ϕ-witness is a finite, periodic ∀-pLISϕ L, such
that every d ∈ DL \ (E ∪ F) is fulfilled in L, where E and F are, respectively, a
left- and a right-period for L, with E ∩ F = ∅ and DL \ (E ∪ F) = ∅.
Lemma 9. An infinite ∃∀-pLISϕ L = 〈D,L, δ,X ,Y〉 exists if and only if a
ϕ-witness L′ = 〈D′,L′, δ′,X ′ ,Y ′〉 exists.

Thanks to the previous lemma, we can reduce the search for an infinite
model for a formula to the search for a finite witness. However, since such a
finite witness can be arbitrarily large, the search space is still infinite. In what
follows, we provide a bound on the size of the finite witness, thus obtaining a

finite search space. Decidability of PROMPT
d
-PNL immediately follows.

Let Bϕ = |REQϕ| · (2 · |Cl(ϕ)|2 + 2 · |Cl(ϕ)|) + |REQϕ| · |Cl(ϕ)| + |Cl(ϕ)|.
Lemma 10. Let L = 〈D,L, δ,X ,Y〉 be a ϕ-witness, E and F being, respectively,
a left- and a right-period for it. If |E| > Bϕ (resp., |F| > Bϕ, |D\ (E∪F)| > Bϕ),
then there is a ϕ-witness L′ = 〈D′,L′, δ′,X ′,Y ′〉 with |D′| = |D| − 1.

The size of a pLISϕ L is the size of the underlying domain DL. The following
corollary immediately follows from the above lemma.

Corollary 1 (small model property). A ϕ-witness exists if and only if there
is one of size at most 3 · Bϕ ≤ 3 · [22·|ϕ|+2 · (2 · (2 · |ϕ| + 2)2 + 2 · (2 · |ϕ| + 2)) +
22·|ϕ|+2 · (2 · |ϕ| + 2) + (2 · |ϕ| + 2)].

Theorem 3. The satisfiability problem for PROMPT
d
-PNL is NEXPTIME-complete.
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5 Conclusions

In this paper, we have studied the problem of enriching the well-known propo-
sitional logic of temporal neighborhood PNL with support for prompt-liveness
specifications. We first proved that the logic obtained from PNL by introducing
“prompt” versions of its modalities with no restriction on the use of bounding
variables, that we call PROMPT-PNL, is undecidable. Then, we showed that decid-
ability can be recovered by introducing a partition of bounding variables into
two classes, one for the existential modalities, the other for the universal ones.

The satisfiability problem for the resulting logic, named PROMPT
d
-PNL, is indeed

NEXPTIME-complete.
The work done can be further developed in various directions.
First, we are interested in identifying the minimum number of bounding

variables that suffice to make PROMPT-PNL undecidable. We believe it possible
to prove that when the set of variables is small enough, e.g., when it includes
two bounding variables only, the logic is still expressive enough to capture some
meaningful promptness conditions and remains decidable.

We also aim at investigating the more powerful setting of parametric exten-
sions of PNL. Parametric PNL can be viewed as a natural generalization of
PROMPT-PNL, as parametric modalities allow one to express both lower and upper
bounds on the delay with which a request is fulfilled (PROMPT-PNL only copes
with the latter).

Last but not least, we are interested in comparing the expressiveness of the

logics PROMPT-PNL and PROMPT
d
-PNL with that of metric PNL , that is, the metric

extension of PNL introduced and systematically studied in [7].
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6. Bojańczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS, pp. 285–296.
IEEE Computer Society (2006)

7. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric
propositional neighborhood interval logics on natural numbers. Softw. Syst. Model.
(SoSyM) 12(2), 245–264 (2013)

8. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval
neighborhood logics: expressiveness, decidability, and undecidable extensions.
Ann. Pure Appl. Logic 161(3), 289–304 (2009). http://dx.doi.org/10.1016/
j.apal.2009.07.003

9. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in ω-regular games.
ACM Trans. Comput. Logic 11(1) (2009)

10. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal
logics: a journey. Bull. Eur. Assoc. Theoret. Comput. Sci. 105, 73–99 (2011)

11. Della Monica, D., Montanari, A., Murano, A., Sala, P.: Prompt interval temporal
logic (extended version) (2016). http://wpage.unina.it/dario.dellamonica/techrep/
promptPNL ext.pdf

12. Della Monica, D., Montanari, A., Sala, P.: The importance of the past in inter-
val temporal logics: the case of propositional neighborhood logic. In: Artikis, A.,
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