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Abstract. We investigate expressiveness issues of Temporal Equilib-
rium Logic (TEL), a promising nonmonotonic logical framework for tem-
poral reasoning. TEL shares the syntax of standard linear temporal logic
LTL, but its semantics is an orthogonal combination of the LTL seman-
tics with the nonmonotonic semantics of Equilibrium Logic. We establish
that TEL is more expressive than LTL, and captures a strict subclass of ω-
regular languages. We illustrate the expressive power of TEL by showing
that LTL-conformant planning, which is not expressible in LTL, can be
instead expressed in TEL. Additionally, we provide a systematic study of
the expressiveness comparison between the LTL semantics and the TEL
semantics for various natural syntactical fragments.

1 Introduction

Answer Set Programming (ASP) is now well established as a successful paradigm
for declarative programming, with its roots in the fields of knowledge represen-
tation (KR), logic programming, and nonmonotonic reasoning (NMR) [3]. An
adequate and well-known logical foundation for ASP is provided by Equilibrium
Logic [19,20], a nonmonotonic extension of the superintuitionistic logic of here-
and-there (HT) [17]. This provides useful logical tools for the metatheory of ASP
and a framework for defining extensions of the basic ASP language, for example
to arbitrary propositional and first-order theories, to languages with intensional
functions, and to hybrid theories that combine classical and rule-based reason-
ing [7,10,14,21].

ASP has been applied to a wide range of temporal reasoning problems, includ-
ing prediction, planning, diagnosis and verification. However, since it is not an
intrinsically temporal formalism, it suffers some important limitations. Most
ASP solvers deal with finite domains, which hampers the solution of temporal
reasoning problems dealing with unbounded time, like proving the non-existence
of a plan. Temporal scenarios dealing with unbounded time are typically best
suited for modal temporal logics, a fundamental framework for the specification
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of the dynamic behavior of reactive systems. However, standard modal tem-
poral logics, such as propositional linear-time temporal logic LTL [22], are not
designed to deal with many issues in KR. These logics (like classical logics) have
a monotonic consequence relation, meaning that adding a formula to a theory
never produces a reduction of its set of consequences. A monotonic logic cannot
handle various commonsense reasoning tasks such as reasoning by default.

Temporal Equilibrium Logic (TEL). TEL was proposed by Cabalar and
Vega [8] as a nonmonotonic temporal logic, able to capture temporal reason-
ing problems not representable in ASP. It is apparently the only nonmonotonic
extension of a standard modal temporal logic (viz. LTL) that does not use addi-
tional operators or constructions.

TEL shares the syntax of standard LTL, but its semantics is an orthogonal
combination of the LTL semantics with the nonmonotonic semantics of Equilib-
rium Logic. As for Equilibrium Logic, the non-monotonic semantics of TEL is
based on a selection criterion (a kind of minimization) among the models of the
intermediate monotonic temporal logic of Here-and-There (THT), a combination
of LTL and the propositional superintuitionistic logic of Here-and-There (HT).

Many works have been dedicated to the theoretical study of TEL, and some
tools have been developed for computing models of temporal programs under
TEL semantics (see e.g. [5]). Theoretical key results include the use of TEL to
translate action languages [8], an automata-theoretic approach for checking the
existence of TEL models [4], a decidable criterion for proving strong equivalence
of two TEL theories [6], and a systematic study of the computational cost of TEL
satisfiability [2] (a problem which is in general Expspace-complete).

Our Contribution. We investigate expressiveness issues for the TEL frame-
work. It is known [4] that like LTL, TEL allows to specify only ω-regular tem-
poral properties. As a first contribution, we show that TEL is in general more
expressive than LTL. In particular, the class of TEL-definable languages strictly
includes the class of LTL-definable languages and is strictly included in the class
of ω-regular languages. We also illustrate the expressive power of TEL by con-
sidering the problem of finding conformant plans for temporal goals in dynamic
systems in the presence of incomplete information1 when the goal and the sys-
tem behavior are specified in LTL [9]. We show that this problem, which is not
expressible in LTL [9], can be instead expressed in TEL.

As an additional non-trivial theoretical contribution, we provide a systematic
study of the expressiveness comparison between the LTL semantics and the TEL
semantics for various natural syntactical fragments. The considered fragments
are obtained by restricting the set of allowed temporal modalities and/or by
imposing a bound on the nesting depth of temporal modalities. The expressive
power of LTL semantics for these fragments has been made relatively clear by
numerous researchers. Thus, since for some of these fragments, TEL satisfiability
is known to be relatively tractable [2], the aim is also to understand what kind of
temporal reasoning problems can be captured by these fragments under the TEL

1 On both the initial situation and on the full effects of actions.
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semantics. Furthermore, we consider the class of splittable temporal programs
[5], a TEL fragment which is known to be LTL-expressible and for which a solver
has been implemented [5]. We show that a slight syntactical generalization of
this fragment, obtained by relaxing a constraint on the use of temporal literals
in the dynamic rules (intuitively ensuring that “the past does not depend on the
future”), already leads to a fragment more expressive than LTL.

Some of the expressiveness results obtained also point to a peculiar difference
between LTL and TEL: due to the interpretation of the implication connective,
in TEL, a temporal modality cannot be expressed in terms of its ‘dual’ modality.
Thus, in TEL, dual temporal modalities, such as F (‘eventually’) and G (‘always’),
need to be considered independently from one another. This is illustrated by
one of our results: while for the syntactical fragment whose allowed temporal
modalities are F and X (‘next’), the TEL semantics is less expressive than the
LTL semantics, for the dual fragment, the TEL semantics already allows one to
express non-LTL-definable requirements.

Related Work. Several research areas of AI have combined modal temporal
logics with formalisms from knowledge representation for reasoning about actions
and planning (see e.g. [12]). Combinations of NMR with modal logics designed
for temporal reasoning are much more infrequent in the literature. The few
exceptions are typically modal action languages with a nonmonotonic semantics
defined under some syntactical restrictions. Recently, an alternative to TEL has
been introduced, namely, Temporal Answer Sets (TAS), which relies on dynamic
linear-time temporal logic [16], a modal approach more expressive than LTL.
However, while the non-monotonic semantics of TEL covers any arbitrary theory
in the syntax of LTL, TAS uses a syntactic transformation that is only defined
for theories with a rather restricted syntax. A framework unifying TEL and TAS
has been proposed in [1].

2 Preliminaries

Let N be the set of natural numbers and for all i, j ∈ N, let [i, j] := {h ∈ N | i ≤
h ≤ j}. For an infinite word w over some alphabet and for all i ≥ 0, w(i) is the
ith symbol of w. Let P and P ′ be two disjoint finite sets of atomic propositions.
Given an infinite word w over 2P and an infinite word w′ over 2P ′

, w ⊕ w′

denotes the infinite word over 2P∪P ′
given by w(0)∪w′(0), w(1)∪w′(1), . . ., and

w ⊕ P ′ denotes the infinite word over 2P∪P ′
given by w(0) ∪ P ′, w(1) ∪ P ′, . . ..

A proposition p is flat in w if p ∈ w(i) for all i ≥ 0. Note that each proposition
p′ ∈ P ′ is flat in w ⊕ P ′. We extend the operator ⊕ to ω-languages L over 2P

in the obvious way: L ⊕ P ′ denotes the ω-language over 2P∪P ′
consisting of the

infinite words of the form w ⊕ P ′ where w ∈ L.

2.1 Temporal Equilibrium Logic

We recall the framework of Temporal Equilibrium Logic (TEL) [8]. TEL is defined
by first introducing a monotonic and intermediate version of standard linear tem-
poral logic LTL [22], the so-called logic of Temporal Here-and-There (THT) [8].
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The nonmonotonic semantics of TEL is then defined by introducing a criterion
for selecting models of THT.

Syntax and Semantics of THT. While the syntax of THT coincides with
that of LTL, the semantics of THT is instead an orthogonal combination of the
superintuitionistic propositional logic of Here-and-There (HT) [17] and LTL. Fix
a finite set P of atomic propositions. The set of THT formulas ϕ over P is defined
by the following abstract syntax.

ϕ := p
∣
∣ ⊥ ∣

∣ ϕ ∨ ϕ
∣
∣ ϕ ∧ ϕ

∣
∣ ϕ → ϕ

∣
∣ Xϕ

∣
∣ ϕUϕ

∣
∣ ϕRϕ

where p ∈ P and X, U, and R, are the standard ‘next’, ‘until’, and ‘release’
temporal modalities. Negation is defined as ¬ϕ

def= ϕ → ⊥ while � def= ¬⊥. The
classical temporal operators G (‘always’) and F (‘eventually’) can be defined in
terms of U and R as follows: Fϕ

def= �Uϕ and Gϕ
def= ⊥Rϕ. The size |ϕ| of a

formula ϕ is the number of distinct subformulas of ϕ. The temporal depth of ϕ
is the maximum number of nested temporal modalities in ϕ.

Recall that LTL over P is interpreted on infinite words over 2P , called in
the following LTL interpretations. By contrast, the semantics of THT is defined
in terms of infinite words over 2P × 2P , which can also be viewed as pairs
of LTL-interpretations. Formally, a THT interpretation is a pair M = (H,T)
consisting of two LTL interpretations: H (the ‘here’ interpretation) and T (the
‘there’ interpretation) such that

for all i ≥ 0, H(i) ⊆ T(i)

Intuitively, H(i) represents the set of propositions which are true at position i,
while T(i)\H(i) is the set of propositions which may be true (i.e. which are not
falsified in an intuitionistic sense). A THT interpretation M = (H,T) is said to
be total whenever H = T. In the following, for interpretation, we mean a THT
interpretation. Given an interpretation M = (H,T), a position i ≥ 0, and a THT
formula ϕ, the satisfaction relation M, i |= ϕ is inductively defined as follows:

M, i � ⊥
M, i |= p ⇔ p ∈ H(i)
M, i |= ϕ ∨ ψ ⇔ either M, i |= ϕ or M, i |= ψ
M, i |= ϕ ∧ ψ ⇔ M, i |= ϕ and M, i |= ψ
M, i |= ϕ → ψ ⇔ for all H′ ∈ {H,T}, either (H′,T), i � ϕ or (H′,T), i |= ψ
M, i |= Xϕ ⇔ M, i + 1 |= ϕ
M, i |= ϕUψ ⇔ there is j ≥ i so that M, j |= ψ and for all k ∈ [i, j − 1], M, k |= ϕ
M, i |= ϕRψ ⇔ for all j ≥ i, either M, j |= ψ or M, k |= ϕ for some k ∈ [i, j − 1]

We say that M is a (THT) model of ϕ, written M |= ϕ, whenever M, 0 |= ϕ. A
THT formula ϕ is THT satisfiable if it admits a THT model. A formula ϕ is THT
valid if every interpretation M is a THT model of ϕ. Note that the semantics of
THT is defined similarly to that of LTL except for the clause for the implication
connective → which must be checked in both the components H and T of M. As a
consequence M, i � ϕ does not correspond to M, i |= ¬ϕ (i.e., M, i |= ¬ϕ implies
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that M, i � ϕ, but the converse direction does not hold in general). However,
if we restrict the semantics to total interpretations, (T,T) |= ϕ corresponds to
the satisfaction relation T |= ϕ in LTL. More precisely, the LTL models T of ϕ
correspond to the total interpretations (T,T) which are THT models of ϕ. With
regard to THT validity, a THT valid formula is also an LTL valid formula, but the
converse in general does not hold. For example, the excluded middle axiom ϕ∨¬ϕ
is not a valid THT formula since, as highlighted above, for an interpretation
M = (H,T), M � ϕ does not imply that M |= ¬ϕ. Similarly, the temporal
formulas Fϕ ↔ ¬G¬ϕ and ϕ1Uϕ2 ↔ ¬ϕ1R¬ϕ2, which are well-known valid LTL
formulas (and allow to express, in LTL, a temporal modality in terms of its dual
modality), are not THT valid formulas. Thus, in THT, dual temporal modalities,
like F and G, or U and R, need to be considered independently from one another.
The following proposition summarizes some observations made above, where we
use |=LTL to denote the satisfaction relation in LTL.

Proposition 1. Let (H,T) be an interpretation and ϕ be a THT formula.

1. If (H,T), i |= ϕ, then (T,T), i |= ϕ (for all i ≥ 0).
2. (H,T), i |= ¬ϕ iff (T,T), i |= ¬ϕ (for all i ≥ 0).
3. (T,T) |= ϕ iff T |=LTL ϕ.

The non-monotonic logic TEL. This logic is obtained from THT by restricting
the semantics to a subclass of models of the given formula, called temporal equi-
librium models. For LTL interpretations H and T, H � T means that H(i) ⊆ T(i)
for all i ≥ 0, and H � T means that H � T and H �= T.

Definition 1 (Temporal Equilibrium Model). Given a THT formula ϕ, a
(temporal) equilibrium model of ϕ is a total model (T,T) of ϕ satisfying the
following minimality requirement: whenever H � T, then (H,T) � ϕ.

If we restrict the syntax to HT formulas (i.e., THT formulas where no tem-
poral modality is allowed) and the semantics to HT interpretations (H(0),T(0)),
then (non-temporal) equilibrium models coincide with stable models of answer
set programs in their most general form [13]. In particular, the interpretation
of negation is that of default negation in logic programming: formula ¬ϕ holds
(ϕ is false by default) if there is no evidence regarding ϕ, i.e., ϕ cannot be
derived by the rules of the logic program. As a first example, let us consider the
THT formula ϕ given by ϕ = G(¬p → Xp). Its intuitive meaning corresponds to
the first-order logic program consisting of rules of the form p(s(X)) ← not p(X),
where time has been reified as an extra parameter X = 0, s(0), s(s(0)), . . .. Thus,
at any time instant, if there is no evidence regarding p, then p will become true at
the next instant. Initially, we have no evidence regarding p, so this will imply Xp.
To derive XXp, the only possibility would be the rule ¬Xp → XXp, an instance
of ϕ. As the body of this rule is false, XXp becomes false by default, and so on.
It is easy to see that the unique equilibrium model of ϕ is ((∅{p})ω, (∅{p})ω).

Note that an LTL satisfiable formula may have no temporal stable model. As
an example, consider the formula ϕ given by ϕ = G(¬Xp → p)∧G(Xp → p). The
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unique LTL model is T = {p}ω. However, (T,T) is not an equilibrium model of
ϕ, since the interpretation (H,T), where H = (∅)ω is a THT model of ϕ.

For a THT formula ϕ, we denote by LTEL(ϕ) (resp., LLTL(ϕ)) the ω-language
over 2P consisting of the LTL interpretations T such that (T,T) is an equilibrium
model of ϕ (resp., T is an LTL model of ϕ). Note that by Proposition 1, LTEL(ϕ) ⊆
LLTL(ϕ). A TEL language (resp., LTL language) is an ω-language of the form
LTEL(ϕ) (resp., LLTL(ϕ)) for some THT formula ϕ. We now observe the following.

Remark 1. LTL-definable languages are TEL-definable.

Indeed, by Proposition 1, the set of LTL models of a THT formula ϕ over P
corresponds to the set of TEL models of ϕ ∧ ψTot(P ), where formula ψTot(P )
(we exploit this formula in many parts of the paper) captures, under the THT
semantics, the total interpretations over P .

ψTot(P ) :=
∧

p∈P

G(p ∨ ¬p)

Next, we observe that like LTL, the class of languages definable by TEL is strictly
included in the class of ω-regular languages. Indeed, by [4], every TEL language
is effectively ω-regular. Moreover, let us consider the ω-regular language Leven

consisting of the LTL interpretations T over P = {a} of the form ∅2n · {a} · ∅ω

for some n ≥ 0 (where the maximal prefix preceding the unique a-position has
even length). One can trivially check that Leven is not TEL definable. Hence:

Proposition 2. The class of TEL languages is strictly included in the class of
ω-regular languages.

2.2 Problems Investigated and Summary of the Main Results

In this paper, we compare the expressive power of the LTL semantics and the
TEL semantics for full THT and various syntactical THT fragments.

In particular, we consider the syntactical fragments of THT obtained by
restricting the set of allowed temporal modalities and/or by bounding the
temporal depth. Formally, given O1, O2, . . . ∈ {X,F,G,U,R}, we denote by
THT(O1, O2, . . .) the fragment of THT for which only the temporal modalities
O1, O2, . . . are allowed. For k ≥ 0, THTk(O1, O2, . . .) denotes the fragment of
THT(O1, O2, . . .) where the temporal depth is at most k. We write nothing for k
when no bound is imposed. For instance, THT2(G) denotes the fragment where
the unique allowed temporal modality is G and the temporal depth is at most
2. We also consider a syntactical fragment of THT, we call splittable THT, cor-
responding to a generalization of splittable temporal programs introduced in
[5]. A temporal literal is either an ordinary literal or a literal preceded by the
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next operator X. A splittable THT formula is a conjunction of formulas of the
following types:

– Initial rules: a formula of the form B → H, where B is a conjunction of
temporal literals and H is a disjunction of temporal literals.

– Dynamic rules: formulas of the form G r, where r is an initial rule.
– Constraints: formulas of the form ¬ϕ for arbitrary THT formulas ϕ (such

formulas impose constraints only on the ‘there’ part of an interpretation).

THT fragments under TEL semantics LTL

THT, THT(X,R), splittable THT > Theorem 6

THT(X,U), THTk+1(X,U) (k ≥ 1) ⊥ Theorem 6

THT(U), THTk+2(U) (k ≥ 1) ⊥ Theorem 6

THTk+1(X,R), THT(R), THTk+2(R) (k ≥ 1) ⊥ Theorem 6

THT(X,G), THTk+1(X,G) (k ≥ 1) �≤ Proposition 4

THT(X,F) < Theorem 3

THT(F,G) < Theorem 2

THT1 < Theorem 5

Fig. 1. Expressive comparison between TEL fragments and full LTL

For two THT fragments F and F ′ and S,S ′ ∈ {LTL,TEL}, we say that
F under the S-semantics is subsumed by F ′ under the S ′-semantics, written
(F)S ≤ (F ′)S′ , if for each F-formula ϕ, there is a F ′-formula ϕ′ s.t. LS′(ϕ′) =
LS(ϕ). Moreover, F ′ under the S ′-semantics is more expressive than F under the
S-semantics, denoted by (F)S < (F ′)S′ , if (F)S ≤ (F ′)S′ but not (F ′)S′ ≤ (F)S .
Additionally, we say that F under the S-semantics is expressively incomparable
with F ′ under the S ′-semantics, written (F ′)′

S ⊥ (F)S , if neither (F)S ≤ (F ′)S′

nor (F ′)′
S ≤ (F)S . Sometime, we simply write LTL to mean (THT)LTL.

Figure 1 summarises some of the obtained results concerning the expressive-
ness comparison between the considered THT fragments under the TEL seman-
tics and full THT under the LTL semantics.

3 Expressing LTL-conformant Planning in TEL

In this section, we illustrate the expressive power of TEL by showing that the
LTL-conformant planning problem considered in [9], which is not expressible in
LTL [9], can be instead expressed in TEL. Some other approaches in ASP for the
formalization of conformant planning can be reformulated in the LTL-conformant
planning framework such as the one based on Gelfond’s action language [15].
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In the context of reasoning about actions and planning, we consider a setting
where we have incomplete information on the dynamic system and the knowledge
about the system is represented in LTL. In particular, the system is described
by introducing a set of atomic facts, called fluents, whose truth value changes as
the system evolves, and by specifying through LTL the effects of actions on such
a set of facts. Thus, we consider two disjoint finite sets of atomic propositions: F
– the set of fluents – and A – the set of actions. The behavior of the given system
is specified by an LTL formula ϕs over A ∪ F which describes the set of possible
evolutions of the system, each of which is represented as an infinite sequence
of situations, where transitions from one situation to the next are caused by
actions. Note that with this formalization, we may have incomplete information
both on the initial situation and on the actual effects of actions so that, given
a sequence of actions, we will have multiple possible evolutions, one of which is
the actual one. The LTL-conformant planning problem consists in constructing
a plan, i.e. a sequence of actions that guarantees the satisfaction of a temporal
goal expressed in LTL whenever the conditions specified by ϕs are satisfied.

Formally, the LTL-conformant planning problem is the problem of finding,
given two LTL formulas ϕs and ϕg over A ∪ F (representing the system specifica-
tion and the temporal goal, respectively), an infinite sequenceTA = {a0}, {a1}, . . .
of actions such that for all LTL interpretations TF over F (i.e. for all the possible
infinite sequences of truth assignments to fluents), it holds that

TA ⊕ TF |= ϕs → ϕg

LetCon(ϕs, ϕg) be the set of such conformantplansTA. Sucha set cannotbe in gen-
eral expressed in LTL [9]. Here, we show that, unless an additional set of flat propo-
sitions, Con(ϕs, ϕg) can be instead expressed inTEL. We construct in linear-time a
THT formulaϕcon whose setof equilibriummodels corresponds toCon(ϕs, ϕg)⊕F ′,
where F ′ = F ∪ {u}, and u is a fresh (dummy) proposition non in A ∪ F .

Before defining ϕcon, we need additional definitions. A THT formula is in
negation normal form (NNF ) if the implication connective occurs only as nega-
tion and, additionally, negation is applied only to atomic propositions. By using
De Morgan’s laws, the duality between U and R, and the fact that in LTL, ξ1 → ξ2
can be rewritten as ¬ξ1 ∨ ξ2, we can convert the THT formula ¬(ϕs → ϕg) into
a THT formula ψsg in NNF having the same set of LTL models.

Let Ku(ψsg) be the THT formula obtained from the NNF formula ψgs by
replacing each occurrence of a negative literal ¬p with p → u. Intuitively, p → u
is used to express negation on the ‘here’ part H of an interpretation (H,T) such
that u is flat in T and u /∈ H(i) for all i ≥ 0. Formally, one can easily show
by structural induction that for such an interpretation, (H,T) |= Ku(ψgs) iff
H |=LTL ψgs. Hence, (H,T) |= Ku(ψgs) iff H � LTLϕs → ϕg.

The THT formula ϕcon over A ∪ F ′ is then defined as follows:

ϕcon := G(
∨

a∈A

(a ∧
∧

a′∈A\{a}
¬ a)) ∧ (ψTot (A ∪ F ′) →

∧

p∈F ′
Gp)∧

(Fu → ψTot (A ∪ F ′)) ∧ (u ∨ Ku(ψgs))
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The first conjunct captures the THT interpretations (H,T) such that H and T
agree over the set A of actions, and exactly one action occurs at any timestamp.
The second and third conjuncts ensure that every proposition in F ′ = F ∪{u} is
flat in T and whenever H �= T, u /∈ H(i) for every i ≥ 0. Finally, the last conjunct
is fulfilled iff whenever H �= T, H |=LTL Ku(ψgs). Formally, the following holds,
which proves the result (for details see the online version of this paper at https://
www.dropbox.com/s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0).

Claim. LTEL(ϕcon) = Con(ϕs, ϕg) ⊕ F ′.

4 Maximal Fragments Expressible in LTL

In this section, we individuate maximal THT fragments which under the TEL
semantics are subsumed by full LTL.

The fragment THT(F,G). We show that full THT under the LTL semantics
is more expressive than the fragment THT(F,G) under the TEL semantics. On
the other hand, we additionally establish that for the considered fragment, the
TEL semantics is more expressive than the LTL semantics. For the first result, we
exploit a well-known characterization of the ω-regular languages which are LTL-
expressible [18,24]. In the following, we also consider finite (THT) interpretations
which are non-empty prefixes of (THT) interpretations.

Definition 2 (N-stutter Closure [18,24]). For N ≥ 1, an ω-language L over
an alphabet Σ is N -stutter closed if for all finite words x, y, u, w and infinite
words v over Σ,

u · wN · v ∈ L iff u · wN+1 · v ∈ L
x · (u · wN · y)ω ∈ L iff x · (u · wN+1 · y)ω ∈ L

Proposition 3 ([18,24]). If L is an ω-regular language over 2P which is N -
stutter closed for some N ≥ 1, then L is LTL-expressible.

For ϕ ∈ THT(F,G), let Nϕ := n2(h + 1)2
n

, where n = 22|P | and h is the
temporal depth of ϕ. We demonstrate that the language LTEL(ϕ) is Nϕ-stutter
closed. For this, we use an additional notion, we call h-bisimilarity.

Definition 3 (h-bisimilarity). Let w and w′ be two finite words over an alpha-
bet Σ and i and i′ be two positions of w and w′, respectively. Given h ≥ 0, (w, i)
and (w′, i′) are h-bisimilar if w(i) = w′(i′) and whenever h > 0, then:

– for all i ≤ j < |w| (resp., i′ ≤ j′ < |w′|), there exists i′ ≤ j′ < |w′| (resp.,
i ≤ j < |w|) such that (w, j) and (w′, j′) are (h − 1)-bisimilar.

We say that w and w′ are h-bisimilar if (w, 0) and (w′, 0) are h-bisimilar.

For each h ≥ 0, a formula in THTh(F,G) cannot distinguish under the THT
semantics two interpretations where one is obtained from the other one by replac-
ing finite segments with h-bisimilar ones. Formally, we establish the following
result.

https://www.dropbox.com/s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0
https://www.dropbox.com/s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0
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Lemma 1. Let h ≥ 0, ϕ ∈ THTh(F,G), and N and N ′ be two finite h-bisimilar
interpretations. For all finite interpretations M1,M2,M3 and infinite interpreta-
tions M4,

M1NM4 |= ϕ iff M1N
′M4 |= ϕ

M1(M2NM3)ω |= ϕ iff M1(M2N
′M3)ω |= ϕ

The following lemma is based on a counting argument, asserts that for all
h ≥ 1 and finite interpretations consisting of concatenations of N segments,
where N ≥ n2(h + 1)2

n

and n = 22|P |, there always exists a segment whose
removal or pumping preserves h-bisimilarity.

Lemma 2. Let h ≥ 1 and M be a finite interpretation of the form M =
M1 . . .MN such that N ≥ n2(h + 1)2

n

, where n = 22|P |. Then,

– for some j ∈ [1, N ], M and M ′ = M1 . . .Mj−1 · Mj+1 . . .MN are h-bisimilar.
Moreover, M ′ is non-total if M is non-total.

– for some j ∈ [1, N ], M and M1 . . .Mj · Mj · Mj+1 . . .MN are h-bisimilar.

By Lemmas 1 and 2, we deduce the desired result.

Theorem 1. For each ϕ ∈ THT(F,G), LTEL(ϕ) is Nϕ-stutter closed.

Proof. Let ϕ ∈ THT(F,G) and h be the temporal height of ϕ. We assume that
h > 0 (otherwise, the result is obvious). Recall that Nϕ = n2(h + 1)2

n

, where
n = 22|P |. Let T and T′ be two LTL interpretations such that

T = u · wN · v and T′ = u · wN+1 · v
(resp., T = x · (u · wN · y)ω and T′ = x · (u · wN+1 · y)ω)

for some finite words x, u, y, w and infinite words v, where N ≥ Nϕ and n = 22|P |.
We show that T ∈ LTEL(ϕ) iff T′ ∈ LTEL(ϕ). By Lemma 2, wN and wN+1 are
h-bisimilar. Thus, by Lemma 1, (T,T) is a THT model of ϕ iff (T′,T′) is a THT
model of ϕ. We prove the following, hence, the result follows:

1. for all H � T, there is H′ � T′ such that (H,T) |= ϕ iff (H′,T′) |= ϕ.
2. for all H′ � T′, there is H � T such that (H,T) |= ϕ iff (H′,T′) |= ϕ.

We focus on Condition 1 (the proof of Condition 2 being similar). Let H � T and
M = (H,T). Assume that T = u·wN ·v (the other case, where T = x·(u·wN ·y)ω,
being similar). Then, M can be written in the form M = M1 N1 . . .NN M2 such
that |M1| = |u| and |Ni| = |w| for all i ∈ [1, N ]. By Lemma 2, there exists
j ∈ [1, N ] such that N1 . . . NN is h-bisimilar to N1 . . . Nj · Nj Nj+1 . . .NN . Let
M′ = M1N1 . . . Nj Nj Nj+1 . . .NN M2. Since M is non-total, M′ is non-total too,
and by Lemma 1, M |= ϕ iff M′ |= ϕ′. Moreover, since T′ = u · wN+1 · v, the
non-total interpretation M′ is of the form (H′,T′), and we are done. ��

We now establish the main result for the fragment THT(F,G).

Theorem 2. (THT(F,G))TEL < LTL and (THT(F,G))TEL > (THT(F,G))LTL.
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Proof. One can easily show that the LTL-expressible ω-language consisting of the
LTL interpretation ∅·{a}·∅ω cannot be expressed by any THT(F,G) formula under
the TEL semantics. Thus, since TEL languages are ω-regular, by Proposition 3
and Theorem 1, we obtain that (THT(F,G))TEL < LTL. For the second part of
the theorem, first, we observe that for a THT(F,G) formula ϕ, the set of LTL
models of ϕ corresponds to the set of TEL models of the THT(F,G) formula
ϕ ∧ ψTot(P ). Hence, (THT(F,G))TEL ≥ (THT(F,G))LTL. It remains to show that
(THT(F,G))TEL �≤ (THT(F,G))LTL. For this, let P = {b, u} and (T1,T1) and
(T2,T2) be two total interpretations defined as follows: T1 = {u}{b, u}2{u}ω

and T2 = {u}{b, u}{u}ω. No THT(F,G) formula can distinguish T1 and T2 under
the LTL semantics. On the other hand, we show that there exists a THT1(F,G)
formula ϕ such that (T2,T2) is a TEL model of ϕ, and (T1,T1) is not.

Let ϕ := G(¬¬u) ∧ Fb ∧ (Fu → ψTot(P )) ∧ F((b → u) ∧ ¬¬b)

Under the THT semantics, the first three conjuncts capture the interpretations
(H,T) such that (i) for all i ≥ 0, u ∈ T(i), (ii) if H �= T, then for all i ≥ 0,
u /∈ H(i), and (iii) there is h ≥ 0 such that b ∈ H(h). Additionally, the fourth
conjunct is fulfilled whenever either T = H, or there is k ≥ 0 such that b /∈ H(k)
and b ∈ T(k). It easily follows that the set of TEL models of ϕ is {u}∗·{b, u}·{u}ω,
where there is exactly one occurrence of {b, u}, and the result follows. ��
The fragment THT(X,F). For the fragment THT(X,F), we crucially use the
following known result [2], where for a total interpretation (T,T), a position
i ≥ 0 is non-empty in (T,T) if T(i) �= ∅.

Lemma 3 ([2]). Let ϕ be a THT(X,F) formula. Then, every equilibrium model
of ϕ has at most |ϕ|2 non-empty positions.

Since there are THT(X,F) formulas whose LTL models contain infinite occur-
rences of non-empty positions (for example, the formula ¬F¬p), by Lemma 3 we
easily deduce the following result.

Theorem 3. Given a THT(X,F) formula ϕ, one can build a THT(X,F) formula
ψ such that LLTL(ψ) = LTEL(ϕ). Moreover, (THT(X,F))TEL < (THT(X,F))LTL.

The fragment THT1. For the fragment THT1, where there is no nesting of
temporal modalities, we first establish the following result.

Theorem 4. Given a THT1 formula ϕ, one can construct a THT formula whose
LTL models correspond to the TEL models of ϕ.

Sketched Proof. For the fixed finite set P of atomic propositions, it is possible to
define an equivalence relation of finite index on total interpretations such that
the following holds: (1) each equivalence class C is finitely representable and no
THT1 formula over P can distinguish elements of C under the TEL semantics, (2)
given an equivalence class C and a THT1 formula ϕ over P , one can effectively
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check whether C is associated with TEL models of ϕ, and (3) each equivalence
class C is effectively LTL-characterizable. ��

The construction in Theorem 4 cannot be done remaining in THT1. Indeed,
the following holds.

Theorem 5. (THT1)TEL < LTL and (THT1)TEL > (THT1)LTL.

Proof. Let us consider the LTL-expressible ω-language consisting of the LTL
interpretation ∅3 · {a} · ∅ω. One can easily show that such a language can-
not be expressed by any THT1 formula under the TEL semantics. Thus, by
Theorem 4, we obtain that (THT1)TEL < LTL. For the second part of the the-
orem, first, we observe that for a THT1 formula ϕ, the set of LTL models of
ϕ corresponds to the set of TEL models of the THT1 formula ϕ ∧ ψTot(P ).
Hence, (THT1)TEL ≥ (THT1)LTL. It remains to show that there exists a THT1

formula whose set of TEL models cannot be captured by any THT1 formula
under the LTL semantics. For this, let P = {b, u}, T1 = {u}{b, u}2{u}ω, and
T2 = {u}{b, u}{u}ω. Evidently, no THT1 formula can distinguish T1 and T2

under the LTL semantics. On the other hand, by the proof of Theorem2, there
exists a THT1(F,G) formula ϕ such that (T2,T2) is a TEL model of ϕ, and
(T1,T1) is not. Hence, the result follows. ��

5 TEL Fragments Non-subsumed by LTL

In this section, we derive an almost complete picture of the TEL fragments (w.r.t.
the considered THT syntactical hierarchy) which are expressively incomparable
with LTL. We also show that under the TEL semantics, the fragment THT(X,R)
and splittable THT are more expressive than LTL. We conclude the section by
providing a characterization of ω-regular languages in terms of TEL languages.

We first individuate minimal THT fragments which under the TEL semantics
are not subsumed by LTL.

Proposition 4. Let F denote any of the following THT fragments: THT2(X,U),
THT3(U), THT3(R), and splittable THT2(X,G). Then (F)TEL �≤ LTL.

Proof. Here, we focus on splittable THT2(X,G) (for the other fragments, see the
authors’ full paper online). Let Lodd be the ω-regular language given by

Lodd := {T | T = {a, b, u}2n+1 ∅ω for some n > 0}

where a, b, and u are distinct atomic propositions. One can easily show that Lodd

is not LTL expressible (see e.g. [11]). We exhibit a splittable THT2(X,G) formula
ϕodd over P = {a, b, u} whose set of TEL models corresponds to Lodd.

Formula ϕodd is the conjunction of the following three splittable THT2(X,G)
formulas, where ψ∅ := ¬a ∧ ¬b ∧ ¬u characterizes the empty positions of the
“there” interpretation.

¬¬u ∧ ¬¬G(ψ∅ ∨ (a ∧ b ∧ u)) ∧ ¬¬G(ψ∅ → Xψ∅) (1)
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G(u → a ∧ b) ∧ G(Xu → u) ∧ G(u → Xu ∨ X¬u) (2)

a ∧ G(a ∧ b → u) ∧ G(a → Xb) ∧ G(b → Xa ∨ X¬u) (3)

Formula (1), which is a conjunction of constraints in a splittable THT formula,
captures the interpretations (H,T) such that T ∈ {a, b, u}+ ∅ω. Formula (2) addi-
tionally ensures that whenever H �= T, then u /∈ H(i) for all positions i. Finally,
formula (3) requires that whenever H �= T, the prefix of H corresponding to the
slice of T (i.e., the maximal prefix of T which does not contain empty positions)
is in ({a}{b})+. This last condition can be satisfied iff the length of the slice of
T is even. Hence, it easily follows that the TEL language of ϕodd is exactly Lodd,
and we are done. ��

We now establish the main results of Sect. 5.

Theorem 6. The following holds, where k ≥ 2 and O ∈ {U,R}:
1. (THT(X,U))TEL ⊥ LTL and (THTk(X,U))TEL ⊥ LTL;
2. (THT(X,R))TEL > LTL and (THTk(X,R))TEL ⊥ LTL;
3. (THT(O))TEL ⊥ LTL and (THTk+1(O))TEL ⊥ LTL;
4. (THTk(X,R))TEL > (THTk(X,R))LTL and (THTk−1)TEL > (THTk−1)LTL;
5. (splittable THT)TEL > LTL.

Proof. In [2], it is shown that every TEL model of a THT(X,U) has a finite
set of non-empty positions. Since there are THT formulas whose LTL models
have infinitely many non-empty positions, by Proposition 4, Properties 1 and 3
with O = U follow. One can trivially check that the LTL-expressible ω-language
L = ∅{a}ω is not expressible in the fragment THT(R) under the TEL semantics.
Hence, by Proposition 4, Property 3 for the case O = R follows as well. For
Properties 2 and 4, let n ≥ 1 and Ln be the LTL-expressible ω-language consisting
of the LTL interpretation ∅n · {a} · ∅ω. One can easily check that no THTh

formula with h < n can capture Ln under the TEL semantics. Since THT is
expressively equivalent to THT(X,R) under the LTL semantics and for all h ≥ 1
and ϕ ∈ THTh(X,R), the set of LTL models of ϕ corresponds to the set of TEL
models of the THTh(X,R) formula ϕ∧ψTot(P ), by Theorem 5 and Proposition 4,
Properties 2 and 4 follows. Finally, for Property 5, we exploit Proposition 4 and
the fact that the set of LTL models of a THT formula ϕ corresponds to the set
of TEL models of the splittable THT formula ¬¬ϕ ∧ ψTot(P ). ��

We conclude this section by showing that TEL languages capture in a weak
sense the full class of ω-regular languages. In fact, this weak equivalence, as
formalized by the following Theorem7, is similar to the well-known equivalence
between ω-regular languages and ω-languages defined by formulas of Quanti-
fied propositional LTL (QLTL)[23], where for capturing a given ω-regular lan-
guage over 2P by a QLTL-formula, one needs to use quantification over addi-
tional propositions not in P . Intuitively, flat propositions in TEL play the role
of bounded propositions in QLTL.

Theorem 7. Let L be an ω-language over 2P . Then, L is ω-regular iff there
exists a finite set Q disjoint from P such that L ⊕ Q is a TEL language.
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6 Conclusion

We have provided a systematic study of the expressiveness comparison between
the LTL semantics and the TEL semantics for various natural THT syntactical
fragments. Some interesting questions remain open: for example, we don’t know
whether the TEL semantics of the fragment THT(F,G,X) is able to capture full
LTL. Additionally, it is well-known that the class of LTL-definable languages is
algebraically robust, being, in particular, closed under all boolean operations.
It is an intriguing open question whether the same holds for the class of TEL-
definable languages.
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