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Abstract. The problem of finding the maximum number of vertex-
disjoint uni-color paths in an edge-colored graph (MaxCDP) has been
recently introduced in literature, motivated by applications in social net-
work analysis. In this paper we investigate how the complexity of the
problem depends on graph parameters (distance from disjoint paths and
size of vertex cover), and that is not FPT-approximable. Moreover, we
introduce a new variant of the problem, called MaxCDDP, whose goal
is to find the maximum number of vertex-disjoint and color-disjoint uni-
color paths. We extend some of the results of MaxCDP to this new vari-
ant, and we prove that unlike MaxCDP, MaxCDDP is already hard on
graphs at distance two from disjoint paths.

1 Introduction

The analysis of social networks and social media has introduced several inter-
esting problems from an algorithmic point of view. Social networks are usually
viewed as graphs, where vertices represent the elements of the network, and edges
represent a binary relation between the represented elements. One of the most
relevant properties to analyze social network is the vertex connectivity of two
given vertices. Indeed, a relevant property of social networks is how information
flows from one vertex to the other, and vertex connectivity is considered as a
measure of the information flow. Furthermore, two relevant structural proper-
ties of a social network, group cohesiveness and centrality, can be identified via
vertex connectivity [8,12]. Vertex connectivity has been widely investigated in
graph theory; Menger’s theorem shows that vertex connectivity is equivalent to
the maximum number of disjoint paths between two given vertices.

Usually social networks analyses focus on a single type of relation. However,
due to the availability of several social networks, a natural goal is to integrate
the information into a single network. Wu [13] introduced a model to consider
multi-relational social networks, where different kinds of relations are considered.
In the proposed model colors are associated with edges of the graph to distin-
guish different kinds of relations. Given such an edge-colored graph, a natural
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combinatorial problem to compute vertex connectivity introduced in [13], called
Maximum Colored Disjoint Paths (MaxCDP), asks for the maximum number of
vertex-disjoint paths consisting of edges of the same colors (also called uni-color
paths) in the input graph.

The complexity of MaxCDP has been investigated in [3,13]. MaxCDP

is polynomial time solvable when the input graph contains exactly one color,
while it is NP-hard when the edges of the graph are associated with at least
two colors. On general instance, MaxCDP is shown to be not approximable
with factor O(nd), where n is the number of vertices of the input graph, for
any constant 0 < d < 1, and W[1]-hard if the parameter if the number of
paths in the solution [3]. Moreover, MaxCDP is approximable within factor
q, where q is the number of colors of the edges of the input graph, but not
approximable within factor 2 − ε, for any ε > 0, when q is a fixed constant.
Moreover, in [13] it is considered a variant of the problem where the length of
the paths in the solution are (upper) bounded by an integer l � 1, as in many
real social networks the diameter of the graph is bounded by a constant and we
are interesting in short paths connecting two vertices. When l � 4 MaxCDP is
NP-hard, while it is polynomial time solvable for l < 4 [13]. The bounded length
variant of the problem is approximable within factor (l − 1)/2 + ε [13], and it
is fixed-parameter tractable for the combined parameter number of paths in the
solution and l [3]. Moreover, this variant does not admit a polynomial kernel
unless NP ⊆ coNP/Poly, as it follows from the results in [7].

In this paper, we further investigate the complexity of MaxCDP and of a
related problem that we introduce, called MaxCDDP, whose goal is to find
the maximum number of vertex-disjoint and color-disjoint (that is having differ-
ent colors) uni-color paths. The color disjointness of paths can be interesting to
characterize how different relations in a network connects two vertices. In this
case, we are not interested to have more paths of a single color, but rather to
compute the maximum number of color-disjoint paths between two vertices. We
study how the complexity of MaxCDP and MaxCDDP depends on several
parameters, in the spirit of a multivariate complexity analysis [9]. As described
in the previous paragraph, it has already been studied how the complexity of
MaxCDP depends on different constraints (number of colors of each edge, max-
imum length of a path). We believe that it is interesting to take into account
the structure of the input graph when studying the complexity of these two
problems, since real-life networks exhibit properties that leads to graphs with a
specific structure. For example, it is widely believed that social networks have
a “small-world phenomenon” property, and thus information on the structure
of the corresponding graphs can be derived. Moreover, such a study is also of
theoretical interest, since it helps to better understand the complexity of the two
problems.

First, we investigate how the complexity of the two problems depends on
two graph parameters: distance from disjoint paths and size of vertex cover. In
Sect. 3 we show that on graphs at distance bounded by a constant from disjoint
paths MaxCDP admits a polynomial-time algorithm, whereas MaxCDDP is
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NP-hard. Then, in Sect. 4 we show that MaxCDP is fixed-parameter tractable
when parameterized by the size of the vertex cover of the input graph. In Sect. 5
we consider the parameterized complexity of the bounded length version of Max-

CDDP, where the parameters are the number of vertex and color-disjoint paths
of a solution and the maximum length of a path, and we extend the FPT algo-
rithm for MaxCDP to MaxCDDP. Finally, we show in Sect. 6 that both prob-
lems are not ρ-approximable in FPT time, for any function ρ.

2 Definitions

In this section we present some definitions as well as the formal definition of
the two combinatorial problems we are interested in. First, notice that in this
paper, we will consider undirected graphs. Given a graph G = (V,E) and a
vertex v ∈ V , we denote by N(v) the vertex adjacent to v in G. Consider a set
of colors C = {c1, . . . , cq}, where q represents cardinality of C. A C-edge-colored
graph (or simply an edge-colored graph when the set of colors is clear from the
context) is defined as G = (V,E, fC), where V denotes the set of vertices of G
and E denotes the set of edges, and fC : E → 2C is a coloring of each edge with
a set of colors in C = {c1, . . . , cq}. In the paper, we denote by n the size of V
and by m the size of E.

A path π in G is said to be colored by cj ∈ C if all the edges of π are colored
by cj . A path π in G is called a uni-color path if there is a color cj ∈ C such
that all the edges of π are colored by cj .

Given two vertices x, y ∈ V , an xy-path is a path between vertices x and
y. Two paths π′ and π′′ are internally disjoint (or, simply, disjoint) if they do
not share any internal vertex, while a set P of paths is internally disjoint if the
paths in P are pairwise internally disjoint. Two uni-color paths π′ and π′′ are
color disjoint if they are disjoint and they have different colors.

Next, we introduce the formal definitions of the problems we deal with.

Max Colored Disjoint Path (MaxCDP)

• Input: a set C of colors, a C-edge-colored graph G = (V,E, fC) and two
vertices s, t ∈ V .
• Output: the maximum number of disjoint uni-color st-paths.

Max Colored Doubly Disjoint Path (MaxCDDP)

• Input: a set C of colors, a C-edge-colored graph G = (V,E, fC), and two
vertices s, t ∈ V .
• Output: the maximum number of color disjoint uni-color st-paths.

We will consider a variant of the two problems where the length of the paths
in the solution is (upper) bounded by an integer l � 1, that is we are interested
only in paths bounded by l. These variants will be denoted by l-MaxCDP and
l-MaxCDDP.
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Notice that in the versions of these problems parameterized by the natural
parameter, we are also given an integer k > 0 and we look whether there exists
at least k (color) disjoint uni-color st-paths.

A parameterized problem (I, k) is said fixed-parameter tractable (or in the
class FPT) with respect to a parameter k if it can be solved in f(k) · |I|c time (in
fpt-time), where f is any computable function and c is a constant. The class XP
contains problems solvable in time |I|f(k), where f is an unrestricted function.
We defer the reader to the recent monographs of Downey and Fellows or Cygan
et al. for additional information around parameterized complexity [5,6].

The natural notion of parameterized approximation was introduced quite
recently (see the survey of Marx for an overview [10]). Informally, it aims at
giving more time than polynomiality to achieve better approximation ratio. We
give the definition of fpt cost ρ-approximation algorithm, as in Sect. 6 we will
rule out the existence of such an algorithm for MaxCDP and MaxCDDP. This
is a weaker notion than fpt-approximation, but notice that we will prove negative
result (which will thus be stronger).

An NP-optimization problem Q is a tuple (I, Sol, val, goal), where I is the
set of instances, Sol(I) is the set of feasible solutions for instance I, val(I, S) is
the value of a feasible solution S of I, and goal is either max or min.

Definition 1 (fpt cost ρ-approximation algorithm, Chen et al. [4]). Let
Q be an optimization problem and ρ : N → R be a function such that ρ(k) � 1 for
every k � 1 and k ·ρ(k) is nondecreasing (when goal = min) or k

ρ(k) is unbounded
and nondecreasing (when goal = max). A decision algorithm A is an fpt cost
ρ-approximation algorithm for Q (when ρ satisfies the previous conditions) if for
every instance I of Q and integer k, with Sol(I) �= ∅, its output satisfies the
following conditions:

1. If opt(I) > k (when goal = min) or opt(I) < k (when goal = max), then A
rejects (I, k).

2. If k � opt(I) · ρ(opt(I)) (when goal = min) or k � opt(I)
ρ(opt(I)) (when goal =

max), then A accepts (I, k).

Moreover the running time of A on input (I, k) is f(k) · |I|O(1). If such a
decision algorithm A exists then Q is called fpt cost ρ-approximable.

3 Complexity of MaxCDDP and MaxCDP on Graphs at
Bounded Distance from Disjoint Paths

In this section we consider the complexity of MaxCDP and MaxCDDP on
graphs having distance bounded by a constant from disjoint paths. The distance
to disjoint paths is the minimum number of vertices to remove to make the graph
a set of disjoint paths.

We show that MaxCDDP is NP-hard for graphs at distance two from dis-
joint paths, while MaxCDDP is polynomial time solvable when the input graph
has distance bounded by a constant from disjoint paths.
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3.1 Complexity of MaxCDDP on Graphs at Distance Two from
Disjoint Paths

In this section, we show that if the input graph G has distance two from a set
of disjoint path, then MaxCDDP is NP-hard.

We give a reduction from Maximum Independent Set on Cubic graphs
(MaxISC)1. We recall the definition of MaxISC:

Maximum Independent Set on Cubic graphs (MaxISC)

• Input: a cubic graph GI = (VI , EI).
• Output: a subset V ′

I ⊆ VI of maximum cardinality, such that for each
vx, vy ∈ V ′

I it holds {vx, vy} /∈ E

We build a graph G = (V,E, fC) from GI = (VI , EI) by defining a gadget
GVi for each vertex vi ∈ VI , and connecting the gadget to vertices s and t.

Given vi ∈ VI , define a gadget GVi consisting of a set Vi of 4 vertices (see
Fig. 1): Vi = {v′

i, v
′
i,j : vi ∈ VI , 1 � j � 3}.

Moreover, define the set C of colors as follows: C = {ci : vi ∈ VI} ∪ {ci,j :
{vi, vj} ∈ EI}.

We assume that, given a vertex vi, the vertices adjacent to vi (that is the
vertices in N(vi)) are ordered, i.e. if vj , vh, vz ∈ N(vi) with 1 � j � h � z, then
vj is the first vertex adjacent to vi, vh is the second and vz is the third.

We define the edges of G be means of the following paths:

– a path colored ci that consists of s, v′
i, v′

i,1, v′
i,2, v′

i,3, t, with 1 � i � |VI |
– if, according to the ordering, vj is the p-th vertex incident on vi, 1 � p � 3,

then there exists a path colored ci,j that passes through s, v′
i,p, t

First, we prove that the graph G has distance two from disjoint paths.

s

vi vi,1 vi,2 vi,3

t

ci

ci ci ci

ci,j
ci,h

ci,z

Fig. 1. Gadget GVi associated with vertex vi ∈ VI . Vertices vj , vh, vz are three vertices
of VI , with N(vi) = {vj , vh, vz} and j < h < z. vj is the first vertex adjacent to vi in
GI and thus there exists a path in G colored by ci,j that passes through s, v′

i,1, t; vh is
the second vertex adjacent to vi in GI (hence there exists a path in G colored by ci,h
that passes through s, v′

i,2, t); vz is the third vertex adjacent to vi in GI (hence there
exists a path in G colored by ci,z that passes through s, v′

i,3, t).

1 A graph is cubic when each of its vertices has degree 3.
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Lemma 2. Given a cubic graph GI , let G be the corresponding graph input of
MaxCDDP. Then G has distance two from disjoint paths.

Proof. After the removal of s and t, the paths left in the resulting graph are the
paths colored by ci, with 1 � i � |VI |, that pass through v′

i, v′
i,1, v′

i,2, v′
i,3. Since

these paths are pairwise vertex disjoint, the lemma holds. �	
Next, we prove the main results of the reduction.

Lemma 3. Let GI be a cubic graph and G be the corresponding graph input
of MaxCDDP. Given an independent set V ′

I of GI , then we can compute in
polynomial time |E| + |V ′

I | disjoint uni-color color paths in G.

Proof. Consider an independent set V ′
I ⊆ VI of GI , we define a set P of uni-color

disjoint paths as follows. P contains a path s, v′
i, v

′
i,1, v

′
i,2, v

′
i,3, t colored by ci, for

each vi ∈ V ′
I . Moreover, for each {vi, vj} ∈ EI , assume w.l.o.g. that vi ∈ VI \ V ′

I

and that vj is the h-th vertex, 1 � h � 3, adjacent to vi. Then P contains the
path s, v′

i,h, t colored by ci,j . Notice that these paths, since V ′
I is an independent

set, are by construction color disjoint. �	
Lemma 4. Let GI be a cubic graph and G be the corresponding graph input of
MaxCDDP. Given |E| + t color disjoint uni-color paths in G, we can compute
in polynomial time an independent set of size t for GI .

Proof. Consider a solution P of the instance of MaxCDDP consisting of |E|+ t
color disjoint uni-color paths. First, we can assume that P contains, for each
color ci,j , a path colored by ci,j . Assume this is not the case. Then, we can
replace a path colored by ci or a path colored by cj with a path p′ colored by
ci,j that passes through the vertices of gadget V Gi or V Gj , without decreasing
the number of path in P. Moreover, notice that by replacing a path color ci with
p′, the set P still contains color disjoint uni-color paths.

Now, starting from P, we can compute an independent set V ′
I as follows. If

P contains a path s, v′
i, v

′
i,1, v

′
i,2, v

′
i,3, t colored by ci, then vi ∈ V ′

I . Notice that
V ′

I is an independent set, since, if vi, vj , with {vi, vj} ∈ E, are both in V ′
I , this

implies that there is no ci,j-path in P, contradicting our assumption. �	
Hence, we can prove the NP-hardness of MaxCDDP on graphs at distance

two from disjoint paths.

Theorem 5. MaxCDDP is NP-hard, even if the graph G has distance two
from disjoint paths.

Proof. MaxISC is NP-hard [1]. Hence Lemmas 2, 3 and 4 imply that Max-

CDDP is NP-hard, even if the graph G has distance two from disjoint
paths. �	

The previous result implies that MaxCDDP cannot be solved in nf(k) time
unless P= NP (it is not in the class XP), where k is the distance to disjoint
paths of G, but also for “stronger” parameters like pathwidth or treewidth [9]
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3.2 A Polynomial-Time Algorithm for MaxCDP on Graphs at
Constant Distance from Disjoint Paths

In this section, we show that, contrary to MaxCDDP, MaxCDP is polynomial-
time solvable when the input graph G has distance bounded by a constant d from
a set P of disjoint paths (that is, it is in the class XP for the parameter distance
to disjoint paths).

Next, we present the algorithm. Notice that we assume that a set X ⊆ V is
given, such that after the removal of X ∪ {s, t} the resulting graph consists of a
set P of disjoint paths2. We assume that X and P are defined so that s, t /∈ X
and that no path in P contains s and t. Denote by V (P) the set of vertices that
belong to a path of P, it holds V = V (P) ∪ X ∪ {s, t}.

Since G has distance d, where d > 0 is constant, from the set of disjoint paths
P, it follows that |X| � d. Let P ′ = {p1, . . . , pb}, with 1 � i � b � d, such that
V (P ′) ⊆ V is the set of paths of an optimal solution of MaxCDP such that pi

contains a non-empty subset of X.
The algorithm computes each pi, with 1 � i � b, by iterating through sub-

paths of size at most d in P and a subset of X. More precisely, pi is computed
as follows. Each path pi contains at most d + 1 disjoint subpaths that belong
to paths in P, that are connected through a subset of at most d vertices of X.
In time O(n2(d+1)), we compute the at most d + 1 disjoint subpaths px[j1, j2] of
Px ∈ P that belong to pi; in time O(2d) we compute the subset Xi ⊆ X that
belong to each pi. Let Vi = V (pi) ∪ Xi, that is the set of vertices that belong to
pi and to subset Xi. Notice that the subsets Vi, with 1 � i � b, are computed
so that they are pairwise disjoint.

The algorithm computes in polynomial time if there exists a uni-color path
from s to t that passes through the vertices Vi. If for each i with 1 � i � b such
a path exists, then the algorithm computes the maximum number of uni-color
disjoint paths in the subgraph G′ of G induced by V ′ = V \⋃b

i=1 Vi. Notice that,
since V ′ ∩ X = ∅, it follows that, if we remove s and t from V ′, G′ consists of
a set of disjoint paths {p′

1, . . . , p
′
r}. The maximum number of uni-color disjoint

paths in the subgraph G′ can be computed in polynomial time, as shown in the
following lemma.

Lemma 6. Let G = (V,E, fc) be an edge colored graph such that V ∗ = V \{s, t}
induces a set of disjoint paths. Then MaxCDP on G can be solved in polynomial
time.

Proof. Let P = {p′
1, . . . , p

′
r} be the set of disjoint paths induced by V ∗. Since

there is no st-path in G containing a vertex of p′
i and a vertex of p′

j , with i �= j,
we compute a solution of MaxCDP independently on each path p′

i. Let Pi be
the set of uni-color st-paths that contains only vertices of p′

i. For each i with
1 � i � r, we compute a shortest uni-color st-path p that contains only vertices
of p′

i, we add it to Pi, and we remove the vertices of p from p′
i. We iterate this

procedure, until there exists no st-path that contains only vertices of p′
i.

2 Notice that, since |X| � d, X can be computed in time O(nd).
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We claim that Pi is a set of uni-color st-paths of maximum size. Consider
a shortest path p added to Pi. Let x be the vertex of p adjacent to s and y be
the vertex of p adjacent to t. Notice that each vertex in p, except for x and y,
is not connected to s or t, otherwise p would not be a shortest path between s
and t. Now, assume that there is an optimal solution Q of MaxCDP that does
not contain p and that, moreover, contains an st-path that passes through some
vertex of p, otherwise we can add p to Q and Q would not be optimal. Then
by construction, since P is a set of disjoint paths, Q must contain a path p′

that contains p as a subpath. But then we can replace p′ with p in Q, without
decreasing the size of the optimal solution. �	

Now, we give the main result of this section.

Theorem 7. MaxCDP is in XP when the distance to disjoint paths is bounded
by a constant.

Proof. Notice that for each i with 1 � i � b � d, we compute the set Vi in
time O(2dn2(d+1)); hence the d disjoint sets V1, . . . , Vb are computed in time
O(2d2

n2d(d+1)). Since the existence of a uni-color path that passes through the
vertices Vi can be computed in polynomial time and since by Lemma 6 we
compute in polynomial time the maximum number of uni-color disjoint paths in
the subgraph G′, the theorem holds. �	

4 FPT Algorithm Parameterized by Vertex Cover for
MaxCDP

In this section, we will show that MaxCDP is FPT when parameterized by the
size of the vertex cover of the input graph.

Theorem 8. MaxCDP is in FPT when parameterized by the size of the vertex
cover of the input graph.

Proof. First, consider uni-color paths of length three s, v, t, for some v ∈ V .
Uni-color path of length three are greedily added to a solution of MaxCDP.
Since any solution of MaxCDP contains at most one uni-color path that passes
through v, it follows that there exists an optimal solution of MaxCDP that
contains path s, v, t. Hence, we add such path to our solution P, and we remove
vertex v from G.

Let V ′ be a vertex cover of the resulting graph G = (V,E, fC), |V ′| = k
(which can be computed in FPT-time). Since in G there is no uni-color path of
length three connecting s and t, the following property holds. Consider a uni-
color path p of G, then p either consists of vertices in V ′ or each vertex of V \V ′

that belongs to p is adjacent in p to vertices of V ′ ∪ {s} ∪ {t}. This is true since
V ′ is a vertex cover (and thus V \ V ′ is an independent set in G).

A consequence of this property is that each uni-color path has length at most
2k. Moreover, there can be at most k uni-color paths in a solution (since each
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path must contain a vertex of V ′ and |V ′| � k). Since both the number of paths
and the length of paths are bounded by k and MaxCDP is known to be in FPT
w.r.t. the combination of these two parameters [3], the claimed result follows. �	

This algorithm does not easily extend to MaxCDDP. The main difference
between MaxCDDP and MaxCDP, when considering as parameter the vertex
cover of the input graph, is that in the latter we can safely add a uni-color path
s, v, t of length three to a solution, while in the former we are not allowed to do it.
Consider for example the uni-color path s, v, t of length three colored by c; if this
path belongs to a solution of MaxCDDP, it prevents any other uni-color path
p′ that passes through v (colored by some color c′), but also any path p′′ colored
by c (that does not pass through v) to be part of the solution. So, by adding the
path s, v, t to the solution we are computing, we may get a suboptimal solution,
since by removing p and by adding p′ and p′′, we possibly compute a larger set
of disjoint color uni-color paths.

5 A Fixed-Parameter Algorithm for l-MaxCDDP

In this section, we give a fixed-parameter algorithm for l-MaxCDDP, the length-
bounded version of MaxCDDP, parameterized by the number k of uni-color
color disjoint st-paths of a solution. Notice that MaxCDDP is W[1]-hard when
parameterized by k, as the reduction that prove the W[1]-hardness of MaxCDP

parameterized by k consists of paths having distinct colors [3].
Next, we present a parameterized algorithm based on the color coding

technique [2]. The algorithm is inspired by the one for MaxCDP [3]. However,
in this case we must combine two different labelings, one to label the vertices
that belong to a uni-color path, one to label the color associated with a uni-color
path of MaxCDDP.

First, we introduce the definition of perfect hash function on which our algo-
rithm is based. A family F of hash functions from a set U (the vertex set in
the traditional applications of color coding) to the set {l1, . . . , lk} of labels is
k-perfect if, for each subset U ′ of U with |U ′| = k, there exists a hash function
f ∈ F such that f assigns a distinct label to each element of U ′. Function f is
called a labelling function.

Let fv ∈ FV be a labelling function that assigns to each vertex v ∈ V \ {s, t}
a label fv(v) ∈ Lv = {1v, . . . , hv}, where hv = |Lv| � lk.

Consider a second labelling function fc ∈ FC that assigns to each color c ∈ C
a label fc(v) ∈ Lc = {1c, . . . , hc}, where hc = |Lc| � k.

By the property of perfect hash functions, we assume that each vertex that
belongs to a solution of MaxCDDP is assigned a distinct label by fv and that
each color d, such that there exists a uni-color path of MaxCDDP colored by
d, is associated with distinct label fc.

A simple path p in G is perfect for a set Lv of labels assigned to V if and
only if for each vertex v of p, with v /∈ {s, t}, fv(v) ∈ Lv, and for each pair of
distinct vertices u, v of p, fv(u) �= fv(v). A set {p1, . . . , pk} of uni-color paths is
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perfect for the set Lv and Lc of labels if and only if: (1) there exists a partition
{Lv,1, . . . , Lv,k} of Lv such that each pi is perfect for Li; (2) each path pi, with
1 � i � k, is colored by c ∈ C associated with a distinct label in Lc. We combine
two dynamic-programming recurrences to compute, given the labelling functions
fv and fc, whether there exists a set of perfect uni-color paths in G.

First, consider the function S[L′
v, u, λ], with L′

v ⊆ Lv, u ∈ V and λ ∈ C.
S[L′

v, u, λ] = 1 if and only if there exists a path from s to vertex u �= t, such
that the path is perfect for L′

v and p is colored by λ.
We consider a second function Π[L′

v,M, z], with L′
v ⊆ Lv and M ⊆ Lc,

0 � z � k. Π[L′
v,M, z] = 1 if and only if there exist a set of labels L′

v ⊆ Lv and
a set of labels M ⊆ Lc, such that there exists a set of z uni-color paths perfect
for L′

v and M .
S[L′

v, u, λ] is defined as follows (we recall that � represents the disjoint union
operator). In the base case, when u = s, S[L′

v, u, λ] = 1 if L′
v = ∅, otherwise

(when L′
v �= ∅), S[L′

v, u, λ] = 0.
When u �= s:

S[L′
v, u, λ] = max

w∈N(u)

{
S[L′′

v , w, λ] | L′
v = L′′

v � {fv(u)} ∧ {w, u} is colored by λ}

Next, we give the recurrence, Π[L′
v,M, z]. In the base case, that is when

z = 0, then Π[L′
v,M, 0] = 1 if L′

v = ∅ and M = ∅, else Π[L′
v,M, 0] = 0. Recall

that l is the bound on the length of each path, L′
v ⊆ Lv, M ⊆ C and 0 � z � k,

Π[L′
v,M, z] is defined as follows:

Π[L′
v,M, z] =

⎧
⎪⎨

⎪⎩

max
{
Π[L′′

v ,M \ {fc(λ)}, z − 1] ∧ S[L∗
v, u, λ] |

L′
v = L′′

v � L∗
v ∧ |L∗| � l − 1 ∧ λ ∈ C ∧ fc(λ) ∈ M ∧

{u, t} ∈ E is colored by λ
}

(1)
Next, we prove the correctness of the two recurrences.

Lemma 9. Given a labelling fv of the vertices of G, a color λ ∈ C, a vertex u
and a set L′

v ⊆ Lv, there exists a simple path p in G from s to u perfect for L′
v

if and only if S[L′
v, u, λ] = 1.

Proof. We prove the lemma by induction on the length of the path p. First, we
consider the base case, that is u = s. Since s is not associated with a label in
Lv, it holds S[L′

v, u, λ] = 1 if and only if L′
v = ∅.

Consider now the general case and assume that there exists a path p in G
perfect for L′

v such that p is colored by λ. Consider the last vertex u of p, and
let w be the vertex adjacent to u in p. By induction hypothesis, it follows that
S[L′′

v , w, λ] = 1, where L′
v = L′′

v � {fv(u)}. By the definition of the recurrence,
then S[L′

v, u, λ] = 1.
Assume that S[L′

v, u, λ] = 1. By the definition of the recurrence it holds that
S[L′′

v , w, λ] = 1, where L′
v = L′′

v � {fv(u)} and there is an edge {u,w} ∈ E
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colored by λ. By induction hypothesis, since S[L′′
v , w, λ] = 1, there exists a path

p′ from s to w perfect for L′′
v such that p′ is colored by λ. Since {u,w} ∈ E is

colored by λ, it follows that there exists a simple path p in G from s to u perfect
for L′

v. �	
Lemma 10. Given a labelling fv of the vertices of G and a labelling fc of the
set C of colors, a set L′

v ⊆ Lv, a set M ⊆ Lc, and integer z with 0 � z � k,
there exists a set {p1, . . . , pz} of uni-color paths which is perfect for L′

v and M
if and only if Π[L′

v,M, z] = 1.

Proof. We prove the lemma by induction on the number of uni-color paths. First,
we consider the base case, that is z = 0. Then there is no uni-color path perfect
for L′

v = ∅ and M = ∅ if and only if Π[∅, ∅, 0] = 1.
Consider now that there exist z disjoint color uni-color paths. Consider one of

such paths, denoted by p, which is colored by λ and whose vertices are associated
with set of labels L∗

v and such that the vertex of p adjacent to t is u, hence
{u, t} ∈ E is colored by λ. Then, by Lemma 9 S[L∗

v, u, λ] = 1. Moreover, by
induction hypothesis it holds Π[L′′

v ,M \ {fc(λ)}, z − 1] = 1, where L′
v = L∗

v �
L′′

v and fc(λ) ∈ M . Hence, by the definition of the recurrence for Π, it holds
Π[L′

v,M, z] = 1.
Consider the case that Π[L′

v,M, z] = 1. By the definition of function Π, it
follows that there exists a color λ ∈ C, with fc(λ) ∈ M , and a set of labels
L∗

v ⊆ Lv, such that Π[L′′
v ,M \ {fc(λ)}, z − 1] = 1, where L′

v = L′′
v � L∗

v, and
S[L∗

v, u, λ] = 1. By induction hypothesis, since Π[L′′
v ,M \ {fc(λ)}, z − 1] = 1,

there exists a set P ′ of z − 1 paths perfect for the sets L′′
V and M \ {fc(λ)}.

By Lemma 9 there exists a path p′ from s to u colorful for L′′
v and that has

color λ. Moreover, since Π[L′
v,M, z] = 1, {u, t} ∈ E is colored by λ. By the

property of labelling fc, no path of P ′ has label fc(λ), hence P ′ ∪p is perfect for
L′

v and M . �	
We can now state the main result.

Theorem 11. l-MaxCDDP can be solved in time 2O(lk)poly(n).

Proof. An optimal solution of l-MaxCDDP consisting of k color disjoint paths
exists if and only if Π[Lv,M, k] = 1. The correctness of the recurrence to com-
pute Π follows from Lemma 10. Now, we discuss the time complexity to com-
pute Π[L′

v,M, z] and S[L′
v, u, λ]. First, consider S[L′

v, u, λ]. It consists of 2lknq
entries and each entry can be computed in time O(n), as we consider each vertex
w ∈ N(u).

Now, consider Π[L′
v,M, z]. It consists of 2k(l+1)k entries. In order to compute

Π[L′
v,M, z], at most 2klk entries must be considered, since Π[L∗

v,M\{fc(v)}, z−
1] is considered, where we have 2kl subsets L∗

v ⊆ L′
v and k labels fc(v). Given

two labelling functions fv and fc, the time complexity to compute the entries
Π[L′

v,M, z] is O(2k(2l+1)kn). By the property of color-coding [2], a function
fv ∈ Fv and a function fv ∈ Fv can be computed in time 2O(lk)poly(n) and
2O(k)poly(n), respectively, hence in time 2O(lk)poly(n). �	
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6 FPT Inapproximation

Since MaxCDP and MaxCDDP are hard to approximate in poly-time and
do not admit fixed-parameterized algorithm for parameter number of paths,
it is worth to investigate approximation in FPT time, i.e. find approximate
solution with additional time. Unfortunately, in this section, we show that both
MaxCDP and MaxCDDP do not admit an FPT cost ρ-approximation, for
any function ρ of the optimum, unless FPT = W[1]. We will show the result by
giving a reduction from the Threshold Set problem. Marx [11] showed that
the Threshold Set problem does not admit a fpt cost ρ-approximation, for
any function ρ of the optimum, unless FPT = W[1].

First, we introduce the definition of the Threshold Set problem.

Threshold Set

• Input: a set U of elements, a collection S = {S1, . . . , Sq} of subsets of U
and a positive integer weight w(Si) for each Si ∈ S, with 1 � i � q.
• Output: a set T ⊆ U of maximum cardinality such that |T ∩Si| � w(Si) for
every Si ∈ S.

The cost of a solution of Threshold Set is denoted by |T |. Notice that
this problem can be seen as a generalization of the Independent Set problem;
indeed, for a graph G = (V,E), we can define U = V , S = E and w(S) = 1 for
every set S ∈ S.

We will reduce Threshold Set to MaxCDP in polynomial time such that
there is a “one-to-one” correspondence between the solutions of the two problem,
therefore the inapproximability result transfers to MaxCDP, and then to Max-

CDDP. The reduction is inspired by the one in [3], that shows inapproximability
in polynomial time and W[1]-hardness of MaxCDP.

First, we design the reduction for the MaxCDP problem. Notice that we
assume that we are given an ordering over the sets in S (i.e. Si < Sj , i < j).
Consider an instance (U,S, w) of Threshold Set, we define a corresponding
instance (G = (V,E, fC), s, t) of MaxCDP. The set V of vertices is defined as
follows:

V = {s, t} ∪ {si|i ∈ [|U |]} ∪ {Sj
i |i ∈ [|S|], 1 � j � w(Si)}

The set of colors C is defined as follows: C = {ci : i ∈ U}.
Now, we define the set E of edges.

– for all i ∈ [|U |], define an edge {s, si} colored by ci and an edge {si, S
j
q} colored

by ci, for all 1 � j � w(Sq), where q is the smallest index of a set Sq ∈ S such
that i ∈ Sq,

– from each Sj
q , define an edge {Sj

q , Sj′
q′ } colored by ci, for all 1 � j′ � w(Sq′),

such that i ∈ Sq, i ∈ Sq′ , q′ > q and, for each q < l < q′, it holds i /∈ Sl,
– from each Sj

q , define an edge {Sj
q , t} colored by ci, where i ∈ Sq and for each

q′ > q with Sq′ ∈ S, i /∈ Sq′ .
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Fig. 2. Sample construction of an instance of MaxCDP from an instance of Thresh-

old Set with S = {{1, 2, 3}, {1, 4}, {2, 3, 4}}, w(S1) = 2, w(S2) = 1, w(S3) = 2.
A solution for this instance of Threshold Set could be T ′ = {1, 2}, and we drawn
with dark edges the corresponding disjoint paths for MaxCDP.

See Fig. 2 for an example. Now, we prove the main properties of the reduction.

Lemma 12. Given an instance (U,S, w) of Threshold Set, let (G =
(V,E, fC), s, t) be the corresponding instance of MaxCDP. Then, given a solu-
tion T ′ of Threshold Set on instance (U,S, w), we can compute in polynomial
time a set of |T ′| disjoint uni-color paths in (G = (V,E, fC), s, t).

Proof. Consider a solution T ′ of Threshold Set on instance (U,S, w), and
define a set P of |T ′| disjoint uni-color paths in (G = (V,E, fC), s, t) as follows.
For each i ∈ T ′, define a uni-color path p colored by ci that starts in s, passes
through si, and for each Sq ∈ S, if i is the j-th element of T ′ in Sq, 1 � j � w(Sq),
passes through vertex Sj

q . It follows that the path defined are disjoints, as at most
one element can be the j-th element of T ′ in Sq and |T ′ ∩ Sq| � w(Sq). �	
Lemma 13. Given an instance (U,S, w) of Threshold Set, let (G =
(V,E, fC), s, t) be the corresponding instance of MaxCDP. Then, given a set of
q disjoint uni-color paths in (G = (V,E, fC), s, t), we can compute in polynomial
time a solution of size q of Threshold Set on instance (U,S, w).

Proof. Consider a set P of disjoint uni-color paths in (G = (V,E, fC), s, t). First,
we claim that each path in P has a distinct color. Indeed, the paths in P must
be disjoint and, by construction, for each color ci each path must pass trough
vertex si.

Now, starting from P , we define a solution T ′ of of Threshold Set on
instance (U,S, w). For each path p ∈ P colored by ci, elements ui belongs to T ′.
We show that T ′ is a a solution of Threshold Set on instance (U,S, w).

Consider a set Si ∈ S, then there exists a most w(Si) elements in T ′. Indeed,
notice that, by construction, there exists at most w(Si) vertices Sj

i , hence by
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construction there exist at most w(Si) paths in P that passes through vertices
of Sj

i , hence at most w(Si) elements in T ′ belong to Si. As a consequence T ′ is
a feasible solution of Threshold Set on instance (U, S,w). By construction,
|T ′| = q. �	
Theorem 14. MaxCDP and MaxCDDP cannot be approximated in FPT-
time within any function ρ of the optimum, unless FPT=W[1].

Proof. The theorem holds for MaxCDP since Threshold Set cannot be
approximated within any function ρ of the optimum, unless FPT = W[1] [11],
and from the properties of the polynomial time reduction proved in Lemmas 12
and 13.

For MaxCDDP, it holds from the fact that in the described reduction all
the paths have a distinct color. �	

7 Conclusion

In this paper, we continued the complexity analysis of MaxCDP and deepen
the hardness analysis according to the structure of the input graph. We also
introduced a new variant, called MaxCDDP, asking for a solution with vertex
and disjoint colors.

In the future, we would like to further deepen the analysis on the the struc-
tural complexity of MaxCDP and MaxCDDP. For example is MaxCDP in
XP when the parameter if the size of the Feedback Vertex Set of the input graph?
Is MaxCDP FPT when the parameter if the distance to disjoint paths of the
input graph? We would also like to improve the running time of our algorithms
and to match them with some lower bounds under widely believed assumptions
in order to have a fine-grained complexity analysis of these problems.
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