
Using Unified Model Checking to Verify Heaps

Xu Lu, Zhenhua Duan(B), and Cong Tian(B)

ICTT and ISN Lab, Xidian University, Xi’an 710071, P.R. China
{zhhduan,ctian}@mail.xidian.edu.cn

Abstract. This paper addresses the problem of verifying heap evolu-
tion properties of pointer programs. To this end, a new unified model
checking approach with MSVL (Modeling, Simulation and Verification
Language) and PPTLSL is presented. The former is an executable subset
of PTL (Projection Temporal Logic) while the latter is an extension of
PPTL (Propositional Projection Temporal Logic) with separation logic.
MSVL is used to model pointer programs, and PPTLSL to specify heap
evolution properties. In addition, we implement a prototype in order to
demonstrate our approach.

Keywords: Heap verification · Model checking · MSVL · PPTL ·
Separation logic

1 Introduction

Pointers are indispensable in real-world programs or applications. Reasoning
about pointer programs is quite challenging since pointer usage is often complex
and flexible. Potential bugs encountered in pointer programs such as null pointer
dereference, memory leaks, or shape destruction are due to the nature of pointers.
The problem is more serious for concurrent programs since we need to consider
all possible execution sequences of processes. Alias analysis, as the name implies,
is a point-to analysis which naively checks whether pointers can be aliased. Shape
analysis is another form of pointer analysis that attempts to discover the possible
shapes of heap structures. It aims to prove that these structures are not misused
or corrupted.

Reynolds [1] proposes a famous Hoare-style logic known as separation logic
which has received much attention. For the last decade, many works extend sep-
aration logic to do automated assertion checking [2] and shape analysis [3] in
real-world applications. PTL (Pointer Assertion Logic) is a notation for express-
ing assertions about the heap structures of imperative languages. PALE (PAL
Engine) is a complete implementation of PAL that encodes both programs and
partial assertions as formulas in monadic second-order logic. However, loop
invariants have to be manually provided so that it is not fully automatic.

This research is supported by the National Natural Science Foundation of China
Grant Nos. 61133001, 61322202, 61420106004, and 91418201.

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 735–743, 2016.
DOI: 10.1007/978-3-319-48749-6 55

736 X. Lu et al.

In this paper we intend to apply the model checking framework to verify heap
evolution properties. As the property-specification language we use a variant of
temporal logic namely PPTLSL [4]. PPTLSL is a two-dimensional (spatial and
temporal) logic by extending PPTL (Propositional Projection Temporal Logic)
[5] with a decidable fragment of separation logic. For the program part, our
method makes use of a temporal logic programming language, which is an exe-
cutable subset of PTL (Projection Temporal Logic), called MSVL (Modeling,
Simulation and Verification Language) [6], to model heap programs. PPTLSL

can be translated (preserving satisfiability) into a strict subset of PTL. Spec-
ifications and models lie in the same logic framework, hence the name unified
model checking. The previous unified model checking approach [7] cannot verify
heap evolution properties. We extend the approach in [7] by replacing PPTL
with the more expressive specification language PPTLSL such that heap evo-
lution properties can be verified, and also the corresponding model checking
approach is developed in this paper.

The work in [8] studies the problem of establishing temporal properties,
including liveness properties of Java programs with evolving heaps. A specifica-
tion language Evolution Temporal Logic (ETL) is defined which is a first-order
linear temporal logic with transitive closure. ETL mainly focuses on describ-
ing behaviors of large granularity heap objects and high-level threads. Naviga-
tion Temporal Logic (NTL) [9] extends LTL with pointer assertions on single-
reference structures including primitives for the birth and death of entities. The
abstracted model checking algorithm for NTL is a non-trivial extension of the
tableau based algorithm for LTL, which can be applied for both sequential and
concurrent pointer programs. The major disadvantage of the approach of [9] is
that it can only verify programs manipulating singly-linked lists. In [10], Rieger
presents an abstraction and verification framework for pointer programs oper-
ating on unbounded heaps. In his work, two abstraction techniques are intro-
duced, one is for singly-linked structures and the other employs context-free
hyperedge replacement graph grammars to model more general heap structures.
A two-dimensional (time and space) logic named maLTL is developed in [11] by
combining temporal logic LTL and CTL, which is suitable to deal with pointers
and heap management in the context of C programs. Since both dimensions of
maLTL are realized by temporal logics that makes the difference between the
two dimensions unclear.

2 Projection Temporal Logic

Let V ar be a countable set of typed variables consisting of static and dynamic
variables, and Prop a countable set of propositions. B represents the boolean
domain {true, false}, and D denotes the data domain. The terms e and formulas
Q of PTL are given by the following grammar:

e ::= x | ©e | -©e | fun(e1, . . . , en)

Q ::= q | e1 =e2 | Pred(e1,. . ., en) | ¬Q | Q1∨Q2 | ∃y :Q | ©Q | Q∗ | (Q1,. . ., Qm) prj Q

Using Unified Model Checking to Verify Heaps 737

where q ∈ Prop is a proposition, x ∈ V ar a variable, and fun a function of arity
n and Pred is a predicate of arity n.

A state s is defined to be a pair (Iv, Ip) of state interpretations Iv and Ip,
Iv : V ar → D ∪ {nil}, Ip : Prop → B. An interval σ = 〈s0, s1, . . .〉 is a non-
empty sequence of states, finite or infinite. The length of σ, denoted by |σ|,
is ω if σ is infinite, otherwise it is the number of states minus one. To have
a uniform notation for both finite and infinite intervals, we will use extended
integers as indices. That is, we consider the set N0 of non-negative integers, and
define Nω = N0 ∪ {ω}, and extend the comparison operators, =, <, ≤, to Nω

by considering ω = ω, and for all i ∈ N0, i < ω. Moreover, we define � as
≤ −{(ω, ω)}. With such a notation, σ(i..j)(0 ≤ i � j ≤ |σ|) denotes the sub-
interval 〈si, . . . , sj〉 and σ(k)(0 ≤ k � |σ|) denotes the suffix interval 〈sk, . . . , s|σ|〉
of σ. The concatenation of σ with another interval σ′ is denoted by σ ·σ′. Further,
let σ = 〈sk, . . . , s|σ|〉 be an interval and r1, . . . , rh be integers (h ≥ 1) such that
0 ≤ r1 ≤ r2 ≤ · · · ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is the interval,
σ ↓ (r1, . . . , rh) = 〈st1 , . . . , stl〉, where t1, . . . , tl is obtained from r1, . . . , rh by
deleting all duplicates.

An interpretation for a PTL formula is a triple I = (σ, k, j) where σ =
〈s0, s1, . . .〉 is an interval, k a non-negative integer and j an integer or ω such
that k � j ≤ |σ|. We write (σ, k, j) |= Q to mean that a formula Q is interpreted
over a sub-interval σ(k..j) of σ with the current state being sk. The notation sk =
(Ik

v , Ik
p) indexed by k represents the k-th state of an interval σ. The semantics

of terms and PTL formulas are defined by:

I[x]=

{
Ik

v [x]=Ii
v[x] x is static,

Ik
v [x] otherwise.

I[fun(e1,. . ., en)]=

{
I[fun](I[e1],. . ., I[en]) if i<k,

nil otherwise.

I[©e] =

{
(σ, i, k + 1, j)[e] if k < j,

nil otherwise.
I[-©e] =

{
(σ, i, k − 1, j)[e] if i < k,

nil otherwise.

I |= q iff Ik
p (q) = true. I |= e1 = e2 iff I(e1) = I(e2).

I |= P red(e1, . . . , en) iff Pred(I[e1], . . . , I[en]) = true and I[ei] �= nil, for all i.

I |= ¬Q iff I �|= Q. I |= ∃y : Q iff ∃σ′ such that σ′
(k..j)

x
= σ(k..j) and (σ′, k, j) |= Q.

I |= Q1 ∨ Q2 iff I |= Q1 or I |= Q2. I |= ©Q iff k < j and (σ, k + 1, j) |= Q.

I |= (Q1, . . . , Qm)prj Q iff ∃k = r0 ≤ r1 ≤ · · · ≤ rm � j such that (σ, r0, r1) |= Q1,

(σ, rl−1, rl) |= Ql(1 < l ≤ m), (σ′, 0, 0, |σ′|) |= Q for one of the σ′ : (a) rm < j and

σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1..j)(b) rm = j and σ′ = σ ↓ (r0, . . . , rh) for 0 ≤ h ≤ m.

I |= Q∗ iff ∃r0, . . . , rn ∈ Nω such that k = r0 ≤ r1 ≤ · · · ≤ rn−1 � rn = j(n ≥ 0) and

(σ, r0, r1) |= Q and for all 1 < l ≤ n, (σ, rl−1, rl) |= Q; or ∃k = r0 ≤ r1 ≤ r2 ≤ · · ·
such that lim

i→∞
ri = ω and (σ, r0, r1) |= Q and for l > 1, (σ, rl−1, rl) |= Q.

738 X. Lu et al.

A formula Q is satisfied over an interval σ, written σ |= Q, if (σ, 0, |σ|) |= Q
holds. Also we have the following derived formulas:

ε
def
= ¬ © true more

def
= ¬ε Q1; Q2

def
= (Q1, Q2) prj ε Q+ def

= Q; Q∗

♦Q
def
= true; Q �Q

def
= ¬♦¬Q len(n)

def
= ©len(n − 1) skip

def
= len(1)

where ε (or len(0)) denotes an interval with zero length, “;” and “+(∗)” are used
to describe sequential and loop properties respectively.

3 Modeling, Simulation and Verification Language

MSVL is an executable temporal logic with framing technique which is recently
extended with function calls [12] and groups of types such as basic data types,
pointer types and struct types [13]. Thus it is capable of modeling pointer pro-
grams. The arithmetic and boolean expressions of MSVL can be defined as:

e ::=n | x | ©x | -©x | e1+e2 | e1−e2 | e1×e2 | e1/e2 b ::=¬b | b1∨b2 | e1 =e2 | e1 <e2

Some useful elementary statements of MSVL can be inductively defined as
follows. A convenient way to execute MSVL programs is to transform them into
their equivalent normal forms (Definition 1).

empty
def
= ε x <== e

def
= x = e ∧ px Q1 and Q2

def
= Q1 ∧ Q2 Q1 or Q2

def
= Q1 ∨ Q2

x := e
def
= ©x = e ∧ ©px ∧ skip if b then Q1 else Q2

def
= (b → Q1) ∧ (¬b → Q2)

while b do Q
def
= (Q ∧ b)∗∧�(empty → ¬b) lbf(x)

def
= ¬af(x)→∃b : (-©x = b ∧ x = b)

frame(x)
def
= �(more → ©lbf(x)) Q1‖Q2

def
= (Q1 ∧ (Q2; true)) ∨ (Q2 ∧ (Q1; true))

await(b)
def
= frame(x1, . . . , xn) ∧ �(empty ↔ b) where xi ∈ {x | x appears in b}

Definition 1 (Normal Form of MSVL). An MSVL program Q is in normal

form if Q
def=

n′
∨

i=1

Qei
∧ε∨

n∨

j=1

Qcj ∧©Qfj
, where Qfj

is a general MSVL program,

whereas Qei
and Qcj are true or all are state formulas of the form: (x1 = e1) ∧

· · · ∧ (xm = em) ∧ ·
qx1 ∧ · · · ∧ ·

qxm
.

·
q denotes either q or ¬q.

The normal form divides the formula into two parts: the present part and
the future part. A key conclusion is that any MSVL program can be reduced
to its normal form [5,6]. Therefore, we can use an incremental way to execute
MSVL programs based on normal form.

Theorem 1. Any MSVL program Q can be reduced to its normal form.

Using normal form of MSVL as a basis, a graph can be constructed, namely
Normal Form Graph (NFG) [5,6], by recursively progressing the future part of
a normal form, which explicitly illustrates the state space of an MSVL program.

Using Unified Model Checking to Verify Heaps 739

3.1 Examples of MSVL Programs Manipulating Pointers

Producer-consumer program. Consider the producer-consumer problem encoded
in MSVL below. The producer process and the consumer process share a buffer
which is realized as a global singly-linked list. The producer repeatedly generates
new items by allocating new memory heap cells, and adds them to the tail x of
the buffer, whereas the consumer removes items from the head y of the buffer
and disposes them.

The parallel operator “||” in MSVL considers the true concurrency semantics
of programs. In order to simulate the interleaving semantics of the two concurrent
processes, the await statement is employed to force a process to sleep when the
waiting condition is false, otherwise the process will continue to execute.

struct Node { Node *nxt };
frame(PC, x, y, t, r) and (

int PC<==0 and Node *x<==NULL, *y<==NULL, *t<==NULL, *r<==NULL and empty;

y:=(Node*)malloc(sizeof(Node)) and x := (Node*)malloc(sizeof(Node));

y->nxt:=x and (PC:=0 or PC:=1);

//Producer //Consumer

while(true) { while(true) {
await(PC=0); if(x!=y) then {
t:=(Node*)malloc(sizeof(Node)); await(PC=1);

x->nxt:=t and (PC:=0 or PC:=1); || r:=y and (PC:=0 or PC:=1);

await(PC=0); await(PC=1);

x:=x->nxt and (PC:=0 or PC:=1) y:=y->nxt and (PC:=0 or PC:=1);

} await(PC=1);

next(free(r)) and (PC:=0 or PC:=1)

} else {
await(PC=1);(PC:=0 or PC:=1)

}
}

)

4 The Two-Dimensional Logic PPTLSL

Previously, we integrate a decidable fragment of separation logic (referred to
as SL) with PPTL to obtain a two-dimensional logic. The logic, referred to
as PPTLSL [4], allows us to express heap evolution properties. We assume a
countable set PV ar of variables with pointer type, and a finite set Loc of memory
locations. PV al = Loc∪{null} denotes the set of pointer values which are either
locations or null. The syntax of PPTLSL formulas P is defined by the grammar:

e: := null | l | x φ: := e1 = e2 | e0 �→ {e1, . . . , en} | ¬φ | φ1 ∨ φ2 | φ1#φ2 | ∃x : φ

P : := φ | ¬P | P1 ∨ P2 | ©P | (P1, . . . , Pm) prj P | P ∗

l ∈ Loc, x ∈ PV ar, φ represents SL formulas, and P PPTLSL formulas. Formula
e0 �→ {e1, . . . , en} denotes that e0 points to e1, . . . , en, where e0 represents an
address in the heap and e1, . . . , en the consecutive values held in that address.

740 X. Lu et al.

The formula φ1#φ2 specifies properties holding respectively for disjoint portions
of the current heap, one makes φ1 true and the other makes φ2 true. The temporal
operators as well as their semantics are taken from PTL.

We refer to a pair (Is, Ih) as a memory state, Is : PV ar ⇀ PV al, Ih : Loc ⇀⋃n
i=1PV ali, where Is represents a stack and Ih a heap. Is serves as valuations of

pointer variables and Ih as valuations of heap cells. We write dom(f) to denote
the domain of mapping f . Given two mappings f1 and f2, the notation f1 ⊥ f2
means that f1 and f2 have disjoint domains. Moreover, we use f1 · f2 to denote
the union of f1 and f2. The semantics of SL formulas is given by:

(Is, Ih)[null] = null (Is, Ih)[l] = l (Is, Ih)[x] = Ih(x)

Is, Ih |=SL e1 = e2 iff (Is, Ih)[e1] = (Is, Ih)[e2]. Is, Ih |=SL ¬φ iff Is, Ih �|=SL φ.

Is, Ih |=SL e0 �→ {e1, . . . , en} iff dom(Ih) = {(Is, Ih)[e0]} and Ih((Is, Ih)[e0]) =

((Is, Ih)[e1], . . . , (Is, Ih)[en]). Is, Ih |=SL φ1 ∨ φ2 iff Is, Ih |=SL φ1 or Is, Ih |=SL φ2.

Is, Ih |=SL φ1#φ2 iff ∃Ih1 , Ih2 : Ih1 ⊥ Ih2 and Ih = Ih1 · Ih2 and Is, Ih1 |=SL φ1

and Is, Ih2 |=SL φ2. Is, Ih |=SL ∃x : φ iff ∃v ∈ PV al such that Is[x → v], Ih |=SL φ.

The semantics of P is similar to that of Q since the only difference is their
state formulas (formulas without temporal operators). Therefore, we only give
the interpretation of state formulas, i.e., I |= φ iff Ik

s , Ik
h |=

SL
φ. We abusively

use the notation I |= P , and in this case P is interpreted over an interval of
memory states.

SL can describe various heap structures, we present the following derived
formulas expressed in SL which are related to singly-linked lists.

e �→ {−1, . . . , −n} def
= ∃x1, . . . , xn : e �→ {x1, . . . , xn}#true

e ↪→ {−, . . . , −} def
= e �→ {−, . . . , −}#true alloc(e, n)

def
= e ↪→ {−1, . . . , −n}

alloc(e)
def
=
∨

n
i=1alloc(e, i) emp

def
= ¬∃x : alloc(x) �e≥n

def
= #n

i=1(∃xi : xi ↪→{e})

e1
�−→ e2

def
= alloc(e1, 1) ∧ (e2 �= e1 → ¬alloc(e2, 1) ∧ �e1 = 0) ∧ (∀x : x �= e2 →

(�x = 1 → alloc(x, 1))) ∧ (∀x : x �= null → �x ≤ 1) ∧ (∀x : alloc(x) → alloc(x, 1))

ls(e1, e2)
def
= e1

�−→ e2 ∧ ¬(e1
�−→ e2#¬emp)

e1 →+ e2
def
= ls(e1, e2)#true e1 →∗ e2

def
= e1 = e2 ∨ e1 →+ e2

Here, ls(e1, e2) describes a list segment starting from the location e1 to e2, e1 →+

e2 and e1 →∗ e2 mean that e2 is reachable from e1 via certain pointer links. emp
denotes an empty heap, and alloc(e) indicates the address e is allocated in the
current heap. Formulas describing other heap structures can also be derived.

4.1 Specify Heap Evolution Properties

For the producer-consumer program with a shared list, some interesting heap
evolution properties can be specified by PPTLSL:

Using Unified Model Checking to Verify Heaps 741

(1) Absence of memory leaks, i.e., any item can be reached by certain variable
during the execution of the program: �(∀z : alloc(z) → (x →∗ z ∨ y →∗

z ∨ t →∗ z ∨ r →∗ z)).
(2) The tail of the list is never deleted nor disconnected from the head:

©2�(alloc(x) ∧ y →∗ x).
(3) Shape integrity of the buffer, i.e., the shape of the buffer is repeatedly formed

as a linked list within every five time units: ©2((len(5) ∧ ♦ls(y, null))+).

In [4], we have proved that PPTLSL is decidable by an equisatisfiable transla-
tion. The key idea is that all the formulas expressing heaps in SL are reduced into
the first-order theory. Since the model of first-order set has no heap ingredient,
we use extra variables to simulate it. Let H denote a vector of n tuples of pointer
variables, i.e., H = ((H1,1, . . . , H1,m1), . . . , (Hn,1, . . . , Hn,mn

)). The translations
f(φ,H) and F (P,H) generate an equisatisfiable state formula φ′ to φ and an
equisatisfiable temporal formula P ′ to P respectively. Both φ′ and P ′ belong
to PTL. The detailed definitions of f and F can be found in [4]. Analogous
to MSVL, by using a very similar approach, we can construct a graph struc-
ture (also called NFG) that explicitly characterizes the model for any reduced
PPTLSL formula. The detailed proofs are given in [4], here we only give a brief
summary.

Theorem 2. PPTLSL is decidable, and its complexity is the same as PPTL,
i.e., non-elementary.

5 Model Checking with MSVL and PPTLSL

Our model checking approach is similar to the traditional automata-based model
checking except that ours is based on NFG. The starting point is a pointer
program modeled by an MSVL program M , and a PPTLSL formula P that
formalizes the desired heap evolution property on M .

In general, the model checking procedure in this framework first creates the
NFG GM of an MSVL program and the NFG G¬P of the negation of the input
PPTLSL formula, then constructs the product G of the two NFGs. The nodes
(edges) of G are conjunctions of nodes (edges) in GM and G¬P . If there exist a
valid path in G, a counterexample is found, otherwise M satisfies P .

We have developed a unified model checking tool (prototype) based on the
approach presented in this paper. As shown Fig. 1, the tool structure consists
of three essential modules: MSV, PPTLSL solver and unified model checker. An
MSVL program M is feeded into MSV, and a property P is given to the PPTLSL

solver. MSV constructs the NFG of M and PPTLSL solver builds the NFG of
¬P . The Model checker does not try to build the complete production of the
two NFGs in practice. Instead, it works in “on the fly” manner and tries to find
one valid path as early as possible. The SMT solver Z3 is called when checking
whether an edge in the product NFG is satisfied or not. We have successfully
verified the producer-consumer program with respect to the corresponding heap
evolution properties mentioned in Sect. 4.

742 X. Lu et al.

Fig. 1. Tool architecture.

6 Conclusion

In this paper, we propose a unified model checking approach with MSVL and
PPTLSL. We can apply this approach to verify heap evolution properties of
pointer programs, including both safety and liveness properties on heap struc-
tures. Since PPTLSL is able to be reduced to a subset of PTL so that programs
and properties both belong to the same logic framework which makes the verifi-
cation more convenient. We have developed a model checking tool that exploits
the SMT solver Z3 as the verification engine. In the future, more case studies
on various heap structures in addition to singly-linked structures will be carried
out.

References

1. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th Annual IEEE Symposium on Logic in Computer Science, Computer Society,
pp. 55–74. IEEE, Washington (2002)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005)

3. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analy-
sis by means of bi-abduction. J. ACM (JACM) 58(6), 26 (2011)

4. Lu, X., Duan, Z., Tian, C.: Extending PPTL for verifying heap evolution proper-
ties. arXiv preprint arXiv:1507.08426 (2015)

5. Duan, Z.: An extended interval temporal logic and a framing technique for temporal
logic programming. Ph.D. thesis, University of Newcastle upon Tyne (1996)

6. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Com-
put. Program. 70(1), 31–61 (2008)

7. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256,
pp. 167–186. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88194-0 12

8. Yahav, E., Reps, T.W., Sagiv, S., Wilhelm, R.: Verifying temporal heap properties
specified via evolution logic. Logic J. IGPL 14(5), 755–783 (2006)

9. Distefano, D., Katoen, J.-P., Rensink, A.: Safety and liveness in concurrent pointer
programs. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever, W.-P. (eds.) FMCO
2005. LNCS, vol. 4111, pp. 280–312. Springer, Heidelberg (2006). doi:10.1007/
11804192 14

http://arxiv.org/abs/1507.08426
http://dx.doi.org/10.1007/978-3-540-88194-0_12
http://dx.doi.org/10.1007/11804192_14
http://dx.doi.org/10.1007/11804192_14

Using Unified Model Checking to Verify Heaps 743

10. Rieger, S.: Verification of pointer programs. Ph.D. thesis, RWTH Aachen Univer-
sity (2009)

11. del Mar Gallardo, M., Merino, P., Sanán, D.: Model checking dynamic memory
allocation in operating systems. J. Autom. Reasoning 42(2–4), 229–264 (2009)

12. Zhang, N., Duan, Z., Tian, C.: Extending MSVL with function calls. In: Merz, S.,
Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 446–458. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-11737-9 29

13. Wang, X., Duan, Z., Zhao, L.: Formalizing and implementing types in MSVL. In:
Liu, S., Duan, Z. (eds.) SOFL+MSVL 2013. LNCS, vol. 8332, pp. 60–73. Springer,
Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-319-11737-9_29

	Using Unified Model Checking to Verify Heaps
	1 Introduction
	2 Projection Temporal Logic
	3 Modeling, Simulation and Verification Language
	3.1 Examples of MSVL Programs Manipulating Pointers

	4 The Two-Dimensional Logic PPTLSL
	4.1 Specify Heap Evolution Properties

	5 Model Checking with MSVL and PPTLSL
	6 Conclusion
	References

