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Abstract. In this paper, we study a variant of the p-center problem on
cactus graphs in which the p-center is asked to be connected, and this
problem is called the connected p-center problem. For the connected p-
center problem on cactus graphs, we propose an dynamic programming
algorithm and show that the time complexity is O(n?p?), where n is
number of vertices.
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1 Introduction

This paper concerns the connected p-center location problem on cactus graphs.
Given a simple graph G = (V, E) with n vertices and m edges, a classical p-
center problem on a graph G = (V, E) is to determine a p-vertex set V,, in G
such that the maximum distance between V), and V' is minimized.

The p-center problem on an arbitrary graph has been known to be NP-
hard [3,4]. Olariu [5] presented an O(n) time algorithm for the 1-center prob-
lem on interval graphs. Tamir [6] showed that the weighted and un-weighted
p-center problems on networks can be solved in O(nPm? log2 n) time and
O(nP~'mPlog® n) time, respectively. Frederickson [2] showed how to solve this
problem for trees in optimal linear time using parametric search.

The connected p-center problem is proposed by Yen and Chen [7]. They
showed that the CpC problem is NP-hard even when the underlying graph is
a bipartite graph or a split graph, and gave an O(n) time algorithm to solve
the problem on tree graphs. In [8], Yen proved that the CpC' problem on block
graph is NP-hard even when (1) w(v) = 1, for all v € V, and [(e) € {1, 2}, for
all e € E, and (2) w(v) € {1,2}, for all v € V, and I(e) = 1, for all e € E,
respectively.
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2 Notations and Basic Properties

Let G = (V, E) be a simple cactus graph, where each vertex v € V is associated
with a unit weight w(v) = 1 and each edge e € F is associated with a length
I(e) > 0. Denote by P[u,v] the shortest path in G from u to v, u,v € V.

In order to facilitate the overview of the proposed algorithms for the center
problems in cactus networks, we start with the well-known tree structure of a
cactus network [1]. The vertex set V' is partitioned into three different subsets:
C-vertices, G-vertices and hinges.

It is easy to see that a cactus consists of blocks, which are either a cycle or a
graft. Thus, we can use a tree T to represent the skeleton over G, where each
element in T represents a block or a hinge of G.

To make the tree T ready for use as intended, we convert it into a rooted
tree as follows: We pick an arbitrary block, e.g., By, as the “root” of Tg. For
each block B in T¢, we define the level Lev(B) of B to be the number of edges
on P[B, By]. Denote by L = maxper,{Lev(B)}. If it exists, the father of a
block B is always a hinge h, called its companion hinge. For simplicity, we pick
an arbitrary vertex hg € By as the wvirtual companion hinge of By. Denote by
By, the block B whose companion hinge is h.

For each block By, in T, denote by G the sub-cactus of G induced by the
vertices of By, and all sub-cacti hanging from B),. Specially, G = G},. For each
hinge h of Gp,, denote by g, the vertex of Gy, \ G, which is the farthest to h.
Denote by g(h) = d(h, gn).

Let 0¢, (Vi) be the mazimum weighted distance from a k-vertez set Vi to a
sub-cactus Gy, that is,

dc, (Vi) = uemv?éh){w(u)d(u’ Vi)t

where d(u, Vi) = min,ey, d(u,v).

The Connected p-Center (CpC) Problem: Given a connected graph G =
(V,E) and a positive integer p > 2, identify a p-vertex set V,, C V such that
dc(V,) is minimized under the restriction that the subgraph induced by V,, is
connected. V,, is called a connected p-center of G.

For each graft By, we define a problem P(Gj,v,k): Given a vertex v of By,
and a positive integer k& < p, identify a connected k-vertex set V(Gp,v, k) of
Gy, such that dg, (V(Gh,v, k)) is minimized, under the restriction that v is the
closest vertex to h in V(Gp,v,k) N V(By). V(Gp,v,k) is called a v-restricted
connected k-center of Gy,.

For each cycle B, with s indexed vertices v1 = h,vy,...,vs, We
define a problem P(Gy,{vi,vj}, k) (P°(Gh,{vi,v;},k)): Given two vertices
v,,v; € V(Bp) with ¢ < j, and a positive integer k& < p, identify
a connected k-vertex set V(Gp,{vi,v;},k) (V°(Ghn,{vi,v;},k)) of Gp such
that dg, (V(Gh,{vi,vj}, k) (0g, (V(Gh,{vi,v;},k))) is minimized, under the
restriction that V(Gy, {v;,v;}, k) NV (By,) contains only the vertices of the path
from v; to v; on By, in clockwise (counter-clockwise) direction. V/(Gp, {vi, v}, k)
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(Veo(Gh, {vi,vj}, k)) is called a {v;, v, }-restricted clockwise (counter-clockwise)
connected k-center of Gy,.

For all sub-cacti G}, denote by V; (resp. Va) the set of V(Gy,v,p) (resp.
V(Gh,{vi,v;},p) and V(Gp, {vi, v;}, p)).

Lemma 1. There exists a connected p-center of Gp, in Vi U Vs.

Proof. Let V,, be a connected p-center of Gj,. We assume that v € V, is the
closest vertex to hg, and By is the block that contains v. We distinguish the
following two cases.

Case 1. By, is a graft of Gy, assume that V (G}, v, p) is a v-restricted connected
p-center of Gy. It is easy to see that:

0cn, (Vp) = max{dg, (V;), d(v, h) + g(h)}
> max{dq, (V(Gpr,v,p)),d(v,h) + g(h)}
= 5Gh,0 (V(Ghv vvp))v

which implies V (G, v, p) is also an optimal solution to CpC problem.

Case 2. B}, is a cycle of G,. W.lo.g., we only consider the case V,, N V(B})
contains only the vertices of the path from v; to v; on By, in clockwise direc-
tion, where ¢ < j (the other case can be handled similarly). Assume that
V(Gh,{vi,v;},p) is a {v;, vj }-restricted connected p-center of G},. By the similar
discussion in Case 1, we have:

0G, (Vp) = max{dc, (Vp), max{d(v, h),d(vj, h)} + g(h)}
> max{dq, (V(Gh, {vi,v;},p)), max{d(v;, h),d(vj, h)} + g(h)}
= 6Gh,0 (V(Gha {vh Uj}ap))a

which implies V (G}, {v;,v;}, p) is also an optimal solution to CpC problem. O

Based on Lemmal, we are going to devise an algorithm to identify all
restricted connected p-centers in V; U Vs.

3 Algorithm for the CpC Problem on Cactus Graphs

3.1 Procedure GRAFT(B,h)

Given a graft T = Bj,. Root T at the vertex h. Let leaf(T) be all leaves of T'.
For each vertex v of T, we define the level lev(v) of v to be the number of edges
on Plh,v] and L;, = max,cy (1) lev(v). If v # h, then by removing the last edge
of P[h,v], we obtain two subtrees of T'. Let T, be the subtree that contains v,
and let TS = T'\ T,,. Similarly, we let G, be the subgraph of G}, induced by the
vertices of T, and the sub-cacti hanging from T,,, and G¢ = Gy, \ G,.

For each vertex v in T, let F(v) be the edges of T, which are adjacent to v.
Denote by s(v) = |E(v)|. We define an arbitrary order among the edges of E(v),
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and we denote the Ith edge in E(v) by e(v,l). If v; is the other endpoint of the
e(v,1), then we say that v; is the Ith son of v, and v is the father fa(v;) of v;.
Denote by son(v) be the sons of v. Denote by T.(, ;) the maximal connected
subgraph of T,, which contains v but does not contain any edge e(v, j) for j > [.
In particular, Ty, 0) = v and Ty, s(v)) = Ty. Similarly, we define G, ;) to be
the subgraph of G, induced by the vertices of T¢, ;) and all sub-cacti hanging
from Te(v7l)~

Let e(v,1) be an arbitrary edge of T'. Let S(e(v,1), k) be a connected k-vertex
set of G, which contains v but does not contain any vertex v; € son(v) for j > [.
Then we define a partial distance-value of S(e(v,1), k) over Gy p)-

Definition 1. Let e(v,l) be any arbitrary edge of T. For each positive integer
by 1< k< min{p, [Goop|}, we define:

R*(e(v,1),k) (5(;6(“7”(5(6(1),1)716)).

= min
S(e(v,l),k)CG(e(v,l))
The corresponding set to R*(e(v,1),k) is denoted by S*(e(v,1), k).

Next, for the vertices in GS, we define the value R*(G¢, v) as follow:
RY(Gy,0) = dgg (v),

which is in fact the distance-value of the 1-center v over G¥,.
Once we obtain the values R*(e(v, s(v)), k) and R*(GS,v), the distance-value
of V(Gh,v, k) can be computed as:

0c, (V(Gh, v, k) = max{R"(e(v, 5(v)), k), R*(G5,v)}. (1)

According to our assumption, when the block Bj to be processed, we can
assign for each v in leaf(T) the following values. For each vertex v of degree 0
in G, we assign:

R*(e(v,0),1) =0

and

S*(e(v,0),1) « {v}.

For each vertex v which is the companion hinge of some block B,, if B, is a
graft, we assign:
R*(e(v,0),k) = éc, (V(Gy,v,k))

and
S*(e(v,0),k) «— V(Gy,v, k).

Otherwise, we assign:
R*(e(v,0),k) = 0, (V(Go, {v, v}, k))

and
S*(e(v,0),k) — V(Gy, {v,v}, k).
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The Computation of R*(e(v,l), k) and S*(e(v,l), k). We assume that, when
the jth stage begins, the value R*(e(v,s(v)), k) has been computed for each
vertex v € T of level lev(v) > L/ — j + 1. During the jth stage, we search
through all vertices of level L/ — j. For each such a vertex v, we compute all
values R*(e(v, s(v)), k) and go on the next vertex of level L — j.

Let v be a vertex of level L) — j. We start by assigning:

R*(e(v,0),1) = max {d(v,u)+ R*(e(u,0),1)}.
u€son(v)
Assume that we already known the values R*(e(v,l’), k) for all I < I, and we
now compute the value R*(e(v,1), k) as follows:
* _ . . * _ / * _ /
R*(e(v,1), k) = min { oglglészlmax{R (e(v,1 —1),k"), R*(e(vr, s(v), k — k") },
max{R* (e(0, — 1), k), €(v, 1) + R*(e(wr, s0), D} (2)

On the right-hand side of (2), the first term corresponds to v; € S*(e(v,1), k),
and the second term corresponds to v; & S*(e(v,1), k).
If v; € S*(e(v,1), k), assign:

S*(e(v,1), k) «— S*(e(v,l — 1), k") U S*(e(v, s(v)), k — k"), (3)

where £ is the number such that the first term of the right-hand side of (3) is
minimized. Otherwise, assign:

S*(e(v,1), k) — S*(e(v,l — 1), k).

We can compute all values R*(e(v,l), k) by passing through all edges in T.
Note that there are at most |T'|p values R*(e(v, 1), k) must be computed, each of
those computations involved the finding of a minimum over at most 2k terms.
Thus, the total time complexity is O(|T|p?).

The Computation of R*(G¢,v). The value R*(G¢,v) can be computed by
using the distances matrix of T and the values R*(e(u,0),1),u € leaf(T), that is:

R*(Gg,v) = ue?;?;i(T){d(v’ u) + R*(e(u,0),1)}.

It is easy to see that the total time is O(]T'|?) to compute the values R*(G¢,v).

3.2 The Procedure CYCLE(C, h)

Let C be the cycle By, with s clockwise indexed vertices v1 = h,vs,...,vs. For
any pair v;,v; € V(C) (i < j), denote by C,, o; ( Cy?,,) the subgraph induced by
the vertices of the path from v; to v; in clockwise direction (in counter-clockwise
direction), and Gy, ; (G7?,,,) the subgraph induced by Cy, ., (C5?, ) and the
sub-cacti hanging from it. Let G§, , = Gr \ Gy, 0,

Vi,V
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The Computation of V (G, {v;,v;}, k). Let V({v;,v;}, k) be a connected k-
vertex set of G%Uj that contains the vertices v; and v;. Then we define the
partial distance-value of V' ({v;,v;}, k) over G, ., as follow:

RT({Uivvj}v k) = V({vs vglikr)lCG 6G'Ui,vj (V({Uiﬁvj}v k))
3,05 1K) G, u;

Let e,,(;,+) be the edge that contains the midpoint of the path from v; to v;
in clockwise direction. Particularly, if the midpoint happens to be a vertex, then
it coincides with vy, (; ;). By deleting the edge €, (; ) from Ggi,vj, we obtain two
subgraphs Gg;{v, and Ggf%, which contain vy, and v, )41, respectively.

Now we define the following values:

R;({vi7vj}>vj) = 5Gf,;.{, ({7}]})

]

and
Ry({vi, 05}, 0i) = 0gez ({vi})

j
to represent the partial distance-values of v; and v;, respectively.

Once we obtain all values defined above, the distance-value of
V(Gh, {vi, v}, k) can be computed as:

6, (V(Gh,{vi, v}, k) = max{R}({vi, v}, k), R5({vi,v;},v;), R5({vi v}, vi)}

Note that the values R} ({v;,v;}, k) can be computed by applying the proce-
dure GRAFT(B, h), and the total time is O(|C|?*p?).

Given an edge e, = (U, Um41) in C. Let Plen) = {{vi, vr b {00,000 by - - 1
{vi,,vr, }} be all vertex pairs of C' with their middle edges are e,,, where I; >
lb>...>24L Let V={u,,u,... 7Ult}~

Because of the recursion

R;({UW)U%}) = maX{R;({UMq ’ vlk—l}’ Ulk—l) + d(vlk + Ulk—1)7
max {d(vy,, vj) + Ri({v;, vy}, 1)} (4)

lp—1>7" >k

we can calculate all values R3({v,, , vy, }, v, ) for I; <l <I; by passing through
all vertices in V and cost O(|C]) time for comparing and adding operations.
Thus, all values can be computed in O(]C]?) time since there O(|C|?) values
must be computed and O(|C|) edges in C.

The Computation of V(G {vi,v;}, k). Let V°({v;,v,}, k) be a connected
k-vertex set of Gﬁ?’vj that contains the vertices v; and vj, let ey, ;) be the
edge that contains the midpoint of the path from v; to v; in clockwise direction.
Particularly, if the midpoint happens to be a vertex, then it coincides with vy, ; ;-

Next we define the partial value:

RZ({Ui’ Uj}7 k) - Veo({v; vrn}i%)CGco 6G"C’Ci)~"’j (VCO({Ui7 ,Uj}7 k))’

R
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as well as the values RE({vi,v;},v;) and R§({vs, v,}, v5), similar to Rs({v;, v,},
v;) and R%({vi,v;},v:), respectively. Therefore, we can compute the distance-
value of V°°(Gy, {v;,v;}, k) as:
6c, (V(Gn,{vi,vs}, k) = max{Ry({vi,v; }, k), R5({vi,v;},vi), Rs({vi,vs},v5)}-
It is easy to see that all values R} ({v;, v}, k), RE({vi, v, },vi), RE({vi, v;}, v5)
can be computed similarly as above, and the time complexity is O(|C|?p?).

3.3 Algorithm for the CpC Problem

By Lemmal, we can now identify a connected p-center V* from V; U V,. The
distance-value of V) can be computed by the following relation:

8(V;) =min{ | min {max{3c, (V(Gr.v.p)),d(v, )+ g(h)},

maX{dGh (V(Ghv {Uiv ’U]'},p)), max{d(vj, h)v d(viv h)} + g(h)}7

max{da, (V°(Gn, {vi,v;},p)), 9(h)}}. ()

min
V(Gh{vi,vj}p)EV2

min
Veo(Gp,{vi,vj},p)EV2

We can now formulate the algorithm for the C'pC' problem.

Algorithm 1. Connected_p-Center_on_Cactus_Graphs.

Input: A cactus graph G(hg), the corresponding skeleton Ts(By) and its
maximal level L,,.
Output: A connected p-center V' and its distance-value.
2 fori=1;i <= L,,;i++ do
3 for each block B of level 2L, —2i+ 1 do

4 if B is a graft then
5 Let h be the companion hinge of B, let L/, be the maximal
level of B;
6 for j=1;j<=1L),;j++ do
7 Call GRAFT(B,h) to compute the values V(Gp, v, k) for
each vertex v of level j and 1 < k < min{p, |G,|};
end
9 end
10 if B is a cycle then
11 Let h be the companion hinge of C}
12 Call CYCLE(B, h) to compute the values V(Gp, {v;, v}, k)
and V°° (G, {vi,v;}, k) for all pair v;,v; € V(C) (i < j) and
all possible numbers k;
13 end
14 end
15 end

16 return Identify a connected p-center V' by using the Eq. (5).
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As a preprocessing for Algorithm 1, we first compute the distance-matrix of
the given cactus. Then we find a skeleton of the given cactus and compute g(h)
for each companion hinge A in the skeleton. This preprocessing requires O(n?)
steps. Then we can find a p-center from V; UV, by using the binary search
method.

Theorem 1. The CpC' problem on a cactus graph of n vertices can be solved in
O(n?p?) time.

4 Conclusions

In this paper we consider the connected p-center on graphs. We devise a dynamic
programming algorithm of the complexity O(n?p?) for the problem on cac-
tus graphs. In the future, it is very meaningful to extend our algorithm to
other classes of graphs, such as interval graphs, circular-arc graphs and planar
graphs, etc.
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