The Connected *p***-Center Problem on Cactus Graphs**

Chunsong Bai¹, Liying Kang², and Erfang Shan^{3(\boxtimes)}

¹ Fuyang Normal College, Fuyang 236041, P.R. China csbai@fync.edu.cn

² Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China lykang@shu.edu.cn

³ School of Management, Shanghai University, Shanghai 200444, P.R. China efshan@i.shu.edu.cn

Abstract. In this paper, we study a variant of the *p*-center problem on cactus graphs in which the p-center is asked to be connected, and this problem is called the connected p-center problem. For the connected pcenter problem on cactus graphs, we propose an dynamic programming algorithm and show that the time complexity is $O(n^2p^2)$, where n is number of vertices.

Keywords: Location problem \cdot Connected p-center problem \cdot Cactus graph · Dynamic programming

1 Introduction

This paper concerns the connected p-center location problem on cactus graphs. Given a simple graph $G = (V, E)$ with n vertices and m edges, a classical pcenter problem on a graph $G = (V, E)$ is to determine a p-vertex set V_p in G such that the maximum distance between V_p and V is minimized.

The p-center problem on an arbitrary graph has been known to be NP-hard [\[3](#page-7-0),[4\]](#page-7-1). Olariu [\[5\]](#page-7-2) presented an $O(n)$ time algorithm for the 1-center problem on interval graphs. Tamir [\[6\]](#page-7-3) showed that the weighted and un-weighted p-center problems on networks can be solved in $O(n^p m^p \log^2 n)$ time and $O(n^{p-1}m^p \log^3 n)$ time, respectively. Frederickson [\[2\]](#page-7-4) showed how to solve this problem for trees in optimal linear time using parametric search.

The connected p-center problem is proposed by Yen and Chen $[7]$ $[7]$. They showed that the CpC problem is NP-hard even when the underlying graph is a bipartite graph or a split graph, and gave an $O(n)$ time algorithm to solve the problem on tree graphs. In $[8]$, Yen proved that the CpC problem on block graph is NP-hard even when (1) $w(v) = 1$, for all $v \in V$, and $l(e) \in \{1,2\}$, for all $e \in E$, and $(2) w(v) \in \{1,2\}$, for all $v \in V$, and $l(e) = 1$, for all $e \in E$, respectively.

-c Springer International Publishing AG 2016

Research was partially supported by NSFC (grant numbers 11571222, 11471210).

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 718–725, 2016.

DOI: 10.1007/978-3-319-48749-6 53

2 Notations and Basic Properties

Let $G = (V, E)$ be a simple cactus graph, where each vertex $v \in V$ is associated with a unit weight $w(v) = 1$ and each edge $e \in E$ is associated with a length $l(e) > 0$. Denote by $P[u, v]$ the shortest path in G from u to v, $u, v \in V$.

In order to facilitate the overview of the proposed algorithms for the center problems in cactus networks, we start with the well-known tree structure of a cactus network $[1]$ $[1]$. The vertex set V is partitioned into three different subsets: C-vertices, G-vertices and hinges.

It is easy to see that a cactus consists of blocks, which are either a cycle or a graft. Thus, we can use a tree T_G to represent the skeleton over G , where each element in T_G represents a block or a hinge of G .

To make the tree T_G ready for use as intended, we convert it into a *rooted tree* as follows: We pick an arbitrary block, e.g., B_0 , as the "root" of T_G . For each block B in T_G , we define the *level* Lev(B) of B to be the number of edges on $P[B, B_0]$. Denote by $L = \max_{B \in T_G} {Lev(B)}$. If it exists, the *father* of a block B is always a hinge h, called its *companion hinge*. For simplicity, we pick an arbitrary vertex $h_0 \in B_0$ as the *virtual* companion hinge of B_0 . Denote by B_h the block B whose companion hinge is h.

For each block B_h in T_G , denote by G_h the sub-cactus of G induced by the vertices of B_h and all sub-cacti hanging from B_h . Specially, $G = G_{h_0}$. For each hinge h of G_{h_0} , denote by g_h the vertex of $G_{h_0} \setminus G_h$ which is the farthest to h. Denote by $g(h) = d(h, g_h)$.

Let $\delta_{G_h}(V_k)$ be the *maximum weighted distance from a k-vertex set* V_k to a *sub-cactus* G*h*, that is,

$$
\delta_{G_h}(V_k) = \max_{u \in V(G_h)} \{w(u)d(u,V_k)\},\
$$

where $d(u, V_k) = \min_{v \in V_k} d(u, v)$.

The Connected p-Center (CpC) Problem: Given a connected graph $G =$ (V, E) and a positive integer $p \geq 2$, identify a *p*-vertex set $V_p \subseteq V$ such that $\delta_G(V_p)$ is minimized under the restriction that the subgraph induced by V_p is connected. V*^p* is called a *connected* p*-center* of G.

For each graft B_h , we define a problem $P(G_h, v, k)$: Given a vertex v of B_h and a positive integer $k \leq p$, identify a connected k-vertex set $V(G_h, v, k)$ of G_h such that $\delta_{G_h}(V(G_h, v, k))$ is minimized, under the restriction that v is the closest vertex to h in $V(G_h, v, k) \cap V(B_h)$. $V(G_h, v, k)$ is called a v-restricted connected k-center of G*h*.

For each cycle B_h with s indexed vertices $v_1 = h, v_2, \ldots, v_s$, we define a problem $P(G_h, \{v_i, v_j\}, k)$ $(P^{co}(G_h, \{v_i, v_j\}, k))$: Given two vertices $v_i, v_j \in V(B_h)$ with $i \leq j$, and a positive integer $k \leq p$, identify a connected k-vertex set $V(G_h, \{v_i, v_j\}, k)$ $(V^{co}(G_h, \{v_i, v_j\}, k))$ of G_h such that $\delta_{G_h}(V(G_h, \{v_i, v_j\}, k))$ ($\delta_{G_h}(V^{co}(G_h, \{v_i, v_j\}, k))$) is minimized, under the restriction that $V(G_h, \{v_i, v_j\}, k) \cap V(B_h)$ contains only the vertices of the path from v_i to v_j on B_h in clockwise (counter-clockwise) direction. $V(G_h, \{v_i, v_j\}, k)$ $(V^{co}(G_h, \{v_i, v_j\}, k))$ is called a $\{v_i, v_j\}$ -restricted clockwise (counter-clockwise) connected k-center of G*h*.

For all sub-cacti G_h , denote by \mathcal{V}_1 (resp. \mathcal{V}_2) the set of $V(G_h, v, p)$ (resp. $V(G_h, \{v_i, v_j\}, p)$ and $V^{co}(G_h, \{v_i, v_j\}, p)$.

Lemma 1. *There exists a connected p-center of* G_{h_0} *in* $V_1 \cup V_2$ *.*

Proof. Let V_p be a connected p-center of G_{h_0} . We assume that $v \in V_p$ is the closest vertex to h_0 , and B_h is the block that contains v. We distinguish the following two cases.

Case 1. B_h is a graft of G_{h_0} , assume that $V(G_h, v, p)$ is a v-restricted connected p-center of G_h . It is easy to see that:

$$
\delta_{G_{h_0}}(V_p) = \max \{ \delta_{G_h}(V_p), d(v, h) + g(h) \}
$$

\n
$$
\geq \max \{ \delta_{G_h}(V(G_h, v, p)), d(v, h) + g(h) \}
$$

\n
$$
= \delta_{G_{h_0}}(V(G_h, v, p)),
$$

which implies $V(G_h, v, p)$ is also an optimal solution to CpC problem.

Case 2. B_h is a cycle of G_{h_0} . W.l.o.g., we only consider the case $V_p \cap V(B_h)$ contains only the vertices of the path from v_i to v_j on B_h in clockwise direction, where $i \leq j$ (the other case can be handled similarly). Assume that $V(G_h, \{v_i, v_j\}, p)$ is a $\{v_i, v_j\}$ -restricted connected p-center of G_h . By the similar discussion in Case 1, we have:

$$
\delta_{G_{h_0}}(V_p) = \max\{\delta_{G_h}(V_p), \max\{d(v_i, h), d(v_j, h)\} + g(h)\}
$$

\n
$$
\geq \max\{\delta_{G_h}(V(G_h, \{v_i, v_j\}, p)), \max\{d(v_i, h), d(v_j, h)\} + g(h)\}
$$

\n
$$
= \delta_{G_{h_0}}(V(G_h, \{v_i, v_j\}, p)),
$$

which implies $V(G_h, \{v_i, v_j\}, p)$ is also an optimal solution to CpC problem. \Box

Based on Lemma [1,](#page-2-0) we are going to devise an algorithm to identify all restricted connected p-centers in $\mathcal{V}_1 \cup \mathcal{V}_2$.

3 Algorithm for the *CpC* **Problem on Cactus Graphs**

3.1 Procedure GRAFT(*B, h***)**

Given a graft $T = B_h$. Root T at the vertex h. Let $leaf(T)$ be all leaves of T. For each vertex v of T , we define the *level* lev(v) of v to be the number of edges on $P[h, v]$ and $L'_m = \max_{v \in V(T)} lev(v)$. If $v \neq h$, then by removing the last edge of $P[h, v]$, we obtain two subtrees of T. Let T_v be the subtree that contains v, and let $T_v^c = T \setminus T_v$. Similarly, we let G_v be the subgraph of G_h induced by the vertices of T_v and the sub-cacti hanging from T_v , and $G_v^c = G_h \setminus G_v$.

For each vertex v in T, let $E(v)$ be the edges of T_v which are adjacent to v. Denote by $s(v) = |E(v)|$. We define an arbitrary order among the edges of $E(v)$,

and we denote the *l*th edge in $E(v)$ by $e(v, l)$. If v_l is the other endpoint of the $e(v, l)$, then we say that v_l is the *l*th son of v, and v is the father $fa(v_l)$ of v_l . Denote by $son(v)$ be the sons of v. Denote by $T_{e(v,l)}$ the maximal connected subgraph of T_v which contains v but does not contain any edge $e(v, j)$ for $j > l$. In particular, $T_{e(v,0)} = v$ and $T_{e(v,s(v))} = T_v$. Similarly, we define $G_{e(v,l)}$ to be the subgraph of G_v induced by the vertices of $T_{e(v,l)}$ and all sub-cacti hanging from $T_{e(v,l)}$.

Let $e(v, l)$ be an arbitrary edge of T. Let $S(e(v, l), k)$ be a connected k-vertex set of G_v which contains v but does not contain any vertex $v_j \in son(v)$ for $j > l$. Then we define a partial distance-value of $S(e(v,l), k)$ over $G_{e(v,l)}$.

Definition 1. Let $e(v, l)$ be any arbitrary edge of T. For each positive integer $k, 1 ≤ k ≤ min{p, |G_{e(v,l)}|}$ *, we define:*

$$
R^*(e(v, l), k) = \min_{S(e(v, l), k) \subseteq G(e(v, l))} \delta_{G_{e(v, l)}}(S(e(v, l), k)).
$$

The corresponding set to $R^*(e(v,l),k)$ *is denoted by* $S^*(e(v,l),k)$ *.*

Next, for the vertices in G_v^c , we define the value $R^*(G_v^c, v)$ as follow:

$$
R^*(G_v^c, v) = \delta_{G_v^c}(v),
$$

which is in fact the distance-value of the 1-center v over G_v^c .

Once we obtain the values $R^*(e(v, s(v)), k)$ and $R^*(G_v^c, v)$, the distance-value of $V(G_h, v, k)$ can be computed as:

$$
\delta_{G_h}(V(G_h, v, k)) = \max\{R^*(e(v, s(v)), k), \ R^*(G_v^c, v)\}.
$$
 (1)

According to our assumption, when the block B_h to be processed, we can assign for each v in $leaf(T)$ the following values. For each vertex v of degree 0 in G , we assign:

$$
R^*(e(v,0),1) = 0
$$

and

$$
S^*(e(v,0),1) \leftarrow \{v\}.
$$

For each vertex v which is the companion hinge of some block B_v , if B_v is a graft, we assign:

$$
R^*(e(v,0),k) = \delta_{G_v}(V(G_v,v,k))
$$

and

$$
S^*(e(v,0),k) \leftarrow V(G_v,v,k).
$$

Otherwise, we assign:

$$
R^*(e(v,0),k) = \delta_{G_v}(V(G_v,\{v,v\},k))
$$

and

$$
S^*(e(v,0),k) \leftarrow V(G_v,\{v,v\},k).
$$

The Computation of $R^*(e(v,l), k)$ and $S^*(e(v,l), k)$. We assume that, when the *j*th stage begins, the value $R^*(e(v, s(v)), k)$ has been computed for each vertex $v \in T$ of level $lev(v) \geq L'_m - j + 1$. During the *j*th stage, we search through all vertices of level $L'_m - j$. For each such a vertex v, we compute all values $R^*(e(v, s(v)), k)$ and go on the next vertex of level $L'_m - j$.

Let v be a vertex of level $L'_m - j$. We start by assigning:

$$
R^*(e(v,0),1) = \max_{u \in son(v)} \{d(v,u) + R^*(e(u,0),1)\}.
$$

Assume that we already known the values $R^*(e(v, l'), k)$ for all $l' < l$, and we now compute the value $R^*(e(v,l), k)$ as follows:

$$
R^*(e(v,l),k) = \min\left\{\min_{0 \le k' \le k-1} \max\{R^*(e(v,l-1),k'), R^*(e(v_l, s(v_l), k-k')\},\max\{R^*(e(v,l-1),k), \ell(v, v_l) + R^*(e(v_l, s(v_l)), 1)\}\right\}.
$$
 (2)

On the right-hand side of [\(2\)](#page-4-0), the first term corresponds to $v_l \in S^*(e(v,l), k)$, and the second term corresponds to $v_l \notin S^*(e(v,l), k)$.

If $v_l \in S^*(e(v,l),k)$, assign:

$$
S^*(e(v, l), k) \leftarrow S^*(e(v, l-1), k'') \cup S^*(e(v_l, s(v_l)), k - k''),
$$
\n(3)

where k'' is the number such that the first term of the right-hand side of [\(3\)](#page-4-1) is minimized. Otherwise, assign:

$$
S^*(e(v,l),k) \leftarrow S^*(e(v,l-1),k).
$$

We can compute all values $R^*(e(v,l), k)$ by passing through all edges in T. Note that there are at most $|T|p$ values $R^*(e(v,l), k)$ must be computed, each of those computations involved the finding of a minimum over at most $2k$ terms. Thus, the total time complexity is $O(|T|p^2)$.

The Computation of $R^*(G_v^c, v)$. The value $R^*(G_v^c, v)$ can be computed by using the distances matrix of T and the values $R^*(e(u, 0), 1), u \in \text{leaf}(T)$, that is:

$$
R^*(G_v^c, v) = \max_{u \in leaf(T)} \{d(v, u) + R^*(e(u, 0), 1)\}.
$$

It is easy to see that the total time is $O(|T|^2)$ to compute the values $R^*(G_v^c, v)$.

3.2 The Procedure CYCLE(*C, h***)**

Let C be the cycle B_h with s clockwise indexed vertices $v_1 = h, v_2, \ldots, v_s$. For any pair $v_i, v_j \in V(C)$ $(i \leq j)$, denote by C_{v_i, v_j} (C_{v_i, v_j}^{co}) the subgraph induced by the vertices of the path from v_i to v_j in clockwise direction (in counter-clockwise direction), and G_{v_i,v_j} (G_{v_i,v_j}^{co}) the subgraph induced by C_{v_i,v_j} (C_{v_i,v_j}^{co}) and the $\text{sub-cacti hanging from it. Let } G_{v_i, v_j}^c = G_h \setminus G_{v_i, v_j}$.

The Computation of $V(G_h, \{v_i, v_j\}, k)$. Let $V(\{v_i, v_j\}, k)$ be a connected kvertex set of G_{v_i,v_j} that contains the vertices v_i and v_j . Then we define the partial distance-value of $V({v_i,v_j},k)$ over G_{v_i,v_j} as follow:

$$
R_1^*(\{v_i, v_j\}, k) = \min_{V(\{v_i, v_j\}, k) \subseteq G_{v_i, v_j}} \delta_{G_{v_i, v_j}}(V(\{v_i, v_j\}, k)).
$$

Let $e_{m(j,i)}$ be the edge that contains the midpoint of the path from v_i to v_i in clockwise direction. Particularly, if the midpoint happens to be a vertex, then it coincides with $v_{m(j,i)}$. By deleting the edge $e_{m(j,i)}$ from G_{v_i,v_j}^c , we obtain two subgraphs $G_{v_i,v_j}^{c,1}$ and $G_{v_i,v_j}^{c,2}$, which contain $v_{m(j,i)}$ and $v_{m(j,i)+1}$, respectively. Now we define the following values:

$$
R_2^*(\{v_i, v_j\}, v_j) = \delta_{G_{v_i, v_j}^{c,1}}(\{v_j\})
$$

and

$$
R_3^*(\{v_i, v_j\}, v_i) = \delta_{G_{v_i, v_j}^{c, 2}}(\{v_i\})
$$

to represent the partial distance-values of v_j and v_i , respectively.

Once we obtain all values defined above, the distance-value of $V(G_h, \{v_i, v_j\}, k)$ can be computed as:

$$
\delta_{G_h}(V(G_h, \{v_i, v_j\}, k)) = \max\{R_1^*(\{v_i, v_j\}, k), R_2^*(\{v_i, v_j\}, v_j), R_3^*(\{v_i, v_j\}, v_i)\}.
$$

Note that the values $R_1^*(\{v_i, v_j\}, k)$ can be computed by applying the procedure GRAFT (B, h) , and the total time is $O(|C|^2 p^2)$.

Given an edge $e_m = (v_m, v_{m+1})$ in C. Let $\mathcal{P}(e_m) = \{\{v_{l_1}, v_{r_1}\}, \{v_{l_2}, v_{r_2}\}, \ldots,$ $\{v_l, v_{r_t}\}\}\)$ be all vertex pairs of C with their middle edges are e_m , where $l_1 \geq$ $l_2 \geq \ldots \geq l_t$. Let $\mathcal{V} = \{v_{l_1}, v_{l_2}, \ldots, v_{l_t}\}.$

Because of the recursion

$$
R_2^*(\{v_{r_k}, v_{l_k}\}) = \max\{R_2^*(\{v_{r_{k-1}}, v_{l_{k-1}}\}, v_{l_{k-1}}) + d(v_{l_k} + v_{l_{k-1}}),
$$

\n
$$
\max_{l_{k-1} > j' \ge l_k} \{d(v_{l_k}, v_{j'}) + R_1^*(\{v_{j'}, v_{j'}\}, 1)\}\},
$$
\n(4)

we can calculate all values $R_2^*(\{v_{r_k}, v_{l_k}\}, v_{l_k})$ for $l_1 \leq l_k \leq l_t$ by passing through all vertices in V and cost $O(|C|)$ time for comparing and adding operations. Thus, all values can be computed in $O(|C|^2)$ time since there $O(|C|^2)$ values must be computed and $O(|C|)$ edges in C.

The Computation of $V^{co}(G_h, \{v_i, v_j\}, k)$. Let $V^{co}(\{v_i, v_j\}, k)$ be a connected k-vertex set of $G^{co}_{v_i,v_j}$ that contains the vertices v_i and v_j , let $e_{m(i,j)}$ be the edge that contains the midpoint of the path from v_i to v_j in clockwise direction. Particularly, if the midpoint happens to be a vertex, then it coincides with $v_{m(i,j)}$.

Next we define the partial value:

$$
R_4^*(\{v_i, v_j\}, k) = \min_{V^{co}(\{v_i, v_j\}, k) \subseteq G_{v_i, v_j}^{co}} \delta_{G_{v_i, v_j}^{co}}(V^{co}(\{v_i, v_j\}, k)),
$$

as well as the values $R_5^*(\{v_i, v_j\}, v_i)$ and $R_6^*(\{v_i, v_j\}, v_j)$, similar to $R_2^*(\{v_i, v_j\}, v_j)$ (v_j) and $R_3^*(\{v_i, v_j\}, v_i)$, respectively. Therefore, we can compute the distancevalue of $V^{co}(G_h, \{v_i, v_j\}, k)$ as:

$$
\delta_{G_h}(V^{co}(G_h, \{v_i, v_j\}, k)) = \max\{R_4^*(\{v_i, v_j\}, k), R_5^*(\{v_i, v_j\}, v_i), R_6^*(\{v_i, v_j\}, v_j)\}.
$$

It is easy to see that all values $R_4^*(\{v_i, v_j\}, k), R_5^*(\{v_i, v_j\}, v_i), R_6^*(\{v_i, v_j\}, v_j)$ can be computed similarly as above, and the time complexity is $O(|C|^2 p^2)$.

3.3 Algorithm for the *CpC* **Problem**

By Lemma [1,](#page-2-0) we can now identify a connected p-center V_p^* from $\mathcal{V}_1 \cup \mathcal{V}_2$. The distance-value of V_p^* can be computed by the following relation:

$$
\delta(V_p^*) = \min \left\{ \min_{V(G_h, v, p) \in \mathcal{V}_1} \{ \max \{ \delta_{G_h}(V(G_h, v, p)), d(v, h) + g(h) \} \}, \min_{V(G_h, \{v_i, v_j\}, p) \in \mathcal{V}_2} \max \{ \delta_{G_h}(V(G_h, \{v_i, v_j\}, p)), \max \{ d(v_j, h), d(v_i, h) \} + g(h) \}, \min_{V^{co}(G_h, \{v_i, v_j\}, p) \in \mathcal{V}_2} \max \{ \delta_{G_h}(V^{co}(G_h, \{v_i, v_j\}, p)), g(h) \} \right\}.
$$
\n
$$
(5)
$$

We can now formulate the algorithm for the CpC problem.

As a preprocessing for Algorithm [1,](#page-6-0) we first compute the distance-matrix of the given cactus. Then we find a skeleton of the given cactus and compute $q(h)$ for each companion hinge h in the skeleton. This preprocessing requires $O(n^2)$ steps. Then we can find a p-center from $\mathcal{V}_1 \cup \mathcal{V}_2$ by using the binary search method.

Theorem 1. *The* CpC *problem on a cactus graph of* n *vertices can be solved in* $O(n^2p^2)$ *time.*

4 Conclusions

In this paper we consider the connected p -center on graphs. We devise a dynamic programming algorithm of the complexity $O(n^2p^2)$ for the problem on cactus graphs. In the future, it is very meaningful to extend our algorithm to other classes of graphs, such as interval graphs, circular-arc graphs and planar graphs, etc.

References

- 1. Burkard, R.E., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median problem on cactus. Computing **60**, 498–509 (1998)
- 2. Frederickson, G.: Parametric search and locating supply centers in trees. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 299–319. Springer, Heidelberg (1991)
- 3. Garey, M.R., Johnso, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Bell Laboratories, Murray Hill, Freeman & Co., New York (1978)
- 4. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems, part II: p-medians. SIAM J. Appl. Math. **37**, 539–560 (1979)
- 5. Olariu, S.: A simple linear-time algorithm for computing the center of an interval graph. Int. J. Comput. Math. **24**, 121–128 (1990)
- 6. Tamir, A.: Improved complexity bounds for center location problems on networks by using dynamic data structures. SIAM J. Discrete Math. **1**, 377–396 (1988)
- 7. Yen, W.C.-K., Chen, C.-T.: The p-center problem with connectivity constraint. Appl. Math. Sci. **1**, 1311–1324 (2007)
- 8. Yen, W.C.-K.: The connceted p-center problem on block graphs with forbidden vertices. Theor. Comput. Sci. **426–427**, 13–24 (2012)