The Connected *p*-Center Problem on Cactus Graphs

Chunsong Bai¹, Liying Kang², and Erfang Shan^{3(\boxtimes)}

¹ Fuyang Normal College, Fuyang 236041, P.R. China csbai@fync.edu.cn

² Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China lykang@shu.edu.cn

³ School of Management, Shanghai University, Shanghai 200444, P.R. China efshan@i.shu.edu.cn

Abstract. In this paper, we study a variant of the *p*-center problem on cactus graphs in which the *p*-center is asked to be connected, and this problem is called the *connected p-center problem*. For the connected *p*-center problem on cactus graphs, we propose an dynamic programming algorithm and show that the time complexity is $O(n^2p^2)$, where *n* is number of vertices.

Keywords: Location problem \cdot Connected *p*-center problem \cdot Cactus graph \cdot Dynamic programming

1 Introduction

This paper concerns the connected *p*-center location problem on cactus graphs. Given a simple graph G = (V, E) with *n* vertices and *m* edges, a classical *p*-center problem on a graph G = (V, E) is to determine a *p*-vertex set V_p in *G* such that the maximum distance between V_p and *V* is minimized.

The *p*-center problem on an arbitrary graph has been known to be NPhard [3,4]. Olariu [5] presented an O(n) time algorithm for the 1-center problem on interval graphs. Tamir [6] showed that the weighted and un-weighted *p*-center problems on networks can be solved in $O(n^p m^p \log^2 n)$ time and $O(n^{p-1}m^p \log^3 n)$ time, respectively. Frederickson [2] showed how to solve this problem for trees in optimal linear time using parametric search.

The connected *p*-center problem is proposed by Yen and Chen [7]. They showed that the CpC problem is NP-hard even when the underlying graph is a bipartite graph or a split graph, and gave an O(n) time algorithm to solve the problem on tree graphs. In [8], Yen proved that the CpC problem on block graph is NP-hard even when (1) w(v) = 1, for all $v \in V$, and $l(e) \in \{1, 2\}$, for all $e \in E$, and (2) $w(v) \in \{1, 2\}$, for all $v \in V$, and l(e) = 1, for all $e \in E$, respectively.

© Springer International Publishing AG 2016

Research was partially supported by NSFC (grant numbers 11571222, 11471210).

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 718-725, 2016.

DOI: 10.1007/978-3-319-48749-6_53

2 Notations and Basic Properties

Let G = (V, E) be a simple cactus graph, where each vertex $v \in V$ is associated with a unit weight w(v) = 1 and each edge $e \in E$ is associated with a length l(e) > 0. Denote by P[u, v] the shortest path in G from u to v, $u, v \in V$.

In order to facilitate the overview of the proposed algorithms for the center problems in cactus networks, we start with the well-known tree structure of a cactus network [1]. The vertex set V is partitioned into three different subsets: C-vertices, G-vertices and hinges.

It is easy to see that a cactus consists of blocks, which are either a cycle or a graft. Thus, we can use a tree T_G to represent the skeleton over G, where each element in T_G represents a block or a hinge of G.

To make the tree T_G ready for use as intended, we convert it into a rooted tree as follows: We pick an arbitrary block, e.g., B_0 , as the "root" of T_G . For each block B in T_G , we define the level Lev(B) of B to be the number of edges on $P[B, B_0]$. Denote by $L = \max_{B \in T_G} \{Lev(B)\}$. If it exists, the father of a block B is always a hinge h, called its companion hinge. For simplicity, we pick an arbitrary vertex $h_0 \in B_0$ as the virtual companion hinge of B_0 . Denote by B_h the block B whose companion hinge is h.

For each block B_h in T_G , denote by G_h the sub-cactus of G induced by the vertices of B_h and all sub-cacti hanging from B_h . Specially, $G = G_{h_0}$. For each hinge h of G_{h_0} , denote by g_h the vertex of $G_{h_0} \setminus G_h$ which is the farthest to h. Denote by $g(h) = d(h, g_h)$.

Let $\delta_{G_h}(V_k)$ be the maximum weighted distance from a k-vertex set V_k to a sub-cactus G_h , that is,

$$\delta_{G_h}(V_k) = \max_{u \in V(G_h)} \{ w(u)d(u, V_k) \},$$

where $d(u, V_k) = \min_{v \in V_k} d(u, v)$.

The Connected *p*-Center (*CpC*) Problem: Given a connected graph G = (V, E) and a positive integer $p \ge 2$, identify a *p*-vertex set $V_p \subseteq V$ such that $\delta_G(V_p)$ is minimized under the restriction that the subgraph induced by V_p is connected. V_p is called a *connected p-center* of G.

For each graft B_h , we define a problem $P(G_h, v, k)$: Given a vertex v of B_h and a positive integer $k \leq p$, identify a connected k-vertex set $V(G_h, v, k)$ of G_h such that $\delta_{G_h}(V(G_h, v, k))$ is minimized, under the restriction that v is the closest vertex to h in $V(G_h, v, k) \cap V(B_h)$. $V(G_h, v, k)$ is called a v-restricted connected k-center of G_h .

For each cycle B_h with s indexed vertices $v_1 = h, v_2, \ldots, v_s$, we define a problem $P(G_h, \{v_i, v_j\}, k)$ $(P^{co}(G_h, \{v_i, v_j\}, k))$: Given two vertices $v_i, v_j \in V(B_h)$ with $i \leq j$, and a positive integer $k \leq p$, identify a connected k-vertex set $V(G_h, \{v_i, v_j\}, k)$ $(V^{co}(G_h, \{v_i, v_j\}, k))$ of G_h such that $\delta_{G_h}(V(G_h, \{v_i, v_j\}, k))$ $(\delta_{G_h}(V^{co}(G_h, \{v_i, v_j\}, k)))$ is minimized, under the restriction that $V(G_h, \{v_i, v_j\}, k) \cap V(B_h)$ contains only the vertices of the path from v_i to v_j on B_h in clockwise (counter-clockwise) direction. $V(G_h, \{v_i, v_j\}, k)$

 $(V^{co}(G_h, \{v_i, v_j\}, k))$ is called a $\{v_i, v_j\}$ -restricted clockwise (counter-clockwise) connected k-center of G_h .

For all sub-cacti G_h , denote by \mathcal{V}_1 (resp. \mathcal{V}_2) the set of $V(G_h, v, p)$ (resp. $V(G_h, \{v_i, v_j\}, p)$ and $V^{co}(G_h, \{v_i, v_j\}, p)$).

Lemma 1. There exists a connected p-center of G_{h_0} in $\mathcal{V}_1 \cup \mathcal{V}_2$.

Proof. Let V_p be a connected *p*-center of G_{h_0} . We assume that $v \in V_p$ is the closest vertex to h_0 , and B_h is the block that contains v. We distinguish the following two cases.

Case 1. B_h is a graft of G_{h_0} , assume that $V(G_h, v, p)$ is a *v*-restricted connected *p*-center of G_h . It is easy to see that:

$$\delta_{G_{h_0}}(V_p) = \max\{\delta_{G_h}(V_p), d(v, h) + g(h)\} \\ \ge \max\{\delta_{G_h}(V(G_h, v, p)), d(v, h) + g(h)\} \\ = \delta_{G_{h_0}}(V(G_h, v, p)),$$

which implies $V(G_h, v, p)$ is also an optimal solution to CpC problem.

Case 2. B_h is a cycle of G_{h_0} . W.l.o.g., we only consider the case $V_p \cap V(B_h)$ contains only the vertices of the path from v_i to v_j on B_h in clockwise direction, where $i \leq j$ (the other case can be handled similarly). Assume that $V(G_h, \{v_i, v_j\}, p)$ is a $\{v_i, v_j\}$ -restricted connected *p*-center of G_h . By the similar discussion in Case 1, we have:

$$\begin{split} \delta_{G_{h_0}}(V_p) &= \max\{\delta_{G_h}(V_p), \max\{d(v_i, h), d(v_j, h)\} + g(h)\}\\ &\geq \max\{\delta_{G_h}(V(G_h, \{v_i, v_j\}, p)), \max\{d(v_i, h), d(v_j, h)\} + g(h)\}\\ &= \delta_{G_{h_0}}(V(G_h, \{v_i, v_j\}, p)), \end{split}$$

which implies $V(G_h, \{v_i, v_j\}, p)$ is also an optimal solution to CpC problem. \Box

Based on Lemma 1, we are going to devise an algorithm to identify all restricted connected *p*-centers in $\mathcal{V}_1 \cup \mathcal{V}_2$.

3 Algorithm for the CpC Problem on Cactus Graphs

3.1 Procedure GRAFT(B, h)

Given a graft $T = B_h$. Root T at the vertex h. Let leaf(T) be all leaves of T. For each vertex v of T, we define the *level lev*(v) of v to be the number of edges on P[h, v] and $L'_m = \max_{v \in V(T)} lev(v)$. If $v \neq h$, then by removing the last edge of P[h, v], we obtain two subtrees of T. Let T_v be the subtree that contains v, and let $T_v^c = T \setminus T_v$. Similarly, we let G_v be the subgraph of G_h induced by the vertices of T_v and the sub-cacti hanging from T_v , and $G_v^c = G_h \setminus G_v$.

For each vertex v in T, let E(v) be the edges of T_v which are adjacent to v. Denote by s(v) = |E(v)|. We define an arbitrary order among the edges of E(v), and we denote the *l*th edge in E(v) by e(v, l). If v_l is the other endpoint of the e(v, l), then we say that v_l is the *l*th son of v, and v is the father $fa(v_l)$ of v_l . Denote by son(v) be the sons of v. Denote by $T_{e(v,l)}$ the maximal connected subgraph of T_v which contains v but does not contain any edge e(v, j) for j > l. In particular, $T_{e(v,0)} = v$ and $T_{e(v,s(v))} = T_v$. Similarly, we define $G_{e(v,l)}$ to be the subgraph of G_v induced by the vertices of $T_{e(v,l)}$ and all sub-cacti hanging from $T_{e(v,l)}$.

Let e(v, l) be an arbitrary edge of T. Let S(e(v, l), k) be a connected k-vertex set of G_v which contains v but does not contain any vertex $v_j \in son(v)$ for j > l. Then we define a partial distance-value of S(e(v, l), k) over $G_{e(v, l)}$.

Definition 1. Let e(v, l) be any arbitrary edge of T. For each positive integer $k, 1 \le k \le \min\{p, |G_{e(v,l)}|\}$, we define:

$$R^*(e(v,l),k) = \min_{S(e(v,l),k) \subseteq G(e(v,l))} \delta_{G_{e(v,l)}}(S(e(v,l),k)).$$

The corresponding set to $R^*(e(v, l), k)$ is denoted by $S^*(e(v, l), k)$.

Next, for the vertices in G_v^c , we define the value $R^*(G_v^c, v)$ as follow:

$$R^*(G_v^c, v) = \delta_{G_v^c}(v),$$

which is in fact the distance-value of the 1-center v over G_v^c .

Once we obtain the values $R^*(e(v, s(v)), k)$ and $R^*(G_v^c, v)$, the distance-value of $V(G_h, v, k)$ can be computed as:

$$\delta_{G_h}(V(G_h, v, k)) = \max\{R^*(e(v, s(v)), k), R^*(G_v^c, v)\}.$$
(1)

According to our assumption, when the block B_h to be processed, we can assign for each v in leaf(T) the following values. For each vertex v of degree 0 in G, we assign:

$$R^*(e(v,0),1) = 0$$

and

$$S^*(e(v,0),1) \leftarrow \{v\}.$$

For each vertex v which is the companion hinge of some block B_v , if B_v is a graft, we assign:

$$R^*(e(v,0),k) = \delta_{G_v}(V(G_v,v,k))$$

and

$$S^*(e(v,0),k) \leftarrow V(G_v,v,k).$$

Otherwise, we assign:

$$R^*(e(v,0),k) = \delta_{G_v}(V(G_v, \{v,v\},k))$$

and

$$S^*(e(v,0),k) \leftarrow V(G_v,\{v,v\},k).$$

The Computation of $R^*(e(v, l), k)$ and $S^*(e(v, l), k)$. We assume that, when the *j*th stage begins, the value $R^*(e(v, s(v)), k)$ has been computed for each vertex $v \in T$ of level $lev(v) \ge L'_m - j + 1$. During the *j*th stage, we search through all vertices of level $L'_m - j$. For each such a vertex v, we compute all values $R^*(e(v, s(v)), k)$ and go on the next vertex of level $L'_m - j$.

Let v be a vertex of level $L'_m - j$. We start by assigning:

$$R^*(e(v,0),1) = \max_{u \in son(v)} \{d(v,u) + R^*(e(u,0),1)\}$$

Assume that we already known the values $R^*(e(v, l'), k)$ for all l' < l, and we now compute the value $R^*(e(v, l), k)$ as follows:

$$R^{*}(e(v,l),k) = \min \left\{ \min_{0 \le k' \le k-1} \max\{R^{*}(e(v,l-1),k'), R^{*}(e(v_{l},s(v_{l}),k-k')\}, \max\{R^{*}(e(v,l-1),k), \ell(v,v_{l}) + R^{*}(e(v_{l},s(v_{l})),1)\}\right\}.$$
 (2)

On the right-hand side of (2), the first term corresponds to $v_l \in S^*(e(v, l), k)$, and the second term corresponds to $v_l \notin S^*(e(v, l), k)$.

If $v_l \in S^*(e(v, l), k)$, assign:

$$S^*(e(v,l),k) \leftarrow S^*(e(v,l-1),k'') \cup S^*(e(v_l,s(v_l)),k-k''),$$
(3)

where k'' is the number such that the first term of the right-hand side of (3) is minimized. Otherwise, assign:

$$S^*(e(v,l),k) \leftarrow S^*(e(v,l-1),k).$$

We can compute all values $R^*(e(v, l), k)$ by passing through all edges in T. Note that there are at most |T|p values $R^*(e(v, l), k)$ must be computed, each of those computations involved the finding of a minimum over at most 2k terms. Thus, the total time complexity is $O(|T|p^2)$.

The Computation of $R^*(G_v^c, v)$. The value $R^*(G_v^c, v)$ can be computed by using the distances matrix of T and the values $R^*(e(u, 0), 1), u \in leaf(T)$, that is:

$$R^*(G_v^c, v) = \max_{u \in leaf(T)} \{ d(v, u) + R^*(e(u, 0), 1) \}.$$

It is easy to see that the total time is $O(|T|^2)$ to compute the values $R^*(G_v^c, v)$.

3.2 The Procedure CYCLE(C, h)

Let C be the cycle B_h with s clockwise indexed vertices $v_1 = h, v_2, \ldots, v_s$. For any pair $v_i, v_j \in V(C)$ $(i \leq j)$, denote by C_{v_i,v_j} (C_{v_i,v_j}^{co}) the subgraph induced by the vertices of the path from v_i to v_j in clockwise direction (in counter-clockwise direction), and G_{v_i,v_j} (G_{v_i,v_j}^{co}) the subgraph induced by C_{v_i,v_j} (C_{v_i,v_j}^{co}) and the sub-cacti hanging from it. Let $G_{v_i,v_j}^c = G_h \setminus G_{v_i,v_j}$. **The Computation of** $V(G_h, \{v_i, v_j\}, k)$. Let $V(\{v_i, v_j\}, k)$ be a connected k-vertex set of G_{v_i,v_j} that contains the vertices v_i and v_j . Then we define the partial distance-value of $V(\{v_i, v_j\}, k)$ over G_{v_i,v_j} as follow:

$$R_1^*(\{v_i, v_j\}, k) = \min_{V(\{v_i, v_j\}, k) \subseteq G_{v_i, v_j}} \delta_{G_{v_i, v_j}}(V(\{v_i, v_j\}, k)).$$

Let $e_{m(j,i)}$ be the edge that contains the midpoint of the path from v_j to v_i in clockwise direction. Particularly, if the midpoint happens to be a vertex, then it coincides with $v_{m(j,i)}$. By deleting the edge $e_{m(j,i)}$ from G_{v_i,v_j}^c , we obtain two subgraphs $G_{v_i,v_j}^{c,1}$ and $G_{v_i,v_j}^{c,2}$, which contain $v_{m(j,i)}$ and $v_{m(j,i)+1}$, respectively. Now we define the following values:

$$R_2^*(\{v_i, v_j\}, v_j) = \delta_{G_{v_i, v_j}^{c, 1}}(\{v_j\})$$

and

$$R_3^*(\{v_i, v_j\}, v_i) = \delta_{G_{v_i, v_j}^{c, 2}}(\{v_i\})$$

to represent the partial distance-values of v_i and v_i , respectively.

Once we obtain all values defined above, the distance-value of $V(G_h, \{v_i, v_j\}, k)$ can be computed as:

$$\delta_{G_h}(V(G_h, \{v_i, v_j\}, k)) = \max\{R_1^*(\{v_i, v_j\}, k), R_2^*(\{v_i, v_j\}, v_j), R_3^*(\{v_i, v_j\}, v_i)\}.$$

Note that the values $R_1^*(\{v_i, v_j\}, k)$ can be computed by applying the procedure GRAFT(B, h), and the total time is $O(|C|^2 p^2)$.

Given an edge $e_m = (v_m, v_{m+1})$ in C. Let $\mathcal{P}(e_m) = \{\{v_{l_1}, v_{r_1}\}, \{v_{l_2}, v_{r_2}\}, \ldots, \{v_{l_t}, v_{r_t}\}\}$ be all vertex pairs of C with their middle edges are e_m , where $l_1 \geq l_2 \geq \ldots \geq l_t$. Let $\mathcal{V} = \{v_{l_1}, v_{l_2}, \ldots, v_{l_t}\}$.

Because of the recursion

$$R_{2}^{*}(\{v_{r_{k}}, v_{l_{k}}\}) = \max\{R_{2}^{*}(\{v_{r_{k-1}}, v_{l_{k-1}}\}, v_{l_{k-1}}) + d(v_{l_{k}} + v_{l_{k-1}}), \\ \max_{l_{k-1} > j' \ge l_{k}} \{d(v_{l_{k}}, v_{j'}) + R_{1}^{*}(\{v_{j'}, v_{j'}\}, 1)\}\},$$
(4)

we can calculate all values $R_2^*(\{v_{r_k}, v_{l_k}\}, v_{l_k})$ for $l_1 \leq l_k \leq l_t$ by passing through all vertices in \mathcal{V} and cost O(|C|) time for comparing and adding operations. Thus, all values can be computed in $O(|C|^2)$ time since there $O(|C|^2)$ values must be computed and O(|C|) edges in C.

The Computation of $V^{co}(G_h, \{v_i, v_j\}, k)$ **.** Let $V^{co}(\{v_i, v_j\}, k)$ be a connected k-vertex set of $G^{co}_{v_i,v_j}$ that contains the vertices v_i and v_j , let $e_{m(i,j)}$ be the edge that contains the midpoint of the path from v_i to v_j in clockwise direction. Particularly, if the midpoint happens to be a vertex, then it coincides with $v_{m(i,j)}$.

Next we define the partial value:

$$R_4^*(\{v_i, v_j\}, k) = \min_{V^{co}(\{v_i, v_j\}, k) \subseteq G_{v_i, v_j}^{co}} \delta_{G_{v_i, v_j}^{co}}(V^{co}(\{v_i, v_j\}, k)),$$

as well as the values $R_5^*(\{v_i, v_j\}, v_i)$ and $R_6^*(\{v_i, v_j\}, v_j)$, similar to $R_2^*(\{v_i, v_j\}, v_j)$ and $R_3^*(\{v_i, v_j\}, v_i)$, respectively. Therefore, we can compute the distance-value of $V^{co}(G_h, \{v_i, v_j\}, k)$ as:

$$\delta_{G_h}(V^{co}(G_h, \{v_i, v_j\}, k)) = \max\{R_4^*(\{v_i, v_j\}, k), R_5^*(\{v_i, v_j\}, v_i), R_6^*(\{v_i, v_j\}, v_j)\}$$

It is easy to see that all values $R_4^*(\{v_i, v_j\}, k), R_5^*(\{v_i, v_j\}, v_i), R_6^*(\{v_i, v_j\}, v_j)$ can be computed similarly as above, and the time complexity is $O(|C|^2 p^2)$.

3.3 Algorithm for the CpC Problem

By Lemma 1, we can now identify a connected *p*-center V_p^* from $\mathcal{V}_1 \cup \mathcal{V}_2$. The distance-value of V_p^* can be computed by the following relation:

$$\delta(V_p^*) = \min \Big\{ \min_{V(G_h, v, p) \in \mathcal{V}_1} \{\max\{\delta_{G_h}(V(G_h, v, p)), d(v, h) + g(h)\} \}, \\ \min_{V(G_h, \{v_i, v_j\}, p) \in \mathcal{V}_2} \max\{\delta_{G_h}(V(G_h, \{v_i, v_j\}, p)), \max\{d(v_j, h), d(v_i, h)\} + g(h)\}, \\ \min_{V^{co}(G_h, \{v_i, v_j\}, p) \in \mathcal{V}_2} \max\{\delta_{G_h}(V^{co}(G_h, \{v_i, v_j\}, p)), g(h)\} \Big\}.$$
(5)

We can now formulate the algorithm for the CpC problem.

Algorithm 1. Connected_ <i>p</i> -Center_on_Cactus_Graphs.
Input: A cactus graph $G(h_0)$, the corresponding skeleton $T_S(B_0)$ and its
maximal level L_m .
Output: A connected <i>p</i> -center V_p^* and its distance-value.
2 for $i = 1; i <= L_m; i + + do$
3 for each block B of level $2L_m - 2i + 1$ do
4 if B is a graft then
5 Let h be the companion hinge of B, let L'_m be the maximal
level of B ;
6 for $j = 1; j \le L'_m; j + do$
7 Call GRAFT (B,h) to compute the values $V(G_h, v, k)$ for
each vertex v of level j and $1 \le k \le \min\{p, G_v \};$
8 end
9 end
10 if B is a cycle then
11 Let h be the companion hinge of C ;
12 Call CYCLE (B,h) to compute the values $V(G_h, \{v_i, v_i\}, k)$
and $V^{co}(G_h, \{v_i, v_j\}, k)$ for all pair $v_i, v_j \in V(C)$ $(i < j)$ and
all possible numbers k ;
13 end
14 end
15 end
16 return Identify a connected <i>p</i> -center V_p^* by using the Eq. (5).
4 4

As a preprocessing for Algorithm 1, we first compute the distance-matrix of the given cactus. Then we find a skeleton of the given cactus and compute g(h) for each companion hinge h in the skeleton. This preprocessing requires $O(n^2)$ steps. Then we can find a *p*-center from $\mathcal{V}_1 \cup \mathcal{V}_2$ by using the binary search method.

Theorem 1. The CpC problem on a cactus graph of n vertices can be solved in $O(n^2p^2)$ time.

4 Conclusions

In this paper we consider the connected *p*-center on graphs. We devise a dynamic programming algorithm of the complexity $O(n^2p^2)$ for the problem on cactus graphs. In the future, it is very meaningful to extend our algorithm to other classes of graphs, such as interval graphs, circular-arc graphs and planar graphs, etc.

References

- 1. Burkard, R.E., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median problem on cactus. Computing **60**, 498–509 (1998)
- Frederickson, G.: Parametric search and locating supply centers in trees. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 299–319. Springer, Heidelberg (1991)
- Garey, M.R., Johnso, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Bell Laboratories, Murray Hill, Freeman & Co., New York (1978)
- Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems, part II: p-medians. SIAM J. Appl. Math. 37, 539–560 (1979)
- Olariu, S.: A simple linear-time algorithm for computing the center of an interval graph. Int. J. Comput. Math. 24, 121–128 (1990)
- 6. Tamir, A.: Improved complexity bounds for center location problems on networks by using dynamic data structures. SIAM J. Discrete Math. 1, 377–396 (1988)
- 7. Yen, W.C.-K., Chen, C.-T.: The *p*-center problem with connectivity constraint. Appl. Math. Sci. 1, 1311–1324 (2007)
- Yen, W.C.-K.: The connected *p*-center problem on block graphs with forbidden vertices. Theor. Comput. Sci. 426–427, 13–24 (2012)