
The Connected p-Center Problem
on Cactus Graphs

Chunsong Bai1, Liying Kang2, and Erfang Shan3(B)

1 Fuyang Normal College, Fuyang 236041, P.R. China
csbai@fync.edu.cn

2 Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
lykang@shu.edu.cn

3 School of Management, Shanghai University, Shanghai 200444, P.R. China
efshan@i.shu.edu.cn

Abstract. In this paper, we study a variant of the p-center problem on
cactus graphs in which the p-center is asked to be connected, and this
problem is called the connected p-center problem. For the connected p-
center problem on cactus graphs, we propose an dynamic programming
algorithm and show that the time complexity is O(n2p2), where n is
number of vertices.

Keywords: Location problem · Connected p-center problem · Cactus
graph · Dynamic programming

1 Introduction

This paper concerns the connected p-center location problem on cactus graphs.
Given a simple graph G = (V,E) with n vertices and m edges, a classical p-
center problem on a graph G = (V,E) is to determine a p-vertex set Vp in G
such that the maximum distance between Vp and V is minimized.

The p-center problem on an arbitrary graph has been known to be NP-
hard [3,4]. Olariu [5] presented an O(n) time algorithm for the 1-center prob-
lem on interval graphs. Tamir [6] showed that the weighted and un-weighted
p-center problems on networks can be solved in O(npmp log2 n) time and
O(np−1mp log3 n) time, respectively. Frederickson [2] showed how to solve this
problem for trees in optimal linear time using parametric search.

The connected p-center problem is proposed by Yen and Chen [7]. They
showed that the CpC problem is NP-hard even when the underlying graph is
a bipartite graph or a split graph, and gave an O(n) time algorithm to solve
the problem on tree graphs. In [8], Yen proved that the CpC problem on block
graph is NP-hard even when (1) w(v) = 1, for all v ∈ V , and l(e) ∈ {1, 2}, for
all e ∈ E, and (2) w(v) ∈ {1, 2}, for all v ∈ V , and l(e) = 1, for all e ∈ E,
respectively.

Research was partially supported by NSFC (grant numbers 11571222, 11471210).

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 718–725, 2016.
DOI: 10.1007/978-3-319-48749-6 53

The Connected p-Center Problem on Cactus Graphs 719

2 Notations and Basic Properties

Let G = (V,E) be a simple cactus graph, where each vertex v ∈ V is associated
with a unit weight w(v) = 1 and each edge e ∈ E is associated with a length
l(e) > 0. Denote by P [u, v] the shortest path in G from u to v, u, v ∈ V .

In order to facilitate the overview of the proposed algorithms for the center
problems in cactus networks, we start with the well-known tree structure of a
cactus network [1]. The vertex set V is partitioned into three different subsets:
C-vertices, G-vertices and hinges.

It is easy to see that a cactus consists of blocks, which are either a cycle or a
graft. Thus, we can use a tree TG to represent the skeleton over G, where each
element in TG represents a block or a hinge of G.

To make the tree TG ready for use as intended, we convert it into a rooted
tree as follows: We pick an arbitrary block, e.g., B0, as the “root” of TG. For
each block B in TG, we define the level Lev(B) of B to be the number of edges
on P [B,B0]. Denote by L = maxB∈TG

{Lev(B)}. If it exists, the father of a
block B is always a hinge h, called its companion hinge. For simplicity, we pick
an arbitrary vertex h0 ∈ B0 as the virtual companion hinge of B0. Denote by
Bh the block B whose companion hinge is h.

For each block Bh in TG, denote by Gh the sub-cactus of G induced by the
vertices of Bh and all sub-cacti hanging from Bh. Specially, G = Gh0 . For each
hinge h of Gh0 , denote by gh the vertex of Gh0 \ Gh which is the farthest to h.
Denote by g(h) = d(h, gh).

Let δGh
(Vk) be the maximum weighted distance from a k-vertex set Vk to a

sub-cactus Gh, that is,

δGh
(Vk) = max

u∈V (Gh)
{w(u)d(u, Vk)},

where d(u, Vk) = minv∈Vk
d(u, v).

The Connected p-Center (CpC) Problem: Given a connected graph G =
(V,E) and a positive integer p ≥ 2, identify a p-vertex set Vp ⊆ V such that
δG(Vp) is minimized under the restriction that the subgraph induced by Vp is
connected. Vp is called a connected p-center of G.

For each graft Bh, we define a problem P (Gh, v, k): Given a vertex v of Bh

and a positive integer k ≤ p, identify a connected k-vertex set V (Gh, v, k) of
Gh such that δGh

(V (Gh, v, k)) is minimized, under the restriction that v is the
closest vertex to h in V (Gh, v, k) ∩ V (Bh). V (Gh, v, k) is called a v-restricted
connected k-center of Gh.

For each cycle Bh with s indexed vertices v1 = h, v2, . . . , vs, we
define a problem P (Gh, {vi, vj}, k) (P co(Gh, {vi, vj}, k)): Given two vertices
vi, vj ∈ V (Bh) with i ≤ j, and a positive integer k ≤ p, identify
a connected k-vertex set V (Gh, {vi, vj}, k) (V co(Gh, {vi, vj}, k)) of Gh such
that δGh

(V (Gh, {vi, vj}, k)) (δGh
(V co(Gh, {vi, vj}, k))) is minimized, under the

restriction that V (Gh, {vi, vj}, k)∩V (Bh) contains only the vertices of the path
from vi to vj on Bh in clockwise (counter-clockwise) direction. V (Gh, {vi, vj}, k)

720 C. Bai et al.

(V co(Gh, {vi, vj}, k)) is called a {vi, vj}-restricted clockwise (counter-clockwise)
connected k-center of Gh.

For all sub-cacti Gh, denote by V1 (resp. V2) the set of V (Gh, v, p) (resp.
V (Gh, {vi, vj}, p) and V co(Gh, {vi, vj}, p)).

Lemma 1. There exists a connected p-center of Gh0 in V1 ∪ V2.

Proof. Let Vp be a connected p-center of Gh0 . We assume that v ∈ Vp is the
closest vertex to h0, and Bh is the block that contains v. We distinguish the
following two cases.

Case 1. Bh is a graft of Gh0 , assume that V (Gh, v, p) is a v-restricted connected
p-center of Gh. It is easy to see that:

δGh0
(Vp) = max{δGh

(Vp), d(v, h) + g(h)}
≥ max{δGh

(V (Gh, v, p)), d(v, h) + g(h)}
= δGh0

(V (Gh, v, p)),

which implies V (Gh, v, p) is also an optimal solution to CpC problem.

Case 2. Bh is a cycle of Gh0 . W.l.o.g., we only consider the case Vp ∩ V (Bh)
contains only the vertices of the path from vi to vj on Bh in clockwise direc-
tion, where i ≤ j (the other case can be handled similarly). Assume that
V (Gh, {vi, vj}, p) is a {vi, vj}-restricted connected p-center of Gh. By the similar
discussion in Case 1, we have:

δGh0
(Vp) = max{δGh

(Vp),max{d(vi, h), d(vj , h)} + g(h)}
≥ max{δGh

(V (Gh, {vi, vj}, p)),max{d(vi, h), d(vj , h)} + g(h)}
= δGh0

(V (Gh, {vi, vj}, p)),

which implies V (Gh, {vi, vj}, p) is also an optimal solution to CpC problem. �	
Based on Lemma 1, we are going to devise an algorithm to identify all

restricted connected p-centers in V1 ∪ V2.

3 Algorithm for the CpC Problem on Cactus Graphs

3.1 Procedure GRAFT(B, h)

Given a graft T = Bh. Root T at the vertex h. Let leaf(T) be all leaves of T .
For each vertex v of T , we define the level lev(v) of v to be the number of edges
on P [h, v] and L′

m = maxv∈V (T) lev(v). If v
= h, then by removing the last edge
of P [h, v], we obtain two subtrees of T . Let Tv be the subtree that contains v,
and let T c

v = T \ Tv. Similarly, we let Gv be the subgraph of Gh induced by the
vertices of Tv and the sub-cacti hanging from Tv, and Gc

v = Gh \ Gv.
For each vertex v in T , let E(v) be the edges of Tv which are adjacent to v.

Denote by s(v) = |E(v)|. We define an arbitrary order among the edges of E(v),

The Connected p-Center Problem on Cactus Graphs 721

and we denote the lth edge in E(v) by e(v, l). If vl is the other endpoint of the
e(v, l), then we say that vl is the lth son of v, and v is the father fa(vl) of vl.
Denote by son(v) be the sons of v. Denote by Te(v,l) the maximal connected
subgraph of Tv which contains v but does not contain any edge e(v, j) for j > l.
In particular, Te(v,0) = v and Te(v,s(v)) = Tv. Similarly, we define Ge(v,l) to be
the subgraph of Gv induced by the vertices of Te(v,l) and all sub-cacti hanging
from Te(v,l).

Let e(v, l) be an arbitrary edge of T . Let S(e(v, l), k) be a connected k-vertex
set of Gv which contains v but does not contain any vertex vj ∈ son(v) for j > l.
Then we define a partial distance-value of S(e(v, l), k) over Ge(v,l).

Definition 1. Let e(v, l) be any arbitrary edge of T . For each positive integer
k, 1 ≤ k ≤ min{p, |Ge(v,l)|}, we define:

R∗(e(v, l), k) = min
S(e(v,l),k)⊆G(e(v,l))

δGe(v,l)(S(e(v, l), k)).

The corresponding set to R∗(e(v, l), k) is denoted by S∗(e(v, l), k).

Next, for the vertices in Gc
v, we define the value R∗(Gc

v, v) as follow:

R∗(Gc
v, v) = δGc

v
(v),

which is in fact the distance-value of the 1-center v over Gc
v.

Once we obtain the values R∗(e(v, s(v)), k) and R∗(Gc
v, v), the distance-value

of V (Gh, v, k) can be computed as:

δGh
(V (Gh, v, k)) = max{R∗(e(v, s(v)), k), R∗(Gc

v, v)}. (1)

According to our assumption, when the block Bh to be processed, we can
assign for each v in leaf(T) the following values. For each vertex v of degree 0
in G, we assign:

R∗(e(v, 0), 1) = 0

and
S∗(e(v, 0), 1) ← {v}.

For each vertex v which is the companion hinge of some block Bv, if Bv is a
graft, we assign:

R∗(e(v, 0), k) = δGv
(V (Gv, v, k))

and
S∗(e(v, 0), k) ← V (Gv, v, k).

Otherwise, we assign:

R∗(e(v, 0), k) = δGv
(V (Gv, {v, v}, k))

and
S∗(e(v, 0), k) ← V (Gv, {v, v}, k).

722 C. Bai et al.

The Computation of R∗(e(v, l), k) and S∗(e(v, l), k). We assume that, when
the jth stage begins, the value R∗(e(v, s(v)), k) has been computed for each
vertex v ∈ T of level lev(v) ≥ L′

m − j + 1. During the jth stage, we search
through all vertices of level L′

m − j. For each such a vertex v, we compute all
values R∗(e(v, s(v)), k) and go on the next vertex of level L′

m − j.
Let v be a vertex of level L′

m − j. We start by assigning:

R∗(e(v, 0), 1) = max
u∈son(v)

{d(v, u) + R∗(e(u, 0), 1)}.

Assume that we already known the values R∗(e(v, l′), k) for all l′ < l, and we
now compute the value R∗(e(v, l), k) as follows:

R∗(e(v, l), k) = min
{

min
0≤k′≤k−1

max{R∗(e(v, l − 1), k′), R∗(e(vl, s(vl), k − k′)},

max{R∗(e(v, l − 1), k), �(v, vl) + R∗(e(vl, s(vl)), 1)}}
. (2)

On the right-hand side of (2), the first term corresponds to vl ∈ S∗(e(v, l), k),
and the second term corresponds to vl
∈ S∗(e(v, l), k).

If vl ∈ S∗(e(v, l), k), assign:

S∗(e(v, l), k) ← S∗(e(v, l − 1), k′′) ∪ S∗(e(vl, s(vl)), k − k′′), (3)

where k′′ is the number such that the first term of the right-hand side of (3) is
minimized. Otherwise, assign:

S∗(e(v, l), k) ← S∗(e(v, l − 1), k).

We can compute all values R∗(e(v, l), k) by passing through all edges in T .
Note that there are at most |T |p values R∗(e(v, l), k) must be computed, each of
those computations involved the finding of a minimum over at most 2k terms.
Thus, the total time complexity is O(|T |p2).
The Computation of R∗(Gc

v, v). The value R∗(Gc
v, v) can be computed by

using the distances matrix of T and the values R∗(e(u, 0), 1), u ∈ leaf(T), that is:

R∗(Gc
v, v) = max

u∈leaf(T)
{d(v, u) + R∗(e(u, 0), 1)}.

It is easy to see that the total time is O(|T |2) to compute the values R∗(Gc
v, v).

3.2 The Procedure CYCLE(C, h)

Let C be the cycle Bh with s clockwise indexed vertices v1 = h, v2, . . . , vs. For
any pair vi, vj ∈ V (C) (i ≤ j), denote by Cvi,vj

(Cco
vi,vj

) the subgraph induced by
the vertices of the path from vi to vj in clockwise direction (in counter-clockwise
direction), and Gvi,vj

(Gco
vi,vj

) the subgraph induced by Cvi,vj
(Cco

vi,vj
) and the

sub-cacti hanging from it. Let Gc
vi,vj

= Gh \ Gvi,vj
.

The Connected p-Center Problem on Cactus Graphs 723

The Computation of V (Gh, {vi, vj}, k). Let V ({vi, vj}, k) be a connected k-
vertex set of Gvi,vj

that contains the vertices vi and vj . Then we define the
partial distance-value of V ({vi, vj}, k) over Gvi,vj

as follow:

R∗
1({vi, vj}, k) = min

V ({vi,vj},k)⊆Gvi,vj

δGvi,vj
(V ({vi, vj}, k)).

Let em(j,i) be the edge that contains the midpoint of the path from vj to vi
in clockwise direction. Particularly, if the midpoint happens to be a vertex, then
it coincides with vm(j,i). By deleting the edge em(j,i) from Gc

vi,vj
, we obtain two

subgraphs Gc,1
vi,vj

and Gc,2
vi,vj

, which contain vm(j,i) and vm(j,i)+1, respectively.
Now we define the following values:

R∗
2({vi, vj}, vj) = δGc,1

vi,vj
({vj})

and
R∗

3({vi, vj}, vi) = δGc,2
vi,vj

({vi})

to represent the partial distance-values of vj and vi, respectively.
Once we obtain all values defined above, the distance-value of

V (Gh, {vi, vj}, k) can be computed as:

δGh
(V (Gh, {vi, vj}, k)) = max{R∗

1({vi, vj}, k), R∗
2({vi, vj}, vj), R∗

3({vi, vj}, vi)}.

Note that the values R∗
1({vi, vj}, k) can be computed by applying the proce-

dure GRAFT(B, h), and the total time is O(|C|2p2).
Given an edge em = (vm, vm+1) in C. Let P(em) = {{vl1 , vr1}, {vl2 , vr2}, . . .,

{vlt , vrt}} be all vertex pairs of C with their middle edges are em, where l1 ≥
l2 ≥ . . . ≥ lt. Let V = {vl1 , vl2 , . . . , vlt}.

Because of the recursion

R∗
2({vrk , vlk}) = max{R∗

2({vrk−1 , vlk−1}, vlk−1) + d(vlk + vlk−1),
max

lk−1>j′≥lk
{d(vlk , vj′) + R∗

1({vj′ , vj′}, 1)}}, (4)

we can calculate all values R∗
2({vrk , vlk}, vlk) for l1 ≤ lk ≤ lt by passing through

all vertices in V and cost O(|C|) time for comparing and adding operations.
Thus, all values can be computed in O(|C|2) time since there O(|C|2) values
must be computed and O(|C|) edges in C.

The Computation of V co(Gh, {vi, vj}, k). Let V co({vi, vj}, k) be a connected
k-vertex set of Gco

vi,vj
that contains the vertices vi and vj , let em(i,j) be the

edge that contains the midpoint of the path from vi to vj in clockwise direction.
Particularly, if the midpoint happens to be a vertex, then it coincides with vm(i,j).

Next we define the partial value:

R∗
4({vi, vj}, k) = min

V co({vi,vj},k)⊆Gco
vi,vj

δGco
vi,vj

(V co({vi, vj}, k)),

724 C. Bai et al.

as well as the values R∗
5({vi, vj}, vi) and R∗

6({vi, vj}, vj), similar to R∗
2({vi, vj},

vj) and R∗
3({vi, vj}, vi), respectively. Therefore, we can compute the distance-

value of V co(Gh, {vi, vj}, k) as:

δGh(V
co(Gh, {vi, vj}, k)) = max{R∗

4({vi, vj}, k), R∗
5({vi, vj}, vi), R∗

6({vi, vj}, vj)}.
It is easy to see that all values R∗

4({vi, vj}, k), R∗
5({vi, vj}, vi), R∗

6({vi, vj}, vj)
can be computed similarly as above, and the time complexity is O(|C|2p2).

3.3 Algorithm for the CpC Problem

By Lemma 1, we can now identify a connected p-center V ∗
p from V1 ∪ V2. The

distance-value of V ∗
p can be computed by the following relation:

δ(V ∗
p) = min

{
min

V (Gh,v,p)∈V1
{max{δGh(V (Gh, v, p)), d(v, h) + g(h)}},

min
V (Gh,{vi,vj},p)∈V2

max{δGh(V (Gh, {vi, vj}, p)),max{d(vj , h), d(vi, h)}+ g(h)},

min
V co(Gh,{vi,vj},p)∈V2

max{δGh(V
co(Gh, {vi, vj}, p)), g(h)}

}
. (5)

We can now formulate the algorithm for the CpC problem.

Algorithm 1. Connected p-Center on Cactus Graphs.
1Input: A cactus graph G(h0), the corresponding skeleton TS(B0) and its

maximal level Lm.
Output: A connected p-center V ∗

p and its distance-value.
2 for i = 1; i <= Lm; i + + do
3 for each block B of level 2Lm − 2i + 1 do
4 if B is a graft then
5 Let h be the companion hinge of B, let L′

m be the maximal
level of B;

6 for j = 1; j <= L′
m; j + + do

7 Call GRAFT(B, h) to compute the values V (Gh, v, k) for
each vertex v of level j and 1 ≤ k ≤ min{p, |Gv|};

8 end
9 end

10 if B is a cycle then
11 Let h be the companion hinge of C;
12 Call CYCLE(B, h) to compute the values V (Gh, {vi, vj}, k)

and V co(Gh, {vi, vj}, k) for all pair vi, vj ∈ V (C) (i ≤ j) and
all possible numbers k;

13 end
14 end
15 end
16 return Identify a connected p-center V ∗

p by using the Eq. (5).

The Connected p-Center Problem on Cactus Graphs 725

As a preprocessing for Algorithm 1, we first compute the distance-matrix of
the given cactus. Then we find a skeleton of the given cactus and compute g(h)
for each companion hinge h in the skeleton. This preprocessing requires O(n2)
steps. Then we can find a p-center from V1 ∪ V2 by using the binary search
method.

Theorem 1. The CpC problem on a cactus graph of n vertices can be solved in
O(n2p2) time.

4 Conclusions

In this paper we consider the connected p-center on graphs. We devise a dynamic
programming algorithm of the complexity O(n2p2) for the problem on cac-
tus graphs. In the future, it is very meaningful to extend our algorithm to
other classes of graphs, such as interval graphs, circular-arc graphs and planar
graphs, etc.

References

1. Burkard, R.E., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median
problem on cactus. Computing 60, 498–509 (1998)

2. Frederickson, G.: Parametric search and locating supply centers in trees. In:
Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 299–319.
Springer, Heidelberg (1991)

3. Garey, M.R., Johnso, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Bell Laboratories, Murray Hill, Freeman & Co., New York
(1978)

4. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems,
part II: p-medians. SIAM J. Appl. Math. 37, 539–560 (1979)

5. Olariu, S.: A simple linear-time algorithm for computing the center of an interval
graph. Int. J. Comput. Math. 24, 121–128 (1990)

6. Tamir, A.: Improved complexity bounds for center location problems on networks
by using dynamic data structures. SIAM J. Discrete Math. 1, 377–396 (1988)

7. Yen, W.C.-K., Chen, C.-T.: The p-center problem with connectivity constraint.
Appl. Math. Sci. 1, 1311–1324 (2007)

8. Yen, W.C.-K.: The connceted p-center problem on block graphs with forbidden
vertices. Theor. Comput. Sci. 426–427, 13–24 (2012)

	The Connected p-Center Problem on Cactus Graphs
	1 Introduction
	2 Notations and Basic Properties
	3 Algorithm for the CpC Problem on Cactus Graphs
	3.1 Procedure GRAFT(B,h)
	3.2 The Procedure CYCLE(C,h)
	3.3 Algorithm for the CpC Problem

	4 Conclusions
	References

