
The Incentive Ratio in Exchange Economies

Ido Polak(B)

Nanyang Technological University, Singapore, Singapore
S120059@e.ntu.edu.sg

Abstract. The incentive ratio measures the utility gains from strate-
gic behaviour. Without any restrictions on the setup, ratios for linear,
Leontief and Cobb–Douglas exchange markets are unbounded, showing
that manipulating the equilibrium is a worthwhile endeavour, even if it
is computationally challenging. Such unbounded improvements can be
achieved even if agents only misreport their utility functions. This pro-
vides a sharp contrast with previous results from Fisher markets. When
the Cobb–Douglas setup is more restrictive, the maximum utility gain
is bounded by the number of commodities. By means of an example,
we show that it is possible to exceed a known upper bound for Fisher
markets in exchange economies.
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1 Introduction

General equilibrium theory and (noncooperative) game theory are among the
most succesful and well-studied areas in economic theory. The former seeks to
explain the existence of equilibria in multiple markets at the same time. The
latter serves as the primary tool for predicting, analysing and describing the
behaviour of rational agents’ actions both in and out of equilibrium.

Here we try to combine the two approaches for exchange economies. Specif-
ically, we ask how much any individual agent can gain from strategically mis-
reporting his utility function. The results presented here suggest that, contrary
to previous findings in Fisher markets, the gains from strategic behaviour may
be significant, even allowing an agent to improve his equilibrium utility without
bound. If we impose (common) restrictions, the utility gain in Cobb–Douglas
markets is bounded by the number of commodities, but it may exceed the upper
bound from Fisher markets, which can be shown by means of an example. The
results obtained show a sharp contrast with the findings in the Fisher market
setup [6,7]: there, incentive ratios are bounded by the small constants 2, 2 and
e1/e ≈ 1.44 for linear, Leontief and Cobb–Douglas markets, respectively.

1.1 Related Work

In a Fisher market [3] agents possess an amount of money rather than a bun-
dle of commodities as in exchange economies. The idea that an agent may act
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strategically in such a market by misreporting his utility function in order to
get a better equilibrium bundle, compared to the scenario where everyone is
truthful, was already considered in [1] for the case of linear utility functions.
The incentive ratio was first coined in [7], where the strategic variable of interest
is the (Leontief) utility function of a player and bidding the true budget is a
dominant strategy. In [5,6], a slightly more sophisticated version of the incen-
tive ratio is presented, in which players may also strategise on their endowments.
The “exchange market game” is introduced in [11], and agents have linear utility
functions. They may lie about their utility function to manipulate the outcome
of the exchange process. It is consequently shown that a symmetric strategy pro-
file is a Nash equilibrium if and only if it is conflict-free. In [4], price of anarchy
bounds are computed for linear, Leontief and Cobb–Douglas markets in Fisher
markets. The strategic variable of interest is the utility function. It primarily
differs from the analysis presented here in that it focuses on welfare of all agents
rather than measuring the benefits of strategic behaviour for one specific agent.
It is known that the Walrasian mechanism is susceptible to manipulation via
endowments: via withholding endowments and recovering it fully [13], recover-
ing part of it [15,16] and even destroying part of one’s initial endowment [2].
However, the aforementioned studies only show that manipulation of the equi-
librium is possible, but do not quantify it.

The rest of this paper is organised as follows. Section 2 discusses the nec-
essary machinery, definitions and introduces some notation. Section 3 presents
the results for incentive ratios in Linear, Leontief and Cobb–Douglas exchange
economies. The latter receives most attention. Finally, Sect. 4 concludes and
provides some directions for future research.

2 Preliminaries

We use the following notation. Suppose x, y ∈ R
n. Then x · y =

∑n
k=1 xkyk

denotes the dot product of x and y. x ≤ y means xk ≤ yk for k =
1, . . . , n. For a vector u = (u1, . . . , un), by u−i we mean the vector
(u1, . . . , ui−1, ui+1, . . . , un) (i.e. all entries except the i-th). We write (ui, u−i)
for (u1, . . . , ui−1, ui, ui+1, . . . , un). For positive integer n, we use [n] as shorthand
notation for the set {1, . . . , n}. Im is the m × m identity matrix. The transpose
of a matrix M is denoted by MT , its determinant by |M | and its adjugate by
Adj(M). If f : Rm → R

n, then Df(x) represents the Jacobian matrix of f at x.
We start with the definition of an exchange economy.

Definition 1 (Exchange Economy). An (exchange) economy is a tuple ξ =
((ui)n

i=1, (ei)n
i=1), where ui : Rm

+ → R is the utility function of agent i ∈ [n] and
ei ∈ R

m
+ is a vector where eij indicates how much agent i ∈ [n] possesses of

commodity j ∈ [m].

In an economy, agents obtain a bundle xi ∈ R
m
+ by trading commodities

given a price vector p ∈ R
m. If p is such a price vector, then every agent solves

the following consumer problem (CP).
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Definition 2 (Demand).

maximize ui(xi)
subject to p · xi ≤ p · ei

xi ≥ 0
(CP)

We call the set of solutions to problem (CP) the demand of agent i (at prices p).

We can write xi(p, p ·ei) to show explicitly that demand depends on endowments
and prices. Since prices are in turn determined by endowments and utility func-
tions, we may also write xi(ui, u−i, e) or, when it is understood that u−i and e
are fixed, simply as xi(ui). We also need the notion of Walrasian or competitive
equilibrium.

Definition 3 (Competitive/Walrasian Equilibrium). A competitive equi-
librium is a pair (p, x) ∈ R

m × (Rm
+ )n such that:

1. For all j ∈ [m],
∑n

i=1 xij =
∑n

i=1 eij i.e. markets clear.
2. For all i ∈ [n], xi is a solution to (CP), i.e. xi is the best bundle among the

bundles that he can afford.

2.1 Incentive Ratio

Every agent is characterized by two parameters, his endowment ei and his utility
function ui. Generally, different endowments and different utility functions will
lead to different equilibria. What if an agent purposely misreports his utility
function, thereby trying to get a better equilibrium allocation?

The incentive ratio is a concept introduced in [7]. It attempts to measure the
(maximum) benefits of manipulating the equilibrium by strategically misreport-
ing personal parameters. Formally, we define it as follows (adapted for exchange
economies, the original definition was for Fisher markets, see also [5–7]):

Definition 4 (Incentive Ratio). The incentive ratio of agent i in a market
M (e.g. linear, Cobb–Douglas or Leontief), denoted ζM

i , is defined as:

ζM
i = max

u−i∈U−i,e−i∈(Rm
+ )n−1

max
u′
i∈Ui

maxx′∈E(u′
i)

ui(x′
i(u

′
i, u−i, e))

minx∈E(ui) ui(xi(ui, u−i, e))
.

The incentive ratio of market M is subsequently defined as ζM = maxi∈[n] ζ
M
i .

Remark 1. In this definition:

– Variables with a prime (′) refer to the scenario in which agent i misreports
his parameters (and all other agents report truthfully). That is, he reports
u′

i and as a result, obtains a bundle x′
i(u

′
i, u−i, e). Notice that this bundle is

evaluated by the true utility function.
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– Given that player i reports ũi (i.e. truthful or not) as his utility function (the
other players report u−i), we denote by E(ũi) the set of equilibrium allocations,
that is, E(ũi) = {x ∈ (Rm

+ )n| ∃p ∈ R
m
+ (p, x) is a Walras equilibrium}. Under

some (mild) assumptions this set is nonempty, but it could contain multiple
equilibrium allocations.

– Ui contains the admissible strategies/utility functions for player i, including
the one that agent he chooses when he misreports his utility function. We
denote U−i =

∏
k �=i Uk. We will only consider the case where all Uk’s are

equal, thus U−i = Un−1.
– From the preceding arguments, we may restrict attention to agent i, thus we

may rewrite the incentive ratio for the market M as

ζM = max
u−i∈Un−1,e−i∈(Rm

+ )n−1
max
u′
i∈U

maxx′∈E(u′
i)

ui(x′
i(u

′
i, u−i, e))

minx∈E(ui) ui(xi(ui, u−i, e))
.

We will, without loss of generality, restrict ourselves to scenarios where ei ∈
[0, 1]m for all i ∈ [n] and

∑n
i=1 eij = 1 for all j ∈ [m]. The following Leontief

example shows that the consequences from the nonuniqueness of equilibrium can
be significant.

Example 1. e1 = (1 − ε, ε), e2 = (ε, 1 − ε), u2(x2) = min{x21, x22}, ε > 0, small

Truthful Nontruthful

u1(x1) = min{x11, x12} u′
1(x

′
1) = min{x′

11, x
′
12}

then then
p = (δ, 1) p′ = (1, 1)
x1 = ((ε + δ − δε)/(1 + δ), (ε + δ − δε)/(1 + δ)) x′

1 = (1/2, 1/2)
x2 = (1 − ε + δε)/(1 + δ), (1 − ε + δε)/(1 + δ)) x′

2 = (1/2, 1/2)

We have u1(x′
1)/u1(x1) = (1 + δ)/(2(ε + δ − δε)). Letting δ, ε tend to 0, the

incentive ratio tends to ∞.

In [6,7], the following markets are considered, with arbitrarily many agents
and commodities: Linear, i.e. U = {u(x) = α · x | α ∈ R

m
+}; Leontief, i.e.

U = {u(x) = minj∈[m]{xj/αj} | α ∈ R
m
++}; Cobb–Douglas, i.e. U = {u(x) =∏m

j=1 x
αj

j | 0 ≤ αj ≤ 1 for all j ∈ [m],
∑m

j=1 αj = 1}. The tight bounds for Fisher
markets are 2, 2 and e1/e for linear, Leontief and Cobb–Douglas respectively.

3 Results

The incentive ratio is a first step to quantifying the possible gains of misre-
porting in exchange economies. From Example 1, even destroying part of one’s
initial endowment (in the case ei is the strategic variable of interest), can let the
incentive ratio tend to infinity.

Without any further restrictions on the setup presented in [6,7], also incentive
ratios in linear and Cobb–Douglas exchange economies are unbounded. We treat
here linear markets; see [12] for details on the Cobb–Douglas case.
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Proposition 1. The incentive ratio for linear exchange economies equals +∞.

Proof. e1 = (ε, 1 − ε), e2 = (1 − ε, ε), u2(x2) = x21 + δ
1−εx22, δ, ε > 0, small

Truthful Nontruthful

u1(x1) = x11 u′
1(x

′
1) = x′

11 +
δ

1 − ε
x′
12

p = (1, δ/(1 − ε)) p′ = (1, δ/(1 − ε))
x1 = (δ + ε, 0), x2 = (1 − δ − ε, 1) x′

1 = (1, 0), x′
2 = (0, 1)

We have u1(x′
1)/u1(x1) = 1/(δ + ε). Letting both δ, ε tend to 0, the incentive

ratio tends to ∞. 	

Henceforth we focus on Cobb–Douglas markets and make the following assump-
tion to ensure all equilibrium prices are positive; this is rather standard in algo-
rithmic game theory.1

Assumption 1

– (Positivity of endowments). Every agent possesses a strictly positive amount
of every commodity: ∀i ∈ [n],∀j ∈ [m] eij > 0.

– (Strong competitiveness (see e.g. [4])). Every commodity is demanded by at
least one agent: ∀j ∈ [m] ∃i ∈ [n] αij > 0 and this remains true when agent i
reports α′

i.

This entails that the demand of agent i ∈ [n] for commodity j ∈ [m] is given
by xij(p, p · ei) = αijp · ei/pj and the economy excess demand function z(p) :=∑n

i=1(xi(p, p · ei) − ei) =
∑n

i=1 xi(p, p · ei) − 1 has the gross substitute property,
which implies that the equilibrium price is unique (see e.g. [10]). For markets
with two commodities we have (for a proof see [12]), as in Fisher markets [6]:

Proposition 2. Consider a Cobb–Douglas market, n ≥ 2, m = 2. The incentive
ratio is e1/e and this bound is tight.

The following example shows we can exceed the e1/e bound.

Example 2 (Incentive ratio > e1/e). Suppose the market is as follows:
⎧
⎪⎪⎨

⎪⎪⎩

e1 = (.99, .01, .01), e2 = (.01, .99, .99)
u1(x1) = x.2

11x
.3
12x

.5
13

u2(x2) = x.4
21x

.6
12

u′
1(x

′
1) = x′

11
.85

x′
12

.1
x′
13

.05

then

⎧
⎪⎪⎨

⎪⎪⎩

p = (.398, .597, .201)
x1 ≈ (.202, .202, 1)
p′ = (.4045, .1344, .0201)
x′
1 ≈ (.845, .299, 1),

Therefore the incentive ratio is u1(x′
1)/u1(x1) ≈ 1.50.

The remainder of this section is devoted to the proof that the incentive ratio for
Cobb–Douglas markets is bounded. The following lemma is crucial. We only pro-
vide a sketch the proof here due to space constraints; see [12] for complete proofs.
1 Alternatively, we could assume the existence of a nonmanipulating agent who pos-
sesses at least a little bit of all commodities and who desires every commodity.
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Lemma 1

(i) pj(αi) reaches its maximum when αij = 1 and αik = 0 for all k �= j. I.e.
for any chosen normalisation, pj is maximal when αij = 1.

(ii) α′
ij/p′

j(α
′
i) reaches its maximum when α′

ij = 1 and α′
ik = 0 for all k �= j.

I.e. for any chosen normalisation, α′
ij/p′

j(α
′
i) is maximal when α′

ij = 1.
(iii) Let A = (αji)1≤i≤n,1≤j≤m and similarly A′ when agent i reports α′

i, E =
(eji)1≤i≤n,1≤j≤m. Then the first row of Adj(EAT − Im) (Adj(E(A′)T −
Im)) contains the equilibrium price vector p (p′) (upto a nonzero constant).
Moreover, p · ei = p′ · ei.

Proof (sketch). For the first two points, w.l.o.g. we focus on commodity m.
(i) This follows from the implicit function theorem applied to [Dp̂ẑ(p(α);α)]−1,
a matrix in which all entries are negative, where p(α) is the equilibrium price
when players report strategies according to α = (α1, . . . , αn), p̂ and ẑ are vectors
with the first m − 1 entries from p and z(p(α)).
(ii) The extreme value theorem assures a maximum is attained. Using necessary
conditions for a maximum (see [9]) and homogeneity of degree 0 we get the proof.
(iii) This uses an argument along the lines of [14] and the fact that an equilibrium
price vector p satisfies (see [8]) pT (EAT −Im) = 0. The budget of agent i, p·ei, can
be written as a matrix determinant that does not change following the increase
of αij to α′

ij and a decrease of equal magnitude of αik to α′
ik, 1 ≤ j �= k ≤ m. 	


Theorem 1. The incentive ratio for Cobb–Douglas markets is at most m.

Proof

ui(x′
i)

ui(xi)
=

m∏

j=1

(
α′

ij

αij

p′ · ei

p · ei

pj

p′
j

)αij

≤
m∏

j=1

(
1

αij

p′ · ei

p · ei
max

α′
i

α′
ij

p′
j

max
αi

pj

)αij

≤
m∏

j=1

(
1

αij

)αij

≤ m,

where the second inequality follows from the lemma above and the last inequality
from the weighted AM–GM inequality. 	

We summarize the results presented here in Table 1.

Table 1. Upper bounds on the incentive ratio in n × m exchange economies.

Market Fisher [6,7] Exchange

Leontief 2 ∞
Linear 2 ∞
Cobb–Douglas (Without Assumption 1, n = 2, m = 2) e1/e ∞
Cobb–Douglas (With Assumption 1, any n, m = 2) e1/e e1/e

Cobb–Douglas (With Assumption 1, any n, m ≥ 3) e1/e m
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4 Conclusion

Results for incentive ratios in Fisher markets were encouraging: the maximum
gains from strategic behaviour were bounded by small constants and therefore
equilibrium mechanisms could be expected to work rather well, meaning that
the profits from (computationally challenging) strategic behaviour were small
relative to the costs, and thus, not worthwhile on most occassions. However,
the results here indicate that in the more general setup of exchange economies,
results are diametrically different and without further restrictions, all ratios are
unbounded. The Cobb–Douglas case demonstrates that, when equilibrium prices
(and hence allocations and utilities) are unique, the incentive ratio is bounded by
the number of commodities. Therefore it may be argued that, unlike in Fisher
markets, gains from strategic behaviour can be significant and manipulation
could be worthwhile.

For Cobb–Douglas markets, the case m = 2 demonstrates that the bound
m is unlikely to be tight. This, and the question of the incentive ratio when
agents are allowed to misreport their endowments in linear and Cobb–Douglas
markets, are left as directions for future research. Allowing groups of agents to
misreport their utility function and extending the results from Cobb–Douglas
markets to, for example, any other market satisfying weak gross substitution,
are other interesting possibilites.
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