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Abstract. In this paper, we propose the Max k-Uncut problem. Given
an n-vertex undirected graph G = (V, E) with nonnegative weights
{we | e ∈ E} defined on edges, and a positive integer k, the Max k-Uncut
problem asks to find a partition {V1, V2, · · · , Vk} of V such that the
total weight of edges that are not cut is maximized. This problem is just
the complement of the classic Min k-Cut problem. We get this problem
from the study of complex networks. For Max k-Uncut, we present a
randomized (1 − k

n
)2-approximation algorithm, a greedy (1 − 2(k−1)

n
)-

approximation algorithm, and an Ω( 1
2
α)-approximation algorithm by

reducing it to Densest k-Subgraph, where α is the approximation ratio
for the Densest k-Subgraph problem. More importantly, we show that
Max k-Uncut and Densest k-Subgraph are in fact equivalent in approxima-
bility up to a factor of 2. We also prove a weak approximation hardness
result for Max k-Uncut under the assumption P �= NP.

1 Introduction

In this paper, we investigate the Max k-Uncut problem, which is obtained from
the study of the homophyly law [8, Chap. 4] of large scale networks. Being one of
the basic laws governing the structures of large scale networks, the homophyly
law states that edges in a network tend to connect nodes with the same or similar
attributes, just as an old proverb says, “birds of a feather flock together”. For
example, in a paper citation network, papers are more likely to cite papers with
which they have the same or similar keywords.

While it is common to list keywords in a paper by its authors, in a paper
citation network there are still many papers whose keywords are not explicitly
given. Consequently, it is natural to predict keywords for these papers using
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the homophyly law. Inspired by this observation, Zhang (the first author of
this paper) and Li [21] proposed the Maximum Happy Edges (MHE) problem. In
the MHE problem, we are given an undirected graph G = (V,E) and a color
set C = {1, 2, · · · , k}. Only part of vertices are given colors in C. An edge is
happy if its two endpoints share the same color. The goal of MHE is to color
all the uncolored vertices such that the number of happy edges is maximized.
Here, vertices correspond to papers, edges correspond to citations (neglecting
directions), and colors correspond to keywords.

A natural variant of MHE is that in the input graph all vertices are uncolored
and the problem just asks to color them in k colors such that the number (or total
weight) of happy edges is maximized. This suggests the Max k-Uncut problem
we investigate in this paper.

Definition 1. The Max k-Uncut Problem

(Instance). We are given an undirected graph G = (V,E) with nonnegative edge
weights {we | e ∈ E}, and a positive integer k.

(Goal). The problem asks to find a partition {V1, V2, · · · , Vk} of V (i.e., to find
a k-coloring of vertices) such that the total weight of happy edges is maximized.

In the definition of Max k-Uncut, by k-coloring we mean a coloring scheme
that uses exactly k colors, which results in a k-partition {V1, V2, · · · , Vk}, where
Vi is the set of vertices whose color is i. In the paper we will interchangeably
use k-coloring and k-partition. Note that the requirement of exactly k colors
is necessary, otherwise we can color all vertices in one color and all edges are
happy.

In the Max k-Uncut problem, if k = 1 or k = n, the problem becomes trivial.
The optimum would be respectively the number of all edges and 0 in these
two cases. So, throughout the paper we always assume 2 ≤ k ≤ n − 1 for the
Max k-Uncut problem.

Note that Max k-Uncut is not a special case of MHE. In MHE, if all vertices
are un-colored, then the problem becomes trivial: Just color all vertices in one
color, then all edges will become happy. In contrast, if all vertices in Max k-Uncut
are uncolored, we cannot color them in one color. In Max k-Uncut, we must figure
out a k-coloring.

Two problems that are closely related to Max k-Uncut have already appeared
in literature. Choudhurya et al. [7] proposed the capacitated Max k-Uncut prob-
lem. Given an undirected graph G and k integers s1, s2, · · · , sk, this problem is
to partition V (G) into k subsets of sizes s1, s2, · · · , sk respectively, such that the
total weight of happy edges is maximized. Very recently, Wu et al. [18] studied
the balanced Max 3-Uncut problem, in which an input graph is partitioned into
3 equal-sized parts so that the total weight of happy edges is maximized.

Notations and Terms. Some common notations and terms are listed here.
Given a graph G, let n be the number of its vertices. Given an optimization
problem, let OPT denote the value of its optimal solution. By r-clique for some
integer r, we mean a clique (i.e., a complete subgraph) that contains exactly r
vertices.
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1.1 Related Work

To the best of our knowledge, the general Max k-Uncut problem is new and has
not been studied in literature. Though it is new, Max k-Uncut has rich connection
to the classic and existing problems.

Max k-Uncut is just the complement of the classic Min k-Cut problem. The
Min k-Cut problem asks for a k-partition such that the total weight of cut
edges is minimized. The Min k-Cut problem is strongly NP-hard [12], so is the
Max k-Uncut problem. The best approximation ratio for Min k-Cut is 2 [17].
When k is a constant, the Min k-Cut problem can be optimally solved in polyno-
mial time [12]. Obviously, Max k-Uncut with constant k is also polynomial time
solvable. In a word, Max k-Uncut is strongly NP-hard (when k is given in the
input), and is polynomial time solvable when k is a constant.

Previously we have pointed out two closely related variants of Max k-Uncut,
i.e., the capacitated Max k-Uncut problem and the balanced Max 3-Uncut prob-
lem. Using the heuristic of local search, Choudhurya et al. [7] gave a 1

d(k−1)+1 -
approximation algorithm for capacitated Max k-Uncut, where d is the ratio of the
largest size and the smallest size in the partition. This ratio is somewhat poor
and cannot extend to the Max k-Uncut problem studied in this paper. Using the
semidefinite programming technique, Wu et al. [18] gave a 0.3456-approximation
algorithm for the balanced Max 3-Uncut problem.

The cut problems are classic and rich. They play an important role in the
study of approximation algorithms and operations research. In literature, the
“uncut” problems are also been studied. Besides Max k-Uncut, three examples
are Min Uncut [1], Multiway Uncut [15,20], and the complement of Min Bisection
[19]. Min Uncut is the complement of the classic Max Cut problem. Agarwal et
al. [1] gave an O(

√
log n)-approximation algorithm for Min Uncut, where n is

the number of vertices in the input graph. Multiway Uncut is the complement
of the classic Multiway Cut problem [5,6]. Langberg et al. [15] proposed the
Multiway Uncut problem. The current best approximation ratio for Multiway

Uncut is 1
2 +

√
2
4 f(k) ≥ 0.8535 [20], where f(k) ≥ 1 is a function of k. Ye and

Zhang [19] gave a 0.602-approximation algorithm for the complement of the Min
Bisection problem.

Due to the close relation of Max k-Uncut to Multiway Uncut, we have to say
more about Multiway Uncut. Given a graph G = (V,E) with edge weights and a
terminal set {s1, s2, · · · , sk} ⊆ V , the Multiway Uncut problem asks a partition of
V that separates the k terminals from each other and maximizes the total weight
of happy edges. (Multiway Uncut is a special case of MHE.) Both Max k-Uncut and
Multiway Uncut ask for a k-partition. The only difference is that in Max k-Uncut,
there is no terminal, and in Multiway Uncut, there are terminals.

Another closely related problem is Max k-Cut, which is the problem to
find a k-partition such that the total weight of cut edges is maximized. When
k = 2, Max k-Cut (namely, Max Cut) is already NP-hard. The current best
approximation ratio for Max Cut is 0.87856, given by Goemans and Williamson
[11] using the semidefinite programming technique. Frieze and Jerrum [10]
extended Goemans-Williamson’s technique to the Max k-Cut problem, obtained
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the approximation ratio αk = 1 − 1
k + (1 + ε(k))2 ln k

k2 for Max k-Cut, where ε(k)
is a function of k which tends to zero as k → ∞. When k = 3, 4, 5, αk is no less
than 0.800217, 0.850304, and 0.874243, respectively.

1.2 Our Results

In this paper, we give three approximation algorithms for the Max k-Uncut prob-
lem and prove a (weak) approximation hardness result of Max k-Uncut. These
three algorithms share the same idea, which is simple but powerful: To find a
k-partition with many happy edges, one may just find a dense subgraph as large
as possible. The subgraph is used as one part of the k-partition. The larger and
denser the subgraph is, the more happy edges we will get. Along this line, we
finally find that Max k-Uncut is in fact equivalent to the Densest k-Subgraph
problem in approximability (up to a factor of 2). Note that Densest k-Subgraph
is one of the current hot topics in approximation algorithms. This may be our
most important find in this paper.

The first algorithm is a randomized algorithm (Algorithm 2.1) whose approx-
imation ratio is (1 − k

n )2. This algorithm can be derandomized in polynomial
time. The second algorithm is a greedy algorithm (Algorithm 2.2) whose approx-
imation ratio is 1− 2(k−1)

n . While the ratios of these two algorithms are very close,
they are still incomparable. Specifically, when k <

√
2n, the ratio 1 − 2(k−1)

n is
better than the ratio (1 − k

n )2. Otherwise (when k >
√

2n), the latter is better
than the former.

The ratio ρ = max{(1 − k
n )2, 1 − 2(k−1)

n } for Max k-Uncut we obtain so far
is already good when k is not too large. For example, if k ≤ n/2, then ρ ≥ 1/4.
However, when k approaches n−1, ρ becomes worse and worse, and equals to 1

n2

finally. This observation suggests that the most difficult case of approximating
Max k-Uncut should be the case when k is close to n, say, k = n − O(log n).
And in this case (i.e., when k is large), we may make use of the connection to
Densest k-Subgraph.

Therefore, in the third algorithm (Algorithm 2.3), we reduce Max k-Uncut
to Densest k̄-Subgraph (for some suitable k̄) by exploring the structure of opti-
mal solutions to Max k-Uncut. It is convenient to define the Densest k-Subgraph
problem here.

Definition 2. The Densest k-Subgraph Problem

(Instance). We are given an undirected graph G = (V,E) with nonnegative edge
weights {we | e ∈ E}, and a positive integer k.

(Goal). The problem asks to find a k-vertex subgraph G′ such that the total weight
of edges in E(G′) is maximized.

The reduction used in Algorithm 2.3 is nontrivial. Let α be the approximation
ratio for Densest k-Subgraph. Then Algorithm 2.3 approximates Max k-Uncut
within 1

2α in polynomial time. The current best value of α is Ω(1/n
1
4+ε) [4].
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Consequently, Algorithm 2.3 repairs the deficiencies of Algorithms 2.1 and 2.2.
Now, the approximation ratio we obtain for Max k-Uncut is max{ρ, 1

2α}.
Surprisingly and interestingly, our technique in the analysis of Algorithm2.3

also implies that if Max k-Uncut can be approximated within a factor of β, then
Densest k-Subgraph can be approximated within 1

2β. Therefore, Max k-Uncut
and Densest k-Subgraph are equivalent in approximability up to a factor of 2.
This reveals the strong connection between Max k-Uncut and Densest k-Subgraph,
and may open a new viewpoint in tackling the Densest k-Subgraph problem, since
this problem is known as a notorious hard problem in approximation algorithms.
(There is a wide gap between its best approximation factor and its best hardness
factor).

Next, we prove an approximation hardness result for Max k-Uncut: For any
small constant ε > 0, Max k-Uncut cannot be approximated within 1 − 1

2nε in
polynomial time, where n is the number of vertices in the input graph. This is
proved via a gap-preserving reduction from the hardness result of the Max Clique
problem [3,13]. As a result, the hardness 1 − 1

2nε for any small constant ε > 0
implies that Max k-Uncut does not admit FPTAS.

Honestly speaking, this hardness result is weak since Max k-Uncut is indeed
strongly NP-hard, and the strong NP-hardness already rules out FPTAS. How-
ever, we make twofold contribution in proving the approximation hardness of
Max k-Uncut. First, we give an explicit expression of the approximation hard-
ness factor of Max k-Uncut, instead of just speaking that it is strongly NP-hard.
Second, we prove a technical lemma (Lemma 2), which gives an upper bound of
the number of happy edges that can be produced by any k-partition on a graph
with no (r + 1)-clique. The technical lemma is of independent interest and may
find more applications in related problems. In fact, the upper bound is obtained
by a special k-partition which consists of k − 1 singletons and one subset of size
n−(k−1). This again hints the connection of Max k-Uncut to Densest k-Subgraph
and Max Clique.

2 Approximation Algorithms

2.1 A Randomized Algorithm

A straightforward idea for Max k-Uncut is to color vertices randomly. However,
if we color every vertex randomly, we may not get an approximation algorithm
with good ratio. (We can prove that an algorithm of this type has approximation
ratio 1

k − k−1
n(n−1) . The details are omitted here.)

In graphs with only unit weight on edges, to maximize the total weight
of happy edges is equivalent to leave as many as possible edges uncut. So, a
clever randomized strategy is to randomly color k − 1 vertices only, making the
remaining vertices as many as possible. Intuitively, these many vertices would
induce many happy edges. Algorithm R below is a randomized algorithm for
Max k-Uncut of this idea.

Let Wtot be the total weight of edges in graph G.
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Algorithm 2.1. (Algorithm R for Max k-Uncut)
1 Pick randomly k − 1 vertices from V , and color them respectively in colors

1 to k − 1.
2 Color all the remaining vertices in color k.

Theorem 1. Algorithm R is a randomized
(
1 − k

n

)2
-approximation algorithm

for the Max k-Uncut problem.

Proof. First note that Algorithm R runs in polynomial time. Let Vi be the set
of vertices of color i. Take any edge e = (u, v). Then, e is happy (uncut) if and
only if both u and v are not chosen in the first k − 1 random choices (step 1).
This means that

Pr[edge e is happy] =

(
n−2
k−1

)

(
n

k−1

) =
(n − k + 1)(n − k)

n(n − 1)
>

(n − k)2

n2
=

(
1 − k

n

)2

.

Let SOL be the solution value obtained by Algorithm R. Therefore, we have

E[SOL] =
∑

e∈E

we · Pr[edge e is happy] ≥
(

1 − k

n

)2

Wtot.

On the other hand, the optimum OPT is obviously at most Wtot. So, the
approximation ratio of Algorithm R is at least

(
1 − k

n

)2
. 	


Algorithm R can be derandomized by the conditional expectation method in
polynomial time. This is sketched as follows in rounds. In the first round we
determine the first vertex to be removed. We remove each vertex vi (1 ≤ i ≤ n)
from G to obtain Gi. That is, ∀1 ≤ i ≤ n, Gi = G \ vi. For each Gi, we compute
the expected solution value ai of Algorithm R for the Max(k−1)-Uncut problem.
We find the largest expected value in this round, say aj . Then, vj is the first
vertex we pick and is colored in color 1. The next round begins from G with vj

removed. Repeating the above procedure for k − 1 rounds, we obtain a solution
whose value is at least as better as the expected value of Algorithm R.

2.2 A Greedy Algorithm

The idea in Sect. 2.1 can be restated as finding a subgraph of size n − k + 1 as
dense as possible, where by dense subgraph we mean a subgraph whose total
weight of edges is as much as possible. This leads to a greedy algorithm for
Max k-Uncut, shown as Algorithm G below. For the sake of description, we define
the weighted degree dw(v) of a vertex v as the sum of weights of edges incident
to v. By definition, the weight of vertex v is equal to the capacity of the cut
({v}, V \ {v}). Obviously, when each edge in the graph has unit weight, the
weighted degree of a vertex is simply its degree.
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Algorithm 2.2. (Algorithm G for Max k-Uncut)
1 Pick vertices from V with the first k−1 smallest weighted degrees, and color

them in colors 1 to k − 1, respectively.
2 Color all the remaining vertices in color k.

Theorem 2. Algorithm G is a
(
1 − 2(k−1)

n

)
-approximation algorithm for the

Max k-Uncut problem.

Proof. Algorithm G obviously runs in polynomial time. Let v1, · · · , vk−1 be the
vertices picked in the first step of Algorithm G. By the algorithm, only edges
incident to vertices in {v1, · · · , vk−1} would be unhappy. So, the total weight of
unhappy edges is at most

k−1∑

i=1

dw(vi) ≤ k − 1
n

∑

v

dw(v) =
2(k − 1)

n
Wtot.

Therefore, the total weight of happy edges is at least

Wtot − 2(k − 1)
n

Wtot.

Since OPT ≤ Wtot, this means the approximation ratio of Algorithm G is at
least 1 − 2(k−1)

n . 	


The approximation ratios (1 − k
n )2 and 1 − 2(k−1)

n behave well when k is not
too large. For example, (1 − k

n )2 ≥ 1
4 when k ≤ n

2 . However, when k is large
enough, say, k = n−O(log n), the approximation ratio max{(1− k

n )2, 1− 2(k−1)
n }

we obtained so far becomes bad. To remedy this deficiency, we design another
approximation algorithm for Max k-Uncut, that is, Algorithm T in Sect. 2.3.
Actually, our subsequent study on Max k-Uncut in this paper makes us realize
that the hard core of Max k-Uncut just lies in the case when k is large.

2.3 Reduces to Densest k-Subgraph

In this section, we reduce Max k-Uncut to Densest k̄-Subgraph for some suitable
k̄. For clarity, when the instance of Densest k-Subgraph is given as, e.g., (G,w, k̄),
we call it the instance of the Densest k̄-Subgraph problem. The reader should be
aware of that Densest k-Subgraph and Densest k̄-Subgraph are the same problem.
This usage also happens to the Max k-Uncut problem.

Given a vertex subset S of an edge-weighted graph G, let w(S) denote
the total weight of happy edges induced by S. Given a k-partition P =
{V1, V2, · · · , Vk} of V (G), let w(P) denote the total weight of happy edges
induced by P, i.e., w(P) =

∑
i w(Vi).

First we prove a technical lemma.



56 P. Zhang et al.

Lemma 1. Let P = {V1, V2, · · · , Vk} be a k-partition of graph G with weights
defined on edges. Then in polynomial time (in terms of |V (G)|) we can construct
a k-partition P ′ = {V ′

1 , V
′
2 , · · · , V ′

k} which satisfies

(i) |V ′
1 | = · · · = |V ′

k−1| = 1, |V ′
k| = n − k + 1, and

(ii) w(P ′) ≥ 1
2w(P).

Proof. We renumber the vertex subsets in P according to the non-decreasing
order of their w(·) values, and rewrite P as {R1, R2, · · · , Ra, S1, S2, · · · , Sb},
where we assume that in P there are a singletons R1, · · · , Ra, and b non-
singletons S1, · · · , Sb (that is, each Si has size at least two). So, we have a+b = k,

w(R1) ≤ · · · ≤ w(Ra) ≤ w(S1) ≤ · · · ≤ w(Sb),

and
w(P) = w(S1) + · · · + w(Sb).

Note that a may be zero.
If b = 1, then the theorem is proved by just letting P ′ = P. So, in the follow-

ing we assume that b ≥ 2. We shall convert S1, · · · , Sb−1, Sb to S′
1, · · · , S′

b−1, S
′
b

such that the first b − 1 S′
i’s are singletons. This is done as follows.

We pick the unique � ∈
[
1, � b−1

2 
]

such that

|S1| + |S2| + · · · + |S�| ≥ b − 1

and
|S1| + |S2| + · · · + |S�−1| < b − 1. (1)

Note that it may be the case that � = 1, and in this case we do not need the
condition (1). Also note that since b ≥ 2 and ∀1 ≤ i ≤ b, |Si| ≥ 2, � must be at
most � b−1

2 .
Initially S′

b is empty. We merge all vertices in S�+1, · · · , Sb into S′
b. Then

we pick arbitrarily b − 1 vertices from S1, · · · , S� to make b − 1 singletons S′
1,

S′
2, · · · , S′

b−1. If there are still remaining vertices in S1, · · · , S� (in case that
|S1|+ |S2|+ · · ·+ |S�| > b− 1), we then move all of them to S′

b. This finishes the
construction of S′

1, · · · , S′
b−1, S′

b.
Since � ≤ � b−1

2  ≤ 1
2b, the number of subsets S�+1, · · · , Sb is at least half of

b. In the above construction, all the happy edges in these subsets are kept in S′
b.

Since S1, · · · , Sb are in the non-decreasing order of the total weights of happy
edges they contain, we know that

w(S′
b) ≥ 1

2
(w(S1) + · · · + w(Sb))

The desired k-partition P ′ is just {R1, · · · , Ra, S′
1, · · · , S′

b}. 	


Algorithm T is the algorithm reducing Max k-Uncut to Densest k̄-Subgraph. Since
the subgraph G′ found in step 2 contains k̄ vertices, there are exactly n−k̄ = k−1
vertices in V (G) \ V (G′). So, in step 4 we can color them in colors 1, · · · , k − 1,
respectively.
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Algorithm 2.3. (Algorithm T for Max k-Uncut)
Input: An instance (G,w, k) of Max k-Uncut.
Output: A k-partition of V (G).
1 k̄ ← n − (k − 1).
2 Find a subgraph G′ of G by an approximation algorithm for Densest k̄-
Subgraph on instance (G,w, k̄).

3 Color all vertices in V (G′) in color k.
4 Color all vertices in V (G) \ V (G′) in colors 1, · · · , k − 1, respectively.

Theorem 3. Let α be the approximation ratio of Densest k-Subgraph. Then
Algorithm T is a α

2 -approximation algorithm for the Max k-Uncut problem.

By [4], α can be Ω(1/n1/4+ε) for every small constant ε > 0. (The ratio in
[4] is for unweighted Densest k-Subgraph. Using the technique in [9], this ratio
can be extended to weighted Densest k-Subgraph.) This means that Max k-Uncut
can be approximated within 1

2α = Ω(1/n1/4+ε) in polynomial time.

Proof (of Theorem 3). Let OPTMkU be the optimal value of Max k-Uncut on
instance (G,w, k). Let P∗ = {V1, V2, · · · , Vk} be the corresponding optimal solu-
tion. By Lemma 1, we can build a k-partition P ′ = {V ′

1 , V
′
2 , · · · , V ′

k} from P∗

such that V ′
1 , · · · , V ′

k−1 are singletons. This means that |V ′
k| = n − (k − 1). So,

V ′
k is a feasible solution to Densest k̄-Subgraph on instance (G,w, k̄) satisfying

w(V ′
k) = w(P ′) ≥ 1

2
w(P∗) =

1
2
OPTMkU, (2)

where the inequality is by Lemma 1.
Note that G′ is the subgraph found in step 2 by the approximation algorithm

for Densest k̄-Subgraph. There are k − 1 vertices in V (G) \ V (G′). Then, step
4 builds k − 1 singletons using the vertices in V (G) \ V (G′). These singletons,
together with V (G′), constitute a k-partition, denoted by P, which is a feasible
solution to Max k-Uncut. We have

w(P) = w(V (G′)) ≥ α · OPTDk̄S ≥ α · w(V ′
k) ≥

(2)

α

2
· OPTMkU,

where the first inequality holds since G′ is an α-approximate solution to the
Densest k̄-Subgraph instance (G,w, k̄), and the second inequality holds since V ′

k

is a feasible solution to (G,w, k̄). The theorem is proved. 	


Note that the running time of Algorithm T does not depend on the construction
time of the k-partition in Lemma 1. Lemma 1 is only used in the analysis of
Algorithm T . (This construction time is useful in the following Algorithm C.)

Interestingly and somewhat surprisingly, Lemma 1 also implies the converse
of Theorem 3: Densest k-Subgraph reduces to Max k-Uncut. This is shown in
Algorithm C and Theorem 4.
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Algorithm 2.4. (Algorithm C for Densest k-Subgraph)
Input: An instance (G,w, k) of Densest k-Subgraph.
Output: A vertex subset V ′ ⊆ V (G) containing exactly k vertices.
1 k̄ ← n − k + 1.
2 Find a k̄-partition P = {V1, V2, · · · , Vk̄} of V (G) by an approximation algo-

rithm for Max k̄-Uncut on instance (G,w, k̄).
3 Convert P to a k̄-partition P ′ = {V ′

1 , V
′
2 , · · · , V ′̄

k
} by Lemma 1, where |V ′̄

k
| =

n − (k̄ − 1) = k.
4 return V ′ ← V ′̄

k
.

Theorem 4. If Max k-Uncut can be approximated within a factor of α, then
Densest k-Subgraph can be approximated within a factor of α/2.

Proof. We design Algorithm C as the approximation algorithm for
Densest k-Subgraph. Step 2 calls the supposed α-approximation algorithm for
Max k̄-Uncut. By Lemma 1, step 3 can be finished in polynomial time. There-
fore, the overall running time of Algorithm C is polynomial.

Let V ∗ be an optimal solution to the Densest k-Subgraph instance (G,w, k),
whose value is denoted by OPTDkS. Note that in Algorithm C we have k̄ = n−k+
1. By viewing each vertex in V (G)\V ∗ as a singleton, we can build a k̄-partition
P◦ = {V ◦

1 , V ◦
2 , · · · , V ◦̄

k
}, where V ◦̄

k
= V ∗. Obviously we have w(P◦) = OPTDkS.

A crucial observation is that P◦ is a feasible solution to the Max k̄-Uncut instance
(G,w, k̄). This helps us get the connection

OPTMk̄U ≥ OPTDkS, (3)

where OPTMk̄U is the optimal value of the instance (G,w, k̄) of Max k̄-Uncut.
For the two k̄-partitions P and P ′, we have w(P ′) ≥ 1

2w(P) by Lemma 1.
Since Max k̄-Uncut can be approximated within α, we have w(P) ≥ α ·OPTMk̄U.
These facts, together with (3), conclude the theorem. 	


Theorems 3 and 4 show that Max k-Uncut and Densest k-Subgraph are in fact
equivalent in approximability up to a factor of two.

3 Approximation Hardness

3.1 Ruling Out Constant Factor Approximation

The approximability equivalence (up to a factor of two) of Max k-Uncut and
Densest k-Subgraph naturally suggests that the approximation hardness results
of Densest k-Subgraph may extend to Max k-Uncut. In particular, the following
conditional hardness result holds.

Corollary 1. If Densest k-Subgraph cannot be approximated within any con-
stant factor, then so do Max k-Uncut.
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Under some appropriate complexity assumptions, people indeed proved
that Densest k-Subgraph cannot be approximated within any constant factor.
Raghavendra and Steurer [16] proved that assuming that the Unique Games
with Small Set Expansion conjecture is true, it is NP-hard to approximate the
Densest k-Subgraph problem within any constant factor. Alon et al. [2] also ruled
out constant approximation factor for Densest k-Subgraph, under an average case
hardness assumption. For the exact meaning of these complexity assumptions,
we refer the reader to [2,16].

Khot [14] proved that assuming NP �⊆ ∩ε>0BPTIME(2nε

), Densest
k-Subgraph has no PTAS. However, this result cannot be extended to
Max k-Uncut directly, since the approximability equivalence of Max k-Uncut and
Densest k-Subgraph proved above omits a constant factor 2.

3.2 An Explicit Hardness Factor

The approximation hardness results for Densest k-Subgraph mentioned above all
use stronger complexity assumptions than the general assumption P �= NP. In
the following, we shall prove an approximation hardness result for Max k-Uncut,
assuming that P �= NP. The proved hardness factor is 1− 1

2nε , where ε > 0 is an
arbitrarily small constant, and n is the vertex number of the input graph. This
result implies that, if P �= NP, Max k-Uncut does not admit FPTAS.

The hardness result 1− 1
2nε for Max k-Uncut is rather weak since Max k-Uncut

is strongly NP-hard, and this (the strong NP-hardness) already rules out FPTAS.
However, we make twofold contribution in proving such a result. First, we give an
explicit expression of the approximation hardness factor of Max k-Uncut, instead
of just speaking that it is strongly NP-hard. Second, we prove a technical lemma
(Lemma 2), which gives an upper bound of the number of happy edges that
can be produced by any k-partition on a graph with no (r + 1)-clique. The
technical lemma is of independent interest and may find more applications in
related problems.

Lemma 2. Any k-partition on an n-vertex undirected graph with no (r + 1)-
clique can produce at most 1

2 (1 − 1
r )u2 happy edges, where u = n − (k − 1).

H̊astad [13] proved the following remarkable approximation hardness result
for the Max Clique problem: For any ε > 0, unless P = NP, there is no polynomial
time algorithm that approximates Max Clique within a factor of n1/2−ε, where
n is the vertex number of the input graph. By this result and Lemma 2, we can
prove that

Theorem 5. For any ε > 0, unless P = NP, there is no polynomial time algo-
rithm that approximates Max k-Uncut within a factor of 1 − n1/2−ε−1

n1/2−1
, where n

is the vertex number of the input graph. The hardness factor is ≤ 1 − 1
2nε for

sufficiently large n.

The proof of Lemma 2 is rather complicated. Due to space limitation, the
proofs of Lemma 2 and Theorem 5 are omitted here and will be given in the
journal version of the paper.
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H̊astad [13] also proved that assuming ZPP �= NP, Max Clique cannot be
approximated within n1−ε for any small constant ε > 0. However, for technical
reasons, this stronger hardness factor cannot improve the result of Theorem 5
accordingly.

A corollary of Theorem 5 is that Max k-Uncut has no FPTAS, if P �= NP.

Corollary 2. Max k-Uncut does not admit FPTAS, if P �= NP.

Proof. Suppose for contradiction that there is an FPTAS for Max k-Uncut which
for any small ε′ > 0, gets a (1−ε′)-approximation to Max k-Uncut instance I, with
running time poly( 1

ε′ , |I|), where |I| denotes the length of instance I, and poly()
denotes some polynomial. Given any small constant ε > 0, if we set ε′ = 1

2nε and
run the FPTAS, where n is the number of vertices in the input graph, then we
can get a (1− 1

2nε )-approximation to instance I in time poly(2nε, |I|) = poly(|I|),
contradicting Theorem 5. 	
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