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Abstract. An (r, �)-partition of a graph G is a partition of its vertex
set into r independent sets and � cliques. A graph is (r, �) if it admits
an (r, �)-partition. A graph is well-covered if every maximal indepen-
dent set is also maximum. A graph is (r, �)-well-covered if it is both
(r, �) and well-covered. In this paper we consider two different decision
problems. In the (r, �)-Well-Covered Graph problem ((r, �)wcg for
short), we are given a graph G, and the question is whether G is an
(r, �)-well-covered graph. In the Well-Covered (r, �)-Graph problem
(wc(r, �)g for short), we are given an (r, �)-graph G together with an
(r, �)-partition of V (G) into r independent sets and � cliques, and the
question is whether G is well-covered. We classify most of these prob-
lems into P, coNP-complete, NP-complete, NP-hard, or coNP-hard. Only
the cases wc(r, 0)g for r ≥ 3 remain open. In addition, we consider
the parameterized complexity of these problems for several choices of
parameters, such as the size α of a maximum independent set of the
input graph, its neighborhood diversity, or the number � of cliques in an
(r, �)-partition. In particular, we show that the parameterized problem
of deciding whether a general graph is well-covered parameterized by α
can be reduced to the wc(0, �)g problem parameterized by �, and we
prove that this latter problem is in XP but does not admit polynomial
kernels unless coNP ⊆ NP/poly.
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1 Introduction

An (r, �)-partition of a graph G = (V,E) is a partition of V into r independent
sets S1, . . . , Sr and � cliques K1, . . . , K�. For convenience, we allow these sets
to be empty. A graph is (r, �) if it admits an (r, �)-partition. The P versus NP-
complete dichotomy for recognizing (r, �)-graphs is well known [2]: the problem
is in P if max{r, �} ≤ 2, and NP-complete otherwise. The class of (r, �)-graphs
and its subclasses have been extensively studied in the literature. For instance,
list partitions of (r, �)-graphs were studied by Feder et al. [11]. In another paper,
Feder et al. [12] proved that recognizing graphs that are both chordal and (r, �)
is in P.

Well-covered graphs were first introduced by Plummer [20] in 1970. Plummer
defined that “a graph is said to be well-covered if every minimal point cover is
also a minimum cover”. This is equivalent to demanding that every maximal
independent set has the same cardinality. The problem of recognizing a well-
covered graph, which we denote by Well-Covered Graph, was proved to be
coNP-complete by Chvátal and Slater [3] and independently by Sankaranarayana
and Stewart [22], but is in P when the input graph is known to be claw-free
[18,24].

Motivated by this latter example and by the relevance of (r, �)-graphs, in
this paper we are interested in recognizing graphs that are both (r, �) and well-
covered. We note that similar restrictions have been considered in the literature.
For instance, Kolay et al. [16] recently considered the problem of removing few
vertices from a perfect graph so that it additionally becomes (r, �).

Let r, � ≥ 0 be two fixed integers. A graph is (r, �)-well-covered if it is both
(r, �) and well-covered. More precisely, in this paper we focus on the following
two decision problems.

(r, �)-Well-Covered Graph ((r, �)wcg )
Input: A graph G

Question: Is G (r, �)-well-covered?

Well-Covered (r, �)-Graph (wc(r, �)g )
Input: An (r, �)-graph G, together with a partition of V (G) into r

independent sets and � cliques
Question: Is G well-covered?

We establish an almost complete characterization of the complexity of the
(r, �)wcg and wc(r, �)g problems. Our results are shown in the following tables,
where r (resp. �) corresponds to the rows (resp. columns) of the tables, and
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where coNPc stands for coNP-complete, NPh stands for NP-hard, NPc stands
for NP-complete, and (co)NPh stands for both NP-hard and coNP-hard. The
symbol ‘?’ denotes that the complexity of the corresponding problem is open.

( )wcg 0 1 2 ≥ 3

0 − P P NPc

1 P P P NPc

2 P coNPc coNPc (co)NPh

≥ 3 NPh (co)NPh (co)NPh (co)NPh

wc( )g 0 1 2 ≥ 3

0 − P P P

1 P P P P

2 P coNPc coNPc coNPc

≥ 3 ? coNPc coNPc coNPc

We note the following simple facts that we will use to fill the above tables:

Fact 1. If (r, �)wcg is in P, then wc(r, �)g is in P.

Fact 2. If wc(r, �)g is coNP-hard, then (r, �)wcg is coNP-hard.

Note that wc(r, �)g is in coNP, since a certificate for a No-instance consists
just of two maximal independent sets of different size. On the other hand, for
(r, �)wcg we have the following facts, which are easy to verify:

Fact 3. For any pair of integers (r, �) such that the problem of recognizing an
(r, �)-graph is in P, the (r, �)wcg problem is in coNP.

Fact 4. For any pair of integers (r, �) such that the wc(r, �)g problem is in P,
the (r, �)wcg problem is in NP.

In this paper we prove that (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), and (1, 2)wcg

can be solved in polynomial time, which by Fact 1 yields that wc(0, 1), (1, 0),
(0, 2),(1, 1), (2, 0), and (1, 2)g can also be solved in polynomial time. On the other
hand, we prove that wc(2, 1)g is coNP-complete, which by Facts 2 and 3 will yield
that (2, 1)wcg is also coNP-complete. Furthermore, we also prove that wc(0, �)g
and wc(1, �)g are polynomial, and that (0, 3), (3, 0), and (1, 3)wcg are NP-hard.
Finally, we state and prove a “monotonicity” result, namely Theorem1, stating
how to extend the NP-hardness or coNP-hardness of wc(r, �)g (resp. (r, �)wcg)
to wc(r + 1, �)g (resp. (r + 1, �)wcg), and wc(r, � + 1)g (resp. (r, � + 1)wcg).

Together, these results correspond to those shown in the above tables. Note
that the only remaining open cases are wc(r, 0)g for r ≥ 3. As an avenue for
further research, it would be interesting to provide a complete characterization of
well-covered tripartite graphs, as has been done for bipartite graphs [10,21,26].
So far, only partial characterizations exist [14,15].

In addition, we consider the parameterized complexity of these problems for
several choices of the parameters, such as the size α of a maximum independent
set of the input graph, its neighborhood diversity, or the number � of cliques in
an (r, �)-partition. We obtain several positive and negative results. In particular,
we show that the parameterized problem of deciding whether a general graph
is well-covered parameterized by α can be reduced to the wc(0, �)g problem
parameterized by �, and we prove that this latter problem is in XP but does not
admit polynomial kernels unless coNP ⊆ NP/poly. (For an introduction to the
field of Parameterized Complexity, see [4,7,13,19].)
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The rest of this paper is organized as follows. In Sect. 2 we prove our results
concerning the classical complexity of both problems, and in Sect. 3 we focus on
their parameterized complexity.

We use standard graph-theoretic notation, and we refer the reader to [6] for
any undefined notation. Throughout the paper, we let n denote the number of
vertices in the input graph for the problem under consideration.

2 Classical Complexity of the Problems

We start with a monotonicity theorem that will be very helpful to fill the tables
presented in Sect. 1. The remainder of this section is divided into four subsections
according to whether (r, �)wcg and wc(r, �)g are polynomial or hard problems.

Theorem 1. Let r, � ≥ 0 be two fixed integers.

(i) If wc(r, �)g is coNP-complete then wc(r + 1, �)g and wc(r, � + 1)g are
coNP-complete.

(ii) If (r, �)wcg is NP-hard (resp. coNP-hard) then (r, � + 1)wcg is NP-hard
(resp. coNP-hard).

(iii) Suppose that r ≥ 1. If (r, �)wcg is NP-hard (resp. coNP-hard) then (r + 1,
�)wcg is NP-hard (resp. coNP-hard).

Proof. (i) This follows immediately from the fact that every (r, �)-graph is also
an (r + 1, �)-graph and an (r, � + 1)-graph.

(ii) Let G be an instance of (r, �)wcg. Let H be the disjoint union of G and
a clique Z with V (Z) = {z1, . . . , zr+1}. Clearly G is well-covered if and only if H
is well-covered. If G is an (r, �)-graph then H is an (r, �+1)-graph. Suppose H is
an (r, � + 1)-graph, with a partition into r independent sets S1, . . . , Sr and � + 1
cliques K1, . . . ,K�+1. Each independent set Si can contain at most one vertex
of the clique Z. Therefore, there must be a vertex zi in some clique Kj . Assume
without loss of generality that there is a vertex of Z in K�+1. Then K�+1 cannot
contain any vertex outside of V (Z), so we may assume that K�+1 contains all
vertices of Z. Now S1, . . . , Sr,K1, . . . ,K� is an (r, �)-partition of G, so G is an
(r, �)-graph. Hence, H is a Yes-instance of (r, � + 1)wcg if and only if G is a
Yes-instance of (r, �)wcg.

(iii) Let G be an instance of (r, �)wcg. Let G′ be the graph obtained by
adding � + 1 isolated vertices to G. (This guarantees that every maximal inde-
pendent set in G′ contains at least � + 1 vertices.) Since r ≥ 1, it follows that
G′ is an (r, �)-graph if and only if G is. Clearly G′ is well-covered if and only if
G is.

Next, find an arbitrary maximal independent set in G′ and let p be the
number of vertices in this set. Note that p ≥ � + 1. Let H be the join of G′

and a set of p independent vertices Z = {z1, . . . , zp}, i.e., NH(zi) = V (G′) for
all i. Every maximal independent set of H is either Z or a maximal independent
set of G′ and every maximal independent set of G′ is a maximal independent
set of H. Therefore, H is well-covered if and only if G′ is well-covered. Clearly,
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if G′ is an (r, �)-graph then H is an (r + 1, �)-graph. Suppose H is an (r + 1, �)-
graph, with a partition into r + 1 independent sets S1, . . . , Sr+1 and � cliques
K1, . . . ,K�. Each clique set Ki can contain at most one vertex of Z. Therefore
there must be a vertex zi in some independent set Sj . Suppose that there is
a vertex of Z in Sr+1. Then Sr+1 cannot contain any vertex outside of Z.
Without loss of generality, we may assume that Sr+1 contains all vertices of Z.
Now S1, . . . , Sr,K1, . . . ,K� is an (r, �)-partition of G, so G is an (r, �)-graph.
Thus H is a Yes-instance of (r + 1, �)wcg if and only if G is a Yes-instance of
(r, �)wcg. ��

2.1 Polynomial Cases for WC(r, �)G

Theorem 2. wc(0, �)g and wc(1, �)g are in P for every integer � ≥ 0.

Proof. It is enough to prove that wc(1, �)g is polynomial. Let V = (S,K1,K2,
K3, . . . , K�) be a (1, �)-partition for G. Then each maximal independent set I
of G admits a partition I = (IK , S \ NS(IK)), where IK is an independent set
of K1 ∪ K2 ∪ K3 ∪ · · · ∪ K�.

Observe that there are at most O(n�) choices for an independent set IK of
K1∪K2∪K3∪· · · ∪ K�, which can be listed in time O(n�), since � is constant and
(K1,K2, K3, . . . , K�) is given. For each of them, we consider the independent
set I = IK ∪ (S \ NS(IK)). If I is not maximal (which may happen if a vertex
in (K1 ∪ K2 ∪ K3 ∪ · · · ∪ K�) \ IK has no neighbors in I), we discard this choice
of IK . Hence, we have a polynomial number O(n�) of maximal independent sets
to check in order to decide whether G is a well-covered graph. ��

2.2 Polynomial Cases for (r, �)WCG

Fact 5. The graph induced by a clique or by an independent set is well-covered.

The following corollary is a simple application of Fact 5.

Corollary 1. G is a (0, 1)-well-covered graph if and only if G is a (0, 1)-graph.
Similarly, G is a (1, 0)-well-covered graph if and only if G is a (1, 0)-graph.

The following is an easy observation.

Theorem 3. (0, 2)wcg can be solved in polynomial time.

In the next three lemmas we give a characterization of (1, 1)-well-covered
graphs in terms of their graph degree sequence. Note that (1, 1)-graphs are known
in the literature as split graphs.

Lemma 1. Let G = (V,E) be a (1, 1)-well-covered graph with (1, 1)-partition
V = (S,K), where S is a independent set and K is a clique. If x ∈ K, then
|NS(x)| ≤ 1.
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Proof. Suppose that G is a (1, 1)-well-covered graph with (1, 1)-partition V =
(S,K), where S is a independent set and K is a clique. Let I be a maximal inde-
pendent set of G such that x ∈ I∩K. Suppose for contradiction that |NS(x)| ≥ 2,
and let y, z ∈ NS(x). Since y, z ∈ S, NG(y), NG(z) ⊆ K. Since K is a clique,
vertex x is the only vertex of I in K. Hence, we have that NG(y) ∩ (I \ {x}) =
NG(z) ∩ (I \ {x}) = ∅. Therefore I ′ = (I \ {x}) ∪ {y, z} is an independent set
of G such that |I ′| = |I| + 1. Thus, I is a maximal independent set that is not
maximum, so G is not well-covered. Thus, |NS(x)| ≤ 1. ��
Lemma 2. A graph G is a (1, 1)-well-covered graph if and only if it admits a
(1, 1)-partition V = (S,K) such that either for every x ∈ K, |NS(x)| = 0, or for
every x ∈ K, |NS(x)| = 1.

Proof. Let G be a (1, 1)-well-covered graph. By Lemma 1 we have that, given a
vertex x ∈ K, either |NS(x)| = 0 or |NS(x)| = 1. Suppose for contradiction that
there are two vertices x, y ∈ K such that |NS(x)| = 0 and |NS(y)| = 1. Let z be
the vertex of S adjacent to y. Let I be a maximal independent set containing
vertex y. Note that the vertex x is non-adjacent to every vertex of I \ {y} since
there is at most one vertex of I in K. The same applies to the vertex z. Hence,
a larger independent set I ′, with size |I ′| = |I| + 1, can be obtained from I
by replacing vertex y with the non-adjacent vertices x, z, i.e., I is a maximal
independent set of G that is not maximum, a contradiction. Thus, either for
every x ∈ K, |NS(x)| = 0, or for every x ∈ K, |NS(x)| = 1.

Conversely, suppose that there is a (1, 1)-partition V = (S,K) of G such
that either for every x ∈ K, |NS(x)| = 0, or for every x ∈ K, |NS(x)| = 1. If
K = ∅, then G is (1, 0) and then G is well-covered. Hence we assume K �= ∅. If
for every x ∈ K, |NS(x)| = 0, then every maximal independent set consists of all
the vertices of S and exactly one vertex v ∈ K. If for every x ∈ K, |NS(x)| = 1,
then every maximal independent set is either I = S, or I = {x} ∪ (S \ NS(x))
for some x ∈ K. Since |NS(x)| = 1 we have |I| = 1 + |S| − 1 = |S|, and hence G
is a (1, 1)-well-covered graph. ��
Lemma 3. G is a (1, 1)-well-covered graph if and only if there is a positive
integer k such that G is a graph with a (1, 1)-partition V = (S,K) where
|K| = k, with degree sequence either (k, k, k, . . . , k, i1, i2, . . . , is, 0, 0, 0, . . . , 0)
with

∑s
j=1(ij) = k, or (k − 1, k − 1, k − 1, . . . , k − 1, 0, 0, 0, . . . , 0), where the

subsequences k, . . . , k (resp. k − 1, . . . , k − 1) have length k.

Proof. Let G be a (1, 1)-well-covered graph. Then G admits a (1, 1)-partition
V = (S,K) where k := |K|, k ≥ 0. If k = 0, then the degree sequence is
(0, 0, 0, . . . , 0). If k ≥ 1, then by Lemma 2 either for every x ∈ K, |NS(x)| = 0,
or for every x ∈ K, |NS(x)| = 1. If for every x ∈ K, |NS(x)| = 0, then the
degree sequence of G is (k − 1, k − 1, k − 1, . . . , k − 1, 0, 0, 0, . . . , 0). If for every
x ∈ K, |NS(x)| = 1, then the degree sequence of G is (k, k, k, . . . , k, i1, i2, . . . , is,
0, 0, 0, . . . , 0), with

∑s
j=1(ij) = k.

Suppose that there is a positive integer k such that G is a graph with (1, 1)-
partition V = (S,K) where |K| = k, with degree sequence either (k, k, k, . . . , k,
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i1, i2, . . . , is, 0, 0, 0, . . . , 0), or (k − 1, k − 1, k − 1, . . . , k − 1, 0, 0, 0, . . . , 0), such
that

∑s
j=1(ij) = k. If the degree sequence of G is (k, k, k, . . . , k, i1, i2, . . . , is,

0, 0, 0, . . . , 0), then the vertices of K are adjacent to k − 1 vertices of K and
exactly one of S, since the vertices with degree i1, i2, . . . , is, have degree at
most k and the vertices with degree 0 are isolated. If the degree sequence of G
is (k −1, k −1, k −1, . . . , k −1, 0, 0, 0, . . . , 0), then the vertices of K are adjacent
to k − 1 vertices of K and none of S and the vertices with degree 0 are isolated.
By Lemma 2 we have that G is a well-covered graph. ��
Corollary 2. (1, 1)wcg can be solved in polynomial time.

Ravindra [21] gave the following characterization of (2, 0)-well-covered
graphs.

Theorem 4 (Ravindra [21]). Let G be a connected graph. G is a (2, 0)-well-
covered graph if and only if G contains a perfect matching F such that for every
edge e = uv in F , G[N(u) ∪ N(v)] is a complete bipartite graph.

We now prove that Theorem 4 leads to a polynomial-time algorithm.

Theorem 5. (2, 0)wcg can be solved in polynomial time.

Proof. Assume that G is connnected and consider the weighted graph (G,ω)
with ω : E(G) → {0, 1} satisfying ω(uv) = 1, if G[N(u) ∪ N(v)] is a complete
bipartite graph, and 0 otherwise. By Theorem4, G is well-covered if and only if
(G,ω) has a weighted perfect matching with weight at least n/2, and this can
be decided in polynomial time [9]. ��
Theorem 6. (1, 2)wcg can be solved in polynomial time.

Proof. We can find a (1, 2)-partition of a graph G (if any) in polynomial time [2].
After that, we use the algorithm for wc(1, �)g given by Theorem2. ��

2.3 coNP-complete Cases for WC(r, �)G

We note that the well-Covered Graph instance G constructed in the reduc-
tion of Chvátal and Slater [3] is (2, 1), directly implying that wc(2, 1)g is coNP-
complete.

Indeed, Chvátal and Slater [3] take a 3-sat instance I = (U,C) = ({u1, u2,
u3, . . . , un}, {c1, c2, c3, . . . , cm}), and construct a Well-Covered Graph

instance G = (V,E) = ( {u1, u2, u3, . . . , un, u1, u2, u3, . . . , un, c1, c2, c3, . . . , cm},
{xcj : x occurs in cj} ∪ {uiui : 1 ≤ i ≤ n} ∪ {cicj : 1 ≤ i < j ≤ m} ).
Note that {cicj : 1 ≤ i < j ≤ m} is a clique, and that {u1, u2, u3, . . . , un},
and {u1, u2, u3, . . . , un} are independent sets. Hence, G is a (2, 1)-graph. An
illustration of this construction can be found in Fig. 1. This discussion can be
summarized as follows.

Theorem 7 (Chvátal and Slater [3]). wc(2, 1)g is coNP-complete.

As (2, 1)-graphs can be recognized in polynomial time [2], we have the
following corollary.

Corollary 3. (2, 1)wcg is coNP-complete.
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u1 u
1

u2 u
2

u3 u
3

c1 c2 c3

Fig. 1. Chvatal and Slater’s [3] Well-Covered Graph instance G = (V, E) obtained
from the satisfiable 3-sat instance I = (U, C) = ({u1, u2, u3}, {(u1, u2, u3), (u1, u2, u3),
(u1, u2, u3)}), where {c1, c2, . . . , cm} is a clique of G. Observe that I is satisfi-
able if and only if G is not well-covered, since there is a maximal independent
set with size n + 1 (e.g. {c1, u1, u2, u3}) and there is a maximal independent set
of size n (e.g. {u1, u2, u3}). Note also that G is a (2, 1)-graph with (2, 1)-partition
V = ({u1, u2, . . . , un}, {u1, u2, . . . , un}, {c1, c2, . . . , cm} ).

2.4 NP-hard Cases for (r, �)WCG

Now we prove that (0, 3) wcg is NP-complete. For this purpose, we slightly
modify an NP-completeness proof of Stockmeyer [23].

Stockmeyer’s [23] NP-completeness proof of 3-coloring considers a 3-sat

instance I = (U,C) = ( {u1, u2, u3, . . . , un}, {c1, c2, c3, . . . , cm} ), and constructs
a 3-coloring instance G = (V,E) = ({u1, u2, u3, . . . , un, u1, u2, u3, . . . ,
un} ∪ {v1[j], v2[j], v3[j], v4[j], v5[j], v6[j] : j ∈ {1, 2, 3, . . . ,m}} ∪ {t1, t2}, {uiui :
i ∈ {1, 2, 3, . . . , n}} ∪ {v1[j]v2[j], v2[j]v4[j], v4[j]v1[j], v4[j]v5[j], v5[j]v6[j], v6[j]v3
[j], v3[j]v5[j] : j ∈ {1, 2, 3, . . . ,m}} ∪ {v1[j]x, v2[j]y, v3[j]z : cj = (x, y, z)} ∪ {t1
ui, t1ūi : i ∈ {1, 2, 3, . . . , n}} ∪ {t2v6[j] : j ∈ {1, 2, 3, . . . ,m}}); see Fig. 2(a).

Theorem 8. (0, 3)wcg is NP-complete.

Proof. As by Theorem 2 the Well-Covered Graph problem can be solved in
polynomial time on (0, 3)-graphs, by Fact 4 (0, 3)wcg is in NP.

Let I = (U,C) be a 3-sat instance. We produce, in polynomial time in the
size of I, a (0, 3)wcg instance H, such that I is satisfiable if and only if H
is (0, 3)-well-covered. Let G = (V,E) be the graph of [23] obtained from I, and
let G′ be the graph obtained from G by adding to V a vertex xuv for every edge uv
of G not belonging to a triangle, and by adding to E edges uxuv and vxuv; see
Fig. 2(b). Finally, we define H = G′ as the complement of G′. Note that, by [23],
I is satisfiable if and only if G is 3-colorable. Since xuv is adjacent to only two
different colors of G, clearly G is 3-colorable if and only if G′ is 3-colorable.
Hence, I is satisfiable if and only if H is a (0, 3)-graph. We prove next that I is
satisfiable if and only if H is a (0, 3)-well-covered graph.

Suppose that I is satisfiable. Then, since H is a (0, 3)-graph, every maximal
independent set of H has size 3, 2, or 1. If there is a maximal independent
set I in H with size 1 or 2, then I is a maximal clique of G′ of size 1 or 2. This
contradicts the construction of G′, since every maximal clique of G′ is a triangle.
Therefore, G is well-covered.

Suppose that H is (0, 3)-well-covered. Then G′ is 3-colorable, so G is also
3-colorable. Thus, by [23], I is satisfiable. ��
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Fig. 2. (a) Stockmeyer’s [23] 3-coloring instance G obtained from the 3-sat instance
I = (U, C) = ({u1, u2, u3}, {(u1, u2, u3), (u1, u2, u3), (u1, u2, u3)}). (b) The graph G′

obtained from G by adding a vertex xuv with NG′(xuv) = {u, v} for every edge uv of
G not belonging to a triangle.

We next prove that (3, 0)wcg is NP-hard. For this, we again use the proof
of Stockmeyer [23], together with the following theorem.

Theorem 9 (Topp and Volkmann [25]). Let G = (V,E) be an n-vertex
graph, V = {v1, v2, v3, . . . , vn}, and let H be obtained from G such that V (H) =
V ∪ {u1, u2, u3, . . . , un} and E(H) = E ∪ {viui : i ∈ {1, 2, 3, . . . , n}}. Then H is
a well-covered graph where every maximal independent set has size n.

Proof. Observe that every maximal independent set I of H has a subset IG =
I ∩ V . Let U ⊆ {1, 2, 3, . . . , n} be the set of indices i such that vi ∈ I. Since I
is maximal, the set {ui : i ∈ {1, 2, 3, . . . , n} \ U} must be contained in I, so
|I| = n. ��
Theorem 10. (3, 0)wcg is NP-hard.

Proof. Let I = (U,C) be a 3-sat instance; let G = (V,E) be the graph obtained
from I in Stockmeyer’s [23] NP-completeness proof for 3-coloring; and let H
be the graph obtained from G by the transformation described in Theorem9.
We prove that I is satisfiable if and only if H is a (3, 0)-well-covered graph.
Suppose that I is satisfiable. Then by [23] we have that G is 3-colorable. Since
a vertex v ∈ V (H) \ V (G) has just one neighbor, there are 2 colors left for v to
extend a 3-coloring of G, and so H is a (3, 0)-graph. Hence, by Theorem9, H is
a (3, 0)-well-covered graph. Suppose that H is a (3, 0)-well-covered graph. Then
we have that G is a (3, 0)-graph. By [23], I is satisfiable. ��

Note that Theorem 1 combined with Theorem 8 does not imply that
(1, 3)wcg is NP-complete.
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Theorem 11. (1, 3)wcg is NP-complete.

Proof. As by Theorem 2 the Well-Covered Graph problem can be solved in
polynomial time on (1, 3)-graphs, by Fact 4 (1, 3)wcg is in NP.

Let I = (U,C) be a 3-sat instance. Without loss of generality, I has more
than two clauses. We produce a (1, 3)wcg instance H polynomial in the size
of I, such that I is satisfiable if and only if H is (1, 3)-well-covered.

Let G = (V,E) be the graph of Stockmeyer [23] obtained from I (see
Fig. 2(a)), and let H be the graph obtained from G (the complement of the
graph G) by adding one pendant vertex pv for each vertex v of G. Note that
V (H) = V (G) ∪ {pv : v ∈ V (G)}, E(H) = E(G) ∪ {pvv : v ∈ V (G)}, and
NH(pv) = {v}.

First suppose that I is satisfiable. Then by [23], G is a (3, 0)-graph, and G
is a (0, 3)-graph with partition into cliques V (G) = (K1

G
,K2

G
,K3

G
). Thus it

follows that (S = {pv : v ∈ V (G)},K1
G

,K2
G

,K3
G

) is a (1, 3)-partition of V (H).
In addition, from Theorem9 and by the construction of H, H is a well-covered
graph. Hence H is (1, 3)-well-covered.

Conversely, suppose that H is (1, 3)-well-covered, and let V (H) = (S,K1,K2,
K3) be a (1, 3)-partition for H. Then we claim that no vertex pv ∈ V (H)\V (G)
belongs to Ki, i ∈ {1, 2, 3}. Indeed, suppose for contradiction that pv ∈ Ki

for some i ∈ {1, 2, 3}. Then, Ki ⊆ {pv, v}. Hence, H \ Ki is a (1, 2)-graph
and G \ {v} is an induced subgraph of a (2, 1)-graph. But by construction of G,
G\{v} (for any v ∈ V (G)) contains at least one 2K3 (that is, two vertex-disjoint
copies of K3) as an induced subgraph, which is a contradiction given that 2K3 is
clearly a forbidden subgraph for (2, 1)-graphs. Therefore, {pv : v ∈ V (G)} ⊆ S,
and since {pv : v ∈ V (G)} is a dominating set of H, S = {pv : v ∈ V (G)}. Thus,
G is a (0, 3)-graph with partition V (G) = (K1,K2,K3), and therefore G is a
(3, 0)-graph, i.e., a 3-colorable graph. Therefore, by [23], I is satisfiable. ��
Corollary 4. If (r ≥ 3 and � = 0) then (r, �)wcg is NP-hard. If (r ∈ {0, 1} and
� ≥ 3) then (r, �)wcg is NP-complete.

Proof. (r, �)wcg is NP-hard in all of these cases by combining Theorems 1, 8, 10
and 11. For (r ∈ {0, 1} and � ≥ 3), the Well-Covered Graph problem can
be solved in polynomial time on (r, �)-graphs, so by Fact 4 (r, �)wcg is in NP. ��

3 Parameterized Complexity of the Problems

In this section we focus on the parameterized complexity of the Well-Covered

Graph problem, with special emphasis on the case where the input graph is an
(r, �)-graph. Henceforth we let α denote the size of a maximum independent
set in the input graph G for the problem under consideration. That is, G is
well-covered if and only if any maximal independent set of G has size α.

Lemma 4. The wc(r, �)g problem can be solved in time 2r·α · nO(�). In partic-
ular, it is FPT when � is fixed and r, α are parameters.
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Proof. Note that each of the r independent sets S1, . . . , Sr of the given partition
of V (G) must have size at most α. On the other hand, any maximal independent
set of G contains at most one vertex in each of the � cliques. The algorithm
exhaustively constructs all maximal independent sets of G as follows: we start
by guessing a subset of

⋃r
i=1 Si, and then choose at most one vertex in each

clique. For each choice we just have to verify whether the constructed set is
a maximal independent set, and then check that all the constructed maximal
independent sets have the same size. The claimed running time follows. In fact,
in the statement of the lemma, one could replace α with max1≤i≤r |Si|, which
yields a stronger result. ��

The following lemma motivates the study of the Well-Covered (0, �)-
Graph problem, as it shows that the Well-Covered Graph problem (on
general graphs) parameterized by α can be reduced to the wc(0, �)g problem
parameterized by �.

Lemma 5. The Well-Covered Graph problem parameterized by α, with α
given as part of the input, can be fpt-reduced to the wc(0, �)g problem parame-
terized by �.

Proof. Given a general graph G and α (recall that α is the size of a maximum
independent set in G), we construct a (0, α)-graph G′ as follows. For every vertex
v ∈ V (G), we add to G′ a clique Kv on α vertices, which are denoted v1, . . . , vα.
For every two vertices u, v ∈ V (G) and every integer i, 1 ≤ i ≤ α, we add
to G′ the edge uivi. Finally, for every edge uv ∈ E(G), we add to G′ a complete
bipartite subgraph between V (Ku) and V (Kv). It is clear from the construction
that G′ is a (0, α)-graph, and that G is well-covered if and only if G′ is well-
covered. ��
Lemma 6. The wc(1, �)g problem can be solved in time nO(�). In other words,
it is in XP when parameterized by �.

Proof. Let V (G) = S1∪K1∪· · ·∪K�. The algorithm chooses at most one vertex
in each clique, and adds them to a potential independent set Ik ⊆ V (G). If Ik

is not independent, then we discard this set. Otherwise, we set I = Ik ∪ (S1 \
NS1(Ik)). This clearly defines an independent set of G, which may be maximal or
not, but any maximal independent set of G can be constructed in this way. The
number of sets considered by this procedure is nO(�). Finally, it just remains to
check whether all the constructed independent sets, after discarding those that
are not maximal, have the same size. ��

Note that Lemma 6 implies that the Well-Covered (0, �)-Graph prob-
lem can also be solved in time nO(�). This observation raises the following
question: are the Well-Covered (0, �)-Graph and Well-Covered (1, �)-
Graph problems FPT when parameterized by �? Even if we still do not know
the answer to this question, in the following them we prove that, in particular,
the Well-Covered (0, �)-Graph and Well-Covered (1, �)-Graph problems
are unlikely to admit polynomial kernels when parameterized by �. We first need
a definition introduced by Bodlaender et al. [1].
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Definition 1 (and-composition [1]). Let Q ⊆ Σ∗×N be a parameterized prob-
lem. An and-composition for Q is an algorithm that, given t instances (x1, k),
. . . , (xt, k) ∈ Σ∗ × N of Q, takes time polynomial in

∑t
i=1 |xi| + k and outputs

an instance (y, k′) ∈ Σ∗ × N such that:

(i) The parameter value k′ is polynomially bounded by k.
(ii) The instance (y, k′) is Yes for Q if and only if all instances (xi, k) are Yes

for Q.

The following result was formulated as the ‘AND-conjecture’ by Bodlaender
et al. [1], and it was finally proved by Drucker [8] (see [5] for a simplified proof).

Theorem 12 (Drucker [8]). If a parameterized problem admits a polynomial
kernel and an and-composition, then coNP ⊆ NP/poly.

We are ready the state our result.

Theorem 13. For any fixed integer r ≥ 0, the wc(r, �)g problem does not admit
polynomial kernels when parameterized by �, unless coNP ⊆ NP/poly.

Proof. By Theorem 12, to prove the result it is enough to present an and-
composition for the Well-Covered (0, �)-Graph problem, which implies the
result for the Well-Covered (r, �)-Graph for any r ≥ 0, as any (0, �)-graph
is also an (r, �)-graph for r ≥ 0. Let G1, . . . , Gt be the given (0, �)-graphs. For
every 1 ≤ i ≤ t, take arbitrarily a maximal independent set Si of Gi, and let G′

i

be the graph obtained from Gi by adding � − |Si| isolated vertices. As any inde-
pendent set in Gi can have at most one vertex in each clique Kj , it follows that
|Si| ≤ �, and thus G′

i is well-defined. Note also that for every 1 ≤ i ≤ t, G′
i is a

(0, 2�)-graph (just consider a new clique for each isolated vertex). The following
two properties are easy to verify:

(i) For every 1 ≤ i ≤ t, G′
i is well-covered if and only if Gi is well-covered.

(ii) For every 1 ≤ i ≤ t, if G′
i is well-covered then every maximal independent

set of G′
i has size �.

We create a graph G by taking the disjoint union of the Gi’s and then adding,
for every i, j ∈ {1, . . . , t}, i �= j, all edges between V (G′

i) and V (G′
j). We set the

parameter of G as �′ = 2�. Since each G′
i is a (0, 2�)-graph, by construction G is

also a (0, 2�)-graph. Note that, by construction of G, any independent set of G
can intersect only one Gi, and therefore, if we let S (resp. Si) denote the set of
all maximal independent sets of G (resp. G′

i), it follows that

S =
⋃

{Si : 1 ≤ i ≤ t}. (1)

We claim that G is well-covered if and only if Gi is well-covered for every
1 ≤ i ≤ t, which will conclude the proof.

Indeed, first suppose that G is well-covered. Then, by Eq. (1), G′
i is well-

covered for every 1 ≤ i ≤ t, and by Property (i) this implies that Gi is also
well-covered for every 1 ≤ i ≤ t.



On the (Parameterized) Complexity of Recognizing 435

Conversely, suppose that Gi is well-covered for every 1 ≤ i ≤ t. Then, by
Property (i), G′

i is also well-covered for every 1 ≤ i ≤ t and, by Property (ii),
for every 1 ≤ i ≤ t, any maximal independent set of G′

i has size �. This implies
by Eq. (1) that any maximal independent set of G also has size �, and therefore
G is well-covered, as we wanted to prove. ��

3.1 Taking the Neighborhood Diversity as the Parameter

The vertex cover number is a classical graph parameter that has been widely used
as a parameter in the multivariate complexity analysis of problems, including
those that are not directly related to the vertex cover number. Neighborhood
diversity is another graph parameter, defined by Lampis [17], which captures
more precisely than vertex cover number the property that two vertices with the
same neighborhood are “equivalent”. This parameter is defined as follows.

Definition 2. The neighborhood diversity nd(G) of a graph G = (V,E) is the
minimum t such that V can be partitioned into t sets V1, . . . , Vt where for every
v ∈ V (G) and every i ∈ {1, . . . , t}, either v is adjacent to every vertex in Vi or
it is adjacent to none of them. Note that each part Vi of G is either a clique or
an independent set.

Neighborhood diversity is a stronger parameter than vertex cover, in the
sense that bounded vertex cover graphs are a subclass of bounded neighborhood
diversity graphs. It is known that an optimal neighborhood diversity decompo-
sition of a graph G can be computed in time O(n3). See [17] for more details.

Lampis [17] showed that: (i) for every graph G we have nd(G) ≤ 2vc(G) +
vc(G), where vc(G) is the vertex cover number of G; cw(G) ≤ nd(G)+1, where
cw(G) is the clique-width of G; (iii) there exist graphs of constant treewidth and
unbounded neighborhood diversity and vice versa; (iv) an optimal neighborhood
diversity decomposition of a graph G can be computed in polynomial time.

Lemma 7. The Well-Covered Graph problem is FPT when parameterized
by the neighborhood diversity.

Proof. Given a graph G, we first obtain a neighborhood partition of G with min-
imum width using the polynomial-time algorithm of Lampis [17]. Let t := nd(G)
and let V1, . . . , Vt be the partition of V (G). As we can observe, for any pair u, v
of non-adjacent vertices belonging to the same part Vi, if u is in a maximal
independent set S then v also belongs to S, otherwise S cannot be maximum.
On the other hand, if N [u] = N [v] then for any maximal independent set Su

such that u ∈ Su there exists another maximal independent set Sv such that
Sv = Su \ {u} ∪ {v}. Hence, we can contract each partition Vi which is an inde-
pendent set into a single vertex vi with weight τ(vi) = |Si|, and contract each
partition Vi which is a clique into a single vertex vi with weight τ(vi) = 1, in
order to obtain a graph Gt with |V (Gt)| = t, where the weight of a vertex vi of Gt

means that any maximal independent set of G uses either none or exactly τ(v)



436 S.R. Alves et al.

vertices of Vi. At this point, we just need to analyze whether all maximal inde-
pendent sets of Gt have the same weight (sum of the weights of its vertices),
which can be done in 2t · nO(1) time. ��
Corollary 5. The Well-Covered Graph problem is FPT when parameter-
ized by the vertex cover number n − α.
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