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Abstract. A dynamic network introduced by Ford and Fulkerson is a
directed graph with capacities and transit times on its arcs. The quick-
est transshipment problem is one of the most fundamental problems in
dynamic networks. In this problem, we are given sources and sinks. Then,
the goal of this problem is to find a minimum time limit such that we
can send exactly the right amount of flow from sources to sinks. In this
paper, we introduce a variant of this problem called the mixed evacuation
problem. This problem models an emergent situation in which people can
evacuate on foot or by car. The goal is to organize such a mixed evacu-
ation so that an efficient evacuation can be achieved. In this paper, we
study this problem from the theoretical and practical viewpoints. In the
first part, we prove the polynomial-time solvability of this problem in
the case where the number of sources and sinks is not large, and also
prove the polynomial-time solvability and computational hardness of its
variants with integer constraints. In the second part, we apply our model
to the case study of Minabe town in Wakayama prefecture, Japan.

1 Introduction

The coastal area facing the Pacific Ocean in Japan ranging from Shizuoka pre-
fecture to Miyazaki prefecture has a high risk of a tsunami. In particular, it
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is predicted that Nankai Trough Earthquake will occur with 70 % probability
within thirty years, and it will trigger a tsunami of the huge size which will
quickly arrive at the coast (see, e.g., [1]). Based on several assumptions and esti-
mated data, Wakayama prefecture recently designated several areas in which it
is difficult for all people in the area to evacuate to safety places such as tsunami
evacuation buildings before a tsunami arrives when Nankai Trough Earthquake
occurs. For example, it is predicted that in Kushimoto town located at the
south end of the main land of Japan, a tsunami arrives at earliest within ten
minutes. One of assumptions the prefecture used is that the evacuation is done
only by walking. In principle, it used to be not allowed to use cars for evacuation
because the usage of cars in such an emergent situation may block evacuation
of pedestrians which was observed at the time of Tohoku-Pacific Ocean Earth-
quake. However, if it is allowed to use cars and the smooth evacuation by car is
organized, then the evacuation completion time may be shortened. The aim of
this paper is to propose a mathematical model for making such a good “mixed”
evacuation plan.

In this paper, we use a dynamic network flow introduced by Ford and
Fulkerson [2,3] for modeling such a mixed evacuation. A dynamic network is a
directed graph with capacities and transit times on its arcs. The quickest trans-
shipment problem is one of the most fundamental problems in dynamic networks.
In this problem, we are given a dynamic network with several sources and sinks.
Furthermore, we are given a supply for each source and a demand for each sink.
Then, the goal of this problem is to find the minimum time limit such that we
can send exactly the right amount of flow from sources to sinks. Hoppe and
Tardos [4] proved that this problem can be solved in polynomial time. In this
paper, we introduce a variant of the quickest transshipment problem called the
mixed evacuation problem. This problem models an emergent situation in which
people can evacuate on foot or by car. The goal of this problem is to organize
such a mixed evacuation so that an efficient evacuation can be achieved. In the
first part of this paper, we study the mixed evacuation problem from the theoret-
ical viewpoint. First we prove that if the number of sources and sinks is at most
C log2 n (n is the number of vertices) for some constant C, then mixed evacua-
tion problem can be solved in polynomial time (Sect. 3). In addition, we consider
variants of the mixed evacuation problem with integer constraints (Sect. 4). In
the second part of this paper, we study the mixed evacuation problem from the
practical viewpoint. In this part, we apply our model to the case study in Japan
(Sect. 5). More precisely, we apply our model for Minabe town in Wakayama pre-
fecture, which was designated as a city in which safe evacuation from a tsunami
is difficult when Nankai Trough Earthquake occurs.

Let R, R+, Z, Z+, and Z− be the sets of reals, non-negative reals, integers,
non-negative integers, and non-positive integers, respectively. For each finite set
U , each vector x in R

U , and each subset W of U , we define x(W ) :=
∑

u∈W x(u).
Furthermore, for each finite set U and each pair of vectors x, y in R

U , we define
〈x, y〉 :=

∑
u∈U x(u)y(u).
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2 Preliminaries

The Mixed Evacuation problem is defined as follows. We are given a directed
graph D = (V,A) and two disjoint subsets S, T of V . Define n := |V |. The subset
S (resp., T ) is the set of source vertices (resp., sink vertices) in V . We assume
that no arc in A enters (resp., leaves) a vertex in S (resp., T ). In addition, we
are given an arc capacity vector c in Z

A
+, a supply vector b in Z

S
+, a sink capacity

vector u in Z
T
−, transit time vectors τ1, τ2 in Z

A
+, and fluid coefficients q1, q2 in

Z+. In our application, τ1 represents the speed of walking, and q1 represents the
number of people that can walk in the one unit of the arc capacity. The values
τ2, q2 represent the information for cars. Lastly, we are given a time limit Θ in
Z+. Define [Θ] := {0, 1, . . . ,Θ}.

For each integer i in {1, 2}, each function f : A × [Θ] → R+, each vertex v
in V , and each integer θ in [Θ], we define

∂if(v, θ) :=
∑

a∈δ(v;A)

θ∑

t=0

f(a, t) −
∑

a∈�(v;A)

θ−τi(a)∑

t=0

f(a, t),

where δ(v;A) (resp., �(v;A)) represents the set of arcs in A leaving (resp., enter-
ing) v. A vector d in R

S∪T is called an allocation, if d(v) ≥ 0 for every vertex
v in S and d(v) ≤ 0 for every vertex v in T . For each integer i in {1, 2}, each
allocation d in R

S∪T , and each vector w in R
A
+, d is said to be (i, w)-feasible, if

there exists a function f : A × [Θ] → R+ satisfying the following conditions.

(D1) Let a and θ be an arc in A and an integer in [Θ], respectively.
- If θ ≤ Θ − τi(a), then f(a, θ) ≤ qi · w(a).
- If θ > Θ − τi(a), then f(a, θ) = 0.

(D2) Let v and θ be a vertex in V and an integer in [Θ], respectively.
- If v ∈ V \(S ∪ T ), then ∂if(v, θ) ≤ 0.
- If v ∈ S (resp., T ), then ∂if(v, θ) ≤ d(v) (resp., ∂if(v, θ) ≥ d(v)).

(D3) Let v be a vertex in V .
- If v ∈ V \(S ∪ T ), then ∂if(v,Θ) = 0.
- If v ∈ S, then ∂if(v,Θ) = d(v).

For each integer i in {1, 2} and each vector w in R
A
+, let Fi(w) be the set of

(i, w)-feasible allocations in R
S∪T . An assignment is a tuple (d1, d2, w1, w2) such

that d1, d2 are allocations in R
S∪T and w1, w2 ∈ R

A
+. Furthermore, an assignment

(d1, d2, w1, w2) is said to be feasible, if it satisfies the following conditions.

(F1) For every vertex v in S (resp., T ), d1(v) + d2(v) = b(v) (resp., ≥ u(v)).
(F2) For every arc a in A, we have w1(a) + w2(a) ≤ c(a).
(F3) We have d1 ∈ F1(w1) and d2 ∈ F2(w2).

The goal of Mixed Evacuation (me for short) is to decide whether there
exists a feasible assignment. Notice that we can straightforwardly formulate me
as a linear programming problem (in Sect. 5, we use an algorithm based on the
linear programming). However, since the input size of Θ is log2 Θ, its size is not
bounded by a polynomial in the input size of me.
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3 Mixed Evacuation with Few Sources and Sinks

In this section, we prove that if |S ∪ T | ≤ C log2 n for some constant C, then
me can be solved in polynomial time. Assume that we are given an integer i in
{1, 2}, a vector w in R

A
+, and a subset X of S ∪ T . Define Dw

i (X) as the set of
functions f : A × [Θ] → R+ satisfying (D1) and the following conditions.

(D4) Let v and θ be a vertex in V and an integer in [Θ], respectively.
- If v ∈ V \X, then ∂if(v, θ) ≤ 0.
- If v ∈ X, then ∂if(v, θ) ≥ 0.

(D5) For every vertex v in V \(S ∪ T ), we have ∂if(v,Θ) = 0.

Recall that no arc in A enters (resp., leaves) a vertex in S (resp., T ). Thus, for
every function f in Dw

i (X) and every vertex v in (S \X) ∪ (T ∩ X), we have
∂if(v,Θ) = 0. Furthermore, we define a function ow

i : 2S∪T → R+ by

ow
i (X) := max

{ ∑

v∈X

∂if(v,Θ)
∣
∣
∣ f ∈ Dw

i (X)
}

.

Theorem 1 (Klinz [4, Theorem 5.1]). Assume that we are given an integer
i in {1, 2}, an allocation d in R

S∪T , and a vector w in R
A
+. Then, d ∈ Fi(w) if

and only if d(X) ≤ ow
i (X) for every subset X of S ∪ T .

For each pair of vertices s in S and t in T , we denote by a(t, s) an arc from
t to s. Define E := A ∪ {a(t, s) | s ∈ S, t ∈ T}. Furthermore, we define H as the
directed graph with the vertex set V and the arc set E. Then, for each integer
i in {1, 2}, each vector w in R

A
+, each subset X of S ∪ T , and each vector ξ in

R
E
+, ξ is called a feasible static flow with respect to i, w, and X, if it satisfies

the following conditions (S1), (S2), and (S3).

(S1) For every arc a in A, we have ξ(a) ≤ qi · w(a).
(S2) For every pair of vertices s in S and t in T , if at least one of s ∈ S\X and

t ∈ X holds, then ξ(a(t, s)) = 0.
(S3) For every vertex v in V , we have ξ(δ(v;E)) = ξ(�(v;E)).

For each integer i in {1, 2}, each vector w in R
A
+, and each subset X of S ∪ T ,

we denote by Sw
i (X) the set of feasible static flows with respect to i, w, and X.

In addition, for each integer i in {1, 2}, we define a vector ki in R
E as follows.

For each arc a in E\A (resp., A), we define ki(a) := Θ + 1 (resp., −τi(a)).

Theorem 2 (Ford and Fulkerson [2,3]). For every integer i in {1, 2}, every
vector w in R

A
+, and every subset X of S ∪ T , ow

i (X) is equal to the optimal
objective value of the problem of maximizing 〈ki, ξ〉 such that ξ ∈ Sw

i (X).

Define P as the set of assignments (d1, d2, w1, w2) such that it satisfies (F2)
and (F3), and the following condition.

(F1+) For every vertex v in S (resp., T ), d1(v) + d2(v) ≤ b(v) (resp., ≥ u(v)).
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Let P1 be the problem of maximizing d1(S)+d2(S) such that (d1, d2, w1, w2) ∈ P.
If the optimal objective value of P1 is equal to b(S), then we can conclude that
there exists a feasible assignment. Otherwise, we can conclude that there exists
no feasible assignment. This observation implies that if we can formulate P1 by a
linear programming problem whose size is bounded by a polynomial in the size of
me, then the polynomial-time solvability of me follows from the polynomial-time
solvability of the linear programming problem [5]. Theorems 1, 2 imply that P1
can be formulated as follows. Define a vector b◦ in R

S∪T by b◦(v) := b(v) for
each vertex v in S and b◦(v) := 0 for each vertex v in T . Define a vector u◦ in
R

S∪T by u◦(v) := 0 for each vertex v in S and u◦(v) := u(v) for each vertex v
in T .

Maximize d1(S) + d2(S)
subject to d1(v) ≥ 0, d2(v) ≥ 0 (v ∈ S)

d1(v) ≤ 0, d2(v) ≤ 0 (v ∈ T )
u◦(v) ≤ d1(v) + d2(v) ≤ b◦(v) (v ∈ S ∪ T )
〈ki, ξi,X〉 ≥ di(X) (i ∈ {1, 2},X ⊆ S ∪ T )
ξi,X ∈ Swi

i (X) (i ∈ {1, 2},X ⊆ S ∪ T )
w1(a) + w2(a) ≤ c(a) (a ∈ A)
d1, d2 ∈ R

S∪T , w1, w2 ∈ R
A
+.

If |S ∪ T | ≤ C log2 n for some constant C, then it is not difficult to see that the
size of this linear programming problem is bounded by a polynomial of the input
size of me. This completes the proof.

4 Mixed Evacuation with Integer Constraints

4.1 Integral Arc Capacities, Supplies, and Sink Capacities

Here we consider Integral Mixed Evacuation (ime for short). This problem
is a variant of me in which a feasible assignment (d1, d2, w1, w2) must satisfy
that d1, d2 ∈ Z

S∪T and w1, w2 ∈ Z
A
+. We prove the NP-completeness of ime by

reduction from Disjoint Paths with Different Costs [6] (dpdc for short)
defined as follows. In what follows, we do not distinguish a simple directed path
in a directed graph and the set of arcs contained in this directed path. We are
given a directed graph G = (N,L), a source vertex v+ in N , and a sink vertex
v− in N . Furthermore, we are given cost vectors �1, �2 in Z

L
+ and a non-negative

integer h in Z+. The goal of dpdc is to decide whether there exist arc-disjoint
simple directed paths P1, P2 from v+ to v− such that �1(P1) + �2(P2) ≤ h.

Theorem 3 (Li, McCormick, and Simchi-Levi [6]). The problem dpdc is
NP-complete even if h = 0 and �i(a) ∈ {0, 1} for every integer i in {1, 2} and
every arc a in L.1

1 In [6, Theorem 1], although the condition that h = 0 and �i(a) ∈ {0, 1} for every
integer i in {1, 2} and every arc a in L is not explicitly stated, the reduction in their
proof satisfies this condition.
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For proving the fact that ime is in NP, we need the following theorems. For
each finite set U and each function g : 2U → R, g is said to be submodular, if
g(X) + g(Y ) ≥ g(X ∪ Y ) + g(X ∩ Y ) for every pair of subsets X,Y of U .

Theorem 4 (E.g., [7,8]). Assume that we are given a finite set U and a sub-
modular function g : 2U → R. Then, we can find a subset X of U minimizing
g(X) among all subsets of U in time bounded by a polynomial in |U | and EO,
where EO is the time required to compute g(X) for a subset X of U .

Theorem 5 (Hoppe and Tardos [4]). For every integer i in {1, 2} and every
vector w in R

A
+, the function ow

i is a submodular function.

Theorem 6 (E.g., [9]). For every integer i in {1, 2} and every subset X of
S ∪ T , we can compute owi

i (X) in polynomial time.

Assume that we are given an integer i in {1, 2}, an allocation d in R
S∪T ,

and a vector w in R
A
+. Then, Theorem 1 implies that d ∈ Fi(w) if and only if

ow
i (X) − d(X) ≥ 0 for a subset X of S ∪ T minimizing ow

i (X) − d(X) among
all subsets of S ∪ T . Thus, since Theorem 5 implies that ow

i − d is submodular,
Theorems 4, 6 imply that we can check whether d ∈ Fi(w) in polynomial time.2

Theorem 7. The problem ime is NP-complete.

Proof. Theorems 1, 4, 5, and 6 imply that ime is in NP. We prove that ime is
NP-complete by reduction from dpdc. Assume that we are given an instance of
dpdc such that h = 0 and �i(a) ∈ {0, 1} for every integer i in {1, 2} and every arc
a in L. Then, we construct an instance of ime as follows. Define V := N ∪ {s∗},
where s∗ is a new vertex. Define A := L∪{a1, a2}, where a1 and a2 are new arcs
from s∗ to v+. Define S := {s∗} and T := {v−}. Define c(a) := 1 for each arc a
in A. For each arc a in A, we define

τ1(a) :=

⎧
⎪⎨

⎪⎩

�1(a) if a ∈ L

0 if a = a1

1 if a = a2

τ2(a) :=

⎧
⎪⎨

⎪⎩

�2(a) if a ∈ L

1 if a = a1

0 if a = a2.

Define b(s∗) := 2 and u(v−) := −2. Define q1 := 1, q2 := 1, and Θ := 0.
Assume that there are arc-disjoint simple directed paths P1, P2 in G from v+

to v− such that �1(P1) + �2(P2) ≤ 0. Since �i(a) ≥ 0 for every integer i in {1, 2}
and every arc a in L, we have �1(P1) = �2(P2) = 0. For each integer i in {1, 2},
we define a directed path P+

i in D as the directed path obtained by adding ai to
Pi. Since P1 and P2 are arc-disjoint, P+

1 and P+
2 are arc-disjoint. Furthermore,

for every integer i in {1, 2}, since �i(Pi) = 0 and τi(ai) = 0, we have τi(P+
i ) = 0.

For each integer i in {1, 2}, we define di(s∗) := 1 and di(v−) := −1. In addition,
for each integer i in {1, 2}, we define a vector wi in Z

A
+ as follows. If a ∈ P+

i , then
we define wi(a) := 1. Otherwise, we define wi(a) := 0. Since P+

1 and P+
2 are

2 This proof is the same as the proof of the polynomial-time solvability of the decision
version of the quickest transshipment problem in [4].
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arc-disjoint, w1(a)+w2(a) ≤ 1 = c(a) for every arc a in A. Thus, (d1, d2, w1, w2)
is a feasible assignment.

Next we assume that there exists a feasible assignment (d1, d2, w1, w2) such
that d1, d2 ∈ Z

S∪T and w1, w2 ∈ Z
A
+. Since τ1(a2) = τ2(a1) = 1, c(a1) = c(a2) =

1, and Θ = 0, we have d1(s∗) = d2(s∗) = 1. Since c(a) = 1 for every arc a in A,
we have w1(a), w2(a) ∈ {0, 1} and at most one of w1(a) and w2(a) is equal to
1 for every arc a in A. For each integer i in {1, 2}, we denote by Li the sets of
arcs a in A such that wi(a) = 1. Then, L1 and L2 are disjoint. For every integer
i in {1, 2}, since di(s∗) = 1 and Θ = 0, Li contains a simple directed path L′

i

from s∗ to v− such that τi(L′
i) = 0 as a subset. Furthermore, for every integer i

in {1, 2}, the definition of τi, we have ai ∈ L′
i. For each integer i in {1, 2}, let Pi

be the directed path obtained by removing ai from L′
i. Then, for every integer i

in {1, 2}, we have �i(Pi) = 0. This completes the proof. ��

4.2 Integral Supplies and Sink Capacities

Here we consider problems of finding an integral allocation of supplies and sink
capacities. We consider Integral Mixed Evacuation with Arc Capacities
(imeac for short) defined as follows. We are given vectors w1, w2 ∈ Z

A
+ such that

w1(a) + w2(a) ≤ c(a) for every arc a in A. Then, the goal is to decide whether
there exists a feasible assignment (d1, d2, w1, w2) such that d1, d2 ∈ Z

S∪T . We
prove that imeac can be solved in polynomial time. In the rest of this section, we
define oi := owi

i for each integer i in {1, 2}. For each finite set U , each function
g : 2U → R, and each pair of subsets P1, P2 of RU , we define P(g) := {x ∈ R

U |
x(X) ≤ g(X) (∀X ⊆ U)} and P1 + P2 := {x + y | x ∈ P1, y ∈ P2}. Then,
Theorem 1 implies that imeac can be formulated as the following problem P2.

Maximize d1(S) + d2(S)
subject to d1(v) ≥ 0, d2(v) ≥ 0 (v ∈ S)

d1(v) ≤ 0, d2(v) ≤ 0 (v ∈ T )
u◦(v) ≤ d1(v) + d2(v) ≤ b◦(v) (v ∈ S ∪ T )
d1 ∈ P(o1), d2 ∈ P(o2), d1, d2 ∈ Z

S∪T .

If the optimal objective value is equal to b(S), then we can conclude that there
exists a desired assignment. Otherwise, there exists no such an assignment.

Assume that we are given an integer i in {1, 2}. Define o−
i : 2S∪T → R+ by

setting o−
i (X) to be the minimum value of oi(Y ) over all subsets Y of X such

that X ∩ S ⊆ Y . Let X be a subset of S ∪ T . Define a function oi,X : 2X\S → R

by setting oi,X(Y ) := oi(Y ∪ (X ∩ S)) − oi(X ∩ S). It is not difficult to see that
oi,X is submodular and o−

i (X) = min{oi,X(Y ) | Y ⊆ X \S} + oi(X ∩ S). That
is, we can evaluate o−

i (X) by evaluating the value of oi and using the algorithm
for submodular function minimization. It is known [10, Eq. (3.10)] that o−

i is a
submodular function. Furthermore, it is known [10, Theorem 3.3] that P(o−

i ) is
equal to the set of vectors d in P(oi) such that d(v) ≤ 0 for every vertex v in T .
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Thus, P2 is equivalent to the following problem.

Maximize d1(S) + d2(S)
subject to d1(v) ≥ 0, d2(v) ≥ 0 (v ∈ S)

u◦(v) ≤ d1(v) + d2(v) ≤ b◦(v) (v ∈ S ∪ T )
d1 ∈ P(o−

1 ), d2 ∈ P(o−
2 ), d1, d2 ∈ Z

S∪T .

We consider the following problem P3.

Maximize d1(S) + d2(S)
subject to u◦(v) ≤ d1(v) + d2(v) ≤ b◦(v) (v ∈ S ∪ T )

d1 ∈ P(o−
1 ), d2 ∈ P(o−

2 ), d1, d2 ∈ Z
S∪T .

Lemma 1. The optimal objective values of P2 and P3 are the same.

Proof. For each optimal solution (d1, d2) of P3, we define γ(d1, d2) as the number
of pairs (i, v) of an integer i in {1, 2} and a vertex v in S such that di(v) < 0.
Let (d1, d2) be an optimal solution of P3 minimizing γ(d1, d2) among all optimal
solutions of P3. If γ(d1, d2) = 0, then since P3 is a relaxation problem of P2,
(d1, d2) is clearly an optimal solution of P2, and thus the proof is done. Assume
that γ(d1, d2) ≥ 1. Let (i, v) be a pair of an integer i in {1, 2} and a vertex v
in S such that di(v) < 0. We assume that i = 1 (we can treat the case of i = 2
in the same way). For proving this lemma by contradiction, we prove that there
exists an optimal solution (d′

1, d
′
2) of P3 such that γ(d1, d2) > γ(d′

1, d
′
2). This

contradicts the definition of (d1, d2), and thus this completes the proof.
Define vectors d′

1, d
′
2 in Z

S∪T as follows. Define d′
1(v

′) := d1(v′) and d′
2(v

′) :=
d2(v′) for each vertex v′ in (S ∪ T )\{v}. Furthermore, define d′

1(v) := 0 and
d′
2(v) := min{d2(v), b(v)}. We first prove that d1(v) + d2(v) ≤ d′

1(v) + d′
2(v). If

d′
2(v) = d2(v), then since d1(v) < 0, this clearly holds. If d2(v) = b(v), then since

d1(v) + d2(v) ≤ b(v), this clearly holds. This implies that the objective value of
(d′

1, d
′
2) is no less than that of (d1, d2). Thus, what remains is to prove that

(d′
1, d

′
2) is a feasible solution of P3. The above inequality implies that (d′

1, d
′
2)

satisfies the first constraint of P3. In addition, d′
2 clearly belongs to P(o−

2 ). Thus,
it suffices to prove that d′

1 ∈ P(o−
1 ). Assume that this does not hold. Then, there

exists a subset of X of S ∪ T such that v ∈ X and o−
1 (X) − d1(X) < −d1(v).

Since it is not difficult to see that o1(Y \{v}) ≤ o1(Y ) for every subset Y of X
such that X ∩ S ⊆ Y , o−

1 (X \{v}) ≤ o−
1 (X). Thus, o−

1 (X \{v}) < d1(X \{v}),
which contradicts that d1 ∈ P(o−

1 ). This completes the proof. ��
Lemma 2. For every integer i in {1, 2} and every subset X of S ∪ T , we have
oi(X) ∈ Z, which implies that o−

i (X) ∈ Z.

Proof. This lemma follows from Theorem 2 and [11, Theorem 12.8]. ��
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Theorem 8 (E.g., [11, Corollary 46.2c]). Assume that we are given a finite
set U and submodular functions σ, π : 2U → Z such that σ(∅) = π(∅) = 0. Then,
we have (P(σ) ∩ Z

U ) + (P(π) ∩ Z
U ) = (P(σ) + P(π)) ∩ Z

U .3

Lemmas 1, 2 and Theorem 8 imply that P2 is equivalent to the following problem.

Maximize d(S)
subject to u◦(v) ≤ d(v) ≤ b◦(v) (v ∈ S ∪ T )

d ∈ P(o−
1 ) + P(o−

2 ), d ∈ Z
S∪T .

Theorem 9 (E.g., [11, Theorem 44.6]). Assume that we are given a finite
set U and submodular functions σ, π : 2U → Z such that σ(∅) = π(∅) = 0. Then,
we have P(σ) + P(π) = P(σ + π).4

Theorem 9 implies that P2 is equivalent to the following problem.

Maximize d(S)
subject to u◦(v) ≤ d(v) ≤ b◦(v) (v ∈ S ∪ T )

d ∈ P(o−
1 + o−

2 ), d ∈ Z
S∪T .

We consider the following relaxation problem LP2 of P2.

Maximize d(S)
subject to u◦(v) ≤ d(v) ≤ b◦(v) (v ∈ S ∪ T )

d ∈ P(o−
1 + o−

2 ).

Lemma 3. The optimal objective values of P2 and LP2 are the same.

Proof. Since o−
1 , o−

2 are submodular functions, o−
1 +o−

2 is a submodular function.
Furthermore, Lemma 2 implies that o−

1 (X) + o−
2 (X) ∈ Z for every subset X of

S ∪ T . Thus, this lemma follows from [11, Corollary 44.3c] (i.e., the box-total
dual integrality of the constraints corresponding to P(o−

1 + o−
2 )). ��

Theorem 10. The problem imeac can be solved in polynomial time.

Proof. In the same way as the algorithm described after Theorem 6, we can
check in polynomial time whether d ∈ P(o−

1 + o−
2 ) for a given vector d in R

S∪T

by minimizing the submodular function o−
1 + o−

2 − d. In addition, we can check
in polynomial time whether a given vector d in R

S∪T satisfies the first constraint
of LP2. Thus, we can solve the separation problem for LP2 by using Theorem 4
in polynomial time (if d /∈ P(o−

1 + o−
2 ), then a separating hyperplane can be

obtained from a minimizer of o−
1 +o−

2 −d). This implies that we can solve imeac
in polynomial time by using the results of [12] (see also [13, Theorem 6.36]). ��
3 Precisely speaking, [11, Corollary 46.2c] considers P(σ) ∩ R

U
+. However, the similar

result holds for P(σ) (see the paragraph after the proof of [11, Theorem 44.6]).
4 In [11, Theorem 44.6], the monotonicity of functions are assumed. However, even if

functions are not monotone, this theorem holds. See also [10, Eq. (3.32)].
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4.3 Unsplittable Supplies and Sink Capacities

Here we consider the following variant of imeac called Unsplittable Mixed
Evacuation with Arc Capacities (umeac for short). In this problem, we are
given vectors w1, w2 ∈ Z

A
+ such that w1(a) + w2(a) ≤ c(a) for every arc a in A.

The goal is to decide whether there exists a feasible assignment (d1, d2, w1, w2)
such that d1(v), d2(v) ∈ {0, b(v)} for every vertex v in S and d1(v), d2(v) ∈
{0, u(v)} for every vertex v in T . In what follows, we prove that umeac is NP-
complete. Notice that if |S ∪ T | ≤ C log2 n for some constant C, then it follows
from Theorems 1, 4, 5, and 6 that umeac can be solved in polynomial time by
enumerating all subsets of S ∪T . We will prove the NP-completeness of umeac
by reduction from Partition. In this problem, we are given a finite set I and
a vector π in Z

I
+ such that π(I) is even. Then, the goal is to decide whether

there exists a subset J of I such that π(J) = π(I\J). It is well known [14] that
Partition is NP-complete.

Theorem 11. The problem umeac is NP-complete.

Proof. In the same ways as the proof of Theorem 7, we can prove that umeac is
in NP. We prove that the NP-completeness of umeac by reduction from Parti-
tion. Assume that we are given an instance of Partition, and then we construct
an instance of umeac as follows. Define V := {vi | i ∈ I} ∪ {v◦, v•, v∗

1 , v
∗
2} and

A := {(vi, v
◦), (vi, v

•) | i ∈ I} ∪ {(v◦, v∗
1), (v

•, v∗
2)}. Define S := {vi | i ∈ I}

and T := {v∗
1 , v

∗
2}. Define c(a) := 1, τ1(a) := 0, and τ2(a) := 0 for each arc a

in A. Define b(vi) := π(i) for each element i in I. Define u(v∗
1) := −π(I) and

u(v∗
2) := −π(I). Define q1 := 1 and q2 := 1. Define Θ := (π(I)/2)− 1. Lastly, we

define vectors w1, w2 in Z
A
+ as follows. For each arc a = (x, y) in A, we define

w1(a) :=

{
1 if x = v◦ or y = v◦

0 otherwise
w2(a) :=

{
1 if x = v• or y = v•

0 otherwise.

Assume that there exists a subset J of I such that π(J) = π(I\J). Then, we
define vectors d1, d2 in Z

S∪T by

d1(v) (resp., d2(v)) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π(i) (resp., 0) if v = vi for some i ∈ J

0 (resp., π(i)) if v = vi for some i ∈ I\J

−π(I) (resp., 0) if v = v∗
1

0 (resp., −π(I)) if v = v∗
2 .

Since π(J) = π(I\J) = π(I)/2, (d1, d2, w1, w2) is a feasible assignment.
Conversely, we assume that there exists a feasible assignment (d1, d2, w1, w2)

such that d1(v), d2(v) ∈ {0, b(v)} for every vertex v in S and d1(v), d2(v) ∈
{0, u(v)} for every vertex v in T . Since Θ = (π(I)/2)−1, we have d1(S) = π(I)/2
and d2(S) = π(I)/2. Thus, if we define J as the set of elements i in I such that
d1(vi) = b(vi), then π(J) = π(I\J). This completes the proof. ��
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5 Case Study

Here we apply our model to the case study of Minabe town in Wakayama pre-
fecture, which was designated as those in which safe evacuation from tsunami
is difficult when Nankai Trough Earthquake occurs. The population of Minabe
town is about 12000. According to the census data of 2013, the number of peo-
ple living in the tsunami inundation area of this town is 4745. The left figure of
Fig. 1 shows the map of this area and the expected height of the tsunami caused
by Nankai Trough Earthquake. The town is surrounded by mountains of height
ranging from 100 to 200 m.

Fig. 1. (Left) The target area and its inundation depth. (Right) The road network in
the target areas and evacuation sites.

It is predicted that in twelve minutes after that earthquake occurs, the first
tsunami of height 1 m arrives, and then that of height 5m (and of 10 m, respec-
tively) will arrive after 15 min (and 24 min, respectively). Since people usually
start evacuation five minutes after the earthquake occurs, the actual time remain-
ing for evacuation is from five to fifteen minutes depending on where they live.
Since there are not enough evacuation buildings in the center of the town, most
of the people will have to go to the outside of the tsunami inundation area, and
thus some of them may not succeed to evacuate to a safety place.

Under this circumstance, we consider the following experiments. Our
computational experiment aims at the inundation area of Minabe town whose
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population is 4745. We prepare two scenarios. The first one is that people should
have to evacuate to the outside of the inundation area. The second is that peo-
ple should have to evacuate to the outside of the inundation area or to tsunami
evacuation buildings located inside of the inundation area. There exist six evac-
uation buildings inside the inundation area (numbered from 1 through 6 in the
right figure of Fig. 1) whose sizes (i.e., the maximum number of evacuees that
can be accommodated) are 1472, 2000, 1128, 3014, 654 and 454, respectively.
We constructed a model of a dynamic network by using the GIS databases: the
fundamental map information (1/2500, the Geospatial Information Authority of
Japan), the population census (2010, the Ministry of Internal Affairs and Com-
munications of Japan), and the Japan digital road map (Japan Digital Road
Map Association). The road network has 860 nodes and 1,106 arcs.

We assign to a sink vertex the capacity of the evacuation site located at the
vertex, i.e., the maximum number of evacuees that the site accommodates. In our
experiment, the capacity of a building was computed based on the available floor
space, assuming that two persons per m2 can be accommodated. The capacity
of an evacuation site which is outside the tsunami inundation area is assumed to
be infinity. However, since a hill top may have an upper limit on the number of
evacuees that can be accommodated, its capacity is estimated based on an aerial
photograph. Evacuation by cars is only possible to the outside of the tsunami
inundation area, and thus is assumed to be not allowed to tsunami evacuation
buildings or hill tops. Since there are not enough tsunami evacuation buildings,
the delay of evacuation is predicted. (In our experiment, we solve me by using a
linear programming solver. Thus, we can add additional constraints to our model.
Furthermore, the minimum evacuation completion time can be computed by the
binary search.)

5.1 Computational Results

We use Gurobi Optimizer (see http://www.gurobi.com/) as the solver to solve
linear programs corresponding to our experimental data.

As seen from Table 1, in each scenario, the result for the case where cars
are allowed to use is much better in the minimum evacuation completion time
than the one where they are not allowed. Comparing the scenario 2 with the sce-
nario 1, the number of evacuees who walked to the evacuation site increased since
evacuation buildings located in the town center can be used in the scenario 2.

Table 1. Computational results of each scenario.

Scenario Evacuation time Percentage of car usage Pedestrians only

1 9m40s 68.1 % 18m00s

2 9m05s 31.4 % 17m30s

http://www.gurobi.com/
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Fig. 2. (Left) The transition of the accumulated number of evacuees that completed
evacuation in the scenario 1. (Right) The transition of the accumulated number of
evacuees that completed evacuation in the scenario 2.

Now let us look at Fig. 2 that shows how the number of evacuees that have
completed evacuation increases as time proceeds since the evacuation starts. It
is observed that in the latter half for the whole time period, the number of
evacuees that completed evacuation rapidly increases in both scenarios. Ideally,
it is desired that the number of evacuees that completed evacuation is large in
the early stage. This point should be taken into account in order to improve the
current model.

Fig. 3. (Left) Distribution of evacuees that used cars in the scenario 1. (Right) Distri-
bution of evacuees that used cars in the scenario 2. (Color figure online)
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Fig. 4. (Left) The number of evacuees that arrived at each evacuation site, and the
ratio of evacuees who arrived at the site by walking and those who arrived there by a
car in the scenario 1 (Right) The number of evacuees that arrived at each evacuation
site, and the ratio of evacuees who arrived at the site by walking and those who arrived
there by a car in the scenario 2.

Let us look at the way of evacuation (by walking or a car) at each vertex.
In Fig. 3, if the color at each vertex is close to blue, it means that a majority of
people used cars for evacuation while on the other hand, if it is close to red, a
majority of people walked for evacuation. Comparing the scenarios 1 and 2, the
car usage significantly decreased in the scenario 2 near the coast since there are
evacuation buildings nearby.

Figure 4 shows the number of evacuees that arrived at each evacuation site,
and the ratio of evacuees who arrived at the site by walking and those who
arrived there by a car. In the scenario 1, for most of evacuation sites, the number
of evacuees who arrived by cars exceeds that of evacuees who arrived by walking.
On the other hand in the scenario 1, many evacuees living near the town center
evacuated to evacuation buildings inside the inundation area.

6 Conclusion

In this paper, we introduce the mixed evacuation problem that is motivated
by making an evacuation plan in an emergent situation in which people can
evacuation on foot or by car. We study this problem from the theoretical and
practical viewpoints. An apparent future work from the theoretical viewpoint
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is to reveal the computational complexity of the mixed evacuation problem in
the general case. From the practical viewpoint, it is a future work to apply our
model to areas other than Minabe town. There exist many small towns on the
coastal area facing the Pacific Ocean whose local governments are faced with a
serious problem that they have to spend a significant percentage of their budget
for building a tsunami evacuation buildings in order to reduce the loss of human
lives from tsunami triggered by Nankai Trough Earthquake that are expected to
occur with 70 % within the coming 30 years [1]. In this respect, we hope that the
methods developed for facility location problems will help to reduce the budget
to be used for such disaster prevention.
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