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Abstract. The existence of a densely knit core surrounded by a loosely
connected periphery is a common macro-structural feature of social net-
works. Formally, the CorePeriphery problem is to partition the nodes
of an undirected graph G = (V, E) such that a subset X ⊂ V , the
core, induces a dense subgraph, and its complement V \X, the periph-
ery, induces a sparse subgraph. Split graphs represent the ideal case in
which the core induces a clique and the periphery forms an independent
set. The number of missing and superfluous edges in the core and the
periphery, respectively, can be minimized in linear time via edit distance
to the closest split graph.

We show that the CorePeriphery becomes intractable for standard
notions of density other than the absolute number of misclassified pairs.
Our main tool is a regularization procedure that transforms a given graph
with maximum degree d into a d-regular graph with the same clique num-
ber by adding at most d · n new nodes. This is of independent interest
because it implies that finding a maximum clique in a regular graph is
NP-hard to approximate to within a factor of n1/2−ε for all ε > 0.

1 Introduction

In the CorePeriphery problem, we are given a graph G = (V,E) and our
goal is to find a bipartition of V into a tightly knit core and a loosely connected
periphery. To formalize the CorePeriphery problem, we compare the given
graph with the class of split graphs, i.e., graphs that admit a bipartition into
a complete induced subgraph and a set of mutually non-adjacent vertices. Our
aim is now to minimize the error, i.e., the deviation from the ideal case.

To this end, we want to simultaneously maximize the density in the core and
minimize the density in the periphery.
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The CorePeriphery problem is highly relevant for the analysis of social net-
works [2,21] in various domains [1,5,6,8,9,15,16,18–20,22–25]. The most com-
mon formalizations are due to Borgatti and Everett [2] and heuristic algorithms
are used [3,4] to separate a core from its periphery. Rombach et al. [21] present
a method for identifying multiple cores in a network. Holme [12] introduced a
core-periphery-coefficient to measure if the network can be bisected in core and
periphery. Zhang et al. [26] developed a statistically principled method, where
they use a maximum-likelihood fit, for detecting a core-periphery-decomposition.

The CorePeriphery is closely related to other problems in graph theory.
For example, if we omit the condition of a bipartition, we get the problem of
finding a densest subgraph in a given graph. Goldberg [10] shows that this prob-
lem can be solved in polynomial time for the linear density by using an algorithm
based on a network flow computation. The problem to find a vertex partition
with maximal sum of the densities of the subsets is known to be NP-hard [7].
Khuller and Saha [14] give 2-approximation algorithms for computing a densest
subgraph with at least k vertices for a given k.

The problems of finding large cliques and independent sets are notoriously
difficult: it is NP-hard to approximate the size of the largest clique/independent
set within a factor of n1−ε for all ε > 0 [13,27]. Mathieson and Szeider [17]
showed that the clique problem remains W [1]-hard even in regular graphs. To
this end, they proposed a gadget to regularize a given graph, which yields n1/3−ε-
hardness for approximating the size of the largest clique in regular graphs. To
the best of our knowledge, this was the best previously known lower bound for
the hardness of approximation of cliques in regular graphs.

1.1 Our Contribution

We propose a novel regularization procedure that transforms a given graph with
n nodes and maximum degree d into a d-regular graph by adding O(d · n) nodes
and O(d2n) edges without increasing the size of the largest clique provided that
the given graph was not already triangle-free. This improves the construction
in [17], which uses O(d2n) extra nodes. Furthermore, we show that this implies
that it is NP-hard to approximate the size of the largest clique in a regular
graph within a factor of O(n1/2−ε) for all ε > 0. Finally we show by a new
proof technique that the CorePeriphery problem is NP-hard for linear and
quadratic densities.

1.2 Preliminaries

We start by a formal treatment of our problems. A graph G = (V,E) is d-regular
if all nodes in V have exactly d neighbors, i.e., all nodes in V have the same
degree deg(v) = d.

We say that a graph G′ = (V ′, E′) is an induced subgraph of the graph G,
G′ ⊆ G, if V ′ ⊆ V and E′ consists of all edges in E, which have both endnodes
in V ′. We also write G′ = G[V ′]. If we consider the number of adjacent nodes of
v ∈ V ′ in a subgraph G′ = (V ′, E′), we express this by degG′(v).
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The complement edge set Ē := {{v, w} ⊆ V : {v, w} /∈ E, v �= w} of G =
(V,E) consists of all edges which are not included in E. The complement graph
Ḡ =

(
V, Ē

)
of G is a graph with the same set of vertices and the complement

edge set of G.
An �-clique K� is an induced complete subgraph of G with � nodes, i.e., every

pair of nodes in the node set of K� is connected by an edge. A famous problem
in the graph theory is the MaxClique problem. The goal of it is to find a
maximum clique in the given graph G, i.e., a clique with the biggest number of
nodes. We call this number the clique number ω(G) of the graph G. If G is a
regular graph, we call the problem of computing ω(G) RegularClique.

A graph G = (V,E) is called bipartite if the node set V can be partitioned
into two not empty subsets V1 and V2 so that every edge in E has one endnode
in V1 and one endnode in V2. A bipartite subgraph Ka,b = (V ′

1 ∪ V ′
2 , E

′) in G
with |V ′

1 | = a and |V ′
2 | = b is called biclique, if every node of V ′

1 is adjacent to
every node of V ′

2 . A set of edges in the graph G that are mutually disjoint is
called matching in G. If every node in G is incident to one edge of the matching
then it is a perfect matching. A complete bipartite graph with 2n nodes from
which the edges of a perfect matching have been removed is called crown graph.

2 RegularClique is NP-Hard to Approximate

To prove the hardness result, we first describe a polynomial-time algorithm to
regularize a given graph G = (V,E) with |V | = n and |E| = m and maximum
degree d.

2.1 Regularization Procedure

Our goal is to augment a graph G = (V,E) with maximum degree d by additional
nodes and edges to obtain a d-regular graph Gd = (Vd, Ed) such that G ⊆ Gd

and ω(G) = ω(Gd). We assume w.l.o.g. that |V | = 2x with x ∈ Z
+: If the

number of nodes is odd, we add an isolated node to V . This does not change
ω(G) and increases n to n + 1, which does not harm the asymptotic statements
later on.

Since we will not remove any edges, we must fill up the degree of each node
until it reaches d. Then the regularized graph Gd = (Vd, Ed) will contain exactly
y := d · n − 2m new edges, each with exactly one incident node in V . We choose
r, s ∈ Z≥0 so that m = d · s − r with 0 ≤ r < d. Thus,

y = 2d · x − 2d · s + 2r = 2d · (x − s) + 2r.

Now we consider a crown graph with 2d nodes, i.e., biclique Kd,d without a
perfect matching. Every node of it has degree equal to d − 1. We add x − s such
graphs to G and connect every node of them with one of the nodes in V with
degree less than d. Thereby, we may connect one node in V with one or several
nodes of these auxiliary graphs until its degree is equal to d.
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For the 2r remaining required new edges we add a further biclique Kd,d

without a matching with r edges. This auxiliary graph contains 2r nodes with
degree d − 1. We connect those nodes with the nodes in V whose degree is still
smaller than d (Fig. 1).

Fig. 1. A graph G with n = 7, m = 8 and d = 3. We add an auxiliary node a, set
x = 4, s = 3 and r = 1. Then we construct Gd by adding one K3,3 without a perfect
matching (on the right side of the figure) and one K3,3 without the matching with
r = 1 edges. Finally we create new edges according to the above description.

Theorem 1. The graph G contains a k-clique with k ≥ 4, if and only if its
regularized version Gd contains a k-clique.

Proof. Let k ≥ 4. Assume that G contains a k-clique. As the regularization
procedure only adds nodes and edges and does not remove any of the original
nodes or edges, G is an induced subgraph of Gd and thus Gd contains the same
k-clique.

On the other hand, if Gd contains a k-clique K with k ≥ 4, at most two
of its nodes may be contained in Vd\V because the added bipartite graphs are
triangle-free. But if K contains exactly two nodes from Vd \V , then these two
nodes can have at most one common neighbor in K because each of them is
only incident to exactly one node in V , a contradiction to the assumption that
K is a clique with at least 4 nodes. Similarly, if exactly one node from Vd \V
is contained in K, then it is incident to exactly one other node in K, again a
contradiction. Thus, K is completely contained in V , which proves the claim. �	

2.2 Hardness of Approximation

The RegularClique problem is formally defined as follows.

Problem 1 (RegularClique). Given a regular graph G and an integer k,
decide whether G contains a clique of size k.

This problem is not only NP-hard, but also very hard to approximate.
To prove this, we recall the situation for MaxClique in general graphs.
Zuckerman [27] derandomized a construction of H̊astad [13] to obtain the fol-
lowing theorem.
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Theorem 2 ([13,27]). Let ε > 0. Given a graph G = (V,E), it is NP-hard to
approximate MaxClique to within a factor of |V (G)|1−ε.

From this, we derive a similar hardness result, where we lose a
√

n-factor
due to the blow-up of O(dn) in the number of nodes with our regularization
procedure. We restrict ourselves to the case k ≥ 4 because we can decide whether
there is a K3 by enumerating all triples of nodes in O(n3) time and because the
cases for k ∈ {1, 2} are trivial.

Theorem 3. It is NP-hard to approximate RegularClique within a factor of
n

1
2−ε for all ε > 0.

Proof. Let G = (V,E) be a given undirected graph with n := |V | and m := |E|,
and let Gd = (Vd, Ed) denote its regularized version. For our considerations, we
can assume that the graph G is a connected graph and therefore m ≥ n − 1 ⇔
2m ≥ 2n − 2 and hence 2m ≥ n for all n ≥ 2. By the regularizing construction
we get

N := |Vd| = n + 2d · (x − s) + 2d = n + d · n − 2m − 2r + 2d ≤ d · n ≤ n2.

Suppose that there exists an approximation algorithm ARegClique for regular
clique within a factor of N

1−ε
2 for an ε > 0. Then we can find a k-clique K in

Gd with k ≥ ω(Gd)/N
1−ε
2 nodes. According to the Theorem 1, K is contained

in G and ω(Gd) = ω(G). Thus, k ≥ ω(G)/N
1−ε
2 ≥ ω(G)/n1−ε. Thus, we would

have an n1−ε-approximation for MaxClique. Theorem 2 proves the statement
above. �	

For the sake of presentation, we further restrict the range for k to {4, . . . , d}.
This is w.l.o.g. because d-regular graphs cannot have a clique with more than
d+1 nodes, the cases for k ∈ {1, 2, 3} can be decided in polynomial time, as well
as the case for k = d + 1 as the following Lemma shows.

Lemma 1. A d-regular graph G = (V,E) contains a clique Kd+1, if and only if
G contains a connected component with d + 1 nodes.

Proof. Let K ⊆ V be a clique in G with d + 1 nodes. Since degK(v) = d for
all v ∈ K every node in K is adjacent to all other nodes in K. Because G is a
d-regular graph, there cannot be an edge {v, w} with v ∈ K and w /∈ K.

On the other hand, let G contain a connected component V ′ ⊆ V with d + 1
nodes. Because G is a d-regular graph, every node in V ′ is adjacent to d nodes.
This means that every node in V ′ is adjacent to all nodes in V ′. Thus, G[V ′] is
a clique with d + 1 nodes. �	

3 Application to CorePeriphery

We apply the results from the previous section to prove NP-hardness of two
versions of the CorePeriphery problem. Generally speaking our aim is to
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decompose a given graph G = (V,E) into a core, i.e., nodes that are tightly
connected, and a periphery, i.e., vertices that are loosely connected. The ideal
case is a so called split graph. This is a graph for which there exists a bipartition
of its vertices into a clique and an independent set, i.e., a set of nodes that not
induce any edge. Hammer and Simeone [11] showed that the split graphs can be
recognized in linear time.

Theorem 4 (Hammer and Simeone, 1981 [11]). Let G = (V,E) be an
undirected graph with |V | = n and the degree sequence d1 ≥ · · · ≥ dn. Define
k := max{i : di ≥ i − 1}. Then, G is a split graph if and only if the splittance

1
2

⎛

⎝k(k − 1) −
k∑

i=1

di +
n∑

j=k+1

dj

⎞

⎠ = 0.

Furthermore, if this is the case, then k is the clique number of G.

For all other graphs we try to minimize the deviation from this ideal case, i.e.,
to minimize the splittance. Observe that 1

2

(
k(k − 1) − ∑k

i=1 di +
∑n

j=d+1 dj

)

edges have to be added/deleted to make G a split graph. That is, the splittance
is the number of edges that have to be added or to be deleted to obtain a
bipartition of a given graph into a clique as a core and the independent set as
periphery. Furthermore, Hammer and Simeone showed in [11] that the splittance
of any graph can be determined in linear time.

Fig. 2. Here we see two different cores (black nodes) in the Petersen graph. The split-
tance of the graph is always equal to 9 if the core consists of 4 nodes, although the
core induces no edges.

The fact that the splittance of a d-regular graph is equal for all cores with
d + 1 nodes, illustrates that the splittance is not able to discriminate certain
situations. For example, Fig. 2 shows two cores in the Petersen graphs that are
both optimal w.r.t. the splittance, but one of them even induces an independent
set — the opposite of a clique. So it is natural to ask for the size normalized
deviation like how many edges on average per node must be added in the core
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and be deleted in the periphery to obtain a split graph. Analogously, we can
consider the problem so that we ask which fraction of edges of the clique is to
be added to the core and which fraction of potential edges in periphery is to be
deleted to obtain the ideal case.

To facilitate the comparison of further objective functions, we introduce the
following notations. Let G = (V,E) be a graph and X ⊆ V a candidate for the
core of G. The number of edges and non-edges in the core X are denoted by

c1(X) := |{e ∈ E : e ⊆ X}|, c0(X) := |{ē ∈ Ē : ē ⊆ X}|

and similarly in the periphery V \X:

p1(X) := |{e ∈ E : e ∩ X = ∅}|, p0(X) := |{ē ∈ Ē : ē ∩ X = ∅}|.

We write c1, c0, p1, or p0 if X is clear from the context. Using our notion the
splittance is equal to c0 + p1.

Our aim is to decompose the nodes of the graph into the core X and periphery
V \X such that the density of the subgraph induced by X is maximal and
the density of the subgraph induced by V \X is minimal. To combine these
criteria in a single objective function that mimics the splittance, we minimize
sparsityG(X) + densityG(V \X), where sparsityG(X) := densityḠ(X), i.e., the
sparsity is defined as density in the complement graph.

Popular density functions are the linear and the quadratic density. The linear
density d1(X) of X ⊆ V in a graph G = (V,E) is defined as the average degree
in the subgraph induced by X. That is,

d1(X) =
1

|X|
∑

v∈X

degX(v) =
2c1
|X| .

The quadratic density d2(X) of X ⊆ V in a graph G = (V,E) is the ratio of
existent edges to the number of all possible edges in the subgraph induced by
X. That is,

d2(G) :=
c1

|X|(|X|−1)
2

=
2c1

|X|(|X| − 1)
.

To facilitate the discussion, we split the contribution of the sparsity of the
core X and the density of the periphery V \X into two functions f(X) and g(X),
respectively, such that their sum defines the objective function h(X). This is
summarized in the Table 1.

The function f(X) counts non-edges in X, in relation to the size of X and
g(X) counts edges having both incident nodes in the set V \X, in relation to
the size of V \X. These quantities yield the deviation of the core X and the
periphery V \X to a perfect core-periphery structure, i.e., the average number
of edges per node to be added to the core or to be deleted from the periphery
in the case of linear density, and the percentage of missing edges in the core or
surplus edges in the periphery, respectively, to make X a clique and V \X an
independent set.
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Table 1. The decomposition of the objective function into contributions of the core
and the periphery for splittance, linear, and quadratic normalization.

Deviation Absolute Linear Quadratic

Core X c0(X) f(X) := 2c0(X)
|X| f(X) := 2c0(X)

|X||X−1|
Periphery V \X p1(X) g(X) := 2p1(X)

|V |−|X| g(X) := 2p1(X)
(|V |−|X|)(|V |−|X|−1)

Total deviation c0(X) + p1(X) h(X) := f(X) + g(X)

We will show in the following that the CorePeriphery problem is NP-hard
for both of these densities. For this we will use the hardness result for Regu-
larClique from the previous section. The main idea of our proof is that we
augment the graph by isolated nodes such that any reasonably good solution will
take a clique as the core. That is, all solutions that have an incomplete subgraph
as a core will have a worse objective value than taking the two endpoints of any
edge as the core. It is important for our argument that the input graph is regular
and therefore we will make use of our regularization procedure.

3.1 Linear Density

First we show that if the core-candidate X is not a clique, then the value of the
density of X never falls below a certain value.

Lemma 2. If a non-empty set X ⊆ V does not induce a clique, then f(X) ≥
2

d+1 for any d ≥ 2.

Proof. We first consider the case |X| ≤ d + 1. Since X does not induce a clique,
the induced subgraph misses at least one edge from being complete, i.e., c0 ≥ 1.
Thus, we have

f(X) =
2c0
|X| ≥ 2

|X| ≥ 2
d + 1

.

If |X| ≥ d + 2, we have |X| − 1 ≥ d + 1 and so X must miss more than

|X|(|X| − 1)
2

− d|X|
2

≥ |X|(d + 1) − d|X|
2

=
|X|
2

edges, i.e., c0 ≥ |X|
2 . Thus, f(X) = 2c0

|X| ≥ 1 ≥ 2/(d + 1) for all d ≥ 2. �	
The idea for proving NP-hardness is to augment a given graph by isolated nodes
such that h(X) is at most 1/d < 2/(d + 1) whenever X induces a clique (even if
it induces single edge) in a graph with d ≥ 2.

Lemma 3. A d-regular graph G contains a clique of size k ≤ d, if and only if,
G′ = (V ′, E) with the node set V ′ consisting of the n nodes of V and q additional
isolated nodes (i.e., |V ′| = n + q) contains a core X ⊆ V ′ with

h(X) ≤ nd − 2dk + k(k − 1)
n + q − k

for all q ≥ d2n.
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Proof. Let X be a k-clique in G and thus also in G′. Note that f(X) = 0.
Moreover, the total number of edges is nd

2 due to the regularity and the number
of edges incident to nodes in X is given by kd − (

k
2

)
. Hence,

h(X) = g(X) = 2
nd
2 − (dk − (

k
2

)
)

n + q − k
=

nd − 2dk + k(k − 1)
n + q − k

︸ ︷︷ ︸
=:g(k)

.

To prove the converse direction, we show that g(k) is decreasing in the range of
1 ≤ k ≤ d. To this end, we consider the first derivative of g(k), i.e.,

g′(k) =
(2k − 2d − 1)q + 2kn − dn − n − k2

(n + q − k)2

≤ −q − dn + n + 1
(n + q − k)2

≤ − (d2 − d + 1)n + 1
(n + q − k)2

< 0

Thus, g(k) ≤ g(1) = (dn − 2d)/(n + q − 1) ≤ (dn − 2d)/(n + d2n − 1) ≤ 1/d <
2/(d + 1) for all d ≥ 2. Hence, G contains a k-clique if and only if there is an
X ⊂ V ′ with

h(X) ≤ nd − 2dk + k(k − 1)
q + n − k

.

�	
As a consequence, we obtain a reduction to prove NP-hardness of linear

CorePeriphery.

Theorem 5. Solving the problem CorePeriphery with linear density is NP-
complete.

Proof. Given a d-regular graph G = (V,E) and an integer k ∈ {1, . . . , d}, we wish
to decide whether G contains a k-clique (by Lemma 1 it is sufficient to consider
k-cliques with k ≤ d). We add q = nd2 isolated nodes to G and thereby obtain
G′ = (V ′, E′) for which we compute the CorePeriphery problem. Combining
Lemmas 2 and 3, the reported core will be a clique. �	

3.2 Quadratic Density

Lemma 4. If X ⊆ V does not induce a clique, then f(X) ≥ 1
d2 for d ≥ 2.

Proof. We again consider the case |X| ≤ d + 1 first. Since X does not induce a
clique, it contains at least one non-edge in E and thereby

f(X) ≥ 2
|X|(|X| − 1)

≥ 2
(d + 1)d

≥ 1
d2

.
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If |X| = d+ � with 2 ≤ � ∈ Z, than there are (d+ �)(d+ �− 1)/2− d(d+ �)/2
non-edges and thus

f(X) ≥ (d + �)(d + � − 1) − d(d + �)
(d + �)(d + � − 1)

=
d + � − 1 − d

d + � − 1
= 1 − d

d + � − 1

≥ 1 − d

d + 1
=

1
d + 1

.

�	
For proving NP-hardness for the quadratic density, we augment a given graph

by q isolated nodes analogous to the case of linear density such that h(X) is
strictly less than 1/d2 whenever X induces a clique (even if it induces single
edge).

Lemma 5. A d-regular graph G contains a clique of size k ≤ d, if and only if,
G′ = (V ′, E) with the node set V ′ consisting of the n nodes of V and q additional
isolated nodes (i.e., |V ′| = n + q) contains a core X ⊆ V ′ with

h(X) ≤ nd − 2dk + k(k − 1)
(n + q − k)(n + q − k − 1)

for all q ≥ dn.

Proof. At first we assume that X is a k-clique in G and also in G′. Analogous
to the proof for the linear density we obtain

h(X) = g(X) =
nd − 2dk + k(k − 1)

(n + q − k)(n + q − k − 1)
︸ ︷︷ ︸

=:g(k)

=
nd − k(2d − k + 1)

q2 + k2 + n(n − 2k − 1) + q(2n − 2k − 1) + k
<

nd

q2
.

For q ≥ dn we get g(X) < 1
dn and therefore h(X) < 1

dn < 1
d2 . Recall that

h(X) ≥ 1
d2 if X is not a clique by Lemma 4.

Now we have to prove that a larger clique is preferred instead of a smaller
one. To this end, we show that the function g(k) decreases for increasing k by
considering the difference

g(k − 1) − g(k) =
−2(1 − dk − k − n − q + d − dq + kn + kq)
(n + q − k + 1)(n + q − k)(n + q − k − 1)

It is easy to verify that the denominator of this difference is positive. So we have
to investigate the numerator only.

−2(1−dk−k−n−q+d−dq+kn+kq) = 2(q(d−k+1)+dk+k−kn−d+n−1)
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We show that for q ≥ dn this term is positive.

2(q(d − k + 1) + dk + k − kn − d + n − 1)
≥ 2(dn(d − k + 1) + dk + k − kn − d + n − 1)
≥ 2(dn(d − k + 1) + d + 1 − kn − d + n − 1)
≥ 2(dn(d − d + 1) + d + 1 − dn − d + n − 1)
= 2n > 0

As a consequence a minimizer for the CorePeriphery problem for quadratic
density is a clique X ⊆ V . �	
Theorem 6. Solving the problem CorePeriphery with quadratic density is
NP- complete.

Proof. Given a d-regular graph G = (V,E) and an integer k ∈ {1, . . . , d}. The
question is again whether G contains a clique with k nodes. We construct a graph
G′ = (V ′, E′) by adding q = nd isolated nodes to G analogous to the case of
linear density. Then we solve the CorePeriphery problem on G′. Combining
Lemmas 4 and 5, we obtain a clique as the core. �	
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