
Fast Searching on Complete k-partite Graphs

Yuan Xue1(B), Boting Yang1, Farong Zhong2, and Sandra Zilles1

1 Department of Computer Science, University of Regina, Regina, Canada
{xue228,boting,zilles}@cs.uregina.ca

2 College of Math, Physics and Information Technology,
Zhejiang Normal University, Jinhua, China

zfr@zjnu.edu.cn

Abstract. Research on graph searching has recently gained interest in
computer science, mathematics, and physics. This paper studies fast
searching of a fugitive in a graph, a model that was introduced by Dyer,
Yang and Yaşar in 2008. We provide lower bounds and upper bounds on
the fast search number (i.e., the minimum number of searchers required
for capturing the fugitive) of complete k-partite graphs. We also investi-
gate some special classes of complete k-partite graphs, such as complete
bipartite graphs and complete split graphs. We solve the open problem
of determining the fast search number of complete bipartite graphs, and
present upper and lower bounds on the fast search number of complete
split graphs.

1 Introduction

Graph searching, also called Cops and Robbers games or pursuit-evasion prob-
lems, has many models, such as edge searching, node searching, mixed searching,
fast searching, etc. [1,3,4,7–10]. Let G denote an undirected graph. In the fast
search model, a fugitive hides either on vertices or on edges of G. The fugitive
can move at a great speed at any time from one vertex to another along a path
that contains no searchers. We call an edge contaminated if it may contain the
fugitive, and we call an edge cleared if we are certain that it does not contain
the fugitive. In order to capture the fugitive, one launches a set of searchers on
some vertices of the graph; these searchers then clear the graph edge by edge
while at the same time guarding the already cleared parts of the graph. This idea
is modelled by rules that describe the searchers’ allowed moves, as explained in
Sect. 2. A fast search strategy of a graph is a sequence of actions of searchers that
clear all contaminated edges of the graph. The fast search number of G, denoted
by fs(G), is the smallest number of searchers needed to capture the fugitive in G.

Stanley and Yang [11] presented a linear time algorithm for computing the
fast search number of Harlin graphs and their extensions, as well as a quadratic
time algorithm for computing the fast search number of cubic graphs. Yang [13]
proved that the problem of finding the fast search number of a graph is NP-
complete; and it remains NP-complete for Eulerian graphs. He also proved that
the problem of determining whether the fast search number of G equals to a
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 159–174, 2016.
DOI: 10.1007/978-3-319-48749-6 12

160 Y. Xue et al.

half of the number of odd vertices in G is NP-complete for planar graphs with
maximum degree 4. Dereniowski et al. [5] gave characterizations of graphs for
which 2 or 3 searchers are sufficient in the fast search model. Xue and Yang [12]
investigated Cartesian products of graphs, and proved an explicit formula for
computing the fast search number of the Cartesian product of an Eulerian graph
and a path. They also presented upper and lower bounds on the fast search
number of hypercubes.

The fast search problem has a close relationship with the edge search
problem [6]. Alspach et al. [2] presented a formula for the edge search num-
ber of complete k-partite graphs. Dyer et al. [6] proved the fast search number
of complete bipartite graphs Km,n when m is even. They also presented lower
and upper bounds respectively on the fast search number of Km,n when m is
odd. However, the gap between the lower and upper bounds can be arbitrarily
large, and this open problem remains unsolved for eight years.

In this paper, we provide lower and upper bounds on the fast search number
of complete k-partite graphs. Further, we investigate some special classes of k-
partite graphs, such as complete bipartite graphs and complete split graphs.
We solve the open problem of determining the fast search number of complete
bipartite graphs. We also present lower and upper bounds on the fast search
number of complete split graphs.

2 Preliminaries

Throughout this paper, we only consider finite undirected graphs that have no
loops or multiple edges. Let G = (V,E) denote a graph with vertex set V and
edge set E. We also use V (G) and E(G) to denote the vertex set and edge set
of G respectively. Let uv be an edge with two endpoints u and v. For a vertex
v ∈ V , the degree of v is the number of edges incident on v, denoted by degG(v).
We say a vertex is odd if its degree is odd, and we say a vertex is even if its degree
is even. An odd graph is a graph in which all vertices are odd. An even graph is
a graph in which all vertices are even. Define Vodd(G) = {v ∈ V : v is odd}.

For a subset V ′ ⊆ V , we use G[V ′] to denote the subgraph induced by V ′,
which consists of all vertices of V ′ and all the edges of G between vertices in
V ′. We use G − V ′ to denote the induced subgraph G[V \ V ′]. For a subset
E′ ⊆ E, we use G − E′ to denote the subgraph (V,E \ E′). Let G1 = (V1, E1)
and G2 = (V2, E2) be two subgraphs of G. The union of two graphs G1 and G2

is the graph G1 ∪G2 = (V1 ∪V2, E1 ∪E2). We use G1 +V2 to denote the induced
subgraph G[V1 ∪ V2].

A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that each edge
ei, 1 ≤ i ≤ k, has endpoints vi−1 and vi. A path is a walk that does not contain
the same vertex twice, except that its first vertex might be the same as its last
vertex. We use v0v1...vk to denote a path with ends v0 and vk. A trail is a
walk in which no edge occurs multiple times. For a connected subgraph G′ with
at least one edge, an Eulerian trail of G′ is a trail that traverses every edge
of G′ exactly once. A circuit is a trail whose first vertex is the same as its last.

Fast Searching on Complete k-partite Graphs 161

An Eulerian circuit is an Eulerian trail that begins and ends on the same vertex.
A graph is called Eulerian if it contains an Eulerian circuit that traverses all its
edges. Note that we only consider finite graphs with no loops or multiple edges
in this paper. So, throughout this paper, we assume that an Eulerian circuit or
Eulerian subgraph contains at least three edges.

In the fast search model, initially every vertex in V and every edge in E is
considered contaminated. We call a vertex v ∈ V cleared if all edges incident
on v are cleared, and we call v partially cleared if v has both contaminated
and cleared incident edges. A fast search strategy proceeds as follows. First, it
places some number of searchers on some vertices in V . Then, it performs sliding
actions along contaminated edges until either every edge in E is cleared or no
more sliding actions are possible. A searcher on vertex u can slide along the
edge e = uv if e is contaminated and (1) u contains one additional searcher or
(2) e is the only contaminated edge incident on u. After sliding along e, the
searcher then resides on v and e is cleared. Intuitively, the sliding rules ensure
that the searchers guard the already cleared parts of the graph, so that the
fugitive cannot hide there. The following lemmas give two known lower bounds
on the fast search number.

Lemma 1 [6]. For any connected graph G, fs(G) ≥ 1
2 |Vodd(G)|.

Lemma 2 [11]. For any connected graph G with no leaves, fs(G) ≥
1
2 |Vodd(G)| + 2.

Let Kn1,...,nk
= (V1, . . . , Vk, E) denote a complete k-partite graph, where

V1, . . . , Vk are disjoint independent sets, |Vi| = ni and ni ≤ ni+1 for all 1 ≤ i ≤
k − 1. Each vertex in Vi is adjacent to all the vertices in V (Kn1,...,nk

) \ Vi. We
use Km,n = (V1, V2, E) to denote a complete bipartite graph, where |V1| = m,
|V2| = n and 1 ≤ m ≤ n. We use Sm,n = (V1, V2, E) to denote a complete split
graph, where V1 and V2 are disjoint sets, V1 induces a clique with m vertices and
V2 is an independent set with n vertices. In Sm,n, each vertex in V1 is adjacent
to all the other vertices in V1 ∪ V2.

Note that for any connected graph G, the fast search number of G is always
at least the edge search number of G. From Theorem 2 in [2], we have the next
lemma.

Lemma 3. For any connected graph G that contains a clique Km of order m,
where m ≥ 4, we have fs(G) ≥ m.

3 Complete k-partite Graphs

In the following, we give lower bounds and upper bounds on the fast search
number of complete k-partite graphs. Throughout this section, in order to better
describe our proof ideas, we assume that placing actions of searchers can be
inserted after sliding actions of searchers in a fast search strategy. If we want
all placing actions to happen before all sliding actions in a fast search strategy,
then we can simply move all placing actions before all sliding actions in that fast
search strategy.

162 Y. Xue et al.

Lemma 4. For a complete k-partite graph Kn1,...,nk
, where k ≥ 2 and n1 ≤

· · · ≤ nk, we have fs(Kn1,...,nk
) ≥ ∑k−1

i=1 ni.

Lemma 5. For a complete k-partite graph Kn1,...,nk
, where k ≥ 3 and n1 ≤

· · · ≤ nk, if
∑k−1

i=1 ni ≥ 3 and nk ≥ 3, then fs(Kn1,...,nk
) ≥ 2 +

∑k−1
i=1 ni.

Proof. For any graph G, fs(G) is greater than or equal to the edge search number
of G. Thus, it follows from Theorem 6 in [2] that fs(Kn1,...,nk

) ≥ 2 +
∑k−1

i=1 ni.

Theorem 1. For a complete k-partite graph Kn1,...,nk
, where k ≥ 3, n1 ≤ · · · ≤

nk and
∑k

i=1 ni = n, if
∑k−1

i=1 ni ≥ nk = 3, then fs(Kn1,...,nk
) = n − 1.

Proof. From Lemma 5, we have fs(Kn1,...,nk
) ≥ n − nk + 2 = n − 1. We will

show that n − 1 searchers can clear the graph. Let Vk = {v1, v2, v3} and X =
Kn1,...,nk

− Vk. Place n − 3 searchers on v1 and slide them to each vertex of X.
Since k ≥ 3, X is connected. We have three cases for the graph X.

Case 1. X is Eulerian. The following fast search strategy can clear all edges
of the graph Kn1,...,nk

− {v1} using n − 1 searchers.

1. Place a searcher on a vertex u of X.
2. Slide one of the two searchers on u along the Eulerian circuit of X to clear

all its edges.
3. Slide the two searchers on u to v2 and v3 respectively.
4. Place a searcher on v2. Let Y be the graph formed by all the remaining

contaminated edges of Kn1,...,nk
.

(a) If degY (v2) is even (Y is Eulerian in this case), then slide one of the two
searchers on v2 along the Eulerian circuit of Y to clear all its edges.

(b) If degY (v2) is odd (Y has an Eulerian trail in this case), then slide one
of the two searchers on v2 to v3 along the Eulerian trail of Y to clear all
its edges.

Case 2. X is odd. So X + {v2} is Eulerian. We first place two searchers
on v2. Then slide one of the two searchers on v2 along the Eulerian circuit of
X + {v2} to clear all its edges. Finally, slide all searchers on X to v3 to clear all
the remaining contaminated edges of Kn1,...,nk

.
Case 3. X has both even and odd vertices. Suppose that X has 2h odd

vertices. Let a1 and b1 be two odd vertices of X such that there is a path P1

between them which does not contain any vertex in Vodd(X) as an internal
vertex. Let H1 = X − E(P1). For i = 2, . . . , h, let ai and bi be two odd vertices
of Hi−1 such that there is a path Pi between them which does not contain any
vertex in Vodd(Hi−1) as an internal vertex. Let Hi = Hi−1 − E(Pi). It is easy to
see that Hh contains no odd vertices. In particular, we select Pi in the following
manner:

(1) If X contains at least two even vertices, say u and u′, then for i = 1, . . . , h,
let Pi = aiu

′bi.
(2) If X contains only one even vertex, say u, then we first show that V1 =

{u}. Note that all vertices in Vj , 1 ≤ j ≤ k − 1, have the same degree in X.

Fast Searching on Complete k-partite Graphs 163

Therefore, we know |V1| = 1 and u is the only vertex in V1. Further, if there
is a vertex set Vj , 2 ≤ j ≤ k − 1, which contains three vertices, then each of
the three vertices is even in X. This is a contradiction. Hence, |Vj | = 2 for all
2 ≤ j ≤ k − 1. We have two subcases for k.

(2.1) If k > 3, then we can find a matching for all odd vertices of X. Note that
there are 2k − 4 odd vertices on X. Let V2 = {a1, bk−2} and Vj = {aj−1, bj−2},
3 ≤ j ≤ k −1. For 1 ≤ i ≤ k −2, it is easy to see that ai is adjacent to bi. Hence,
we can let Pi = aibi. Clearly, u is not included in Pi.

(2.2) If k = 3, then we have |V1| = 1, |V2| = 2 and |V3| = 3. Further, a1 and
b1 are the only two odd vertices of X. Let V (X) = {u, a1, b1} and P1 = a1ub1.

If X contains at least two even vertices or X contains only one even vertex
and k > 3, then similar to Case 1, we clear all edges of the graph Kn1,...,nk

−{v1}
using the following fast search strategy. Let U be a connected component in Hh

that contains u.

1. Place a searcher on the vertex u.
2. Slide one of the two searchers on u along the Eulerian circuit of U to clear all

its edges. Note that all edges of X incident on u are cleared after this step.
3. Slide the two searchers on u to v2 and v3 respectively.
4. Place a searcher on v2. Let H be the graph formed by all the remaining

contaminated edges of Kn1,...,nk
except edges in ∪h

i=1E(Pi).
(a) If degH(v2) is even (so H is Eulerian), then slide one of the two searchers

on v2 along the Eulerian circuit of H to clear all its edges.
(b) If degH(v2) is odd (so H has an Eulerian trail), then slide one of the two

searchers on v2 from v2 to v3 along the Eulerian trail of H to clear all its
edges.

5. Let GP be the graph formed by the paths P1, . . . , Ph (E(GP) is the set of
all the remaining contaminated edges of Kn1,...,nk

). Note that ah and bh are
two vertices of degree one on GP . Slide the searcher on ah along Ph to bh.
Then ah−1 and bh−1 are two vertices of degree one on GP − E(Ph). Slide
the searcher on ah−1 along Ph−1 to bh−1. Continuing like this we see that all
edges of GP can be cleared.

If X contains only one even vertex and k = 3, then similar to Case 1, we
clear all edges of the graph K1,2,3 −{v1} using the following fast search strategy.
Place a searcher on a1 and v2 respectively. Slide one of the two searchers on a1

along P1 to b1. Slide the two searchers on b1 to v2 and v3 respectively. Note that
the graph formed by all the remaining contaminated edges of K1,2,3 is Eulerian.
Slide one of the searchers on v2 along the path v2uv3a1v2 to clear all its edges.
Then, K1,2,3 is cleared.

Theorem 2. For a complete k-partite graph Kn1,...,nk
, if there is an nj, 1 ≤ j ≤

k, such that
∑k

i=1 ni − nj ≥ 4 and
∑k

i=1 ni − nj is even, then fs(Kn1,...,nk
) ≤

∑k
i=1 ni − nj + 3.

Proof. If nj ≤ 3, from Theorem 5.1 in [13], we see that the claim holds. If k = 2
and

∑k
i=1 ni − nj ≥ 6, from Lemma 5 in [6], we know that the claim holds.

164 Y. Xue et al.

If k = 2 and
∑k

i=1 ni − nj = 4, similar to Lemma 5 in [6], we can show that the
claim also holds. So we assume that nj ≥ 4 and k ≥ 3 in the rest of the proof.
Let Vj = {v1, v2, . . . , vnj

} and X = Kn1,...,nk
− Vj . Let

∑k
i=1 ni − nj = m and

V (X) = {u1, u2, . . . , um}. If nj is odd, then place m searchers on vnj
and slide

them to each vertex of X. If nj is even, then place m searchers on each vertex of
X. Without loss of generality, we assume that nj is even. Place three additional
searchers on u1, u2 and u3 respectively.

Since k ≥ 3, we know that X is a complete (k − 1)-partite graph. So X is
connected. If X is Eulerian, then slide a searcher from u1 along the Eulerian
circuit of X to clear all its edges. Without loss of generality, we assume that
X is not Eulerian. Suppose that X has 2h odd vertices. Let H0 = X. Similar
to Case 3 in the proof of Theorem 1, let ai and bi be two odd vertices of Hi−1

such that there is a path Pi between them which does not contain any vertex in
Vodd(Hi−1) as an internal vertex. Let Hi = Hi−1 − E(Pi), 1 ≤ i ≤ h. We now
describe a fast search strategy that can clear all edges of Kn1,...,nk

using m + 3
searchers.

1. In the following procedure, at any moment when a vertex ui (1 ≤ i ≤ m)
contains two searchers, if Hh has a connected component that contains ui and
no edges of the component are cleared, then slide a searcher from ui along
the Eulerian circuit of the component to clear all its edges.

2. Slide a searcher from u1 to v1 along u1v1, slide a searcher from u2 to v1 along
u2v1 and slide a searcher from u3 to v2 along u3v2.

3. Note that the subgraph induced by all the edges across {u4, . . . , um} and
{v1, v2} has an Eulerian trail (since m is even). Slide a searcher from v1 to v2
along the Eulerian trail to clear all its edges.

4. Slide a searcher from v1 to u3 along v1u3, slide a searcher from v2 to u1 along
v2u1 and slide a searcher from v2 to u2 along v2u2. After this step, v1 and v2
are cleared.

5. Similar to Steps 2, 3 and 4, we can clear v3 and v4, and then clear v5 and v6
(if they exist), and so on, until vn−1 and vn are cleared.

6. Let GP be the graph formed by the paths P1, . . . , Ph (E(GP) is the set of all
the remaining contaminated edges of Kn1,...,nk

). Similar to Step 5 in Case 3
of the proof of Theorem 1, we can clear all edges of GP .

Theorem 3. For a complete k-partite graph Kn1,...,nk
, if there is an nj, 1 ≤

j ≤ k, such that
∑k

i=1 ni −nj ≥ 3 and
∑k

i=1 ni −nj is odd, then fs(Kn1,...,nk
) ≤

∑k
i=1 ni − ⌊nj

2

⌋
.

Proof. If nj ≤ 3, similar to Theorem 5.1 in [13], we can prove the claim. If
k = 2, from Lemma 7 in [6], we see that the claim holds. So we assume that
nj ≥ 4 and k ≥ 3 in the remainder of the proof. Let Vj = {v1, v2, . . . , vnj

} and
X = Kn1,...,nk

− Vj . Let
∑k

i=1 ni − nj = m and V (X) = {u1, u2, . . . , um}. Note
that X is connected since k ≥ 3. Suppose that X has 2h odd vertices. Similar to
Case 3 in the proof of Theorem 1, we can define ai, bi, Pi and Hi for 1 ≤ i ≤ h.

Case 1. nj = 4� + 1. Place m searchers on v1, place one searcher on each of
u1, v2 and v3. Place one searcher on each of v4i+2 and v4i+3 for i = 1, . . . , � − 1

Fast Searching on Complete k-partite Graphs 165

(i.e., we place two searchers for every four vertices in Vj \ {v1}). In total we use
m + 1 + nj−1

2 searchers.

1. In the following process, at any moment when a vertex ui (1 ≤ i ≤ m)
contains two searchers, if Hh has a connected component that contains ui

and no edges of the component are cleared, then slide a searcher from ui

along the Eulerian circuit of the component to clear all its edges.
2. Slide m searchers from v1 to each vertex of X. Slide one of the two

searchers on u1 along the Eulerian circuit induced by all the edges across
{u1, u2, . . . , um−1} and {v2, v3} to clear all its edges.

3. Slide a searcher from v2 to v4 along v2umv4 and slide a searcher from v3 to
u5 along v3umv5 to clear v2 and v3. Slide a searcher on u1 along the Eulerian
circuit induced by all the edges across {u1, u2, . . . , um−1} and {v4, v5} to clear
all its edges.

4. Repeat the above step for all of v4i+2 and v4i+3 where i = 1, . . . , � − 1. First
clear the Eulerian circuit induced by all the edges across {u1, u2, . . . , um−1}
and {v4i+2, v4i+3} with a searcher on u1. Slide the searcher on v4i+2 along
v4i+2umv4i+4 and the searcher on v4i+3 along v4i+3umv4i+5. Then clear the
Eulerian circuit induced by all the edges across {u1, u2, . . . , um−1} and
{v4i+4, v4i+5} with a searcher on u1.

5. Let GP be the graph formed by the paths P1, . . . , Ph. Similar to Step 5 in
Case 3 of the proof of Theorem 1, we can clear all edges of GP .

Case 2. nj = 4�+2. Place the searchers as in Case 1. So m+1+ nj−2
2 = m+ nj

2
searchers are placed on the graph. Clear all vertices in Vj \ {vnj

} with the same
strategy used in Steps 1–4 in Case 1. Note that the only contaminated edges are
the ones incident on vnj

and the edges of GP . We can arrange the vertices of X
before placing actions such that u1 = ah, which is a vertex of degree one on GP .
Since m is odd, there is at least one vertex u such that degX(u) is even. For each
vertex u ∈ V (X) whose degX(u) is even, if u /∈ V (GP), then slide a searcher
on u to vnj

along uvnj
. Slide a searcher from u1 to vnj

along u1vnj
; slide the

other searcher on u1 (i.e., ah) along Ph to bh, during which, when a vertex ui of
Ph has only one contaminated edge (i.e., uivnj

), incident on it, slide a searcher
on ui along uivnj

to vnj
. Then ah−1 and bh−1 are two vertices of degree one

on GP − E(Ph). Slide a searcher from vnj
to ah−1 along vnj

ah−1, and slide this
searcher along Ph−1 to bh−1, during which, when a vertex ui of Ph−1 has only
one contaminated edge incident on it, slide a searcher on ui along uivnj

to vnj
.

Continuing like this we can clear all edges of GP and all edges incident on vnj
.

Case 3. nj = 4� + 3. Place the searchers as in Case 1. Place another searcher
on um. Hence we use m + 1 + nj−3

2 + 1 = m + nj+1
2 searchers. Use the same

strategy as in Steps 1–4 in Case 1 to clear every vertex in Vj \{vnj−1, vnj
}. Now

there is one searcher on every vertex of X except u1 and um on which there
are two searchers. We can arrange the vertices of X before placing actions such
that um = ah. Slide one of the two searchers on um along Ph to bh to clear all
its edges. Then, bh contains two searchers. Slide a searcher on bh along bhvnj−1

and bhvnj
respectively. Slide a searcher on u1 to clear the Eulerian circuit induced

166 Y. Xue et al.

by all the edges across V (X) \ {b1} and {vnj−1, vnj
}. Finally, similar to Step 5

in Case 1, we can clear all edges of GP − E(Ph).
Case 4. nj = 4�. Place a searcher on every vertex in {u1, u2, . . . ,

um−1, v1, v2, . . . , v2�} and place a second searcher on u1. Hence we use m + nj

2
searchers. We can arrange the vertices of X before placing actions such that
degX(um) is even and u1 = ah. Let Pi = aiumbi, 1 ≤ i ≤ h.

1. Slide the searcher from u1 along the Eulerian circuit induced by all the edges
across {u1, u2, . . . , um−1} and {v1, v2, . . . , v2�}. Then slide each searcher on
vi ∈ {v1, v2, . . . , v2�} along vium to clear {v1, v2, . . . , v2�}.

2. Slide a searcher on um to each vertex in {v2�+1, v2�+2, . . . , v4�−2}. Slide a
searcher on u1 to clear the Eulerian circuit induced by all the edges across
{u1, u2, . . . , um−1} and {v2�+1, v2�+2, . . . , v4�−2}. Slide a searcher on u1 to bh

along Ph.
3. In the following process, at any moment when a vertex ui (1 ≤ i ≤ m)

contains two searchers, if Hh has a connected component that contains ui

and no edges of the component are cleared, then slide a searcher from ui

along the Eulerian circuit of the component to clear all its edges.
4. Slide a searcher on bh along bhv4�−1 and bhv4� respectively and bh is cleared.

Then, slide a searcher on um to clear the Eulerian circuit induced by all the
edges across V (X) \ {bh} and {v4�−1, v4�}.

5. Finally, similar to Step 5 in Case 1, we can clear all edges of GP − E(Ph).

Corollary 1. For a complete k-partite graph Kn1,...,nk
, define αj, 1 ≤ j ≤ k,

as

αj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑

i=1

ni − nj + 3, if
∑k

i=1
ni − nj is even and

∑k

i=1
ni − nj ≥ 4,

k∑

i=1

ni −
⌊nj

2

⌋
, if

∑k

i=1
ni − nj is odd and

∑k

i=1
ni − nj ≥ 3,

k∑

i=1

ni, else.

Then fs(Kn1,...,nk
) ≤ min1≤j≤k αj .

4 Complete Bipartite Graphs

In Sects. 4 and 5, we focus on some special classes of complete k-partite graphs.
When k = 2, Kn1,...,nk

is a complete bipartite graph. Dyer et al. [6] proved
several results on the fast search number of Km,n. The fast search problem on
Km,n has been solved when m is even. However, the fast search problem remains
open when m is odd, and they only gave lower and upper bounds on fs(Km,n)
in [6]:

Fast Searching on Complete k-partite Graphs 167

– When m is odd, n is even and 3 ≤ m ≤ n, we have max{m + 2, n
2 } ≤

fs(Km,n) ≤ min{n + 3,m + n
2 }.

– When m and n are odd and 3 ≤ m ≤ n, we have max{m + 2, m+n
2 } ≤

fs(Km,n) ≤ m + n+1
2 .

In the following, we will prove that for a complete bipartite graph Km,n

with 3 ≤ m ≤ n, if m is odd, then fs(Km,n) equals to the upper bounds given
above. Let SKm,n

denote an optimal fast search strategy for Km,n, which uses
the minimum number of sliding actions to clear the first cleared vertex of Km,n

among all optimal fast search strategies for Km,n. We use w1 to denote the first
cleared vertex of Km,n. Let t1 denote the moment at which w1 is cleared (see
Fig. 1(1)). Note that vertices of Km,n are partitioned into two vertex sets V1 and
V2. We use w2 to denote the first cleared vertex in another vertex set of Km,n

which does not contain w1. That is, if w1 ∈ V1, then w2 ∈ V2; if w1 ∈ V2, then
w2 ∈ V1. Let t2 denote the moment after which the next sliding action clears
w2 (see Fig. 1(2)). Without loss of generality, we first assume that w1 ∈ V2. In a
similar way, we can prove the lower bound on fs(Km,n) when w1 ∈ V1.

Fig. 1. (1) After searcher λ slides from v1 to u1, v1 becomes the first cleared vertex
of K3,3. Let this moment be denoted by t1, and we have w1 = v1. (2) Searcher λ will
slide from u3 to v3 in the next step. After that, u3 becomes the first cleared vertex in
V1. Let t2 denote this moment, and we have w2 = u3.

Throughout this section, we assume m is odd. We use A1 to denote the set of
all vertices in V2 \ {w1} which contain a searcher at t1 and have cleared incident
edges at t2. We use A2 to denote the set of all vertices in V2 \{w1} which contain
a searcher and have cleared incident edges at t2. Let a1 = |A1| and a2 = |A2|, it
is easy to see that a1 + a2 ≥ |A1 ∪ A2|. Figures 2 and 3 illustrate A1 and A2.

Note that at the moment t1, all vertices in A2 \ {A1 ∩ A2} are contaminated
and contain no searchers, and hence contain no searchers at the beginning of
SKm,n

either. Since m is odd, we know all vertices in A2 are odd. Therefore,
each vertex in A2 \ {A1 ∩ A2} must contain a searcher at the end of SKm,n

.

Lemma 6. For a complete bipartite graph Km,n with m,n ≥ 3, let SKm,n
be an

optimal fast search strategy for clearing Km,n. Suppose that w1 ∈ V2 in SKm,n
,

then we have a1 + a2 ≥ |A1 ∪ A2| ≥ n − 2.

168 Y. Xue et al.

Fig. 2. At the moment t1, each vertex in A1 contains a searcher. Further, each vertex
in A1 has cleared incident edges at t2 (see Fig. 3). In this case, A1 = {v2, v3}.

Fig. 3. At the moment t2, each vertex in A2 contains a searcher, and all vertices in A1

and A2 have cleared incident edges. In this case, A2 = {v4}.

Lemma 7. For a complete bipartite graph Km,n with m,n ≥ 3, let SKm,n
be an

optimal fast search strategy for clearing Km,n. Suppose that w1 ∈ V2 in SKm,n
. If

(1) each vertex in V1∪A1 contains exactly one searcher at t1, and (2) w1 contains
no searchers at t1, then each vertex in A1 has at least two contaminated incident
edges at t1.

4.1 Both m and n Are Odd

Lemma 8. For a complete bipartite graph Km,n with 3 ≤ m ≤ n, suppose that
both m and n are odd. If w1 ∈ V2, then fs(Km,n) ≥ m + n+1

2 .

Proof. If 3 = m ≤ n, then it follows from Lemma 2 that fs(Km,n) ≥ m+n
2 + 2 =

n+1
2 +3 = m+ n+1

2 . So we only need to consider 5 ≤ m ≤ n in the following. Since
w1 ∈ V2 and w1 is cleared at t1, we know each vertex in V1 must be guarded by
a searcher at the moment t1. If max{a1, a2} ≥ n+1

2 , then fs(Km,n) ≥ m + n+1
2 .

Suppose that max{a1, a2} ≤ n−1
2 . Note that a1 + a2 ≥ n − 2 and both m and n

are odd. We know min{a1, a2} ≥ n−3
2 . Further, a1 and a2 cannot both equal to

n−3
2 ; otherwise, a1 + a2 = n − 3 < n − 2. Hence, there are two cases.

Case 1. a1 = n−1
2 . If w1 contains a searcher at t1, then fs(Km,n) ≥ |V1| +

|A1| + 1 = m + a1 + 1 = m + n+1
2 . If w1 contains no searchers at t1, then for the

sake of contradiction, we assume that m + n−1
2 searchers can clear Km,n. Since

|V1∪A1| = m+ n−1
2 , we know each vertex in V1∪A1 contains exactly one searcher

at t1, and no searchers are located on other vertices. Consider the moment

Fast Searching on Complete k-partite Graphs 169

t1. From Lemma 7, we know each vertex in A1 has at least two contaminated
incident edges at t1. Further, since |V2\{A1∪{w1}}| = n− n−1

2 −1 ≥ 2, there are
at least two vertices in V2 which have no cleared incident edges. Therefore, each
vertex in V1 has at least two contaminated incident edges. Observe that every
vertex in V1∪A1 contains exactly one searcher and has at least two contaminated
incident edges. Therefore, all searchers get stuck at t1, which contradicts that
m + n−1

2 searchers can clear Km,n. Hence, fs(Km,n) ≥ m + n+1
2 .

Case 2. a1 = n−3
2 . Since max{a1, a2} ≤ n−1

2 and a1 + a2 ≥ n − 2, we know
a2 = n−1

2 . Further, since a1 + a2 = n − 2, we know A1 ∩ A2 = ∅, and hence
each vertex in A2 should always contain a searcher after t2. For the sake of
contradiction, assume that m+ n−1

2 searchers can clear Km,n. Recall that at the
moment t2, each vertex in A2 ∪ V1 is occupied by a searcher and |A2 ∪ V1| =
m + n−1

2 , we know each vertex in A2 ∪ V1 is occupied by exactly one searcher at
t2. Let x1x2 denote the last cleared edge before t2, which is cleared by sliding
a searcher from x1 to x2. Note that each vertex in V1 is occupied by a searcher
between t1 and t2. We know x2 must be in A2, and x2 contains no searchers
before x1x2 is cleared. Thus, x1x2 is the only cleared edge incident on x2 at
t2. Recall that a1 + a2 = n − 2, it is easy to see that there is still a vertex
in V2, say x3, which has no cleared incident edges at t2. Hence, w2x3 must be
cleared by the next sliding action after t2. When w2 is cleared, we know both
of x2 and x3 have exactly one cleared incident edge, and the two edges must be
w2x2 and w2x3. Therefore, when w2 is cleared, each vertex in V1 except w2 has
at least two contaminated incident edges. Note that each vertex in A2 should
be guarded by a searcher after t2. Hence, every searcher gets stuck after w2

is cleared. This contradicts that m + n−1
2 searchers can clear Km,n. Therefore,

fs(Km,n) ≥ m + n+1
2 .

Corollary 2. For a complete bipartite graph Km,n with 3 ≤ m ≤ n, suppose
that both m and n are odd. If w1 ∈ V1, then fs(Km,n) ≥ m + n+1

2 when m = 3,
and fs(Km,n) ≥ n + m+1

2 when m ≥ 5.

From Lemma 8 and Corollary 2, we are ready to present the lower bound on
fs(Km,n) when both m and n are odd. Note that since m ≤ n, min{m+ n+1

2 , n+
m+1
2 } = m + n+1

2 .

Theorem 4. Given a complete bipartite graph Km,n with 3 ≤ m ≤ n, if both m
and n are odd, then fs(Km,n) ≥ m + n+1

2 .

4.2 m is Odd and n is Even

Lemma 9. For a complete bipartite graph Km,n with 3 ≤ m < n, suppose that
m is odd and n is even. If w1 ∈ V2, then fs(Km,n) ≥ m + n

2 .

Proof. If max{a1, a2} ≥ n
2 , then it is easy to see that fs(Km,n) ≥ m+ n

2 . Suppose
that max{a1, a2} < n

2 . Since a1 + a2 ≥ n − 2 and n is even, we know a1 =
a2 = n−2

2 and A1 ∩ A2 = ∅. Consider the moment t1. We know each vertex
in V1 ∪ A1 contains a searcher. For the sake of contradiction, we assume that

170 Y. Xue et al.

m+ n−2
2 searchers can clear Km,n. Then each vertex in V1 ∪A1 contains exactly

one searcher at t1. From Lemma 7, we know each vertex in A1 has at least
two contaminated incident edges. Further, since A1 ∩ A2 = ∅ and |V2 \ {A1 ∪
{w1}}| = n − n−2

2 − 1 ≥ 2, we know there are at least two vertices in V2 which
have no cleared incident edges at t1. Thus, each vertex in V1 has at least two
contaminated incident edges at t1, and hence, all searchers get stuck at t1. This
contradicts that m+ n−2

2 searchers can clear Km,n. Therefore, fs(Km,n) ≥ m+ n
2 .

In the following, we consider the case when w1 ∈ V1.

Lemma 10. For a complete bipartite graph Km,n with 3 ≤ m < n, suppose that
m is odd and n is even. If w1 ∈ V1, then fs(Km,n) ≥ n + 1 when m = 3, and
fs(Km,n) ≥ n + 3 when m ≥ 5.

Proof. If w1 ∈ V1, then w2 ∈ V2. At the moment t1, since w1 is the first cleared
vertex, each vertex in V2 is occupied by a searcher. Let w3 denote the second
cleared vertex of Km,n. If w3 ∈ V2, then we know each vertex of Km,n except w1

and w3 must be occupied by a searcher before w3 is cleared. Hence, fs(Km,n) ≥
m + n − 2. If w3 ∈ V1, then we have two cases:

Case 1. m = 3. Assume that n searchers can clear Km,n. Consider the moment
t1. Note that |V2| = n and each vertex in V2 is occupied by a searcher at t1.
Hence, each vertex in V2 contains exactly one searcher at t1 and no searchers
are located on other vertices. Since there are still two vertices in V1 which have
no cleared incident edges, then each vertex in V2 has two contaminated incident
edges. Thus, it is impossible to move any of the searchers located on V2 after
t1. This contradicts our assumption that n searchers can clear Km,n. Therefore,
fs(Km,n) ≥ n + 1 when m = 3.

Case 2. m ≥ 5. For the sake of contradiction, we assume that n+2 searchers
are sufficient to clear Km,n. We have three subcases:

Case 2.1. w3 contains no searchers after it is cleared. Then the last two
cleared edges incident on w3 are both cleared by sliding a searcher from w3

to V2. After w3 is cleared, all searchers will get stuck within five steps. This
contradicts the assumption that n + 2 searchers are sufficient to clear Km,n.
Therefore, fs(Km,n) ≥ n + 3.

Case 2.2. w3 contains exactly one searcher after it is cleared. Note that w3

has degree at least 6, we know the last cleared edge incident on w3 has to be
cleared by sliding a searcher from w3 to V2. Consider the moment when w3 is
cleared. Note that each vertex in V2 is occupied by a searcher between t1 and
t2, and there are at least m − 2 ≥ 3 vertices in V1 which contain no searchers
and have no cleared incident edges. Since we assume that n + 2 searchers are
sufficient to clear Km,n, hence, there is only one vertex in V2 which contains two
searchers. It is easy to see that all searchers get stuck within one step after w3

is cleared, which is a contradiction. Therefore, fs(Km,n) ≥ n + 3.
Case 2.3. w3 contains exactly two searchers after it is cleared. Consider the

moment at which w3 is cleared. Note that there are still at least m − 2 ≥ 3
vertices in V1 which contain no searchers and have no cleared incident edges.

Fast Searching on Complete k-partite Graphs 171

Further, each vertex in V2 is occupied by exactly one searcher. Hence, it is easy
to see that all searchers get stuck after w3 is cleared. Therefore, fs(Km,n) ≥ n+3.

From the above cases, if w1 ∈ V1, then fs(Km,n) ≥ min{m + n − 2, n + 1} =
n + 1 when m = 3, and fs(Km,n) ≥ min{m + n − 2, n + 3} = n + 3 when m ≥ 5.

From Lemmas 9 and 10, we know: (1) when m = 3, fs(Km,n) ≥ min{m +
n
2 , n + 1} = m + n

2 ; (2) when m ≥ 5, fs(Km,n) ≥ min{m + n
2 , n + 3}. Hence,

we are now ready to give the lower bound on fs(Km,n) when m is odd, n is even
and 3 ≤ m ≤ n.

Theorem 5. For a complete bipartite graph Km,n with 3 ≤ m < n, if m is odd
and n is even, then fs(Km,n) ≥ min{n + 3,m + n

2 }.
From Theorems 4 and 5 above, in combination with Lemma 4 and Theorem

4 in [6], we have a complete solution to fs(Km,n).

Theorem 6. For a complete bipartite graph Km,n with 3 ≤ m ≤ n,

fs(Km,n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌈n

2

⌉
, m = 1,

2, m = n = 2,
3, m = 2 and n ≥ 3,

m +
n + 1

2
, 3 ≤ m ≤ n, both m and n are odd,

min{n + 3,m +
n

2
}, 3 ≤ m < n, m is odd and n is even,

6, m = 4 and n ≥ 4,
m + 3, 6 ≤ m ≤ n and m is even.

5 Complete Split Graphs

In this section, we consider complete split graphs Sm,n with m,n ≥ 1, which also
form a special class of k-partite graphs Kn1,...,nk

when 1 = n1 = · · · = nk−1 ≤
nk. We start with some initial cases.

Lemma 11. For a complete split graph Sm,n, if n = 1, then

fs(Sm,1) =

⎧
⎪⎨

⎪⎩

1, m = 1,

2, m = 2,

m + 1, m ≥ 3.

In the following, we consider the fast search number of Sm,n when n ≥ 2. Let
SSm,n

denote an optimal fast search strategy for clearing Sm,n. Let w′
1 denote

the first cleared vertex in SSm,n
, and let t′1 denote the moment at which w′

1 is
cleared.

172 Y. Xue et al.

5.1 m is Odd and n ≥ 2

When m = 1 and n ≥ 2, Sm,n is a star with n leaves. It is easy to see that
S1,n can be cleared with 	n

2
 searchers. Further, it follows from Lemma 1 that
fs(S1,n) ≥ 1

2 |Vodd(S1,n)| = 	n
2
. Hence, we have the next lemma.

Lemma 12. For a complete split graph with m = 1, if n ≥ 2, then fs(S1,n) =
	n
2
.

Lemma 13. For a complete split graph Sm,n with m ≥ 3 and n ≥ 2, if m is
odd, then fs(Sm,n) = m + 	n

2
.
Proof. If w′

1 ∈ V1, then each vertex of Sm,n except w′
1 should be guarded by a

searcher at the moment t′1. Hence, fs(Sm.n) ≥ m − 1 + n. If w′
1 ∈ V2, then we

have two cases:
Case 1. n is even. If n = 2, then it follows from Lemma 3 that fs(Sm,n) ≥

m + 1 = m + n
2 . If n ≥ 4, then similar to the proof of Lemma9, we can show

that fs(Sm,n) ≥ m + n
2 .

Case 2. n is odd. If n = 3, then it follows from Lemma5 that fs(Sm,n) ≥
2 + m = m + n+1

2 . If n = 5, then similar to the proof of Lemma8 when n ≥ 5,
we can show that fs(Sm,n) ≥ m + n+1

2 .
From the above cases, when m ≥ 3 and n ≥ 2, fs(Sm,n) ≥ min{m−1+n,m+

	n
2
} = m + 	n

2
. In combination with Theorem 3, we have fs(Sm,n) = m + 	n
2
,

when m ≥ 3 and n ≥ 2.

From Lemmas 12 and 13, we are ready to give the fast search number of Sm,n

when m is odd and n ≥ 2.

Theorem 7. For a complete split graph Sm,n, if m is odd, then

fs(Sm,n) =

⎧
⎪⎨

⎪⎩

⌈n

2

⌉
, m = 1, n ≥ 2,

m +
⌈n

2

⌉
, m ≥ 3, n ≥ 2.

5.2 m is Even and n ≥ 2

Now we consider the complete split graph Sm,n where m is even and n ≥ 2. We
first give the following upper bound on fs(Sm,n).

Lemma 14. For a complete split graph Sm,n with m = 2 and n ≥ 2, we have
fs(S2,n) ≤ 3.

Proof. Let V1 = {u1, u2} and V2 = {v1, v2, . . . , vn}. Place a searcher on u1 and
u2 respectively. Place a second searcher, say λ, on u1. Hence we use 3 searchers.
Let λ clear v1 by sliding along the path u1v1u2. Next let λ clear v2 by sliding
along the path u2v2u1. Repeat this process to clear all the other vertices of Sm,n.

Lemma 15. For a complete split graph Sm,n with m = 4 and n ≥ 3, we have
fs(S4,n) ≤ 6.

Fast Searching on Complete k-partite Graphs 173

Lemma 16. For a complete split graph Sm,n with m ≥ 4 and n = 2, we have
fs(Sm,2) ≤ m + 1.

Theorem 8. For a complete graph Sm,n,

fs(Sm,n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3, m = 2, n ≥ 2,

6, m = 4, n ≥ 3,

m + 1, m ≥ 4, n = 2,

m + 2, m ≥ 6, n = 3.

Proof.

(1) m = 2 and n ≥ 2. If w′
1 ∈ V1, then fs(S2,n) ≥ |V1 ∪V2|−1 = 2+n−1 ≥ 3. If

w′
1 ∈ V2, then let w′

1x1 denote the last sliding action at t′1. Suppose that two
searchers are sufficient to clear Sm,n. When w′

1 is cleared, each vertex in V1

should be occupied by a searcher. Therefore, at the moment t′1, each vertex in
V1 is occupied by exactly one searcher and no searchers are located on other
vertices. Hence, x1 has no cleared incident edges before w′

1x1 is cleared.
Further, the only edge between two vertices in V1 is contaminated when
w′

1x1 is cleared. Since there is at least one vertex in V2 which has no cleared
incident edges, we know each vertex in V1 has at least two contaminated
incident edges. Therefore, no searchers can move after w′

1 is cleared. This is
a contradiction. Thus, when m = 2 and n ≥ 2, fs(S2,n) ≥ 3.

(2) m = 4 and n ≥ 3. It follows from Lemmas 5 and 15 that fs(S4,n) = m+2 = 6.
(3) m ≥ 4 and n = 2. Clearly, Sm,2 contains a clique Km+1. From Lemmas 3

and 16, we have fs(Sm,2) = m + 1.
(4) m ≥ 6 and n = 3. It follows from Theorem 1 that fs(Sm,3) = m + n − 1 =

m + 2.

From Lemma 5 and Theorem 2, we give a lower bound and an upper bound
on fs(Sm,n) when m ≥ 6 and n ≥ 4.

Theorem 9. For a complete split graph Sm,n with m ≥ 6 and n ≥ 4, if m is
even, then m + 2 ≤ fs(Sm,n) ≤ m + 3.

6 Conclusion and Open Problems

We established both lower bounds and upper bounds on the fast search number
of complete k-partite graphs. For k = 2, in combination with existing upper
bounds, we completely resolved the open question of determining the fast search
number of complete bipartite graphs. In addition, we presented some new and
nontrivial bounds on the fast search number of complete split graphs.

State-of-the-art knowledge and intuition about the fast search model is not
developed as well as for most other search models. Our lower bounds required
new proof approaches compared to the existing results in the literature; thus our
results shed light on the general problem of finding optimal fast search strategies.

The following problems are left open which we consider worth to investigate:

174 Y. Xue et al.

(1) For complete split graphs Sm,n with m ≥ 6 and n ≥ 4, resolve the gap of 1
between the upper bound and lower bound on the fast search number when
m is even.

(2) Determine the fast search number of Kn1,...,nk
for general values of n1, . . . ,

nk. We conjecture that in Corollary 1, if
∑k

i=1 ni −nj is odd and
∑k

i=1 ni −
nj ≥ 3, then fs(Kn1,...,nk

) = min1≤j≤k αj , where αj =
∑k

i=1 ni − ⌊nj

2

⌋
.

References

1. Alspach, B.: Sweeping and searching in graphs: a brief survey. Matematiche 59,
5–37 (2006)

2. Alspach, B., Dyer, D., Hanson, D., Yang, B.: Lower bounds on edge searching. In:
Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp.
516–527. Springer, Heidelberg (2007)

3. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a
survey). DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 5, 33–49 (1991)

4. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Amer-
ican Mathematical Soc., Philadelphia (2011)

5. Dereniowski, D., Diner, Ö., Dyer, D.: Three-fast-searchable graphs. Discrete Appl.
Math. 161(13), 1950–1958 (2013)

6. Dyer, D., Yang, B., Yaşar, Ö.: On the fast searching problem. In: Fleischer, R., Xu,
J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 143–154. Springer, Heidelberg (2008)

7. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theoret. Comput. Sci. 399(3), 236–245 (2008)

8. Hahn, G.: Cops, robbers and graphs. Tatra Mt. Math. Publ. 36(163), 163–176
(2007)

9. Makedon, F.S., Papadimitriou, C.H., Sudborough, I.H.: Topological bandwidth.
SIAM J. Algebraic Discrete Methods 6(3), 418–444 (1985)

10. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The
complexity of searching a graph. J. ACM 35(1), 18–44 (1988)

11. Stanley, D., Yang, B.: Fast searching games on graphs. J. Comb. Optim. 22(4),
763–777 (2011)

12. Xue, Y., Yang, B.: Fast searching on cartesian products of graphs. In: The 14th
Annual Conference on Theory and Applications of Models of Computation (2017,
accepted)

13. Yang, B.: Fast edge searching and fast searching on graphs. Theoret. Comput. Sci.
412(12), 1208–1219 (2011)

	Fast Searching on Complete k-partite Graphs
	1 Introduction
	2 Preliminaries
	3 Complete k-partite Graphs
	4 Complete Bipartite Graphs
	4.1 Both m and n Are Odd
	4.2 m is Odd and n is Even

	5 Complete Split Graphs
	5.1 m is Odd and n 2
	5.2 m is Even and n 2

	6 Conclusion and Open Problems
	References

